
SCJ: Memory-safety checking
without annotations

Chris Marriott and Ana Cavalcanti
cam505@york.ac.uk, ana.cavalcanti@york.ac.uk

University of York, UK

Abstract. The development of Safety-Critical Java (SCJ) has intro-
duced a novel programming paradigm designed specifically to make Java
applicable to safety-critical systems. Unlike in a Java program, memory
management is an important concern under the control of the program-
mer in SCJ. It is, therefore, not possible to apply tools and techniques for
Java programs to SCJ. We describe a new technique that uses an abstract
language and inference rules to guarantee memory safety. Our approach
does not require user-added annotations and automatically checks pro-
grams at the source-code level, although it can give false negatives.

1 Introduction

Verification is costly; techniques to automate this task are an interesting research
topic. A recent contribution is Safety-Critical Java (SCJ) [1] - a specification for
Java that facilitates static verification and is suitable for safety-critical programs.

The Real-Time Specification for Java (RTSJ) [2] was designed to make Java
more suitable for real-time systems: it provides timing predictability. The guar-
antees of reliability needed for safety-critical systems are, however hard to achieve
without further restrictions. SCJ strikes a balance between languages that are
popular and those already considered adequate for high-integrity systems.

Our work is focused on memory safety of SCJ programs: the memory model is
one of their main distinguishing features. The RTSJ introduces scoped memory
areas that are not garbage collected, although the heap is available. The SCJ
model removes access to the heap and limits the use of scoped memory.

The strict memory model of SCJ, however, does not ensure memory safety
by construction, and every program must be checked. It is not enough to check
absence of null-pointers and array-out-of-bounds exceptions. The memory areas
form a hierarchy; objects cannot reference others stored in child memory areas.

SCJ programs are defined at one of three possible compliance levels: Level 0
programs follow a cyclic executive design and are the simplest, whereas Level 2
programs can make complex use of concurrency and sharing. We are interested
in Level 1 programs, which are similar in complexity to Ravenscar Ada [3, 4].
Level 1 programs introduce concurrency and aperiodic events over Level 0.

As SCJ is relatively new, verification tools and techniques are currently fairly
sparse, however, techniques such as those in [5] and [6] have established ways to

Fig. 1. SCJ programming paradigm

check memory safety of SCJ programs through user-added annotations and byte-
code analysis. We present an automated approach that operates at the source-
code level without user-added annotations. It can, however, give false negatives.

Our technique uses an abstract language, SCJ-mSafe, to represent SCJ pro-
grams. Via abstraction, we focus on parts of SCJ programs required to verify
memory safety, and present them in a consistent and structured format. Methods
of a program are analysed individually to create a set of parametrised proper-
ties for each one that describes behaviour independently of the calling context.
We define inference rules for SCJ-mSafe that describe memory safety for each
component and apply them to the overall program. We assume the SCJ infras-
tructure is safe. For validation, besides constructing a tool and carrying out
experiments, we have formalised our technique in Z [7].

The novelty of our approach is found in the abstraction technique, and the
way in which we treat methods. In representing an SCJ program in SCJ-mSafe,
we keep only the statements, methods, and classes that can influence memory
safety. In checking the memory safety of an SCJ-mSafe program, we automati-
cally calculate postconditions for each method. The postcondition of a method
characterises its effect on the allocation of the fields and of the result, if any. Us-
ing this information, we can check the safety of method calls without restricting
the calls to a specific scope. If there is a possibility that a method cannot be safe
in any context, an error is raised during the calculation of its postcondition.

Section 2 of this paper introduces SCJ and its paradigm; our approach to
verifying memory safety is discussed in Section 3. Our abstract language and
translation strategy is described in Section 4, and the static-checking technique in
Section 5. Section 6 describes our tool and some experiments we have conducted,
before Section 7 draws some conclusions and describes our future work.

2 Safety-Critical Java

The SCJ programming paradigm is focused on the concept of missions. In Level 1
programs, missions are executed in sequence, and each mission executes a number
of event handlers in parallel. Figure 1 shows the components for execution.

The entry point of an SCJ program is the safelet, which performs the setup
procedures for a sequencer that controls the missions to be executed. When exe-

Fig. 2. SCJ memory structure

cuted, a mission goes through three phases: initialisation, execution, and cleanup.
Objects used in missions are pre-allocated during the initialisation phase. In the
execution phase, the event handlers are executed. When a mission has finished
executing, the cleanup phase is entered for any final tasks. Level 1 programs can
include periodic and aperiodic event handlers executed concurrently under the
control of a fixed-priority pre-emptive scheduler.

Two types of memory area are used in the memory model: immortal and
scoped. Each component of the paradigm has a default memory area; new objects
created during execution are created in these associated areas unless specified
otherwise. The safelet and mission sequencer are created in immortal memory,
and allocate new objects in immortal memory. Individual missions are created
inside the scoped mission memory area; new objects are created in the mission
memory area, but can be created in the immortal memory. Event handlers are
created in the mission memory, however once released, new objects are created
inside a scoped per-release memory area associated with the handler. Handlers
can create objects in the mission and immortal memory areas. Temporary private
scoped memory areas can be used during the initialisation phase of a mission and
by handlers; they are organised in a stack structure. Once a handler or mission
finishes executing, the contents of its associated memory area(s) are reclaimed.

An example of this hierarchy of memory areas can be seen in Figure 2. It
shows the immortal memory, mission memory, and three per-release memory
areas associated with handlers in the mission. The mission and two of the han-
dlers have their own private temporary memory areas. Finally, Figure 2 shows
the thread stacks, which belong to the main program, mission sequencer, and
event handlers; five stacks are used in this example.

To avoid dangling references, the SCJ memory model has rules to control
their use. References can only point to objects in the same memory area, or in a
memory area that is further up the hierarchy, that is, towards immortal memory.

Figure 3 shows an event handler in SCJ that repeatedly enters a temporary
private memory area. It is part of a program taken from [8] that uses a single
mission with a single periodic event handler. Its safelet, sequencer, and mission

public class Handler extends PeriodicEventHandler {

int cnt;

Object share = new Object();

public Handler () {

super (new PriorityParameters(11),

new PeriodicParameters(new RelativeTime(0, 0),

new RelativeTime(500, 0)),

new StorageParameters(10000, 1000, 1000), 500);

}

public void handleEvent() {

System.out.println("Ping " + cnt);

++cnt;

MyRunnable r = new MyRunnable();

for (int i=0; i<10; ++i) {

ManagedMemory m = (ManagedMemory) MemoryArea.getMemoryArea(this);

m.enterPrivateMemory(500, r);

}

if (cnt > 5) {

Mission.getCurrentMission().requestTermination();

}

share = new Object();

}

}

Fig. 3. Nested Private Memory example in SCJ.

are omitted here for conciseness. The safelet creates the sequencer; the mission
sequencer creates only a single mission with just one instance of Handler.

The handler’s handleEvent method creates an instance of a runnable ob-
ject and repeatedly executes it in a temporary private memory area using the
enterPrivateMemory method. The example from [8] has also been expanded to
include an additional class field share. This field is a reference and is instantiated
with an object stored in mission memory, because fields of handlers are stored
in the mission memory. When the handleEvent method executes, it executes in
the per-release memory area associated with the handler; therefore, when share

is re-allocated with a new object later, the SCJ memory safety rules are broken.
We will continue to use this example throughout the paper, and will demonstrate
later how our tool automatically detects this memory-safety violation.

3 Our approach to checking memory safety

Our technique has two main steps, as shown in Figure 4. The first step takes a
valid SCJ program that is type correct and well formed according to the SCJ
specification, and translates it into our new language called SCJ-mSafe, which is
designed to ease verification. No information relevant to memory safety is lost,

Fig. 4. Memory-safety checking technique

but all irrelevant information is discarded. Each SCJ program is described in
the same style when translated to SCJ-mSafe; this makes programs easier to
read and facilitates our analysis. A uniform structure also eases formalisation of
SCJ-mSafe and of our checking technique, which is crucial in proving soundness.

In the second step, inference rules are applied to the SCJ-mSafe program
using an environment that is automatically constructed to capture memory prop-
erties of expressions useful to determine memory safety. Each component of an
SCJ-mSafe program has an associated rule that defines in its hypothesis the con-
ditions that must be true for it to preserve memory safety. If all hypotheses of
all rules applied to a program are true, then the program is memory safe. If any
of the hypotheses are false, there is a possibility of a memory-safety violation.

Given an SCJ program, our technique automatically translates it into SCJ-
mSafe and applies the memory-safety rules. In this way, we can verify safety
without additional user-based input such as annotations, for example.

In general, the memory configuration at particular points of a program cannot
be uniquely determined statically. It may depend, for example, from the values
of inputs to the program. Since our aim is to perform a static analysis, we always
assume the worst-case scenario for checking memory safety.

Our analysis is flow sensitive, path insensitive, context sensitive, and field
sensitive. We consider the flow of the program by checking each command indi-
vidually as opposed to summarising behaviour. We do not rely on precise knowl-
edge of the control path. For example, we cannot determine statically which
branch of a conditional statement is executed; we consider both branches. Al-
though the behaviour may be different in each branch, the effect on memory may
be the same; if not, the effects of both branches are considered separately in the
remainder of the analysis. This creates a set of possible memory configurations
during our analysis; each is updated throughout to give all possible scenarios of
execution. Analysis of loops is also relatively straight forward as we consider ev-
ery possible behaviour regardless of the iteration. This is achieved with a single
pass where every execution path is analysed individually. Our analysis is con-
text sensitive as we analyse methods based on their calling site, although each
method is analysed once to establish a parametrised summary of behaviour. This
summary is used in our analysis at each calling point of the method. Finally, we
perform a field-sensitive analysis as we consider all fields of a referenced object
when analysing assignments and new instantiations.

4 SCJ-mSafe and translation

SCJ-mSafe remains as close to SCJ as possible, and includes constructs to de-
scribe all behavioural components of the SCJ paradigm to reason about memory
safety. This section introduces the language and describes the translation.

4.1 SCJ-mSafe

An SCJ-mSafe program is a sequence of definitions of components of an SCJ
program: static fields and their initialisations, a safelet, a mission sequencer,
missions, handlers, and classes. Every program follows this structure; it is not
possible to combine the safelet and mission sequencer, for example.

The safelet component is comprised of class fields and their corresponding
initialisation commands, any constructors, a setUp method, a mission sequencer,
a tearDown method, and any additional class methods. The setUp and tearDown

methods are declared separately from other methods as they are defined as part
of the SCJ programming paradigm and identify the execution order of a program.

The order in which missions execute does not impact our analysis of memory
safety. As only one mission executes at a time at Level 1, we treat each mission
individually. Objects that are shared between different missions reside in immor-
tal memory and are passed as references to missions. Even if the specific value
of a shared variable cannot be determined because it is defined by missions that
may execute earlier, our analysis still identifies possible memory safety violations
for assignments or instantiations to subsequent fields. If a mission introduces a
violation, it is caught; the order in which it is executed does not matter.

A mission is made up of its fields and the corresponding initialisation com-
mands, any constructors, the initialize method, its handlers, the cleanUp

method, and any additional user-defined class methods. The initialize and
cleanUp methods execute before and after the handlers respectively.

Every handler component has its own unique identifier, and is made up
of its fields and corresponding initialisation commands, any constructors, the
handleEvent method, and any additional class methods. The handler of the
nested private memory areas example is shown in Figure 5; it is very similar to
the handler in SCJ shown in Figure 3, however, we do not distinguish between
periodic and aperiodic handlers. We abstract away from the type of handler as
our analysis does not rely on the scheduling of handlers.

User-defined classes are comprised of class fields and their corresponding
initialisation commands, any constructors, and class methods.

Expressions and Commands As shown in Figure 5, expressions and commands
in SCJ-mSafe are slightly different to those in SCJ. Some SCJ expressions are
not required in SCJ-mSafe as they do not affect memory safety; the expression
++cnt in Figure 3 is crucial to behaviour, but has no relevance to memory safety.

The important expressions in SCJ-mSafe are left expressions, which are ex-
pressions that can reference objects; identifiers and field accesses are left ex-
pressions. Values, identifiers, and field accesses denote objects manipulated in

handler Handler {

fields {

int cnt;

Object share;

}

init {

NewInstance(share, Current, Object, ());

}

constr () {

PriorityParameters var1;

NewInstance(var1, Current, PriorityParameters, (Val));

...

}

handleEvent {

...

for ((int i; i = Val;), Val, (Skip;)) {

ManagedMemory m;

ManagedMemory var9;

MemoryArea.getMemoryArea(this, var9);

m = var9;

m.enterPrivateMemory(Val, r);

}

if (Val) {

Mission var12;

Mission.getCurrentMission(var12);

var12.requestTermination();

} else {

Skip;

}

NewInstance(share, Current, Object, ());

}

}

Fig. 5. Nested Private Memory example in SCJ-mSafe.

a program whose allocations need to be checked. An identifier is a variable or
an array access. Side effects are extracted as separate commands; all other SCJ
expressions are represented as OtherExprs, which is a constant in SCJ-mSafe.

Commands in SCJ-mSafe include just a subset of those found in SCJ as not all
commands in SCJ affect memory safety. For example, the assert statement is not
part of SCJ-mSafe as it has no impact on memory safety. We do, however, include
additional commands in SCJ-mSafe; SCJ expressions such as assignments, new
instantiations, and method invocations are all represented as commands in SCJ-
mSafe. They modify the value of program variables and are better characterised
semantically as commands rather than expressions as in SCJ.

The SCJ-mSafe example in Figure 5 demonstrates several interesting differ-
ences between SCJ and SCJ-mSafe. In the constructor in Figure 3, the call to

super includes several instantiations of objects that are passed as parameters.
In SCJ-mSafe, a new variable is declared for each object and is instantiated indi-
vidually; the new variables are then used as the parameters to the method call.
For example, var1 is a new variable of type PriorityParameters; it is then
instantiated on the following line with the NewInstance command.

We note also the call to the getMemoryArea method in the for loop in the
handleEvent method. In SCJ, the declaration and assignment to the variable m

via a method call are defined on a single line; in SCJ-mSafe, the declaration and
assignment are split. Also, because the right-hand side of the assignment is a
method call, we introduce a new variable var9, which is used to store the result
of the method call. The result of the getMemoryArea method is assigned to var9

as it is passed as a result parameter to the method call. Finally, the reference
stored in our variable var9 is assigned to the original variable m.

The conditional statement below the for loop does not have an else state-
ment in SCJ. In SCJ-mSafe, the else statement is always included, even if the
behaviour of that branch is empty, or Skip. The command Skip describes a
command that does nothing; it is also used to translate commands that we ab-
stract away as they have no impact on the memory safety. Despite abstracting
away the specific iteration, loops are maintained in our abstract language as the
commands that form loop initialisations and loop updates must also be analysed.

Methods Methods in SCJ-mSafe are made up of the method name, return type,
parameters, and method body. Further analysis, as discussed later, allows us to
calculate the impact on memory safety of executing a specific method.

4.2 Translation

The translation from SCJ programs to SCJ-mSafe is not trivial, and includes
analysis of the input program to create an SCJ-mSafe program with the con-
sistent structure required for analysis. Using the specification language Z, we
have defined a model of SCJ and SCJ-mSafe in order to formalise a translation
strategy. We define the rules to specify memory safety using the same model.
We have a Z model that defines SCJ and SCJ-mSafe, the translation strategy
from SCJ to SCJ-mSafe, and the memory-safety checking technique.

Overall approach The translation strategy is defined by a series of functions
that map SCJ components to corresponding SCJ-mSafe components. There
are functions that translate the overall program, and functions that translate
individual expressions. The function to translate the overall program takes an
SCJ program and returns an SCJ-mSafe program.

Translate : SCJProgram 7→ SCJmSafeProgram

∀ program : SCJProgram • ∃ scjmsafe : SCJmSafeProgram | ...

For all input SCJ programs, there exists a corresponding SCJ-mSafe program
whose components are defined by further translation functions. The functions

used to translate commands and expressions are used at every stage of the trans-
lation as each SCJ component (such as the safelet, missions, and so on) has
commands in its own individual elements (such as methods).

Translating expressions Expressions in SCJ are found individually and as part
of larger statements; for example ++cnt; is a valid expression, however, cnt;
is also a valid expression, but only makes sense as part of another statement.
Expressions that identify values or references are translated into expressions; the
remaining expressions that impact memory safety are translated to commands.

Accordingly, we define two translation functions for expressions. The first
defines the translation of expressions into commands (TranslateExpression). This
function takes an SCJ expression and returns an SCJ-mSafe command.

TranslateExpression : SCJExpression 7→ Com

dom TranslateExpression ⊂WellTypedExprs
∧ ∀ scjExpr : dom TranslateExpression •

... ∨ (∃ e1, e2 : SCJExpression | scjExpr = assignment(e1, e2) •
(let lexpr == ExtractExpression e1 •

(let rexpr == ExtractExpression e2 •
... (TranslateExpression scjExpr =

Seq((TranslateExpression e2), (Asgn(lexpr , rexpr)))))))

The domain of TranslateExpression is a subset of valid SCJ expressions that
are well typed (WellTypedExprs); for all SCJ expressions in its domain, the re-
sulting SCJ-mSafe command is defined based on the type of expression; part of
the case for assignments is shown above. For example, the assignment a = b is
translated into the SCJ-mSafe assignment command Asgn(a, b). More complex
assignments, such as a = (b = c), which contain side effects, are translated
as a sequence (Seq) of commands. The result of applying TranslateExpression
to a = (b = c) is Seq(Asgn(b, c),Asgn(a, b)). This is done by translating any
embedded side effects into separate commands that come first in a sequence, fol-
lowed by the overall expression; b = c is an embedded side effect of a = (b = c).

To deal with expressions with side effects, we define ExtractExpression. It is
used by TranslateExpression to extract the meaning of expressions whilst ignor-
ing side effects. It takes an SCJ expression and returns an SCJ-mSafe expression.

ExtractExpression : SCJExpression 7→ Expr

dom ExtractExpression ⊂WellTypedExprs
∧ ∀ scjExpr : dom ExtractExpression •

... ∨ (∃ e1, e2 : SCJExpression | scjExpr = assignment(e1, e2) •
ExtractExpression scjExpr = ExtractExpression e1)

... ∨ (∃name : Name; id : Identifier |
scjExpr = identifier name ∧ id = VariableName name •

ExtractExpression scjExpr = ID id)

The domain of ExtractExpression is also the subset of well-typed SCJ expres-
sions. For all expressions in its domain, the SCJ-mSafe expression is extracted

based on the type of the input expression. For example, when we apply the
ExtractExpression function to a[i = 10], the expression returned is a[i], as it
ignores the side effect i = 10. In the example a = (b = c), the result of apply-
ing ExtractExpression to the left-hand side is the identifier a. When applied to
the right-hand side, the assignment b = c is ignored and the identifier b, which
is assigned to the left-hand side of the overall assignment (a), is returned.

If an expression has no embedded side effects, the result of TranslateExpression
is the command Skip. For example, the SCJ assignment a = b has no side effects
and is translated into the sequence Skip followed by Asgn(a, b).

Translating commands If the SCJ command may impact memory safety, it is
translated into the corresponding SCJ-mSafe command; otherwise, it is ignored.
The exception is when a command has an embedded statement that may impact
memory safety; the embedded statement is translated in this case.

TranslateCommand : SCJCommand 7→ Com

dom TranslateCommand ⊂WellTypedComs
∧ (∀ scjCom : SCJCommand •

... ∨ (∃ e1 : SCJExpression; c1, c2 : SCJCommand |
scjCom = if (e1, c1, c2) •

TranslateCommand scjCom = Seq((TranslateExpression e1),
(If ((ExtractExpression e1), (TranslateCommand c1),

(TranslateCommand c2)))))

The extract from the TranslateCommand function above shows we translate a
conditional command in SCJ using TranslateExpression and ExtractExpression.

Translating methods The signature of an SCJ method is almost identical to
an SCJ-mSafe method. Method calls in SCJ-mSafe are commands, and so the
value or object returned from a method cannot be directly assigned to an expres-
sion. Instead, methods with a return type (that is not void) have an additional
result parameter introduced during translation. For example, the method call
var = getMyVar(param); is translated to getMyVar(param, var);.

A more in-depth description of the formalisation of SCJ-mSafe, the transla-
tion strategy, and the checking technique can be found in [9].

5 Static checking

Our technique for checking memory safety of SCJ-mSafe programs uses infer-
ence rules. These rely on a environment, which maintains a model of reference
variables allocation in the program. In this section, we describe an environment
used to check memory safety at a given point, our analysis of methods to define
properties for each, and the inference rules to check memory safety.

public class MyMission extends Mission {

CustomClass c;

MemoryArea immortalRef;

...

public void initialize() {

int x,y;

Object obj1 = new Object();

Object obj2;

if (x != y) { obj2 = new Object();

} else { obj2 = immortalRef.newInstance(Object.class); }

if (x > y) {

c = new CustomClass();

c.setField(obj1);

} else {

c = (CustomClass) immortalRef.newInstance(CustomClass.class);

c.setField(obj2);

} ...

Fig. 6. Environment explanation example in SCJ.

5.1 Environment

The environment records information about left expressions that reference ob-
jects. It is defined as a function, which has as its domain the set of possible
expression-share relations of a program at a particular point of execution. An
expression-share relation associates the left expressions in a program that share
the same reference. The set of all expression-share relations is defined as follows.

ExprShareRelation == LExpr ↔ LExpr

Expression-share relations are mapped to expression reference sets.

ExprRefSet == LExpr 7→ PRefCon

An expression reference set describes the set of possible reference contexts in
which the objects referenced by left expressions may reside. The reference context
of an object is an abstraction of the location to which its reference value points.
This includes all memory areas in SCJ plus a new context Prim, which is for
expressions of a primitive type. The definition of the environment is shown below.

Env == {env : ExprShareRelation 7→ ExprRefSet
| ∀ rel : ExprShareRelation; ref : ExprRefSet | (rel , ref) ∈ env

• dom(rel ∗ ∪ (rel ∗) ∼) = dom ref
∧ (∀ e1, e2 : LExpr | e1 7→ e2 ∈ (rel ∗ ∪ (rel ∗) ∼) • ref e1 = ref e2)}

For every possible share of left expressions, there is a related function that de-
scribes the set of reference contexts in which the objects may reside. We take
the reflexive, symmetric, and transitive closure of expression-share relations. This
model allows us to capture information about all execution paths; for example, a
share relation may have an associated reference set that includes a set of possible

reference contexts for an object allocated in different memory areas on different
execution paths. The environment may have multiple share relations mapped to
a single reference set when assignments differ based on the execution path.

Consider the excerpt from a mission class shown in Figure 6. The initialize
method includes conditional statements that affect the memory configurations.
The reference obj2 is instantiated in mission memory if the first condition is
true, and in immortal memory if it is false. The allocation of the reference c and
the argument of the method call setField depend on the second condition: if
true, c is instantiated in mission memory and its field points to obj1; if false, c
resides in immortal memory and its field points to obj2. The environment after
the conditionals is below; it is simplified to illustrate the example and does not
include the reflexive, symmetric, transitive closure of the expression shares.

env = ({c.field 7→ obj 1} 7→ {c 7→ {MMem}, immortalRef 7→ {IMem},
x 7→ {Prim}, y 7→ {Prim}, obj 1 7→ {MMem},
obj 2 7→ {IMem,MMem}, c.field 7→ {MMem}}),

({c.field 7→ obj 2} 7→ {c 7→ {IMem}, immortalRef 7→ {IMem},
x 7→ {Prim}, y 7→ {Prim}, obj 1 7→ {MMem},
obj 2 7→ {IMem,MMem}, c.field 7→ {IMem,MMem}})

The environment has two shares, as the assignments differ on each execution
path. The first, where c.field 7→ obj 1, has c 7→ {MMem} and c.field 7→ {MMem}
in its reference set, and is memory safe. The second, where c.field 7→ obj 2, has
c 7→{IMem} and c.field 7→{IMem,MMem} in its reference set, and is not memory
safe: the field of c points to an object that may reside in a lower memory area.

5.2 Methods

Methods can be executed in different memory areas. Typically, we cannot deter-
mine whether a method is always safe; whilst it may be safe to execute a method
in a particular default allocation context, it may not be safe in another.

We do not restrict methods to specific allocation contexts; as part of the
checking phase, methods in SCJ-mSafe are analysed to record properties that
describe their behaviour from the point of view of memory allocation. In checking
a call, we identify which method is called by extracting information from the left
expression and the types of arguments passed. Due to dynamic binding, if more
than one method matches the criteria of the method call, all are analysed.

Methods are recorded in our rules as elements of the following set.

Method == Name × Type × seq Dec ×MethodProperties × Com

The method name, return type, sequence of declarations (parameters), and com-
mand are as defined in the method description; the additional method properties
describe the changes to the environment when the method is executed.

MethodProperties == ExprShareRelation 7→MethodRefChange

The reference set in the environment is replaced by the MethodRefChange func-
tion, which uses meta-reference contexts (MetaRefCon) that contain all of the
reference contexts defined previously, plus two additional ones to describe the
current reference context of the callee (Current), and the set of reference contexts
associated with a specific left expression in the environment (Erc LExpr).

MethodRefChange == LExpr 7→ PMetaRefCon

Meta-reference contexts allow us to describe the behaviour of methods indepen-
dently of actual parameters of a method call; we can reason about method calls
without checking each separate call. For example, consider the following method.

public void myMethod(A a, A b) {

a.x = new CustomClass();

b.x = a.x;

}

The result of calling this method with parameters a and b is as follows: the field
x of the object referenced by variable a references a new instance of CustomClass
located in the callee’s current allocation context. Also, the field x of the object
referenced by the variable b points to the same newly instantiated object ref-
erenced by a.x. Without knowing where a method is called, we capture this
behaviour using meta-reference contexts. More specifically, we identify that a.x
references an object in the Current reference context (a.x 7→ {Current}), and
b.x references the object associated with a.x (b.x 7→ Erc a.x).

In conjunction with the environment, method properties allow us to estab-
lish at any point whether a method call can lead to a memory violation. The
properties correspond to the changes to the environment.

5.3 Rules

We present the rule for the assignment command, as it can have a significant
impact on memory safety. It is one of the commands that can change the envi-
ronment most significantly, whilst also being able to cause memory violations.

DominatesTop(LExprRc(lexpr , rc, e1)) 7→
DominatesLeast(e1 rexpr) ∈ Dominates ∗

mSafeCom e1 (Asgn(lexpr , rexpr), rc)

The rule states that for an assignment Asgn(lexpr , rexpr) to be memory safe, a
mapping between two reference contexts must be in the reflexive transitive clo-
sure of the Dominates relation. The Dominates relation describes the relation-
ship between all reference contexts in SCJ-mSafe; for example, IMem dominates
MMem, which means the immortal memory area is higher in the structure than
mission memory. We can establish from this relation whether a mapping between
reference contexts is safe; or more specifically, whether an assignment violates
the rules of SCJ, which could potentially be a violation of memory safety.

In the rule above, the left-hand side of the mapping is the reference context
in which the left expression is defined, if it is a variable, or the set of reference
contexts in which the object may reside, if it is a reference. The LExprRc function
determines the reference context(s) of a left expression. The highest reference
context of the left expression (according to Dominates) must map to the lowest
reference context of the object associated with the right expression to be safe.

The DominatesLeast function returns the lowest reference context in a set
of reference contexts, according to the Dominates relation. We take the low-
est reference context from the right expression as we must assume the worst
case when checking mappings. Similarly, we use DominatesTop to establish the
highest reference context in the set associated with the left expression.

For example, the assignment to share in the handleEvent method in Figure 3
is not memory safe. The reference context in which share is declared (MMem),
does not dominate the reference context of the new object (PRMem(handler)).

The rule for the enterPrivateMemory command is below. It states that the
command executed in the private memory area must be safe when analysed in
the reference context rc2, which is calculated using EnterPrivMemRC .

mSafeCom e1 (c1, rc2)

mSafeCom e1 (enterPrivateMemory(c1), rc1)

where
rc2 = EnterPrivMemRC rc1

In Figure 5, the call to enterPrivateMemory is in the handleEvent method;
the reference context at this point is the per-release memory area of the han-
dler (PRMem(handler)). The result of EnterPrivMemRC is the first temporary
private memory area associated with the same handler (TPMem(handler , 0)).

A complete set of rules have been specified for SCJ-mSafe. An initial set
defined in [10] have been updated in [9]. We have defined all functions to update
the environment after the execution of SCJ-mSafe components.

6 Tool and experiments

We have developed a tool called TransMSafe for the automatic translation and
checking of SCJ programs. The tool is an implementation of the translation
strategy and checking technique we have defined in Z, and is an extension to
the tool described in [11]. The existing tool is implemented in Java and uses
third-party utilities and libraries including the compiler API to aid analysis and
translation of SCJ programs; it is tailored for modifications and extensions.

The tool has been applied to a number of examples including the CDx, Pa-
paBench, and an automotive cruise-control system (ACCS). The CDx is a flight
collision detection algorithm that calculates the possible collisions of aircraft
based on their position and movement, and is a benchmark for SCJ [12]. The
PapaBench is a real-time benchmark adapted for SCJ [13]. The ACCS is a Level
1 cruise-control system [14] with implementation described in [11].

We are able to translate all of these examples into SCJ-mSafe automati-
cally; each translation executes in 1 to 2 seconds on an Intel Core i5 650 at
3.20GHz with 8GB RAM. No code optimisation has been performed. We have
also translated and checked the SCJ Checker duplicated class example in [5],
demonstrating our ability to automatically check memory safety without du-
plication of classes or annotations. Further results of checking experiments are
given in [9]. The output of the tool is a textual representation in SCJ-mSafe ; it
displays the environment during the checking phase for each command.

The tool is available as part of the hiJaC project tool suite and is freely avail-
able to download at http://www.cs.york.ac.uk/circus/hijac/tools.html.
Instructions on how to install and run TransMSafe are in the read-me file.

7 Conclusions

We have described and formalised an abstraction technique to verify memory
safety of SCJ programs. We introduced SCJ-mSafe, which is tailored to ease
memory-safety verification. SCJ-mSafe programs have a uniform structure that
abstracts away from some of the complexities found in SCJ programs. Inference
rules are defined for each component of SCJ-mSafe in order to determine what it
means for each to be memory safe. We use environments to store information re-
quired throughout the checking phase. These allow us to check each command in
a program and ensure no violations of the SCJ memory safety rules are possible.

Another technique to verify memory safety of SCJ programs is found in
the SCJ Checker [5], which is an annotation checker. The annotations are used
to describe scopes in which classes, fields, local variables, and methods reside
and run. This technique sometimes requires code duplication when instances of
classes are required in different scopes, however no false negatives are produced.
Not all valid programs can be checked without modification. Our technique may
also require refactoring of SCJ programs to implement the components of the
SCJ paradigm (safelet, missions, and so on) in different classes, for example.

A bytecode analysis technique to find illegal assignments occurring in Level
0 and Level 1 programs is described in [6]. The approach is an automated static-
checking technique and uses a stack of SCJ memory areas and a points-to rela-
tionship to check for potential violations. Like our approach, this also uses an
over-approximation of possible mappings and may raise false negatives.

The model checking technique in [15] has been applied to Level 0 SCJ pro-
grams. The analysis of Level 1 programs and aperiodic event handlers, which in-
cludes concurrency, is limited because of the state explosion problem. Although
techniques to try and reduce this explosion, such as symbolic execution, have
been developed, they have not been applied yet. We avoid these problems by
abstracting away from such complex issues that do not always affect memory
safety, like the execution order of missions, for example.

The translation of SCJ programs has been automated; our goal is to extend
TransMSafe to automatically check a wider range of SCJ programs. We aim to
apply our technique to several more complicated case studies. Our target is to

verify Level 1 SCJ programs, therefore, aperiodic event handlers and concurrency
are two important components of SCJ that must be considered.

Our approach can raise false negatives, and until we apply our technique to
further case studies, it is difficult to estimate the frequency of their occurrence.
We believe, however, that coding practices for safety-critical systems impose
restrictions that minimise the number of false negatives.

A distinguishing feature of our work is the precise definition of SCJ-mSafe,
the strategy for translation from SCJ to SCJ-mSafe, and the inference rules. This
paves the way to a proof of soundness based, for instance, on the SCJ memory
model in [4]. We have yet to attempt this, and do not underestimate the difficulty
considering the coverage of the language we have achieved. We will be unable
to prove that the translation from SCJ to SCJ-mSafe is correct, since it does
not preserve every property of the SCJ program. We aim to prove that given an
SCJ program with memory-safety violations, our technique will find the errors.

References

1. The Open Group: SCJ technology specification (v0.94). Technical report (2013)
2. Bollella, G., Gosling, J.: The Real-Time Specification for Java. Computer 33

(2000) 47–54
3. Burns, A.: The ravenscar profile. ACM SIGAda Ada Letters 11 (1999) 49–52
4. Cavalcanti, A., Wellings, A., Woodcock, J.: The Safety-Critical Java memory

model: A formal account. FM 2011: Formal Methods (2011) 246–261
5. Tang, D., Plsek, A., Vitek, J.: Static checking of Safety-Critical Java annotations.

In: Proceedings of Java Technologies for Real-time and Embedded Systems, ACM
(2010) 148–154

6. Dalsgaard, A.E., Hansen, R.R., Schoeberl, M.: Private memory allocation anal-
ysis for SCJ. In: Proceedings of Java Technologies for Real-time and Embedded
Systems, ACM (2012) 9–17

7. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

8. Schoeberl, M.: Nested Private SCJ example. (2013) www.jopwiki.com/Download.
9. Marriott, C.: The formalisation of SCJ-mSafe - Technical Report. The University

of York, UK. (2013) http://www-users.cs.york.ac.uk/marriott/.
10. Marriott, C.: SCJ Memory Safety with SCJCircus - Technical Report. The Uni-

versity of York, UK. (2012) http://www-users.cs.york.ac.uk/marriott/.
11. Zeyda, F., Lalkhumsanga, L., Cavalcanti, A., Wellings, A.: Circus models for

Safety-Critical Java programs. The Computer Journal (2013) bxt060
12. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: CDx: a family

of real-time Java benchmarks. In: Proceedings of Java Technologies for Real-time
and Embedded Systems, ACM (2009) 41–50

13. Nemer, F., Cassé, H., Sainrat, P., Bahsoun, J.P., De Michiel, M.: Papabench: a
free real-time benchmark. WCET 4 (2006)

14. Wellings, A.: Concurrent and real-time programming in Java. Wiley (2004)
15. Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive testing of

Safety-Critical Java. In: Proceedings of Java Technologies for Real-time and Em-
bedded Systems, ACM (2010) 164–174

