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Abstract

Simulink’s Stateflow is a graphical notation widely adopted in industry. Since it is frequently used
to model safety-critical systems, correctness of implementations of Stateflow charts is a major concern.
In previous work, we have shown how we can generate formal models for refinement of Stateflow charts
automatically. Here, we define a refinement strategy that supports the automated verification of imple-
mentations with respect to these models. We consider the verification of implementations that follow
architectural patterns used in the Stateflow code generator. We present a detailed procedure for appli-
cation of refinement laws. If the implementation is correct, the procedure succeeds. If a law application
fails, the implementation is either incorrect or does not use the expected architectural pattern. The very
low proof burden associated with the refinement verification makes a high level of automation possible.

1 Introduction

Simulink [Matc] is a graphical notation widely used in industry for specification of control systems. A
Simulink diagram contains blocks that encapsulate some functionality, and wires connecting their inputs and
outputs. Stateflow [Matd] is part of Simulink, and supports the specification of state transition systems
via a particular kind of block, namely, a Stateflow block. These are defined by Stateflow charts, a variant
of Statecharts [Har87] that extends standard state transition systems by introducing new features, such as
hierarchy and backtracking. While Simulink diagrams are typically used to specify control laws, Stateflow
charts usually model reactive behaviour in response to events.

Simulink and Stateflow are extensively used in the development of safety-critical systems. Additionally,
emerging certification standards and guidelines, like DO178B, ISO DIS 26262, and EN50128, now recommend
the use of formal methods for the specification, design, development, and verification of software. Formal
treatments of Simulink and Stateflow are, therefore, both useful and timely. We are concerned here with a
formal approach to the assessment of the correctness of implementations of Stateflow charts.

A frequent treatment of this problem is based on the verification of automatic code generators [CCM+03,
TNP+08, LST09]. We propose an orthogonal path based on the verification of implementations with respect
to a model of the chart. An overview of our approach is given in Figure 1.

It consists of deriving formal models of the Stateflow chart and its implementation automatically, and
applying a refinement calculus to check the correctness of the model of the implementation with respect to
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Figure 1: An approach for the verification of implementations of Stateflow charts.

1



the model of the chart. This is particularly well suited for situations where automatically generated code is
not entirely applicable or convenient, because for instance, hardware and performance requirements call for
changes in the generated code. Moreover, it addresses the problem raised by Simulink and Stateflow frequent
updates, which can have a heavy impact on the cost of the verification of any code generator.

In previous work, we have already addressed the automatic generation of models of charts [MC12] indi-
cated in Figure 1. We have formalised and mechanised the semantics of Stateflow via a function that maps
charts to models described in the state-rich process algebra Circus [CSW03, Oli06]. This semantic function
is described by translation rules; they have been extensively validated, encoded in Z [WD96] using a Z tool,
and implemented in a tool that generates Circus models of Stateflow diagrams.

In this paper, our main contribution is to show how these Circus models can be used to prove the correctness
of implementations of the charts as indicated in Figure 1. The verification technique presented here is a
refinement strategy that uses the Circus laws to prove that the chart model is refined by the implementation
model. Soundness of the technique stems from that of the laws established using the Circus semantics.
In [MC11], we have presented an overview of an initial version of our refinement tactic. Here, we provide a
detailed algorithmic description of the tactic.

The notion of refinement is that of Circus, which is similar to that of failures-divergences refinement
in CSP [Ros11]. First of all, it ensures that safety properties are preserved, in the sense that all traces
of interactions of the implementations are allowed by the specification. In addition, it ensures that the
implementations do not introduce deadlocks or divergences (livelocks) not allowed by the specifications.

The implementations that we consider are those that employ a specific architectural pattern. This allows
us to specialise our refinement strategy to increase automation. The architectural pattern is simple, but
general. The structure is that adopted by the MATLAB code generator. There are other code generators
[SSC+04, TNP+08, Tar], but they either are not verified or cover a limited subset of the Stateflow notation.

The existing Circus refinement calculus [CSW03] is enough for the purpose of deriving correct implementa-
tions from the models in [MC12]. The expertise required for that, however, is often not available. Moreover,
the complexity of Stateflow and the size of real charts potentially renders the manual application of the re-
finement calculus infeasible. Our approach relies on the structure of the chart models and on the architecture
of the implementations to provide guidance and automation where possible.

The elaborate structure of our refinement tactic reflects the particularities of the structure of our models.
Our verification technique trades the simplicity and generality of the Circus refinement calculus for high levels
of automation. It hides the use of formalism and, therefore, facilitates use by engineers. Our technique is
closely related to that proposed in [CCO11] for verification of implementations of Simulink diagrams. Our
work extends those results to cover a larger class of diagrams and implementations.

Section 2 introduces the background material necessary for the presentation of our strategy: the Stateflow
and the Circus notations, and our Circus-based modelling approach for Stateflow charts. Section 3 discusses
the architectural pattern of the implementations of Stateflow charts that we consider, and Section 4 provides
general guidelines for deriving Circus models of these implementations. Section 5 describes our refinement
strategy for the verification of implementations of Stateflow charts. Section 6 assesses our contributions,
examines related work, and discusses directions for future developments.

2 Background material

In this section, we introduce the Stateflow and Circus notations, and our formal models of Stateflow charts.

2.1 Stateflow charts

The main components of a chart are states, junctions, transitions, data and events. Interaction with the
Simulink diagram is via input and output events and data variables.

Our running example is shown in Figure 2; it is a chart (supplied with MATLAB Stateflow) that models a
temperature controller for a ventilation system. It has one input variable temp, one output variable airflow,
and is triggered by two events: SWITCH and CLOCK. The chart does not show CLOCK; it is part of the Simulink
diagram that includes the Stateflow block defined by this chart.

The execution model of a Stateflow chart is cyclic (like in Simulink) and controlled by events. In every
step, the chart is executed once for each of the events that occurred in an order defined by the chart. Events
are signalled by and to the Simulink diagram. Events that are not shown in the Stateflow chart, like the
CLOCK event in our example, have the same status as the events explicitly shown. In our example, this is
SWITCH. If an event like CLOCK occurs, transitions that are not guarded by an event may be executed.

In the first cycle, execution of the chart entails activation by following default transitions, which are
represented by arrows without a source. Subsequent executions of a chart execute its active states. In what
follows, we explain what the execution of a state entails.
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Figure 2: Air controller chart: supplied with Stateflow.

In a chart, states are represented by rectangles with round corners. States (and charts) can have substates
grouped in a sequential or parallel decomposition. A state with a sequential decomposition has at most
one substate active, and a state with a parallel decomposition has all of its substates active or inactive.
There are nine states in our example: PowerOn has a parallel decomposition, FAN1 and FAN2 have sequential
decompositions, and the remaining states (that is, PowerOff, SpeedValue, and two On and two Off states)
have no substates. The chart itself has a sequential decomposition with two states PowerOn and PowerOff.

Incidentally, we observe that the graphical representation of a chart does not present all the information
that is available about it. For instance, all elements of a chart (including states, transitions, and so on) have
identifiers, which are not all shown. In addition, transitions from a single source are ordered; this is implicitly
shown in a diagram by organising them clockwise. All this information is included in a textual description
of a chart based on a well defined metamodel [Matd]. It is this description that we take as input for our
verification technique (and to which we give semantics in [MC12]).

A state has actions associated with it. Entry and exit actions are executed when the state is entered
and exited, respectively. During and on actions are executed when the state is executed, but on actions
also require the occurrence of a particular event. In our example, the state SpeedValue has a during action
identified by the label du, and the state PowerOff has an entry action, identified by the label en. Both actions
are assignments. The expression in(FAN1.On) in the during action evaluates to 1 if the substate On of FAN1
is active, and to 0 otherwise. Similar comments apply to in(FAN2.On).

States can be connected by one or more transitions represented by arrows. These can have a condition, a
trigger, and two types of actions, namely condition and transition actions. A condition is an expression over
the variables of the chart, and a trigger is an expression over the events of the chart. In our example, four
of the transitions have a condition, temp<120, temp>=120, temp<150, or temp>=150, and two are guarded by
SWITCH. The condition and the trigger define a guard for the transition: the guard is true if the condition
holds, and one of the events in the trigger happens. In this case, the condition actions are executed.

Transitions may be in a path: a series of transitions connected by junctions, which are represented by
circles. So taking a transition may not lead to exiting a state. Junctions are decision points, so that a
transition path is conditional. It is completed when a state is reached, or all the transitions are attempted
(possibly via backtracking) without reaching a state. When a state is reached, the source state of the path is
exited, the transition actions of the path are executed, and the target state is entered. A transition does not
lead to exiting a state if it is part of a path that does not successfully reach another state.

Additionally, there is a special type of junction, called history junction, which records the most recently
activated substate of the state that contains it. There are no junctions or history junctions in our example.

Transitions are classified according to the presence of a source and the relative position between its source
and target. Default transitions have no source and indicate the default path to be taken when a state is
entered or the chart is activated. Transitions that connect a state to one of its substates are inner transitions,
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Figure 3: Local event broadcast and early return logic example.

and all others are called outer transitions. In our example, there are three default transitions (with PowerOff

and the Off states as targets); the rest are outer transitions. The first time the chart is executed, by following
its default transition, PowerOff is entered, and the assignment airflow = 0 is executed.

Entering a state makes it active, and leads to the execution of its entry actions and to entering the
substates: either by following a default transition, in the case of a state with a sequential decomposition, or
by entering all substates in an order defined in the diagram, in the case of a state with a parallel decomposition.
As already said, the execution of a state is related to the cyclic behaviour of charts. In every cycle, the active
states are executed, and this entails trying the outer transitions, and stopping if the states are exited as a
result. If not, the during and on actions are executed, and the inner transitions are attempted. If no transition
takes place, the active substate(s) are then executed, in order for parallel states.

In our example, when PowerOn is entered, all its substates are entered in the order determined by the
numbers on their top right corner. First, FAN1 is entered, and its substate Off is entered as a result of the
default transition. The same occurs for FAN2, and, finally, SpeedValue is entered. After PowerOn is entered,
it can be either executed (if CLOCK occurred), or exited (if SWITCH occurred). When PowerOn is executed, all
these substates are executed in order. When FAN1 and FAN2 are executed, a transition between their substates
can take place according to the value of temp. When SpeedValue is executed, the sum of the statuses (1, if
active, and 0, if inactive) of the substates On of FAN1 and FAN2 is assigned to airflow. If PowerOn is exited,
PowerOff is entered, all the active substates of PowerOn are exited, and airflow is set to zero.

A Stateflow action can raise a local event broadcast. This is illustrated by the chart in Figure 3, which
contains states A, B, and C, and only one input event E. A local event broadcast leads to the reexecution of
the chart or of an identified target state in the current step of the diagram. In our example, there are two
transitions from A. After the first step of execution, the state A is active. In the next step, if the chart is
executed for the event E, in the execution of the active state A the transition from A to B is attempted. This
is possible since the trigger of that transition is E, and leads to the broadcast of the local event F, which
prompts the reexecution of the whole chart. At this point, A is still active, and the transition from A to B

is not possible because the current event is now F. The transition from A to C is attempted and successfully
executed; this leads to the state A being exited, the state C being entered, and the reexecution terminates.

In some situations, reexecution could lead to an inconsistency if the original execution were to proceed. In
our example, after the reexecution, the initial execution recovers control; if it continued, the condition action
that generated the local event broadcast would proceed. In this case, however, A would be exited (although
it is already inactive), and B would be entered, leading to a configuration where both B and C would be active
at the same time, which is inconsistent since the chart has a sequential decomposition.

To avoid such situations, early return logic conditions identify, immediately after a reexecution prompted
by a local event broadcast, the configurations that can lead to an inconsistent state and the remaining actions
that must, therefore, be interrupted. In our example, these are all the remaining actions of the execution
step. If, on the other hand, the three states in our example were inside a parallel state, only the execution of
A would be interrupted. Any other parallel states would still be executed in the same step of execution.

The definitive semantics of Stateflow is given by simulation, and informally in a user’s guide. Our modelling
technique provides a formal semantics. It is distinctive in its coverage of intricate features of Stateflow, like
connective and history junctions, including the possibility of backtracking in transition paths, all forms of
transitions, including inter-level transitions, local event broadcasts, and early return logic.

Before presenting our modelling approach, we give, in the next section, an overview of Circus.

2.2 Circus

We present the main Circus features using the example in Figure 4. It models a parallel sorter that reads a
sequence of natural numbers through the channel in, and writes on the channel out an ordered version of the
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channel in, in1, in2, out : seqN

process Merger =̂ begin
state S == [y : seqN]
InitS == [S ′ | y ′ = 〈〉]
Merge =̂ x1, x2 : seqN •

if # x1 = 0−→ y := y a x2

8 # x2 = 0−→ y := y a x1
8 # x1 6= 0 ∧ # x2 6= 0−→ if head x1 ≤ head x2−→ y := y a 〈head x1〉 ; Merge(tail x1, x2)

8 head x1 > head x2−→ y := y a 〈head x2〉 ; Merge(x1, tail x2)
fi


fi


• InitS ; in1?x1−→ in2?x2−→Merge(x1, x2) ; out !y −→ Skip

end

process SplitSorter =̂ . . .

process ParallelSorter =̂ (SplitSorter J {| in1, in2 |} K Merger) \ {| in1, in2 |}

Figure 4: The ParallelSorter specification.

input sequence. A detailed presentation of Circus can be found in [Oli06].

A Circus specification is a sequence of paragraphs: Z paragraphs (axiomatic definitions, schemas, and
so on), channel and channel set declarations, and process definitions. The main concept is, like in CSP,
that of a process; both systems and their components are modelled by processes. A process encapsulates
a state (specified like in Z) and exhibits a behaviour in the form of a pattern of interactions specified by a
(main) action. Processes communicate with each other and their environment via channels (like in CSP). An
action is written using a mixture of Z data operations, CSP constructs, and Dijkstra’s guarded commands.
CSP process operators can also be used in Circus to combine processes.

The first paragraph of Figure 4 defines channels in, in1, in2, and out , which communicate sequences of
natural numbers: elements of the type seqN. The following paragraphs define processes. The second and
third paragraphs define basic processes Merger and SplitSorter , specified using a combination of Z and CSP
notation. The last paragraph defines a process ParallelSorter in terms of Merger and SplitSorter .

The definition of Merger declares its state using a Z schema named S . Afterwards, a few local actions are
declared before the specification the main action. The schema S has only one component y of type seqN.
The action InitS is a state initialisation operation defined by a Z operation schema; it sets y to the empty
sequence (〈〉). Like in Z, we use y ′ to refer to the value of y after the operation.

The action Merge with parameters x1 and x2 (of type seqN) is defined using a conditional (and assign-
ments). We present in Table 1 the notation used to specify Circus actions that are relevant in this paper.
More details of the notation are provided as needed. Merge appends x1 and x2 to y , so that if both input
sequences are ordered, the final sequence in y is also ordered. If one of the sequences is empty (# x1 = 0 or
# x2 = 0), the non-empty sequence is appended. When both sequences are not empty, Merge compares the
first element (that is, the head) of each sequence (head x1 ≤ head x2). It appends the smallest of them to

y (using the sequence concatenation operator a), and recursively calls Merge on the rest of the sequence that
had the smallest element (tail x1 or tail x2), and the whole of the other sequence.

The main action of Merge (at the end after a •) is nameless; it defines, using the previously defined local
actions, the overall behaviour of the process. It initialises the state using InitS , reads a value x1 through
the channel in1, reads a value x2 through in2, calls Merge with x1 and x2 as parameters, and outputs y
through out . A prefixing (synchronisation c −→ A, input c ? x −→ A(x ), or output c ! E −→ A) defines an
action that is ready to engage in a communication and then behave like A. In our example, for instance, we
have communications like the input in1?x1, which reads a value through the channel in1 and assigns it to
the variable x1 local to the prefixing, and the output out !y . The action Skip terminates immediately.

The fourth paragraph in Figure 4 defines ParallelSorter as the parallel composition (operator J . . . K) of
SplitSorter and Merge, communicating over in1 and in2. The process SplitSorter in the third paragraph
is omitted; it inputs a sequence of natural numbers through in, splits it in two, sorts each sequence in
parallel, and outputs them through in1 and in2. In the definition of ParallelSorter , the channels in1 and
in2 are in the synchronisation set of the parallelism. This means that communications over these channels
require synchronisation between the parallel processes SplitSorter and Merge, but communications over other
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Table 1: Selection of Circus action constructs.

Action Syntax Description

Skip Skip Immediately terminates without changing the
state.

Synchronisation c −→A Simplest form of an interaction: no value is com-
municated.

Input Prefix c?x −→A(x ) Binds the variable x to the value read through
the channel c.

Output Prefix c!E −→A Outputs the value of the expression E on the
channel c.

External Choice A1 @ A2 A choice that is resolved by the environment.
Sequence A1 ; A2 Executes the two actions A1 and A2 in sequence.
Parallelism A1 J ns1 | cs | ns2 K A2 Parallelism where actions must synchronise on

the channels in cs, A1 only modifies state com-
ponents in ns1, and A2 only modifies state com-
ponents in ns2.

Interleaving A1 ||[ ns1 | ns2 ]||A2 Parallelism where A1 and A2 do not synchronise,
A1 only modifies state components in ns1, and A2
only modifies state components in ns2.

Iterated sequence ; x : S • A(x ) Sequence of all actions A(x ) with x ∈ ran S , in
the order defined by the sequence S .

Interrupt A1 4 c −→A2 A synchronisation on c interrupts the execution
of A1 and subsequently transfers control to A2.

Hiding A \ cs Interactions via channels in cs are hidden and
take place immediately when they are enabled.

Recursion µX • F (X ) Occurrences of X in F constitute recursive calls.
Assignment x := E Changes the value of a state component or local

variable.

Local Variable var x : T • A(x ) Declaration of a local variable x .
Conditional if g1−→A1 8 . . . 8 gn −→An fi Executes an action whose guard gi is true.

Value Parameter val p : T • A(p) Action with a value-parameter p of type T .

channels can be carried out independently by them. The channels in1 and in2 are hidden (operator \) in
ParallelSorter , thus yielding a process whose interface contains only in and out .

Circus has a refinement calculus [CSW03] based on Morgan’s and the Z calculi [Mor94, CW99], but
extended to deal with the CSP constructs. In Table 2, we present a description of the laws that we use here.
They include laws presented elsewhere [Oli06, CCO11], as well as novel laws found in Appendix B. As already
explained, the Circus notion of refinement is akin to that of failures-divergences refinement. It is a transitive
relation, so that the repeated application of Circus refinement laws, as usual in a refinement calculus and as
prescribed in the strategy that we present here, preserves refinement. The semantics of the Circus constructs
also guarantees that refinement of different components of a model can be considered independently.

This notion of refinement is based on the related notion of observation and captures a notion of correctness
based on reduction of observation. More precisely, a Circus process P is refined by another Circus process Q
if every observation of Q is a possible observation of P. In this respect, if Q is (the model of) a proposed
implementation of a given specification P, for example, then refinement guarantees that a user that agreed on
the specification P has to be satisfied by Q because every observation of the behaviour of Q is in accordance
with the behaviours prescribed by P.

Embedded in this view is reduction of nondeterminism. An abstract specification P typically embeds some
nondeterminism to express freedom of design and implementation. Refinement reduces this nondeterminism
as it moves towards more specific architectural designs and patterns of implementation.

The notion of observation is therefore central to our understanding of refinement. In Z, it corresponds
to the observation of the behaviour of data operations in terms of acceptable inputs and properties of the
produced outputs. In CSP, it can be about (1) traces of interactions; (2) traces and refusals, also known as
failures; or (3) failures and divergences. If we can only observe traces of interactions, we can only reason
about safety properties. With failures, we can also reason about liveness: absence of deadlock. Finally, with a
failure-divergences observation model, we can in addition reason about the possibility of an operation aborting
or entering in an infinite loop of internal actions.

The refinement notion of Circus is based on its semantics given using Hoare and He’s Unifying Theories of
Programming [HH98]. This is a notion based on failures and divergences, but also on the behaviour of data
operations (which are internal to processes). In this respect, traditional refinement techniques based on data
refinement, for instance, are valid, as are techniques for model checking traditionally adopted in CSP, after
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Table 2: Selection of Circus refinement laws.

Law Description Source

assign-schema-conv Convert assignment with assumption to a schema Appendix B
cond-elim Eliminate conditional with guard true Appendix B
hid-distr-seq Distribute hiding over sequence [Oli06]
hid-ident Remove hiding of channels that are not used [Oli06]
par-distr-cond Distribute parallelism over conditional Appendix B
par-unit Skip in parallel with Skip is Skip [Oli06]
par-prefix-step Step law for parallelism: independent communication on the left Appendix B
par-seq-dist Exchange law for parallelism and sequence Section 5.3.1
par-seq-step Step law for parallelism: sequence on the left [Oli06]
rec-par-merge Transform parallelism of recursions into recursion of parallelisms Section 5.2
sch-par-distr Distribute a schema over a parallelism in sequence [Oli06]
seq-assign-conv Refine a schema to a sequence of assignments Appendix B
seq-distr-cond Distribute sequence over conditional - sequence on the right Appendix B
tail-rec-seq-dist Insert sequence in a recursion Appendix B
use-loc-var Transform calls to use a local variable Section 5.3.1
var-par-ext-right Extend scope of variable block over parallelism [Oli06]
var-seq-ext-right Extend scope of variable block over sequence Appendix B

extension to deal with the rich data types of Z (also adopted in Circus).

In the next section (Figure 6), we have another example of a process: the model of the chart in Figure 2.

2.3 A formal model of Stateflow charts

In this section, we describe the Circus models of Stateflow charts that we can generate automatically. A
more detailed description, including an account of our efforts to validate the models and of our tool can be
found in [MC12]. For the purposes of the work that we present in this paper, it is enough to understand the
structure of the models. It is described diagrammatically in Figure 5 and illustrated in Figure 6.

In our models, the execution of one step of the chart is initiated by reading inputs via channels that
represent input events and variables of the chart, and is concluded by writing outputs via channels for output
events and variables, and then synchronising on a channel called end cycle. As shown in Figure 5, the models
consist of two processes combined in parallel. The process Simulator captures the operational semantics
embedded in the simulator, and is the same for every chart. The second, the chart process called P Chart in
Figure 5, represents a particular chart. These processes communicate over the channels in a set interface plus
the channel end cycle, with the channels in interface hidden. The result is a process named after the chart,
which in Figure 5 we call Chart , and which communicates with the environment only through end cycle and
channels that represent input and output events and variables of the chart.

The chart process uses a data model that defines the state, transition, and junction identifiers, as well as
the states, transitions, and junctions themselves as Z bindings (records). These are constants that capture
information about the structure of the chart (top rectangle in Figure 5). The chart process P Air for our
example is sketched in Figure 6. Its first paragraph introduces some constants. These include, for instance,
s Off 3 and c Air , the identifiers of the state Off (in FAN1) and of the chart. Charts, just like states, have
identifiers defined by Simulink. We also have S Off 3, a binding that records information about Off (its
identifier, the fact that it has no history junctions, and so on).

The second paragraph in Figure 6 defines two channels o airflow and i temp, corresponding to the output
variable airflow and to the input variable temp. The types of the channels are those of the variables.

The constants that record the structure of the chart, like s Off 3, S Off 3, and c Air , for example, are
collected in four other constants defined within the chart process: identifier , states, transitions, and junctions.
The constant identifier records the identifier of the chart, and states, transitions, and junctions are partial
functions that map identifiers to the corresponding bindings. In Figure 6, the first definition sketched in the
scope of P Air defines these values for our example.

Next, the chart process defines a series of schemas that specify its state and initialisation operation. Chart
variables are recorded in the schema SimulationInstance. For each output event, we also have a component
in SimulationInstance that records how many occurrences of that event have happened so far, and have not
yet been communicated to the Simulink diagram. All these counters are initially 0. In our example, the
components of SimulationInstance are v airflow and v temp corresponding to variables.
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Constant definitions: identifiers and bindings

process Simulator

Early Return Logic check actions

Execute transitions actions

Enter and exit state actions

Execute state actions

Execute chart actions

Local event execution actions

Main action: recursive execution of the step

Step of execution action

Constants: diagram structure

State: status of chart states

Actions 1: state and transition actions

Actions 2: triggers and conditions

Actions 3: chart inputs and outputs

Actions 4: output of the structure of the chart

Main action: recursive offering of all actions

AllActions: external choice of the actions above

process P_Chart

process ( || )\Chart P_Chart Simulator interface

Figure 5: Structure of the model of charts.

Information about which chart states are active and about chart states monitored by history junctions
is recorded in the schema SimulationData. Its definition is the same for all charts. Its first component is a
function state status that associates a state (identifier) to a boolean that indicates whether it is active or
not. The second component state history associates a state with a history junction to the identifier of its
last active substate. The schemas SimulationInstance and SimulationData are conjoined to define the schema
that specifies the state of the chart process, in our example, Air State.

As shown in Figure 5, the chart process defines a series of Circus actions that can be divided into four
groups corresponding to: state and transition Stateflow actions, calculation of triggers and conditions, reading
inputs and writing outputs, and outputting information about the structure of the chart, such as the parent
of a state. These actions define services that are offered to the Simulator process via specific channels.

The first group contains actions such as entryaction PowerOff in Figure 6; they are prefixed by a commu-
nication (over, for example, executeentryaction for entry actions) of the identifier of the state (or transition) to
which the action is associated, followed by a Circus action that models the Stateflow action. In our example,
the entry action associated to PowerOff is encoded as the assignment v airflow := 0.

The second group is formed by actions such as trigger PowerOff PowerOn; it encodes the trigger of
the transition between s PowerOff and s PowerOn as a prefixing whose communication gives the transition
identifier and the current event (e). The associated Circus action consists of a conditional that compares e to
the event that guards the transition (in this case e SWITCH ). A channel result communicates the result of
the guard evaluation as a boolean. (We define B to be the set of boolean values.)

The third group contains two actions Inputs and Outputs, which are a prefixing on the events read inputs
and write outputs, respectively. Inputs reads the value of the input variables (in interleaving, if there are
several) through the channels that represent them, and assigns the values read to the corresponding state
components. In our example, as already mentioned, we have just one input variable temp, and the corre-
sponding channel i temp and state component v temp. It is worth mentioning that input events are not
handled by Inputs, or even by the chart process. In our model, a step of execution of the Stateflow block is
triggered by the input events, and therefore they are handled by the Simulator process.

Outputs communicates (in interleaving, if needed) the values of the state components through the channels
that represent the corresponding output variables. In addition, for each output event of the chart, if there are
occurrences not yet signalled, as indicated by a positive value of its counter in the state, Outputs signals one
occurrence of the event in interleaving, and decrements the counter. In our example, for the single output
variable airflow, we have channel o airflow and component v airflow .

Finally, the fourth group contains actions such as getstate, which takes a state identifier and communicates
its binding. Actions in each of the groups are combined in external choices (operator @) to define actions like
conditionactions, InterfaceActions, and so on. In turn, their external choice defines AllActions. The choice
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s Off 3, . . . , c Air : SID ; . . . S Off 3 : State; . . .

S Off 3 = 〈|identifier == s Off 3, . . . history == False|〉 ∧ . . .

channel o airflow : N; i temp : R

process P Air =̂ begin

. . .

identifier = c Air ∧ states = {(s Off 3,S Off 3), . . .}
transitions = {(t On8 Off 7,T On8 Off 7), . . .} ∧ junctions = {}

SimulationInstance == [v airflow : N; v temp : R]
. . .
SimulationData == [state status : SID 7 7→ B; state history : SID 7 7→ SID | . . .]
. . .
state Air State == SimulationInstance ∧ SimulationData

InitState == . . .
. . .

entryaction PowerOff =̂ executeentryaction.s PowerOff −→ v airflow := 0
. . .

trigger PowerOff PowerOn =̂ checktrigger .t PowerOff PowerOn?e−→ if e = e SWITCH −→ result .t PowerOff PowerOn.e!True−→ Skip
8 ¬ (e = e SWITCH )−→ result .t PowerOff PowerOn.e!False−→ Skip
fi


. . .

Inputs =̂ (read inputs −→ (i temp?x −→ v temp := x ))
Outputs =̂ (write outputs −→ (o airflow !(v airflow)−→ Skip))
. . .

getstate =̂ state?x : (x ∈ dom(states))!(states(x ))−→ Skip
. . .
AllActions =̂ conditionactions @ . . . @ InterfaceActions

• InitState ; (µX • (µY • (AllActions ; Y @ end cycle −→ Skip) ; X )

end

process Air Controller =̂ (P Air Controller J . . . K Simulator) \ interface

Figure 6: Sketch of the model of the chart process for the example in Figure 2.
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Figure 7: Architecture of implementations of Stateflow charts.

is exercised by the Simulator process, which is part of the environment of the chart process.

The main action of the chart process initialises the state, and recursively offers the services in AllActions.
There are two nested recursions: the internal one corresponds to the services offered during one particular
step of simulation, and can be terminated by a synchronisation over the channel end cycle. The external
recursion corresponds to the recursive execution of simulation steps.

The process Simulator does not have a state; it declares a series of actions that model the execution of
transitions, as well as the procedures for entering, executing and exiting states. These actions capture the
operational semantics of Stateflow charts as described in the manual. Its interface consists of a single channel
input event , which is used to receive the events for which the chart is to be executed, and a series of internal
channels (read inputs, executeentryaction, and so on) used solely for interacting with the chart process.

The execution of a chart is then defined in terms of these. We do not provide the details of the (extensive)
Simulator definition here, which can be found in [MC12]. We describe some parts relevant for our refinement
strategy in Section 5.

As already said, we can generate the Circus models of Stateflow diagrams described above automatically.
In [MC12, Miy12], we define a collection of rules that translate a textual description of a Stateflow diagram
to Circus. This textual description is that provided by MATLAB Stateflow, and it already resolves tricky
issues associated with the graphical rendering of diagrams: order of execution of parallel states. Our work
covers a significant subset of the Stateflow notation, including edge-triggered events, data, actions, parallel
and exclusive states, connective and history junctions, and all forms of transitions. As far as we know, we
provide the widest coverage of Stateflow features.

3 Implementations of Stateflow charts

Our refinement strategy focuses on the implementations of Stateflow charts that may be generated by the
Realtime Workshop [Matb] in association with the Stateflow Coder [Matd], but also covers programs that,
perhaps, result from modifications of such implementations, but preserve its specific architectural patterns.

Figures 7, 8 and 9 describe the pattern structure of the programs generated by the Realtime Workshop.
This is exactly the architectural pattern that we assume in our work, and the only aspect of the Realtime
Workshop that is relevant for what we present here.

We distinguish two major aspects of the architecture: data types (represented by slanted boxes in Figure 7)
and control flow (rectangular boxes). The first determines how information regarding the status of the states,
history junctions, input, output and local data, and events are represented. The second defines how states
and transitions are executed. Section 3.1 discusses the data model patterns, and Section 3.2 the execution
control patterns.

The programming language used by Stateflow Coder, and that we adopt in examples, is a subset of C.
Our strategy, however, is in no way restricted to C, but to the architectural pattern described here, which
can be realised by programs written in other languages, like SPARK Ada [Bar03], for instance.
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3.1 Architecture: data patterns

The data model of our architectural pattern uses a number of variables to record input, output and local
data and events, and execution data used to determine the state of the chart. These variables are grouped
in records represented by the slanted boxes in Figure 7. They are used as types of global variables used to
control the execution of the chart. We also have an extra global variable that records the event under which
the chart is being executed in a particular step. It is called sfEvent C , where C is the name of the chart.
For our example, this global variable is called sfEvent Air .

3.1.1 BlockIO record

This type groups the variables that store output data and events. For each output data variable, a variable
of the same name and type is included in BlockIO. For each output event, a variable of the same name and
type Boolean is included; it records whether the event has occurred or not.

Example 1 The record in our example is shown below; it contains only one variable that records the value of
airflow. (Its type, uint8 T, is defined by the code generator for the unsigned integers of 8 bits.)

typedef struct { uint8_T airflow; } BlockIO_Air;

There are no output events in this example. 2

3.1.2 D Work record

This contains the variables that model local data, record the status of the states and history junctions, and
output event counters. For each local variable, a corresponding variable is declared.

For each parallel state, that is, for each state in a parallel decomposition, an integer variable whose name
is prefixed by is active is declared. Such a variable is also defined for the chart. For each state with a
sequential decomposition, we have an integer variable whose name is prefixed by is . While all variables have
type uint8 T, the is active variables are used as boolean variables, and the is variables store values
that indicate which substate is active or that no substate is active.

For each state with a history junction, we have an integer variable whose name is prefixed by was . It
records the constant for the last active substates.

Finally, for each output event, we have an integer variable whose name is postfixed by EventCounter.

Example 2 The record type D Work in the implementation of the chart in Figure 2 is shown below. Since
the chart has no local data, output events or history junctions, this record encodes only the status of states.

typedef struct {

uint8_T is_active_c1_Air;

uint8_T is_active_FAN1, is_active_FAN2; uint8_T is_active_SpeedValue;

uint8_T is_c1_Air; uint8_T is_FAN1, is_FAN2;

} D_Work_Air;

The variable is active c1 Air records the status of the chart, and is active FAN1, is active FAN2 and
is active SpeedValue record, respectively, the status of the parallel states FAN1, FAN2 and SpeedValue.
The variable is c1 Air records the status of the substates of the chart, and is FAN1 and is FAN2 record the
statuses of the substates of FAN1 and FAN2. The values of the is variables are defined as constants. 2

3.1.3 ExternalInputs and ExternalOutputs records

The variables of these types are shared to communicate with the implementation of other blocks of the
Simulink diagram. As suggested by their names, the record ExternalInputs collects the input and the
record ExternalOutputs the output variables and events.

The input events are represented by an array inputevents of real numbers (type real T). Its size is the
number of input events, and the real values indicate whether the corresponding event occurred. (Real values
are used for compatibility with implementations of Simulink diagrams that include the Stateflow block, but
for the Stateflow implementation itself, all that matters is whether the event occurred or not.) The order
in which the events are represented in the array is determined by an implicit ordering in the chart. Besides
inputevents, for each input data id, a variable of the same name is declared in ExternalInputs.

In the end of each cycle, the values of the output data and events are written to the ExternalOutputs

record to make them available. It contains, for each output data, a variable of the appropriate type and same
name, and for each output event, a boolean variable of the same name. Unlike input events, output events
are communicated individually, not through an array.
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Figure 8: Structure of the procedure calculate output.

Example 3 Below, we show the record type for our implementation. The variable temp corresponds to the
input data, and the array inputevents stores values associated to SWITCH and CLOCK.

typedef struct { real_T temp; real_T inputevents[2]; } ExternalInputs_Air;

The ExternalOutputs record for our example is below.

typedef struct { uint8_T airflow; } ExternalOutputs_Air;

2

In the next section, we identify the patterns used to implement the chart’s control flow.

3.2 Architecture: control flow

With respect to the execution flow of the chart, the relevant procedures of our architectural pattern are de-
picted in Figure 7: MdlInitialize, calculate output, and calculate step.What we have is an iterative
calculation of the outputs.The execution of the chart is initialised by calling MdlInitialize, which initialises
the components of the records of type D Work and BlockIO. The outputs are calculated iteratively by call-
ing calculate output. The calculation of the outputs depends on the procedure calculate step, which
implements the execution step of the chart.

Example 4 For our example, MDLInitialize is sketched below. It initialises the components of the variable
Air DWork that represent state status to 0 (value 0U, an unsigned 0), indicating that every state is inactive.
It also initialises the component of Air B; the initial value of output data is defined in the chart.

void MdlInitialize(void) {

...

Air_DWork.is_active_c1_Air = 0U;

Air_DWork.is_active_FAN1 = 0U; Air_DWork.is_active_FAN2 = 0U;

Air_DWork.is_active_SpeedValue = 0U;

Air_DWork.is_c1_Air = 0U; Air_DWork.is_FAN1 = 0U; Air_DWork.is_FAN2 = 0U;

Air_B.airflow = 0U;

}

We omit commands related to aspects of the program that we do not model, like time control. 2

Figure 8 defines the programming pattern for calculate output. It processes the array inputevents,
and calls calculate step for each event that occurred. Once the chart is executed for all events, it shares
the values recorded in the BlockIO record, by copying them to the ExternalOutputs record. Moreover, for
each output event raised, it decrements the associated counter in the BlockIO record.

Figure 9 shows the pattern for calculate step; it implements one complete execution of the chart. Its
structure consists of a number of nested conditionals that evaluate the status of the chart and states and
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Figure 9: Structure of calculate step and interaction patterns with the servers.

Figure 10: Overview of the models of implementations of Stateflow charts.

the transition guards. In Figure 9, the rectangular boxes correspond to blocks of code that implement the
execution of the states, and the diamond-shaped boxes to decision points. For clarity, our figure shows only
binary decision points, but they correspond to both if and switch statements.

When the chart, or part of it, is reexecuted as a result of a local event broadcast, calculate step is called
recursively. When the broadcast is directed at a particular state, only the block of code that implements the
execution of that state is reexecuted. In this case, this code is used to define an auxiliary procedure, and a
call to the new procedure implements the broadcast.

In the next section, we describe how we can construct Circus models of programs that follow the architec-
tural, data, and control patterns just presented.

4 Circus models of implementations

The architecture of the Circus models is close to that of the corresponding programs; Figure 10 gives an
overview (cf Figure 7). The only difference is that the Circus model has actions read inputs and write outputs
that dot not correspond to a program component; they encode the Stateflow block behaviour. These are simple
actions that are determined by the input events and data of a chart.

The Circus model is composed of a single process. Schemas BlockIO C , D Work C , ExternalInputs C ,
and ExternalOutputs C , where as before C stands for the name of the chart, are used to model the record
types of the program. The state of the process includes components C B , C DWork , C U , and C Y of
these types, and a component sfEvent C , all corresponding to global variables of the program. The main
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Figure 11: Overview of our refinement strategy.

action reflects the control pattern of the program (see Figure 7).
The generation of Circus models of implementations involves two different aspects: straightforward trans-

lation and abstraction. The statements are translated into Circus actions, and aspects of the program that
are not covered by our models of Stateflow chart (for instance, time control) are abstracted.

Firstly, the calculations of the time steps that determine the execution of a chart are abstracted by a
synchronisation over the channel end cycle that marks the end of a cycle. Secondly, as illustrated in (the
first two boxes of) Figure 8, the treatment of input events in the implementation involves calculations that
identify which events occurred according to values supplied by the Simulink model in an array inputevents.
In our models, we abstract from this calculation by assuming that this is an array of booleans that indicate
the occurrence of each event, not its associated value. The translation to C embedded in the MATLAB tool
does not make this abstraction, and includes an algorithm that decides, based on the real values of the events,
whether an event has been triggered or not. Our models of C programs abstract this algorithm away, and so
cannot be used to check its correctness.

Finally, sharing is modelled as communication. The use of the shared variable of type ExternalInputs

is modelled by an action that reads in interleaving the input variables and the array of events modelled as a
function from events to boolean values, and writes them to the component C U of type ExternalInputs C .
Similarly, the use of the shared variable of type ExternalOutputs is modelled by an action that communicates
the values of the components of the state component C Y of type ExternalOutputs C in interleaving. The
channels used to read inputs and write outputs, and the channel used to communicate input and output
events are the same channels used in the model of the chart being implemented. This ensures that the Circus
models of the chart and of the program can be compared by refinement.

Except for the aspects discussed above, the Circus models of the implementations are, in general, obtained
by direct translation. Circus includes constructs that map directly into imperative programming languages.
Records are translated into schemas, loops into recursive actions, if and switch statements are mapped to
conditionals, and procedures are mapped to named Circus actions.

The implementation (see Appendix A) of our example and its model are in cs.york.ac.uk/circus/s2c.

5 Refinement strategy

In this section, we present a new refinement strategy suited for the verification of implementations of Stateflow
charts that follow the architectural pattern presented in Section 3. It is a tactic of refinement, which we define
as a procedure for systematic application of refinement laws.

Our strategy is organised in four phases: data refinement, normalisation, structuring, and action intro-
duction; an overview is provided in Figure 11. The main input is the model of the Stateflow chart, which as
already explained, can be automatically generated. We also use the chart itself to guide our calculation of
a concrete state in the data-refinement phase, and to identify the transition loops in the structuring phase.
We also need to extract from the model of the program information like the actions that model the execu-
tion of the states. The strategy is a tactic that proves that the model of the chart is refined by that of the
implementation by transforming the former into the latter using the algebraic refinement laws of Circus.

In general terms, the data-refinement phase introduces the data model of the implementation, the normal-
isation phase removes the structure of the abstract chart model, which reflects the Stateflow semantics, and
the next two phases introduce the control aspects of the implementation architecture. The structuring phase
introduces the control pattern, and the last phase introduces the appropriate naming of actions as adopted
in the program model to reflect its functions (procedures).

As usual in refinement techniques, data refinement is carried out first, since typically the algorithms to be
used and, therefore, the control flow of the program, are determined by the concrete data representations. To
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Figure 12: Initial steps of the application of the strategy to the example.

introduce the control structure, normalisation first removes all structure that stems from the modularisation
of the abstract chart model. As shown in Figure 5, it embeds a parallelism that reflects the operational
semantics of Stateflow, not the design of a program. We, therefore, remove that parallelism to establish a
simplified starting point to introduce the structure of the program in the next structuring phase.

The normalised process that is obtained is described using the same pattern of specification used in [CCO11]
as part of the verification technique for implementations of Simulink diagrams. In this way, we create the pos-
sibility of exploring the combination of our techniques to verify programs that implement Simulink diagrams
that involve Stateflow blocks. The structuring phase takes the normalised process and (1) adds variables that
are used in the (concrete) data model of the program but have no corresponding variable in the (abstract)
data model of the chart; (2) removes any remaining parallelism; and (3) introduces the sequential structure
of the program control flow pattern.

The final phase of action introduction is concerned with the introduction of the structure of the procedures
of the program. The bodies of these procedures come from the components of the refined action obtained
in the structuring phase. It would be possible to precede the structuring phase with the introduction of the
procedures, each with an appropriate abstract specification. We could then carry out the structuring to use
these procedures, based on their specifications, and refine these specifications independently. This would,
however, require the availability of the procedure specifications, which is not necessarily a trivial matter.

In the sequel, we present each individual phase of our refinement strategy. For clarity and conciseness, in
some steps, we omit the specification of the precise refinement laws to be applied. All details and missing
definitions can be found in [Miy12]. It is worth emphasising that all steps of all phases amount only to
the application of one or more of the Circus refinement laws. The only exceptions are Steps 1 and 2 of the
data-refinement phase; these are, however, just calculations of definitions (of a concrete state and of a retrieve
relation) to be used in a subsequent functional data refinement justified by simulation laws.

Figure 12 shows how the initial steps of the refinement strategy transform the model of our example.
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Step 1: Calculate the concrete state. Use a template.

Step 2: Calculate the retrieve relation. Use a template.

Transform the chart process as follows.

Step 3: Introduce the abstract state invariant as an assumption after the initialisation
and distribute it until all assignments are reached.

Step 4: Convert any actions of the form {inv} ; v := e. Apply Law assign-schema-conv to
all of them.

Step 5: Calculate the simulation. Apply the Circus laws of action simulation to the chart
process.

Figure 13: Refinement strategy: data-refinement phase.

5.1 Data refinement

The data-refinement phase transforms the state of the chart process. The result is a process whose concrete
state already includes many of the components of the implementation model. The exceptions are the com-
ponents that correspond to output events in C B , the component inputevents of C U , and the components
C Y and sfEvent C , which are related to the treatment of input and output events, and output data, and
are introduced later in the structuring phase. Figure 13 describes the steps of the data-refinement phase. The
laws for which we do not give a reference in this figure, and in others to follow, can be found in Appendix B.

We calculate the concrete state of the implementation model, and a retrieve relation that allows us to
calculate a data refinement of the chart process using the Circus refinement calculus. It preserves the structure
of the process, and transforms the assignments, operation schemas, and communications.

Step 1. We calculate, besides the concrete state, properties of its components that become the concrete
state invariant. Namely, we define three schemas: BlockIO C , D Work C , and ExternalInputs C , where,
as before, C stands for the name of the chart. Their specifications can be calculated by instantiating general
templates based on the definition of the chart. They define that, for instance, in the schema BlockIO C , for
each output variable in the chart, we declare a component of the same name and type.

In D Work C , for each chart local variable, we declare a component of the same name and type; all other
components have type N. We declare, for each parallel state S and the chart, a component is active S ; for
each S with a sequential composition, is S ; for each history junction within a state S , was S ; and for each
output event e, a component eEventCounter . For each state S with a sequential decomposition, possibly
including the chart, the invariant requires that the value of is S is restricted to an identifier of a substate of
S , or C IN NO ACTIVE CHILD , when none of them are active. Similarly, the value of a was S variable
is restricted to a substate of S , or C IN NO ACTIVE CHILD , if none of them have been active yet.

Finally, in ExternalInputs C , for each input data, we declare a component of the same name and type.

Example 5 The D Work C schema for our example is as follows.

D Work Air
is active c1 Air : N
is active FAN 1, is active FAN 2, is active Speedvalue : N
is c1 Air , is FAN 1, is FAN 2 : N

is c1 Air ∈ {Air IN NO ACTIVE CHILD ,Air IN PowerOn,Air IN PowerOff }
is FAN 1 ∈ {Air IN NO ACTIVE CHILD ,Air IN Off ,Air IN On}
is FAN 2 ∈ {Air IN NO ACTIVE CHILD ,Air IN Off ,Air IN On}

2

The concrete state is defined by a schema ConcreteState with three components C B , C DWork , and C U ,
with an appropriate schema type as defined above.

Step 2. The retrieve relation maps the components of BlockIO C that correspond to input and out-
put variables and the components of D Work C that correspond to local variables to components of the
schema SimulationInstance. The eEventCounter components of D Work C are mapped to the counters in
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SimulationInstance. The components of D Work C that record the status of the states and the history
junctions are mapped to the components state status and state history of SimulationData.

Example 6 For our example, we have the following retrieve relation.

RetrieveFunction
P Air S
ConcreteState

v airflow = Air B .airflow

state status = {s : dom states; active : B •

s = s PowerOn ∧ active =

 if Air DWork .is Air = Air IN PowerOn
then True
else False

 ∨
. . .

s = c Air ∧ active = if Air DWork .is active Air 6= 0 then True else False
}
state history = {}
v temp = Air U .temp

In the definition of state status, we use a set comprehension to define how each s in states is associated to a
boolean active in state status. The condition for the state PowerOn, for instance, equates s to s PowerOn,
and active to True or False depending on the value of is Air, which corresponds to the chart. Since our
example does not contain history junctions, the D Work Air record in its implementation has no was field.
The model of the implementation, therefore, has no component that models the state component state history.
In this case, in the retrieve relation, we equate state history to the empty set. 2

In general, the correspondence between variables is trivial. It is obtained by equating each of the concrete
variables to the corresponding abstract variable whose name is the same except for a prefix v . For event
counters, each eEventCounter component is equated to the corresponding counter e.

The function state status is related to the is active and is variables. We characterise how state identi-
fiers s are related to booleans active in state status, using the is active and is components
of C DWork , the record of type DWork C in the concrete state. For each is S variable, we require
s = s SS ∧ active = (if C DWork .is S = C IN SS then True else False), for each substate SS of
S . For each is active S , we require s = S ∧ active = (if C DWork .is active S 6= 0 then True else False).
Similarly, the relation between the was prefixed variables and state history is specified using a set compre-
hension that defines the value of state history in terms of the value of each of the was variables.

The retrieve relation is always a total function because it is specified by a set of equations that defines
each abstract state component as a total function of the concrete components.

Steps 3, 4, and 5. The ultimate goal of these steps is to carry out a data refinement. Steps 3 and 4 carry
out transformations to allow the application of the Circus data refinement techniques in Step 5.

Step 3 introduces the invariant of the abstract state as an assumption after the initialisation and distributes
it through the action until all assignments are preceded by the invariant.

Some of the assignments in the chart, and therefore, in the (abstract) chart process are implemented as
assignments to components of records. In the implementation model, they become assignments to records
themselves. For instance, the assignment v airflow := 0 in the action entryaction PowerOff in the chart
process shown in Figure 6, corresponds to an assignment Air B := 〈|airflow == 0|〉 in the model of the
implementation. The simulation law for assignment, however, does not handle records directly, and therefore,
in Step 4 we transform the assignments to schema operations.

To obtain schema actions to which simulation laws can be applied, however, we need to include the state
invariant in these schemas. This is achieved in Step 4 by applying the novel law Law assign-schema-conv to
the assignments preceded by the assumptions introduced in the previous step.

The data refinement carried out (in Step 5) is standard [CSW03, WD96]. Using the retrieve relation, we
apply the Circus laws of simulation to obtain a Circus process with the concrete state by data refinement. The
only aspect worth of note is the treatment of records.

5.2 Normalisation

As already said, the objective of this phase is to remove the top (parallel) structure of the chart model,
which reflects the operational semantics of the Stateflow notation (see Figure 5). This results in a model
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Step 1 Remove the parallelism between the chart and the Simulator processes. Apply
the definition of process parallelism.

Step 2 Move the hiding to the main action. Apply the definition of process hiding.

Transform the main action of the resulting process as follows.

Step 3 Isolate the initialisation operation. Apply Law sch-par-distr from right to left.

Step 4 Distribute the hiding. Apply Law hid-distr-seq.

Step 5 Eliminate the hiding over the initialisation. Apply Law hid-ident.

Step 6 Evaluate the parallel recursions. Apply Law rec-par-merge.

Step 7 Refine the initialisation. Apply Law seq-assign-conv.

Figure 14: Refinement strategy: normalisation phase.

whose monolithic, but simple, process structure is adequate as a starting point for us to introduce the control
structure of the architectural pattern of implementations in the next phases of the refinement strategy.

The steps of this phase are described in Figure 14. We first eliminate the parallelism between the chart
and Simulator processes, and then rewrite the main action of the resulting new process to a normal form: an
initialisation action, followed by a recursive action that captures each step of execution of the chart.

Following the Circus definition of process parallelism, in Step 1, we construct a new process with the same
state components of the chart process (since the Simulator process is stateless). For its main action, we
combine the main actions of the chart and Simulator processes in parallel in the same way the processes are
combined: with the same synchronisation set. The action parallelism operator (see Table 1) associates with
each action a disjoint set of the names of variables in scope that it can modify. In the definition of process
parallelism, the name sets that define the partitions of the parallel actions in the main action of the resulting
process list the state components of the original parallel processes. In Step 2, we use the definition of process
hiding to move the hiding of the set interface of channels to the main action of the resulting process.

Example 7 For our example, the main action of the new process resulting from applying Steps 1 and 2 to
the process Air Controller in Figure 6 is as follows.

•


(CInitState ; µX • (µY • (AllActions ; Y @ end cycle −→ Skip)) ; X )

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {}K

(µX • Step ; end cycle −→X )

 \ interface

The parallel action (µX • Step ; end cycle −→ X ) is the main action of the Simulator process. The action
Step (omitted here) encodes the operational semantics of one step of execution of an arbitrary chart. The end
of a step is marked by a synchronisation on the channel end cycle. 2

The following Steps 3 to 7 transform the parallelism of recursions in the main action into a single recursion.

Example 8 The result of Steps 3 to 7 for our example is shown below.

•


Air U := 〈|temp == 0|〉 ; Air B := 〈|airflow == 0|〉 ; Air DWork := . . . ; µX •

 (µY • AllActions ; Y @ end cycle −→ Skip)
J . . . K

Step; end cycle −→ Skip

 ; X

 \ interface


For conciseness, we omit the name and synchronisation sets in the parallelism, which do not change. 2

The Steps 3 to 7 are very simple and use existing Circus laws of general use. The only interesting novelty
is the specific Law rec-par-merge used in Step 6, which transforms a parallelism of recursions into a recursion
of parallelisms; it is presented below. The channel end is instantiated to end cycle in our strategy, and the
actions A and B are instantiated to AllActions and Step.
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Law [rec-par-merge]

(µX • (µY • A ; Y @ end −→ Skip) ; X ) J ns1 | cs | ns2 K (µX • B ; end −→X )
=

(µX • ((µY • A ; Y @ end −→ Skip) J ns1 | cs | ns2 K B ; end −→ Skip) ; X )

provided end ∈ cs; end 6∈ usedC (A,B) wrtV (A) ∩ usedV (B) = ∅; and usedV (A) ∩ wrtV (B) = ∅.

The two parallel recursions proceed in synchrony. This is enforced by the first proviso of the law, which states
that the channel end is in the synchronisation set cs of the parallelism and is only used where explicitly
shown. The syntactic function usedC (A) gives the set of channels used in the definition of the action A; also,
we use usedC (A,B) as an abbreviation for usedC (A) ∪ usedC (B).

In the parallel recursions, a communication over end terminates the inner recursion of the first parallel
action, and, therefore, one step of its outer recursion, and one step of the recursion in the second parallel
action. In the recursion of parallelisms, this synchronous behaviour is captured as a single recursion.

We use usedV (A) to denote the set of variables used (read, but not written) by A, and wrtV (A) the set of
variables written by A. The second proviso of the Law rec-par-merge guarantees that each parallel recursion
does not use the variables written by the other. This is necessary because, after each step of the recursion
of parallelisms, the parallel actions have access to the new values of variables updated in the previous step.
This is not the case in the parallel recursions, because the parallelism does not terminate.

In our verification, the application of Law rec-par-merge allows us to take advantage of the fact that, in
both the chart and the Simulator process, each step of execution of the chart is marked by a synchronisation
on end cycle. Moreover, for each of the steps of the simulator, an arbitrary number of executions of AllActions
may be necessary to provide and update information about the chart components.

5.3 Structuring

In this phase, we introduce the control structure of the implementation: that in Figure 10.

Starting point The steps of this phase are to be applied to the normalised process obtained in the previous
phase. The general form of its main action was illustrated in the previous section and is described in Figure 15,
where MdlInitialize stands for a sequence of assignments that initialise the state. The action Step of the
Simulator process is also reproduced in Figure 15.

Step requests from the chart a sequence es of input events, reads a sequence vs (of the same size) of
boolean values associated to these events, requests the chart to read the input data, executes the chart
for each event by calling another action ExecuteEvents(es, vs), and requests the chart to write its outputs.
ExecuteEvents(es, vs) is defined by an iterated sequence of calls ExecuteEvent(es(i), vs(i)) that executes the
chart for each of the events in es (and their associated values). The sequence id(1 . .# es) gives the indices in
the set 1 . .# es in order. ExecuteEvent(e, v) models the execution of the chart for the event e; the boolean
parameter v indicates whether it occurred or not. A conditional calls the action ExecuteChart(e) if e did
occur, that is, v = True. It is ExecuteChart(e), omitted here, that models the execution of the chart for e.

Target In this phase, the state of the normalised process is extended to include components that do not
have a corresponding component in the (abstract) chart model, and, therefore, are not introduced in the
data-refinement phase. We introduce the component sfEvent C , which records the event being handled, and
extend the record in C U to include the component inputevents, which keeps the input values associated
with each event. In the chart model, these values are read from a channel and not recorded anywhere. We
also declare C Y , which records the final value of the output data and events in each step for sharing. We
also extend the record in C B to include the components that keep the value of the output events as they
are calculated during a step of execution also for sharing. In summary, in this phase the global variables and
the components of the record-valued global variables of the program that are used in the treatment of inputs
and outputs are introduced and allocated in the right record of the program data model.

In addition, the main action of the normalised process is transformed in this phase to become completely
sequential. Its overall structure is formalised in Figure 16; it matches the structure of the program model
previously characterised in Figure 10, but is here sketched in Circus. As already said, this main action
initialises the state components, using an action that follows the pattern MdlInitialize, and starts a recursion
whose iterations model the implementation of the execution of one step of the chart. In each iteration, (1) the
inputs are read using an action that follows the pattern ReadInputs; (2) some calculations are carried out, as
defined by the sequence of conditionals in the CalculateOutputs pattern; (3) the outputs are written using an
action whose pattern is WriteOutputs; and (4) the end of the step is signalled using end cycle.
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
MdlInitialize; µX •

 µY • AllActions ; Y @ end cycle −→ Skip
Jns1 | interface ∪ {| end cycle |} | ns2K

Step; end cycle −→ Skip

 ; X

 \ interface


where

Step =̂

 events?es −→ input event?vs : (# vs = # es)−→ read inputs−→
ExecuteEvents(es, vs);
write outputs −→ Skip



ExecuteEvents =̂ es : seq EVENT ; vs : seqB •
(; i : id(1 . .# es) • ExecuteEvent(es(i), vs(i)))

ExecuteEvent =̂ e : EVENT ; v : B •
if v = True−→ ExecuteChart(e) 8 v = False−→ Skip fi

Figure 15: Pattern: structuring starting point.

The pattern ReadInputs is for an action that reads a sequence of events vs of a known size N via the
channel input event , and assigns it to the component inputevents of C U . Afterwards, it inputs via channels
i vi the value v of each of the input variables vi and assigns it to the corresponding component vi of C U .

In CalculateOutputs, for each input event represented by the i -th element of the C U .inputevents se-
quence, if it occurred (C U .inputevents(i) = True), the value of sfEvent C is updated to the corresponding
event (Ei), and the chart is executed. The order of the events is determined by the chart.

In the pattern ChartExecution for actions that execute the chart, we have a recursion due to the possibility
of local event broadcasts leading to reexecution. In each step, a local variable c previousEvent is used to
record the current event if a broadcast takes place (and changes the event in sfEvent C ). This variable
is needed to allow continuation after reexecution. If the chart is not active (C DWork .is active C = 0),
a ChartExecution action changes the value of is active C in C DWork to 1. Afterwards, it executes the
sequential actions required to enter states of a chart; this is omitted in Figure 16. If the chart is active, the
action executes its states. The pattern of execution of states is as described in Figure 9: conditionals for those
with sequential decomposition, and sequences for those with a parallel decomposition.

Finally, the WriteOutputs pattern describes actions that communicate the output events and variables.
Through a channel o E corresponding to an event E , we communicate a boolean, indicating whether E
occurred or not. This is determined by a preceding conditional that checks the counter for E in C DWork ,
and stores the result in the E component of C B . (Assignments to components of records are not valid in
Circus. We use them here as an abbreviation for an assignment to the whole record-valued variable of a record
that differs only in the value of the indicated component.) If the counter is positive, its value is decremented.
The assignment C Y := C B records the calculated values of the output variables and events in C B in
C Y , which corresponds to a shared variable of the program. The interleaving of communications realises
the sharing by outputting the value of the components of C Y . Through o E we communicate the value of
E as stored in C Y , and through a channel o v we communicate the value of the variable v stored in C Y .

Refinement steps Figure 17 shows the steps of the structuring phase; each of them is the application of
a separate refinement procedure discussed later in this section. The first step introduces local variables that
later become part of the concrete state, the following four steps introduce different elements of the control
structure of the implementation architecture, and the last step simplifies the resulting actions. In the sequel
we give an overview of these steps and of the refinement procedures.

The order of the steps simplifies the overall structuring. The introduction of the new variables for recording
events is performed in Step 1 because they are used in the CalculateOutput action introduced in Step 2.
Specifically, they are used in the actions that implement the state executions (omitted in Figure 16). Without
the global variables, Step 2 would generate local variables throughout the model. This would make the
introduction of the global variables harder, since it would require unification of the multiple local variables.

The implementation of local event broadcasts and transition loops in Step 3 requires the identification of
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MdlInitialize ; (µX • ReadInputs ; CalculateOutputs ; WriteOutputs ; end cycle −→X )

where MdlInitialize is the pattern

C U := 〈| . . . |〉 ; C B := 〈| . . . |〉 ; C DWork := 〈| . . . |〉

ReadInputs is the pattern

input events?vs : (# vs = N )−→ C U := 〈|inputevents == vs ; . . . |〉;
(i v1?v −→ C U .v1 := v 9 i v2?v −→ C U .v2 := v 9 . . .)

CalculateOutputs is the pattern if C U .inputevents(1) = True−→ sfEvent C := E1 ; ChartExecution
8 C U .inputevents(1) = False−→ Skip
fi

 ;

. . . ; if C U .inputevents(n) = True−→ sfEvent C := En ; ChartExecution
8 C U .inputevents(n) = False−→ Skip
fi


ChartExecution is the pattern µY •


var c previousEvent : N •

if C DWork .is active C = 0−→
C DWork := 〈|is active C == 1, . . . |〉 ; . . .

8 C DWork .is active C 6= 0−→ . . .
fi





and WriteOutputs is the pattern
if C DWork .counter E > 0−→

C DWork .counter E := C DWork .counter E − 1) ; C B .E := True
8 C DWork .counter E = 0−→ E := False
fi

 ;

. . . ;
C Y := C B ;
o E !(C Y .E )−→ Skip 9 . . . 9 o v !(C Y .v)−→ Skip 9 . . .

Figure 16: Pattern: structuring target.

Step 1 Introduce input event variables. Apply procedure input-event-var-introduction.

Step 2 Introduce conditionals in CalculateOutput. Apply the procedure parallelism-resolution
to the body of the outer recursion in the main action.

Step 3 Introduce recursions that implement event broadcast and transition loops.
Apply the procedure recursion-introduction to the body of the outmost recursion in the main
action.

Step 4 Introduce assignments. Apply procedure assignment-introduction to the body of the
outmost recursion in the main action.

Step 5 Introduce update of outputs. Apply procedure update-output to the second action in
the sequence that defines the body of the outmost recursion in the main action.

Step 6 Simplify. Apply the procedure simplification to the recursion in the main action.

Figure 17: Refinement strategy: structuring phase
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actions that arise in the refinement calculations in Step 2 and are written in a particular pattern. Namely,
these are parallel actions whose structure is similar to that of the starting point of this phase (see Figure 15).

Step 4 refines schema operations to assignments, and Step 5 introduces the shared variable C Y that is
used to communicate outputs. These are the schemas and outputs whose specifications arise as a result of
Steps 2 and 3. Steps 4 and 5 can, therefore, occur in any order, but after Step 3, and also before Step 6
because the actions introduced by them may require simplification.

Step 1 The procedure input-event-var-introduction is very simple. It uses standard laws for introduction of
variables to declare inputevents and sfEvent C as local variables in the parallel action Step. Additionally, it
uses simple laws of Circus to extend their scope, and then promote them to state components. As a result
of these steps, inputevents and sfEvent C are added to the name set ns2 of the parallelism (see Figure 15).
The details of this procedure input-event-var-introduction are omitted here.

Step 2 In general terms, the procedure parallelism-resolution systematically applies, to the body of the outer
recursion in the main action, step laws to resolve the parallelism between the recursion offering AllActions,
and Step. As it does so, it unravels the structure embedded in AllActions and Step: conditionals that check the
status of chart states, the occurrence of events, and guards of transitions. The result already has a structure
similar to that of the body of the recursion in Figure 16, but the actions that model a state execution may
still retain some parallelism. This arises if the chart has local event broadcasts or transition loops (involving
just junctions). These parallelisms are the target of Step 3.

When compared to the pattern of our target in Figure 16, after Step 2 (1) the recursions have not
been introduced; (2) the conditionals in CaculateOutputs are nested (rather than in sequence); (3) there are
spurious internal communications arising from the removal of the parallelism in the previous phase; (4) the
actions that model the execution of a state may contain parallelisms; and (5) the outputs in WriteOutputs are
communicated in the conditionals, rather than at the end, but the conditionals are interleaved rather than in
sequence. All these issues are tackled in the next steps.

The details of the procedure parallelism-resolution are presented in Section 5.3.1. It is rather extensive, as
it has to consider the several forms of parallelism that can arise from the application of the step laws.

Step 3 This deals with local event broadcasts and transition loops, which are modelled by the parallelisms
left in the previous step, if any. The procedure recursion-introduction defines new recursive actions and proves
their equivalence to the existing parallel actions. The result of this step transforms the main action so that
the variable blocks that model the chart execution include recursive actions whose bodies are similar to the
variable blocks themselves. We present the procedure recursion-introduction in Section 5.3.2.

Step 4 This step refines the main action so that all schema operations are refined to assignments. The
procedure assignment-introduction distinguishes two types of schema operations: (1) those that activate or
deactivate a state, which are specified using one of the schemas Activate or Deactivate, originally defined
in the chart model; and (2) those introduced in the data-refinement phase plus the initialisation schema.
The assignments to be introduced are determined in assignment-introduction according to the kind of schema
operation (Activate or Deactivate), to the type of the state S (parallel or sequential), and to whether the
parent of a sequential state being activated has a history junction or not. The predicates in the schemas
of the second group are conjunctions of equalities, and so we convert them into assignments directly. The
refinement laws used are simple Z laws for refining schemas to assignments.

Step 5 As already mentioned, as a result of Step 2, output events and data are communicated in interleaving.
The objective of this step is to gather together the construction of the values to be output, before making all
outputs available (still in interleaving). The procedure update-output is described in Section 5.3.3.

Step 6 To conclude the structuring phase, we have a final simplification step. The operational semantics
of Stateflow charts, as specified in the Simulator process of the chart models, considers all possible paths of
execution that might arise in the execution of an arbitrary chart. Typically, the semantics of a particular
chart, as defined by the chart process, does not involve all these paths. We, therefore, in carrying out the
Steps 2 and 4 above, which basically evaluate the semantics of the chart in a systematic way, may introduce
unnecessary assignments, and conditionals. They are eliminated in this step.

Unnecessary assignments arise, for example, when a transition loop leads to a path that exits and subse-
quently enters the same state. In this case, during this step we remove the sequence of two assignments that
record the state as inactive and then active. Unnecessary conditionals arise, for example, when absence of
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local event broadcast makes it unnecessary to check early return logic conditions. In this case, during this
step we remove conditionals whose conditions can be shown to be always true or false.

In addition, we remove unnecessary variables (that arise from the action that models early return logic).
We also eliminate internal channels originally used for communication between the chart and Simulator
processes. The elimination of the parallelism between them makes these communications unnecessary.

We also simplify the control structure in this step. Nested conditionals that execute sequential states
and check a transition’s trigger and condition are flattened into a single conditional with multiple branches,
unfolded recursions are folded again, and assumptions and redundant Skip actions are eliminated.

Finally, the process is data refined to include inputevents in the binding of type ExternalInputs.

The details of this extensive but simple procedure are omitted here.

5.3.1 Procedure parallelism-resolution

This procedure has three parameters: a set loopT of transitions that start loops, a set visitedT of such
transitions whose implementations have already been refined, and a parallel action A to be refined. In the
Step 2 of the structuring phase, parallelism-resolution is applied with the following arguments: the set of all
transitions of the chart that start a loop (which can be extracted from the chart itself), the empty set, and
the body of the outer recursion in the main action (see Figure 15).

This is a recursive procedure defined in terms of the syntactic structure of A. In the sequel, we describe
how each form of parallelism that the argument action A may take is refined.

A. Parallel composition unit (base case) The rather trivial first case is the base case of our procedure: a
parallelism Skip J ns1 | cs | ns2 K Skip. It requires the application of Law par-unit to obtain Skip.

B. Prefixing over channel in the synchronisation set on the right-hand side This case covers the
situation where the right-hand side (originally, the process Simulator) is requesting the left-hand side (origi-
nally the chart process) to execute an action. This is characterised as follows, where c is in cs.

(µY • AllActions ; Y @ end cycle −→ Skip) J ns1 | cs | ns2 K c −→A

In our refinement strategy, for every model, this is the first case applicable, by definition of Step.

The refinement has to evaluate the communication. Since the synchronisation is offered by AllActions, we
need to unfold the recursion. The precise steps are omitted here. The result takes the following form, where
c −→ B is an action included in the external choice of AllActions.

c −→ B ; (µY • AllActions ; Y @ end cycle −→ Skip) J ns1 | cs | ns2 K c −→A

We recursively apply parallelism-resolution to the remaining parallel action. The parameters of the recursive
call are loopT and visitedT unchanged, and the whole action above.

Example 9 For our example, this case applies to the following main action. (µY • AllActions ; Y @ end cycle −→ Skip)
J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K

(events?es −→ input event?vs : (# vs = # es)−→ inputevents := vs ; readinputs −→ . . .)


When this case is applied to the above action, we obtain the action below (before recursing in the application
of parallelism-resolution). events!〈e SWITCH , e CLOCK 〉 −→ Skip ; (µY • AllActions ; Y @ end cycle −→ Skip)

J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K
(events?es −→ input event?vs : (# vs = # es)−→ inputevents := vs ; readinputs −→ . . .)


Since the first communication of Step is an input events?es, the matching output through events in AllActions
is revealed. The assignment to inputevents now on the right-hand side of the parallelism was introduced as a
result of the Step 1 of the structuring phase described previously. 2

C. Synchronisation This case occurs as a result of the refinement in the previous case; it evaluates the
parallel prefixed actions that are unfolded using standard step laws.
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Step 1 Apply Law seq-distr-cond.

Step 2 Distribute parallelism. Apply Law par-distr-cond.

Step 3 If g refers to a state component, recursively apply parallelism-resolution to each branch.
Otherwise, apply Law cond-elim, before recursing.

Figure 18: parallelism-resolution(H): steps for conditional followed by sequence, on either side.

Example 10 Proceeding with our example, we obtain the action below before recursing.

events.〈e SWITCH , e CLOCK 〉−→ Skip ; (µY • AllActions ; Y @ end cycle −→ Skip)
J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K

(input event?vs : (# vs = 2)−→ inputevents := vs ; readinputs −→ . . .)


The communication on events is evaluated and extracted from the parallelism. Additionally, in the input side
of the parallelism, the value of es is determined by the output: # es, for instance, can be resolved to 2. 2

D-F. Leading Skip, prefixing over channel not in the synchronisation set, assignment or schema
on either side In these cases we have a simple action on either side of the parallelism, and we apply a
simple law that removes it or extracts it from the parallelism. For a leading Skip on the left parallel action,
for instance, (Skip ; A) J ns1 | cs | ns2 K B , we use a unit law of sequence to remove the Skip. In a case
like (c −→ A) J ns1 | cs | ns2 K B , of a prefixing over a channel not in the synchronisation set, this involves a
communication c with the environment. A simple step law par-prefix-step extracts the communication from
the parallelism. Its provisos always hold, since the structure of the process we are refining is quite restricted.
For instance, for all communications that are relevant to this case, the first possible communication in the
other parallel action is over a channel in the synchronisation set.

Example 11 Proceeding with our example, we obtain the action below.

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ inputevents := vs; µY • AllActions ; Y @ end cycle −→ Skip
J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K

(read inputs −→ . . .)


The communication with the environment on input events and its associated assignments are extracted from
the parallelism. Moreover, further recursive applications of previous cases extract the internal communication
read inputs, and the external communication in AllActions over the channel i temp corresponding to the
input variable temp. In general, however, there may be several input variables and, consequently, several
input communications in interleaving. This is the object of the next case. 2

G. Leading interleaving on the left-hand side This case covers actions characterised as follows.

((A1 ||[ ns1 | ns2 ]||A2)) ; B) J nsx | cs | nsy K C

We have on the left an interleaving of actions A1 and A2, followed by an action B , all in parallel with another
action C . As in previous cases, we apply a step law to extract the interleaving from the parallelism. As
before, the provisos of the step law always hold by the construction of the model.

H. Conditional followed by sequence, on either side As already mentioned, the structure of AllActions
and Step involves a number of conditionals. This case covers their treatment, considering actions of the form
((if g −→A1 8¬ g −→A2 fi) ; B), and the similar cases where the conditional is on the right-hand side of the
parallelism. All conditionals have mutually exclusive guards g and ¬ g .

In general, the conditionals can involve checks that depend on the current state of the chart, for instance,
the verification of the guard of a transition, or checks that are based solely on the structure of the chart. The
two types of conditionals can be distinguished by their guards. If a guard refers to state components, it is of
the first type. If not, it is of the second type, and can be eliminated using the static information that defines
the structure of the chart. This is achieved in this step.

For illustration, the precise refinement steps to be carried out in this case are shown in Figure 18. We first
distribute the sequential composition over the conditional, and then the parallelism using the fact that the
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guards of the conditional are mutually exclusive. Next, if the guard refers to state components, we recursively
apply parallelism-resolution to the actions in each branch. If it does not, we remove the conditional using the
definitions of constants like s Off 3, states, and transitions shown in Figure 6. Finally, we recursively apply
parallelism-resolution to the remaining action with the remaining parameters unchanged.

Example 12 Proceeding with our example, at this stage, we have the action below, where the conditionals
now shown on the right parallel action are originally part of ExecuteEvent.

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ inputevents := vs ; readinputs−→

µY • AllActions ; Y @ end cycle −→ Skip
J{Air B ,Air DWork ,Air U } | interface ∪ {| end cycle |} | {inputevents, sfEvent Air}K


if inputevents(1) = True−→

sfEvent Air := e SWITCH ; ExecuteChart(sfEvent Air)
8 inputevents(1) = False−→ Skip
fi

 ;


if inputevents(2) = True−→

sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)
8 inputevents(2) = False−→ Skip
fi

 ;

write outputs −→ end cycle −→ Skip




The guards refer to inputevents and so the conditional is not eliminated. If we proceed with the application
of the steps in Figure 18, we obtain the following action.

events.〈e SWITCH , e CLOCK 〉 −→ input event?vs : (# vs = 2)−→ inputevents := vs ; readinputs−→

if inputevents(1) = True−→

µY • AllActions ; Y @ end cycle −→ Skip
J . . . K

sfEvent Air := e SWITCH ; ExecuteChart(sfEvent Air);
if inputevents(2) = True−→

sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)
8 inputevents(2) = False−→ Skip
fi

 ;

write outputs −→ end cycle −→ Skip




8 inputevents(1) = False−→

µY • AllActions ; Y @ end cycle −→ Skip
J . . . K


if inputevents(2) = True−→
sfEvent Air := e CLOCK ; ExecuteChart(sfEvent Air)

8 inputevents(2) = False−→ Skip
fi

 ;

write outputs −→ end cycle −→ Skip




fi


At this stage, recursive calls to parallelism-resolution lead to a number of applications of the previous cases,
until we reach a parallelism whose right-hand parallel action is a call to ExecuteChart.

It is worth mentioning that the innermost conditional in the first branch of the outermost conditional
accounts for the possibility of executing the chart with the event e CLOCK after it has been executed under
the event e SWITCH in the previous action.

2

I. Call action on either side Whenever a call action is the leading action in one of the sides of the
parallelism, and none of the other cases apply, we expand it using a procedure copy. It replaces a call to an
action with its definition, with the appropriate parameters substituted using standard laws.

If the action that is called is the Simulator action ExecuteTransition, however, the refinement to be carried
out is different. ExecuteTransition models the execution of a sequence of transitions, so, when executing a
transition loop through a call to ExecuteTransition, the uncontrolled application of the procedure copy leads
to nontermination. To avoid that, we use the parameters loopT and visitedT of parallelism-resolution.

In a call to ExecuteTransition, the first argument t is the identifier of the first transition to be executed. If
it starts a loop (t ∈ loopT ), there are two possibilities: a call with t as argument has already been expanded

25



Step 1 Use state component sfEvent C Apply Law use-loc-var to TreatLocalEvent(e, s) to
introduce a local variable previousEvent of type N, with initial value sfEvent C , whose
temporary value becomes e.

Step 2 Extend and distribute. Apply Laws var-seq-ext-right and var-par-ext-right, and apply
par-seq-step twice.

Step 3 Expand action call. Apply the copy procedure to TreatLocalEvent(e, s).

Step 4 Simplify the conditional. Try to apply Law cond-elim to eliminate each of the branches
of the conditional that defines TreatLocalEvent .

Step 5 Distribute the parallelism. Apply Law par-seq-dist.

Step 6 Recurse. Apply the procedure parallelism-resolution to the second parallelism.

Figure 19: parallelism-resolution(L): steps for local event broadcast.

by a previous application of this case (t ∈ visitedT ), or not. If not, it is expanded as usual and parallelism-
resolution is applied recursively with parameters loopT and visitedT ∪ {t}, that is, t is marked as “visited”.
If t is in visitedT , we leave the parallelism unresolved: it is refined in the Step 3 of the structuring phase.

We observe that this treatment of ExecuteTransition is not an artefact of our example. This is a Simulator
action, and the Simulator process is part of all chart models and is the same in all models. Its structure, just
like that of the chart itself, is used to guide our refinement strategy, which is general.

J. Explicit recursion on the right-hand side In this case, we unfold the recursions. Due to the structure
of the chart model, we know that this does not lead to nontermination of our refinement strategy.

Recursions come from two sources. The first are the Simulator actions that offer a choice between treating
a local event and recursing, or signalling the end of the chart execution. The second are calls to the Simulator
action transitionActionCheck , which checks the status of substates as part of the check of the early return
logic condition. Since any chart action involves only a finite number of local event broadcasts, and every state
has a finite number of substates, there can only be a finite number of applications of this case.

K. Leading prefixing over channel in the synchronisation set on the left-hand side A Circus
action that models a local event broadcast uses internal channels to control the Simulator . In this case,
we consider a parallelism where the left-hand action is such a communication. In the right-hand action, at
these points, Step always offers a(n external) choice that accepts the communication. The general pattern is
c −→A J ns1 | cs | ns2 K (c −→ B1 @ d −→ B2) ; C , where both c and d are in cs.

In this step, refinement resolves the external choice using simple and standard laws. We distribute the
sequence and the parallelism over the external choice and eliminate the deadlocked parallel actions. The
provisos of the laws applied follow from the fact that c and d are both in the synchronisation set, and are
different. The result is the action c −→A J ns1 | cs | ns2 K c −→ (B1 ; C ).

L. Local event broadcast The pattern for this case is as shown below.

((µZ • AllActions ; Z @ end local execution −→ Skip) ; A) J ns1 | cs | ns2 K (TreatLocalEvent(e, s) ; B)

The Simulator action TreatLocalEvent is used in all actions that handle local event broadcast. It decides
whether to reexecute the whole chart or a specific state, depending on the kind of broadcast. Similarly to calls
to ExecuteTransition singled out in the case I, calls to TreatLocalEvent cannot be expanded indiscriminately.
Moreover, calls to TreatLocalEvent occur in parallel with the actions of the chart process that model local
event broadcasts: a recursion that provides the services of AllActions; termination is by synchronisation on
end local execution.

Figure 19 presents the steps to be carried out. The objectives of the refinement are twofold. First, we
resolve the decision embedded in TreatLocalEvent , which is based on the structure of the chart: namely, the
target of the broadcast. Second, we split the parallelism to isolate the encoding of the execution of the
broadcast from that of the continuation of the execution of the chart represented by A and B in our pattern.

The resulting action is below; it contains a sequence of parallelisms: the first corresponds to the execution
of the local event broadcast and is further refined in the Step 3 of the structuring phase, and the second is
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the target of a recursive application of parallelism-resolution.
var previousEvent : N • previousEvent := sfEvent C ; sfEvent C := e;

 µX • AllActions ; X @ end local execution −→ Skip
Jns1 | cs | ns2K

ExecuteChart(sfEvent C ) ; end local execution −→ Skip

 ;

(A J ns1 | cs | ns2 K sfEvent C := previousEvent ; B)




In splitting the parallelism, a local variable previousEvent is used to store the current event in sfEvent C ,
before it is updated to the broadcast event, so that later, the value of sfEvent C can be restored.
Step 1 of the refinement procedure for this case applies the novel, but simple, Law use-loc-var below.

Law [use-loc-var]

A(e) = (var x : T • x := v ; v := e; A(v); v := x )

where e, of type T , is a value argument of A.
provided v 6∈ FV (A) and x is fresh.

This law applies to an action call A(e), where e is a value argument. (A more general version explicitly allows
for more arguments, as is the case of the call TreatLocalEvent(e, s), but for simplicity, we only indicate e
above). It declares a fresh local variable x (of a type T ), which is initialised with the value of a variable v
not used in A, which is then updated to hold the value of e temporarily for the execution of A.

In the refinement carried out in this case, we use Law use-loc-var to substitute TreatLocalEvent(e, s) with
the declaration of a local variable previousEvent of type N, record the value of the state component sfEvent C
in previousEvent , store the argument e of the call to TreatLocalEvent in sfEvent C , call TreatLocalEvent with
the e substituted with sfEvent C , and restore the value of sfEvent C . In the Step 2, we extend the scope of
previousEvent and extract the assignments from the parallelism.

In Step 3, we expand TreatLocalEvent(sfEvent C , s); this results in a conditional whose guards do not
refer to state components. It establishes whether the destination of the broadcast is a state or the chart, in
order to call the appropriate action. Step 4 simplifies this conditional to one of its branches by attempting to
apply Law cond-elim to eliminate the first branch, and then the second, if unsuccessful. One of the applications
necessarily succeeds, since the constants of the model that record the structure of the chart can be used to
determine that one of the guards of the conditional is True and the other is False.

Example 13 For the sake of example, we assume that the conditional simplifies to the first branch, and we
obtain the result below.

var previousEvent : N • previousEvent := sfEvent C ; sfEvent C := e; (µZ • AllActions ; Z @ end local execution −→ Skip) ; A
Jns1 | cs | ns2K

ExecuteChart(sfEvent C ) ; end local execution −→ Skip ; sfEvent C := previousEvent ; B



2

Finally, Step 5 applies the novel Law par-seq-dist below to separate the parallelism into a sequence of two
parallel compositions. It considers a parallelism of sequences (and relates it to a sequence of parallelisms).
The action of the left-hand side of the parallelism is the second component of a pair (M ,N ) of actions defined
by mutual recursion. The first component M may offer a communication over a channel l and start the second
component N , and N offers a choice between calling M and recursing on N or synchronising on a channel el
and terminating. The first action of the sequence on the right-hand side of the parallelism is a simple recursion
that communicates on l , conditionally recurses, and synchronises on el afterwards. The second action of the
right-hand side starts with a synchronisation on el .

Law [par-seq-dist]

N ; B1 J ns1 | cs | ns2 K (µX • A2[l −→ (if b −→X 8 ¬ b −→ C fi) ; el −→ Skip]) ; el −→ B2

=(
(N J ns1 | cs | ns2 K (µX • A2[l −→ (if b −→X 8 ¬ b −→ C fi) ; el −→ Skip]) ; el −→ Skip);
(B1 J ns1 | cs | ns2 K B2)

)
where (M ,N ) =̂ µX ,Y • (F [l −→Y ], (X ; Y ) @ el −→ Skip)
provided

• {| l , el |} ⊆ cs; {| l , el |} ∩ usedC (F ,A2) = ∅; initials(M ) ∈ cs; and

• usedV (B1) ∩ ns2 = usedV (B2) ∩ ns1 = ∅.
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While there are remaining parallelisms p in the main action

Step 1 Calculate a possibly recursive action. Applying the procedure parallelism-resolution
to p.

Step 2 Refine parallel action.

(a) If the calculated action is µX • F (X ), apply Law unique-fixed-point to p and F .

(b) Else, substitute the calculated action for the parallelism.

Figure 20: Refinement strategy:structuring phase - recursion-introduction.

In our application of this law, N is the recursion offering AllActions with el as end local execution. The
action M is AllActions itself, which accepts communications on a channel local event and then starts a new
recursion identical to the one that called it. So, l is the channel local event . The recursion in the right
parallel action is instantiated to the action ExecuteChart : it treats local event broadcasts, and that involves
recursive calls. The action that carries out the local event execution is a prefixing on local event , followed by
a conditional that checks the type of broadcast, followed by a synchronisation on end local execution. All
recursive calls to ExecuteChart follow this pattern, as required in Law par-seq-dist.

In the parallelism of sequences in the above law, l and el are in the synchronisation set and are only
used in the recursions as explicitly shown, as stated in the first two provisos. Each communication on l ,
therefore, triggers a recursive call Y to N on the left-hand side, and, on the right-hand side, a recursive call
or a call to C . When either of those calls on the right-hand side terminates, we have a synchronisation on
el . Since N is offering to synchronise on el or reexecute X (that is, M , which is waiting for a communication
on a channel in the synchronisation set as stated by the third proviso) both sides synchronise on el and
the most recent recursive call to N terminates. When the recursion on the right-hand side terminates, a
second synchronisation on el prompts the mutual recursion to terminate. Since there is no possibility of B2

communicating with the mutual recursion, or B1 communicating with the simple recursion, because both
recursions terminate synchronously, B2 does not use variables written by the mutual recursion, and B1 does
not use variables written by the simple recursion (last proviso), we can separate the parallel action.

Step 6 applies the procedure parallelism-resolution to the second parallel action.

M. Leading local variable declaration on either side The actions to which this case applies follow
a pattern where either side of a parallel action is a local variable block declaring a single variable of type
boolean; for example A J ns1 | cs | ns2 K (var b : B • B). We apply standard laws to give b a fresh name and
expand its scope out of the parallelism, before recursing. The name set associated with the parallel action
declaring the variable is extended to include the new name of the variable.

Since parallelism-resolution is recursive, termination is an issue. A detailed argument based on the structure
of the parallel actions found in our chart models is provided in [Miy12].

5.3.2 Procedure recursion-introduction

This procedure is used in Step 3 of the structuring phase. It receives the same parameters loopT and visitedT
as parallelism-resolution, which it uses to call that procedure. It acts on the body of the outermost recursion
in the main action to transform the remaining parallel actions into recursions.

For each parallel action p of the general form A J ns1 | cs | ns2 K B , in Step 1 we calculate, a (possibly
recursive) sequential action. For that, we apply the procedure parallelism-resolution to p. The result may be
of the form F [A J ns1 | cs | ns2 K B ] or F , that is, it may or may not contain the same parallelism. If it does,
the calculated action is a recursion µX • F [X ] whose body is the result obtained with parallelism-resolution,
where all parallelisms A J ns1 | cs | ns2 K B are replaced with a recursive call X . If it does not contain the
parallelism, the result of this calculation is the action F itself.

If the calculated action is recursive, we refine the parallel action to that recursion using a standard fixed-
point law in Step 2(a). Otherwise, we simply replace the parallelism with the calculated action in Step 2(b),
since the procedure used to calculate it establishes equivalence.

As mentioned previously, we use the procedure recursion-introduction with the assumption that there are no
mutually recursive actions to be introduced. This means that the calculated actions do not contain themselves
any further parallelisms, which would generate a recursion.
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




if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; o E !(True)−→ Skip
8C DWork .counter E = 0−→ o E !(False)−→ Skip
fi


||[{C DWork .counter E} | . . . ]||

. . .


||[ . . . | . . . ]||

(o v !(C B .v)−→ Skip 9 . . .)


Figure 21: update-output: interleavings to be refined.

5.3.3 Procedure update-output

As a parameter, update-output takes the sequence output events of output events in the order in which they
are defined in the chart. This procedure introduces a new state component, namely, C Y , which, as previously
explained, records the values of the output variables and events to be communicated at the end of the step.
The procedure update-output also expands the definition of the schema type of C B , to include boolean
components that record whether the output events have occurred or not. The concern in update-output is
mostly with interleavings of the general form shown in Figure 21; each is an interleaving of conditionals
communicating events, and communications of output variables. These interleavings occur repeatedly at the
end of the innermost branches of the nested conditionals in the main action.

The procedure update-output first extracts the interleavings to the end of the action. This is possible
because the interleavings, followed by a synchronisation on end cycle, are the final action in all innermost
branches of all conditionals. (The procedure parallelism-resolution pushes them inside the conditionals, and
recursion-introduction may introduce tail recursions that terminate with them.)

Next, for each event E in the sequence of output events, we identify the conditional that communicates
the output event: that with a communication through o E . We introduce a local variable E of type B, assign
to it the value v that is being communicated through o E , and communicate E instead. Afterwards, we
extend the scope of the local variable over the main action, and promote it to a state component.

Example 14 The result of these steps on the conditional in Figure 21 is shown below.
if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; E := True ; o E !(E )−→ Skip
8C DWork .counter E = 0−→ E := False ; o E !(E )−→ Skip
fi


2

We now extract the prefixings o E !(E )−→ Skip that communicate the local variables from the conditional,
and then extract the conditional from the interleaving.

Example 15 Following on from our example, we obtain the action below.
if C DWork .counter E > 0−→

C DWork := 〈|counter E == (C DWork .counter E − 1), . . . |〉 ; E := True
8 C DWork .counter E = 0−→ E := False
fi

 ;

  o E !(E )−→ Skip
||[{} | . . . ]||

. . .

 ||[ . . . | . . . ]|| (o v !(C B .v)−→ Skip 9 . . .)


2

After all output events have been considered, a simple data refinement includes the newly added state compo-
nents in the component C B , and standard variable introduction laws are used to declare the variable C Y
and initialise it with C B . (This is now possible because the bindings of ExternalOutputs C and BlockIO
have the same components). Next, we substitute C Y for C B in the interleaved communications, and
distribute the local variable over the main action. Finally, we promote it to a state component. The result,
as probably expected, is an action following the pattern WriteOutputs shown in Figure 16.
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5.4 Action introduction

At the structuring phase, the main action of the refined process should be the same as that of the model of
the implementation, except that it is decomposed into a number of local actions. In this phase, we refine our
process to match exactly the process that models the implementation. First, its local actions are introduced in
the process being refined. Next, we exhaustively apply the copy-rule from right to left to replace occurrences
of the definitions of the actions with a call to the appropriate action.

Example 16 The main action of the process resulting from the application of this phase to our example is
the action ExecuteChart, which is specified as follows.

MdlInitialize ; µX • read inputs ; Air output ; write outputs ; end cycle −→X

ExecuteChart calls the action MdlInitialize to initialise the state, and recursively reads the inputs using the
action read inputs, executes the chart using Air output, writes the outputs using write outputs, and signals
the end of the step by synchronising on end cycle.

This is exactly the action of the implementation model, and completes the verification of our example. 2

By starting from the (abstract) chart model and deriving the implementation model purely as the result of
applications of algebraic refinement laws (as dictated by our refinement strategy), we prove that (the abstract
model of) the chart is refined by the (model of the) implementation.

5.5 Automation

Two industrial case studies were used to validate the semantics of Stateflow charts, but they are too large
to be manually verified. In order to support semi-automatic verification, we must first formalise the strategy
in a tactic language for refinement, such as ArcAngel [OC08], and then use a refinement tool. A version of
ArcAngel for Circus is already available [OZC11], and its recent mechanisation [ZOC12] in a theorem prover
that supports the use of Circus is a robust basis for the future automation of our refinement strategy.

The main challenge in achieving full automation is the verification of the provisos of the refinement laws.
We now consider the proof obligations raised by these provisos in each step of our refinement strategy.

The data-refinement phase has five steps. Since we have patterns for the definition of both the concrete
state and the retrieve relation, the first two steps can be fully automated. In Step 3, the application of the
refinement laws requires mainly the verification of syntactic restrictions; which can be automated without dif-
ficulties. There are, however, a few proof obligations raised. The majority of them result from the application
of laws for assumptions, conditionals and schemas, and due to the nature of our models are simple properties
involving equalities and inequalities that can be easily discharged by automated provers.

Some of them, on the other hand, are action refinements. To distribute an assumption { p} through an
action is in general straightforward, except for the case where the action has the form µX • F (X ). In this
case, the proof obligation raised has the form {p} ; F (X ) v F ({p} ; X ). To prove this, we need to distribute
{p} through F (X ) up to the calls X . For that, we can proceed automatically by exhaustive application of
the assumption distribution laws used in Step 3 itself and the simplification Step 6 of the structuring phase.

Finally, Steps 4 and 5 of the data-refinement phase raise no proof obligations.
The normalisation phase can also be fully automated as all the refinement laws yield relatively simple

provisos. Steps 1, 2 and 4, in particular, do not yield any proof obligations. The remaining steps require the
proof of properties described by simple propositions involving again simple equalities and inequalities. Due
to the structure of our abstract chart models, they can be easily proved.

The structuring phase is the most complex phase of our refinement strategy, but due to the fixed structure
of our models and target architecture, it is possible to reach a high degree of automation. The first step of this
phase introduces new state components; it can be fully automated because information about the components
can be extracted from the chart, and the location of their introduction in the model is fixed by the strategy.
The proof obligations generated by this step are, as in previous steps, simple propositions.

In the Step 2 of the structuring phase, the structure of the model defines the applicable step laws needed
to eliminate the parallelism. This is basically a normalisation step. Just as before, the proof obligations
generated are propositions involving simple equalities and inequalities, but in a few instances they require the
verification of determinism and divergence freedom.

Example 17 In Example 12, the application of the Law seq-distr-cond to transform the sequence of condi-
tionals into nested conditionals generates the following proof obligations.

inputevents(1) = True ∨ inputevents(1) = False
inputevents(1) = True => ¬ (inputevents(1) = False)

They follow from simple properties of booleans. 2
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In general, our refinement strategy makes a number of assumptions about the automatically generated models
of Stateflow chart: deadlock free, divergence free, and deterministic. All of these properties can be checked
on a model-by-model basis using a theorem prover for example. Alternatively, since these properties follow
from the structure of the Circus models, rather than from details of a particular chart, it is possible to prove
that every model of a well-formed chart satisfies these properties.

Step 3 of the structuring phase introduces recursions; it reuses the procedure used in Step 2 to eliminate
parallelism and applies a law that requires checking determinism. This step relies on information that can be
calculated from the chart, and the automation that can be achieved is comparable to that of Step 2.

In Step 4, schema operations are converted into assignments. Since the strategy provides the patterns for
the assignments to be introduced, this step can be automated, with its provisos being again simple predicates.
Step 5 yields only more of the simple predicates involving equalities and can be fully automated.

The final Step 6 of the structuring phase simplifies the model by distributing assumptions and eliminating
unnecessary constructs. This step raises proof obligations in the form of simple predicates and refinements
themselves, and also requires the verification of determinism. The refinement proof obligations can be dis-
charged as suggested for the similar provisos generated in Step 3 of the data-refinement phase.

The final phase, action introduction, can be completely automated since it does not raise proof obligations.

In summary, all the information required by the refinement strategy can be calculated automatically from
the models of the charts, and the application of the laws themselves can be automated via tactics of refinement.
Whilst most of the proof obligations generated by the refinement laws are simple and can be easily discharged,
some involve the verification of determinism, divergence freedom, and refinement itself. The refinement proof
obligations can be discharged using procedures already defined in the strategy. The others require the use
of theorem provers or model checkers. Out of all the refinement laws used in our refinement strategy, 60%
of them produce no proof obligations, 30% produce easily dischargeable proof obligations and 10% produce
proof obligations that require theorem proving or model checking.

Proof of general properties about our models that support the automatic discharge of such obligations is
part of our agenda for future work.

6 Conclusions

In this paper, we have identified a simple, but general architectural pattern for the implementation of Stateflow
charts (Figures 7, 8, and 9); it is the architecture adopted by MATLAB’s automatic code generators. Based
on this pattern, we have presented a refinement strategy for the verification of implementations. While parts
of the strategy are dependent on the architecture of the implementation (namely, the data-refinement and
structuring (except Steps 2 and 3) phases), other parts are useful in general for strategies that may target
different architectures. In particular, the normalisation phase and the procedure parallelism-resolution are
central to any strategy, since they support the collapsing of the process parallelism.

Additionally, the architecture-dependent procedures can also be a starting point for other strategies.
While their details may require revision, the fundamental underlying principles are bound to remain the
same. For instance, procedures similar to those used in the structuring phase, where appropriate assumptions
are introduced and distributed through the action to simplify the structure, are likely to be widely applicable.

Our refinement strategy should produce the process that models the implementation. If this is not true,
because a law application prescribed by the strategy is not valid, then there are two possibilities. Either
the implementation is incorrect or it does not follow the architectural patterns assumed by this strategy. In
the first case, the comparison between the two process may shed some light into what is the actual problem.
Although the issue of error traceability is interesting, we leave it as future work. In the latter case, we
can directly apply the refinement calculus to the model, or identify the architectural patterns used in the
implementation, and adapt our refinement strategy to explore them.

Overall, our strategy is a general approach for the verification of implementations of Stateflow charts. It
is also a substantial starting point for the development of other strategies, tailored for other architectural
patterns, as it tackles aspects of the refinement process that are fundamental to any verification based on
our automated technique for generation of chart models. The strategy uses the Circus refinement calculus
and derives its soundness from the soundness of the refinement laws. Our refinement strategy also stands as
validation of the operational approach to formal semantics of graphical notations exposed in [MC12].

While the reliance of our strategy on particular architectures implies that new strategies must be developed
to tackle more general implementations, it also leads to a higher degree of automation. Moreover, the simpler
proof obligations that need to be discharged during refinement increase automation and scalability. Use of
the strategy does not require an understanding of its details or even of Circus. As indicated in Figure 1,
automation of the generation of models and of the strategy hides the formalism.
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Related work. The many varieties of state diagram notations have been the focus of much work on formal
semantics of graphical notations [HPSS87, PS91]. Whilst some of these works can form the basis for the
verification of implementations, like [MLPS97, TG05], which use Z, and [SZ02], which uses B, none of them
explore this possibility, which has been the main focus of the work we presented here. Formalisations based on
automata [LMM99, vdB02, Tiw02] are not appropriate for reasoning based on refinement. Works that target
model checkers [LP99, BK00, CSL+12] provide interesting complementary results on analysis of diagrams. So
far, we have not explored the use of our Circus models to analyse diagrams, although that is possible.

UML state machines are considered in a number of works close to ours in their choice of formal modelling
language: CSP [NB03], Circus itself [RSM05], and Event-B [Abr10] (for UML-B [SSB11]). These models are
not as comprehensive as ours in terms of coverage of Stateflow notation, and are structured in a different way.
Yet, it should be possible to reuse parts of our refinement strategy to verify implementations against these
models as long as we can identify refinement laws of CSP and Event-B similar to the Circus laws that we use.
In particular, the data-refinement phase and the procedures parallelism-resolution and simplification

could be reused and extended in a rather direct way.
CSP is also used in [CSL+12] to give semantics to a subset of the Stateflow notation. Our strategy

can potentially be modified to tackle the models produced in this work as well. In this case, Step 2 of the
structuring phase (parallelism-resolution) can be eliminated as they do not use parallelism.

In [MWC10], an approach to model-based development based on Simulink and Stateflow is proposed; it is
based on SCADE and its formal notation, Lustre. It uses a tool to translate Simulink and Stateflow diagrams,
via Lustre, to the models accepted by third-party tools (model checkers and theorem provers) and to generate
C or Ada code. Similarly, [SSC+04] uses Lustre to give semantics to Stateflow. The approach focuses on
model checking and analysis of diagrams. Code generation, as already discussed, is extremely attractive and
cost-effective, but not adequate in all situations. In our approach, instead of Lustre, we use Circus, and
address verification of implementations rather than analysis of diagrams or code generation.

Our work is a natural extension of [CCO05, CC06, CCO11]. In [CCO05], we have given a semantics of
Simulink diagrams in Circus. It extends the results of the Z technique and tool in [AC05] to cover a larger
subset of the Simulink notation, but it still does not cover Stateflow blocks. In [CC06, CCO11], the Circus
semantics is used to define a refinement strategy to verify parallel implementations of Simulink diagrams.
Since it uses the models in [CCO05], it does not consider Stateflow blocks, which is our main contribution
here. Combination of that refinement strategy and ours is an interesting avenue for future work. Both
strategies have a normalisation phase that generates processes written using the same pattern of specification.

The use of Simulink and Stateflow in the development of safety-critical systems has yielded a number
of guidelines that restrict their use to include only features considered safe. For instance, [Mata] proposes
guidelines for improving readability. These guidelines have been further investigated in [FFBZ09], where they
are applied in the development of railway signalling systems. Whilst we believe that such guidelines do not
affect our models of Stateflow and, therefore, the refinement strategy, it is reasonable to assume that they
can be used to simplify our refinement strategy to tackle the more restrictive subset of Stateflow charts.

Future work. The current refinement strategy targets sequential implementations. In [Miy12], we present
an extended strategy that deals with parallel implementations for charts in which (some) parallel states that
do not share variables are run in parallel. As future work, we would like to support the verification of a wider
variety of implementations. Of particular interest are architectures that use cyclic executive scheduling; they
are popular in control system implementations, and are adopted in the strategy in [CCO11].

Additionally, as already mentioned, we do not treat programs that include mutual recursions. Our strategy,
however, can be extended to treat mutual recursions by modifying the procedure recursion-introduction to
extract information about mutual recursions from the implementation, calculate the appropriate recursive
actions, and apply a version of the fixed point laws that refines actions to mutual recursions.

There are two kinds of Stateflow events, triggered and function call, and in our work we handle only
triggered events. The distinction is at the level of the semantics of the Simulink diagram that includes the
Stateflow block, rather than the semantics of the Stateflow chart. For inputs, the distinction is used to control
when the block can be executed for that event: either (triggered) just once during the step of the Simulink
diagram, or possibly several times. In the case of outputs, a triggered event is only signalled to the Simulink
diagram (by the Stateflow chart) at the end of the Stateflow block step. If the same triggered output event
occurs several times during the Stateflow block step, that event is signalled just once to the Simulink diagram,
but the remaining occurrences are queued and signalled at the end of the subsequent steps of the chart. In the
case of an output function-call event, the signalling happens as soon as it occurs. It is very simple to change
our model to signal function-call events as they occur. All we need to do is to introduce a synchronisation on
the channel that corresponds to the event.

The abstraction of input events mentioned in Section 4 arises from the independent treatment of Stateflow
diagrams. When considered in the context of a Simulink diagram, like when code is generated, this abstraction
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is no longer needed. Integration of our results with the existing modelling and refinement strategy for Simulink
can address this issue easily.

While the technique for the generation of Circus models of Stateflow charts has been formalised, imple-
mented and extensively validated, the refinement strategy requires further validation. The implementation of
our refinement strategy is not a trivial task and is part of our plans for future work. Nevertheless, validation
in terms of soundness stems from the validity of the Circus refinement laws, not from case studies.

Finally, since the refinement strategy derives its soundness from the refinement laws used, providing
mechanised proofs for all the refinement laws is a requirement for any practical use of the strategy. Since
Circus has theorem proving support [ZC10], these laws can be formalised and verified. This task, however, is
not simple, and requires deep understanding of the semantics of Circus.
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A Implementation of Air controller example

static void Air_chartstep_c1_Air(void)

{

if (Air_DWork.is_active_c1_Air == 0) {

Air_DWork.is_active_c1_Air = 1U;

Air_DWork.is_c1_Air = Air_IN_PowerOff;

Air_B.airflow = 0U;

} else {

switch (Air_DWork.is_c1_Air) {

case Air_IN_PowerOff:

if (_sfEvent_Air_ == Air_event_SWITCH) {

Air_DWork.is_c1_Air = Air_IN_PowerOn;

Air_DWork.is_active_FAN1 = 1U;

Air_DWork.is_FAN1 = Air_IN_Off;

Air_DWork.is_active_FAN2 = 1U;

Air_DWork.is_FAN2 = Air_IN_Off;

Air_DWork.is_active_SpeedValue = 1U;

}

break;

case Air_IN_PowerOn:

if (_sfEvent_Air_ == Air_event_SWITCH) {

Air_DWork.is_active_SpeedValue = 0U;

Air_DWork.is_FAN2 = (uint8_T)Air_IN_NO_ACTIVE_CHILD;

Air_DWork.is_active_FAN2 = 0U;

Air_DWork.is_FAN1 = (uint8_T)Air_IN_NO_ACTIVE_CHILD;

Air_DWork.is_active_FAN1 = 0U;

Air_DWork.is_c1_Air = Air_IN_PowerOff;

Air_B.airflow = 0U;
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} else {

switch (Air_DWork.is_FAN1) {

case Air_IN_Off:

if (Air_U.temp >= 120.0) {

Air_DWork.is_FAN1 = Air_IN_On;

}

break;

case Air_IN_On:

if (Air_U.temp < 120.0) {

Air_DWork.is_FAN1 = Air_IN_Off;

}

break;

default:

Air_DWork.is_FAN1 = Air_IN_Off;

break;

}

switch (Air_DWork.is_FAN2) {

case Air_IN_Off:

if (Air_U.temp >= 150.0) {

Air_DWork.is_FAN2 = Air_IN_On;

}

break;

case Air_IN_On:

if (Air_U.temp < 150.0) {

Air_DWork.is_FAN2 = Air_IN_Off;

}

break;

default:

Air_DWork.is_FAN2 = Air_IN_Off;

break;

}

Air_B.airflow = (uint8_T )(( Air_DWork.is_FAN1 == Air_IN_On) +

(Air_DWork.is_FAN2 == Air_IN_On ));

}

break;

default:

Air_DWork.is_c1_Air = Air_IN_PowerOff;

Air_B.airflow = 0U;

break;

}

}

}

static void Air_output(int_T tid)

{

int32_T c_previousEvent;

if (Air_U.inputevents [0]) {

c_previousEvent = _sfEvent_Air_;

_sfEvent_Air_ = Air_event_SWITCH;

Air_chartstep_c1_Air ();

_sfEvent_Air_ = c_previousEvent;

}

if (Air_U.inputevents [1]) {

c_previousEvent = _sfEvent_Air_;

_sfEvent_Air_ = Air_event_CLOCK;

Air_chartstep_c1_Air ();

_sfEvent_Air_ = c_previousEvent;

}

Air_Y.airflow = Air_B.airflow;

}
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B Novel refinement laws

We present here, in alphabetical order, the novel refinement laws of Circus that we need.

Law [assign-schema-conv]

{inv} ; v := e = [∆S | vs ′ = vs ∧ v ′ = e]

where

• S == [dv , dvs | inv ],

• dv is the declaration of v , dvs is the declaration of the remaining variables, and

• inv is the state invariant.

provided inv ⇒ inv ∧ (∃ d ′ • inv ′ ∧ vs ′ = vs ∧ v ′ = e).

Law [cond-elim]

(if b1−→A1 8 b2−→A2 fi) = A1

provided b1 ∨ b2; b1 ⇒ ¬ b2; and b1 ⇔ True.

Law [par-distr-cond]

(if b1−→A1 8 b2−→A2 fi) J ns1 | cs | ns2 K B
=
(if b1−→A1 J ns1 | cs | ns2 K B 8 b2−→A2 J ns1 | cs | ns2 K B fi)

provided initials(B) ⊆ cs and B is deterministic.

Law [par-prefix-step]

((c −→A) J ns1 | cs | ns2 K B) = c −→ (A J ns1 | cs | ns2 K B)
((c?x −→A) J ns1 | cs | ns2 K B) = c?x −→ (A J ns1 | cs | ns2 K B)
((c.e −→A) J ns1 | cs | ns2 K B) = c.e −→ (A J ns1 | cs | ns2 K B)

provided c 6∈ cs; x 6∈ usedV (B); initials(B) ⊆ cs; and B is deterministic.

Law [seq-assign-conv]

[∆S | c′
1 = e1 ∧ . . . ∧ c′

m = em ∧ c′
m+1 = cm+1 ∧ . . . ∧ c′

n = cn ] v c1 := e1 ; . . . ; cm := em

where S = [d | inv ] and c1, . . . , cn are state components (elements of αd).
syntactic restriction αd and αd ′ are not free in e1, . . . , en .
provided inv [e1, . . . , em/c1, . . . , cm ].

Law [seq-distr-cond]

(if b1−→A1 8 b2−→A2 fi) ; B = (if b1−→A1 ; B 8 b2−→A2 ; B fi)

provided b1 ∨ b2 and b1 ⇒ ¬ b2.

Law [tail-rec-seq-dist]

(µX • if p −→A ; X 8 q −→ Skip fi) ; B = (µX • if p −→A ; X 8 q −→ B fi)

provided p ∨ q and p ⇒ ¬ q .

Law [var-seq-ext-right]

(var x : T • A) ; B = (var x : T • A ; B)
provided x 6∈ FV (B).
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