
Refinement-oriented models of Stateflow charts

Alvaro Miyazawa1 and Ana Cavalcanti2

1alvaro.miyazawa@york.ac.uk
2ana.cavalcanti@york.ac.uk

Department of Computer Science, University of York, York, YO10 5GH, UK

July 26, 2015

Abstract

Simulink block diagrams are widely used in industry for specifying control systems, and of particular
interest and complexity are Stateflow blocks, which are themselves defined by separate charts. To make
formal reasoning about diagrams and charts possible, we need to formalise their semantics; for the formal
verification of their implementations, a refinement-based semantics is appropriate. An extensive subset
of Simulink has been formalised in a language for refinement, namely, Circus, and here, we propose an
approach to cover Stateflow charts. Our models are distinctive in their operational nature, which closely
reflects the informal description of the Stateflow (simulation) semantics. We describe, formalise, and
automate a strategy to generate our Circus models. The result is a solid foundation for reasoning based
on refinement.

1 Introduction

MATLAB Simulink [1] is a graphical notation that supports the specification of control systems at a level of
abstraction convenient for engineers; it is, for example, widely used in the avionics and automotive industries.
Stateflow [2] is part of Simulink, and consists of a statechart notation used to define Simulink blocks. Simulink
diagrams are typically used to specify aspects of a system that can be modelled by differential equations
relating inputs and outputs. On the other hand, Stateflow charts frequently model the control aspects, like,
for instance, changes in modes of operations triggered by events and conditions. Both Simulink and Stateflow
provide extensive tool support to handle diagrams; there are facilities for simulation and analysis [1, 2],
verification, validation and testing [3, 4], code generation [5, 6], and prototyping [7].

Many of the systems specified and designed using Simulink diagrams and Stateflow charts are safety-critical
systems, and various certification standards [8, 9] recommend the use of formal methods for the specification,
design, development and verification of software. This suggests that formal techniques that support graphical
notations like Simulink and Stateflow are extremely useful, if not essential.

We are concerned with the assessment of the correctness of implementations of Stateflow charts: we want
to be able to assert that a program correctly implements a chart. This has been frequently dealt with by
approaches based on the verification of automatic code generators [10, 11, 12]. The approach that we pursue
is orthogonal, and can be used in situations where code generators are not applicable or convenient. For
instance, frequent updates to the generator have a heavy impact on the cost of its verification. In addition,
customised hardware or performance requirements often impose the need for changes in code generated.

In this paper, we provide a formal semantics of Stateflow charts suitable for reasoning based on refinement.
It is written in a way that facilitates validation, and integration of models of Simulink diagrams. With this,
we set the foundation not only for analysing complex diagrams, but also for verifying the correctness of
systems specified using both standard Simulink blocks and Stateflow charts. Although we do not tackle
program verification here, the models that we present can be the starting point, for instance, to extend the
refinement-based verification technique for implementations of Simulink diagrams presented in [13].

Our semantics of Stateflow charts is based on the Circus notation [14], which is a refinement language
that combines Z [15], CSP [16], Dijkstra’s language of guarded commands [17], and Morgan’s specification
statement [18]. Circus has a formal semantics given in terms of the Unifying Theories of Programming [19], and
a refinement strategy that integrates different theories of refinement (action and process refinement). Circus
supports the abstract specification of state-rich reactive systems and provides a refinement calculus [20] that

1email: alvaro.miyazawa@york.ac.uk

1



allows the verification of implementations. It is supported by various tools, such as a type-checker [21], a
refinement editor [22], a translator from Circus to Java [23], and a theorem prover [24].

Cavalcanti et al. [25] define a semantics for Simulink diagrams in Circus. It builds upon the Z-based
approach described in Arthan et al. [26], and Adams and Clayton [27], and extends it to cover a larger subset
of Simulink, but not Stateflow blocks. Therefore, a Circus model of Stateflow charts is a natural extension of
previous work, allowing for the verification of a broader variety of control law diagrams. By using Circus as
a specification language, we provide support to reason formally about the model, to verify code of proposed
implementations, and to integrate the model with existing models of Simulink diagrams.

As far as we know, our modelling technique is unique in that it covers a wide range of Stateflow constructs
that have not been treated before, such as history junctions, unrestricted transitions, and multi-dimensional
data. Additionally, the models are specified in a formal notation that has been extensively used for the
verification of programs, namely Circus. It is possible to apply the Circus refinement calculus to reason about
our models and their implementations. Finally, our models can be integrated with Circus models of Simulink
diagrams. All this caters for a very comprehensive coverage of the Simulink/Stateflow notation.

Because the established semantics of Stateflow is only available through simulation or in an informal
description in the Stateflow User’s Guide [2], we provide a formal model based on the expected behaviour of
charts during simulation. There is no way of formally comparing our model to the semantics encoded in the
simulator (without access to the simulator’s code), and this is a problem inherent to the formalisation of any
language that does not have a well established formal model already.

In order to circumvent this issue, we have validated our model through alternative approaches. We have
used inspection: systematic comparison of our formal model to the informal descriptions found in the Stateflow
documentation. In particular, to facilitate validation, our model is constructed in a way that provides a direct
correspondence with these descriptions. We have also used simulation: comparing traces of the simulation
tool to traces of our models. Defining and implementing rules to translate Stateflow charts to Circus, and
applying them to case studies, has also provided further validation. Finally, we are currently applying the
Circus refinement calculus to verify chart implementations based on our model; this effort validates the
modelling technique and its appropriateness for reasoning.

The main contributions of this work are an approach to modelling Stateflow charts using a state-rich process
algebra like Circus, the formalisation of a strategy to translate Stateflow to Circus models, and the s2c tool
that implements this strategy and generates Circus models automatically. These models are partitioned in two
components that capture separately the semantics of Stateflow charts and the structure of a particular chart.
The formalisation of the translation strategy is encoded in Z and consists of a formal syntax of Stateflow
charts, well-formedness conditions, an embedding of Circus in Z, and a set of translation rules defined as
functions from well-formed elements of the syntax of Stateflow charts to elements of the Circus notation. The
s2c tool takes a textual representation of one or more charts, and automatically produces a Circus specification
containing the corresponding models.

This article is structured as follows. Section 2 introduces the Stateflow and Circus notations. Section 3
presents our approach to construct formal models of Stateflow charts; Section 4 introduces the formalisation
of the translation rules; Section 5 discusses the implementation of the translation rules in the s2c tool,
and describes the validation of the proposed approach. Section 6 reviews our contributions, discusses the
limitations of our work, examines related work, and proposes future directions for this work.

2 Preliminaries

In this section, we introduce the notations that form the basis for this work: Stateflow and Circus.

2.1 Stateflow

A Simulink diagram consists of blocks and wires connecting the inputs and outputs of the blocks. Its ex-
ecution is carried out in a cyclic fashion, in which the blocks are executed in an order determined by the
wiring of the diagram, and at a time determined by simulation time steps. Stateflow provides a new type of
Simulink block, namely a Stateflow chart. This is a graphical notation that supports the specification of state
transition systems. It is a variant of Harel’s statecharts [28], which extends standard state-transition systems
by introducing a number of features, such as hierarchy and parallelism.

Figure 1 shows a Stateflow chart adapted from an example supplied with the Simulink/Stateflow tool; it
is part of the model of an automatic transmission controller. This chart specifies a system that monitors the
speed of a vehicle, and changes gears appropriately. To decided whether or not to change gears, it calculates
upper and lower thresholds based on the current gear and the engine throttle.

A Stateflow chart is the root for the execution of the corresponding Stateflow model; it encapsulates the
states, transitions, junctions, functions, data and events that characterise it. The only means of interaction

2



Figure 1: Shift logic example.

with the Simulink diagram are through input and output events and data. The life cycle of a Stateflow chart
starts with the chart in an inactive state, that is, none of its states are active. When inactive, the chart can
be triggered by an event, or by the Simulink diagram. In this case, the chart is executed, and at this point,
the chart is active. Once the execution of the chart has been completed, the chart sleeps, that is, it waits to
be triggered again. When an inactive chart is executed, its default transitions are entered possibly leading to
the entry of states. When a sleeping chart is executed, its active states are executed.

In Figure 1, the two default transitions are those represented by an arrow with a closed circle. They lead
to the states first and steady state. When this chart is first executed, these states are entered.

A state is either active or inactive, and this status is altered by entering or exiting the state. States can have
substates, which can be organised in two ways: parallel or sequential decomposition. In this respect, a chart
is a special kind of state: it always has a decomposition. If a state (or chart) has a sequential decomposition,
at most one of its immediate substates can be active at any time. If it has a parallel decomposition, all the
immediate substates must be either active or inactive. The substates of a state with a parallel decomposition
are ordered, and sequentially entered, executed and exited.

The chart in Figure 1 has a parallel decomposition and contains two immediate states, gear state and
selection state, and each of them has a sequential decomposition. The state gear state contains four substates,
first, second, third and fourth, and selection state has three, steady state, upshifting and downshifting.

A state can have a series of actions that are executed at particular points of the life-cycle of a state. There
are five types of actions that can be defined in association with a state. The entry actions are executed when a
state is entered. For example, in Figure 1, the state first has an entry action “gear = 1”. The during actions are
executed when a state is active, and there are no valid transitions out of the state. The state selection state
contains a during action “[down th,up th]=calc th(gear,throttle)” that assigns to the array formed by the
variables down th and up th the result of the application of the function calc th to the variables gear and
throttle. The on actions are executed in the situations that a during action would be executed and a particular
event occurs. The exit actions are executed when a state is exited. The bind actions specify which states can
change a particular variable or broadcast a specific event.

Junctions are connective nodes that define decision points; they can, for example, model if-then-else
and for statements. A history junction, on the other hand, records the most recent active substate of the
state where it occurs. It can stand by itself in a state with sequential decomposition, or be reached by a
transition. The example in Figure 2 contains connective and history junctions. It is a system that iteratively
calculates the factorial or the absolute value of an input n, and outputs the result through a variable result.

The chart is controlled by events: ABS and FACT select the function to be calculated, PAUSE temporarily
stops the calculations, START restarts them, STOP stops the calculations and resets the system allowing the
user to select a new function. Initially, the system is in the state STOP, and a transition leads to a connective
junction. The occurrence of FACT or ABS triggers the execution of a transition path that leads to the state

3



Figure 2: Function selection example.

FACT or to the state ABS; before either of these states is entered, the state FUNCTIONS is entered. If PAUSE
occurs, FUNCTIONS and its active substate are exited, and the state PAUSE is entered. If PAUSE is active and
START occurs, a transition from PAUSE to FUNCTIONS takes place, and the history junction in FUNCTIONS
activates the last active substate, thus restarting the paused calculation.

A transition is usually a connection between two nodes, which can be either states or junctions. A transition
that starts or ends in a junction is called a transition segment, and a sequence of transition segments that
starts and ends in states is called a transition path. For example, in Figure 2 the transition from the state
STOP to the bottom connective junction in the state FUNCTIONS is a transition segment. A path is formed by
following this transition segment with one of the two segments that lead to either the state FACT or the state
ABS. A transition can connect nodes on different levels of the state hierarchy defined by their decomposition;
such a transition is called an interlevel transition. For example, the transition segment mentioned above, from
the state STOP to the bottom junction in FUNCTIONS, is an interlevel transition.

A default transition has no source node. A transition whose destination node is inside its source node is
an inner transition. If the destination node is external to the source node, we have an outer transition.

Transitions can have a trigger, a condition, and condition and transition actions. A trigger is a set of
events and temporal expressions. If the event being processed by the chart is in the trigger of a transition,
or one of its temporal expressions is true for that event, and its condition is true, the transition is deemed
valid (and can be followed). In Figure 1, the transition from the state first to the state second has a trigger
formed by the event UP, and the transition from steady state to upshifting has a condition [speed > up th].

Condition actions are executed every time a transition (segment) is taken. Transition actions, on the other
hand, are only executed once a transition path including the segment with the transition action is followed.
The example in Figure 3 models a fumigation control system that handles requests to fumigate a plant (event
FUMIGATE). While there are people inside the plant (condition people > 0), it sounds an alarm (condition
action alarm()). Once there is no one left, it seals the plant (condition action seal()), and queues the transition
action fumigate(). After the plant is sealed, the system does a redundant check of the number of people: if
it is still zero (condition people==0), it marks the plant as not clean (exiting the state CLEAN), executes
the transition action that had been queued, and marks the plant as being fumigated (entering the state
FUMIGATING). If the second count reveals that there are people inside, it means that they entered while the
plant was being sealed. In this case, the state FUMIGATING is not reached, the system backtracks to the state
CLEAN, and the transition action fumigate() is not executed. The plant is, however, kept sealed because the
condition action seal() is not undone.

Events are objects that trigger the execution of a Simulink block, for example, a chart. They can be
distinguished according to trigger type and scope. With respect to the trigger type, an event can be edge-
triggered or function-call. The scope characterises an event as input, output, local, exported or imported.

An input event is generated in a different block in the Simulink diagram and processed by the chart.
An output event is generated by the chart and processed by some other block in the Simulink diagram.
Local events are generated and processed inside the chart; they often model communication between parallel
substates. The chart in Figure 1 uses two local edge-triggered events UP and DOWN.

4



Figure 3: Fumigation control example.

Data objects are variables that record values used by the chart. They can be used to record internal
information or to communicate with the Simulink diagram. As events, data can be distinguished according
to scope. Local data are defined in a particular state (or chart) and are available to the state and its children.
Input data are provided to the chart by the Simulink model through input ports. Output data are provided by
the chart to the Simulink model through output ports. The example in Figure 1 declares five data variables:
speed, gear, up th, down th and throttle. The variables speed and throttle are input variables, gear is an output
variable, and up th and down th are local variables.

A function block is an object that allows for the definition of functions. There are two types of function
blocks that can be embedded in a Stateflow chart: graphical functions are defined using junctions, transitions,
and the action language, and Simulink functions are defined by Simulink diagrams. The example in Figure 1
defines a Simulink function called calc th that takes two parameters, gear and throttle, and returns the array
[down th,up th]. It is worth mentioning that the variables used in the definition of the Simulink functions
are not the variables of the same name declared by the chart. The function itself is defined by a Simulink
diagram that relates the input variables to the output variables.

The semantics of Stateflow is given by simulation. It is, however, also described in the User’s Guide, spread
across object’s descriptions and examples, and, in a more coherent way, in Chapter 3. The description contains
inconsistencies that are partially addressed in the appendix called Semantic Rules Summary. Although it fixes
some of the problems, some are not reviewed and new ones are introduced. These inconsistencies are mostly
related to terminology use. We explain in Section 3 how we addressed these issues: where inconsistencies were
found, the Stateflow simulator was used to identify the correct behaviour.

The execution of a Stateflow chart is triggered by the Simulink model; there are three ways the execution
can be triggered: input events, sampling, or input data. If the chart has one or more input events, the
occurrence of any of those events triggers the execution of the chart. If the chart does not have input events,
it can be executed in a fixed time step, or its execution depends on the rate of the input data signals.

When executing a sleeping chart, the active states of the chart are executed in a top-down fashion. The
execution of an active state consists of trying the outer transitions, and if the state is exited as a result of
this, the execution stops. Otherwise, the during and valid on actions are executed, and the inner transitions
are attempted. If no state transition results, the active children are executed (in order, if they are parallel).

When exiting an active state as a result of a state transition, if the state is parallel, all the sibling states
after this in the reverse execution order are exited, any active substates are exited (in reverse order, if they
are in parallel decomposition), the exit action is executed, and the state is marked inactive.

Transitions are considered in groups for execution. All default transitions that have the same parent are
executed in sequence. All inner or outer transitions that originate in the same state are also considered as a
sequence. The execution of a sequence of transitions consists of checking if the trigger and condition of the
first transition is valid. If this is false, the execution restarts at the next transition. Otherwise, the condition
action is executed and the execution proceeds to the destination node. If the destination node is a state,
the source state and the super-states whose boundaries are crossed by the transition path are exited, the
transition actions of the transition path are executed, and the destination state is entered. If the destination
is a junction with no outgoing transitions, execution stops and no states are entered or exited. If the junction
contains outgoing transitions, these are executed. If no outgoing transition of a junction is feasible, the
execution backtracks and the next transition of the previous group is executed. When a transition path is
successful, it triggers the entering of an inactive state.

In Section 3, we formalise the operational simulation model of a Stateflow chart that we have just described.
First, we present the modelling notation: Circus.

5



HORIZONTAL == 1..800
VERTICAL == 1..600
COLOUR == 0..255
IMAGE == HORIZONTAL×VERTICAL→ COLOUR

maxbuff : N1

channel read ,write : IMAGE

process Buffer =̂ begin
state S == [image : seq IMAGE | # image < maxbuff ]
InitState == [S ′ | image ′ = 〈〉]
Read =̂ (# image < maxbuff )N read?x −→ image := image a 〈x 〉
Write =̂ (# image > 0)N write!(head image)−→ image := tail image

• InitState ; (µX • (Read @ Write) ; X )
end

Figure 4: The Buffer process

2.2 Circus

In this section, we present some of the Circus features using a simple Circus process as example (Figure 4); it
models a system of image transmitters and receivers. A detailed presentation of Circus can be found in [14].

A Circus specification is a sequence of paragraphs: Z paragraphs (axiomatic definitions, schemas, and so
on), channel and channel set declarations, and process definitions. The first few paragraphs of our exam-
ple (Figure 4) define the horizontal coordinates as the set HORIZONTAL (of numbers from 1 to 800), the
vertical coordinates as the set VERTICAL, the set of COLOURs, and the set of IMAGE s: total functions
from the horizontal and vertical coordinates to colours. Next, an axiomatic definition declares the maximum
number maxbuff of images that can be held in the transmitters and receivers as a constant.

A channel declaration introduces channel names and the types of the values that can be communicated
through them. A channel with no type does not communicate any values; it is used for synchronisation. Our
model declares two channels read and write of type IMAGE .

A basic process definition provides the name of a process, its state, local actions, and a main action. The
state is defined by a schema expression. In Figure 4, we define a process Buffer whose state is given by the
schema S ; it contains a single component: the sequence image of the elements stored in the buffer. The state
invariant defines that the maximum size of the buffer is given by maxbuff .

A Circus action can freely combine schema expressions, CSP constructs, guarded commands, and specifi-
cation statements. The buffer must be initialised before it is used; for that, we specify the action InitState as
an operation schema that establishes that image is the empty sequence.

The Buffer can read new information only if there is space for it. Thus the action Read has the condition
# image < maxbuff as guard; it requires the size of the image buffer to be smaller than maxbuff . If the
guard is true, Buffer can receive a value through channel read , and store it in image by concatenating it to
the end of this sequence. Similarly, writing is only enabled if there is some value stored in the buffer. If the
guard # image > 0 is true, the action Write can send the first value of the sequence (head buffer) through
the channel write, and remove it from the buffer by redefining it as the rest of the sequence (tail buffer).

The main action defines the behaviour of the process. In the case of Buffer , it initialises the state, and
recursively offers the (external) choice (@) of Read or Write. A recursion is defined in the form µX • A(X )
where A(X ) is an action that contains recursive calls X . The state of a process is local and encapsulated.
Interaction with a process is only possible via communication through the channels that it uses.

Processes can also be defined through process operators; for example, we can define a new process by
composing two other processes in parallel (JK). Other process operators are interleave (9), internal choice (u),
external choice (@), and sequential composition (; ). Like in CSP, processes can be parametrised, have its
components renamed, have its channels hidden, and so on.

For instance, we can specialise the Buffer process as a transmitter that reads images from an antenna
and sends it through a radio-frequency channel rfchannel . For that, we define a new process Transmitter by
renaming the channels read and write of the process Buffer to reflect this change.

process Transmitter =̂ Buffer [read ,write := antenna, rfchannel ]

The new channels antenna and rfchannel are implicitly declared by the renaming to have the same type as
the corresponding channels read and write. We can define receivers in the same fashion.

process Receiver1 =̂ Buffer [read ,write := rfchannel , tv ]
process Receiver2 =̂ Buffer [read ,write := rfchannel , vcr ]

6



Both receivers run in parallel and share the reception through rfchannel . We specify this by composing them
with synchronisation set {| rfchannel |} to define a process called Receivers as shown below.

process Receivers =̂ Receiver1 J {| rfchannel |} K Receiver2

Finally, the system is defined by composing the receivers and the transmitter in parallel. They communicate
through rfchannel , which is hidden. Thus interactions with the system use only tv , vcr and antenna.

process System =̂ Receivers J {| rfchannel |} K Transmitter \ {| rfchannel |}

Actions can also be composed in parallel. In this case, not only the synchronisation channel set must be
explicit, but also the sets of state components (and local variables in scope) to which each action writes.

We present a much larger example of a Circus specification, as we describe our Stateflow models.

3 A formal model of Stateflow charts

In this section, we introduce an operational model of Stateflow charts described in Circus. We develop a model
close enough to the informal description of the behaviour of such charts, so that its validity can be argued
with some degree of confidence by comparing the formal and informal specifications.

Our models consist of two Circus processes in parallel. The first, Simulator , represents the simulator, and
is the same for every chart. The second, the chart process, represents a particular chart.

We describe and illustrate our models using the example in Figure 1. The process that models that chart is
c shift logic. Below, we define the process Shift logic that combines c shift logic and Simulator in parallel.
They interact via a set interface of internal channels plus the channel end cycle.

process Shift logic =̂ (c shift logic J interface ∪ {| end cycle |} K Simulator) \ interface

The 23 channels in interface allow the process Simulator to obtain information from c shift logic, and request
the execution of state and transition actions. These channels are hidden, and thus are local to the model.
For the sake of conciseness, we omit the declaration of channels and channel sets. We discuss them as they
are needed in the sequel. A complete version of the model can be found in [29].

The external channels of our Stateflow models include one channel for each input and output data; in our
example in Figure 1, we have o gear , used for output, and i speed and i throttle, used for input. We also
have two channels input event and output event to communicate events, which are modelled as elements of
a type EVENT . A channel end cycle marks the end of each cycle of execution. Finally, a channel error flags
error situations; for well-formed diagrams, there should be no communications on this channel.

3.1 Process Simulator

The process Simulator provides the main communication interface with a Simulink model; it accepts commu-
nications that allow input events to trigger the execution, and the communication of an output event and of
the end of the cycle of execution of the chart. An overview of the structure of the process Simulator is shown
in Figure 5. It declares 36 actions that are used to build the process’ main action.

3.1.1 Step of execution

The main action of Simulator recursively executes the Circus action Step. It reads the set of events active
in the current time step (through input event), stores it in a local variable aes, requests the chart process
to read the inputs using the channel read inputs, executes the chart with the active events as defined by the
action ExecuteEvents, requests the chart to write its outputs using the channel write outputs, and flags the
end of the execution step through the channel end cycle.

Step =̂ input event?x −→ var aes : PEVENT •

(
aes := x ;
read inputs −→ ExecuteEvents(events, aes);
write outputs −→ end cycle −→ Skip

)

The execution of the chart on the active events is specified by the action ExecuteEvents; it takes a sequence of
events and a set of active events as parameters and executes the chart under each active event. The sequence
events corresponds to the events declared in the chart ordered by their port numbers.

ExecuteEvents =̂ es : seq EVENT ; aes : PEVENT •(
if # events = 0−→ Skip
8 # events > 0−→ ExecuteEvent(head es, aes) ; ExecuteEvents(tail es, aes)
fi

)

7



channel executeentryaction, executeduringaction, executeexitaction : SID
. . .
channelset interface == {| executeentryaction, executeduringaction, . . . |}
process Simulator =̂ begin

ExecuteTransition =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT • . . .
CheckValidity =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT • . . .
Proceed =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT • . . .
proceedToState =̂ src, dest : State; path : seq TID ; cevent : EVENT • . . .
executePath =̂ path : seq TID ; src, dest : State; cevent : EVENT • . . .
proceedToJunction =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT • . . .
executeJunction =̂ j : Junction; path : seq TID ; source : State; cevent : EVENT • . . .
ExecuteDefaultTransition =̂ s, tpp : State; cevent : EVENT • . . .
EnterState =̂ s, tpp : State; cevent : EVENT • . . .
EnterState1 =̂ s, tpp : State; cevent : EVENT • . . .
. . .
EnterState7 =̂ s, tpp : State; cevent : EVENT • . . .
EnterStates =̂ ss : seq SID ; tpp : State; cevent : EVENT • . . .
ExecuteState =̂ s : State; cevent : EVENT • . . .
AlternativeExecution =̂ s : State; cevent : EVENT • . . .
ExecuteStates =̂ ss : seq SID ; cevent : EVENT • . . .
ExitState =̂ s : State; cevent : EVENT • . . .
ExitStates =̂ ss : seq SID ; cevent : EVENT • . . .
ExecuteChart =̂ cevent : EVENT • . . .
ExecuteInactiveChart =̂ c : State; cevent : EVENT • . . .
ExecuteActiveChart =̂ c : State; cevent : EVENT • . . .
LocalEvent =̂ . . .
TreatLocalEvent =̂ e : EVENT ; s : State • . . .
Step =̂ . . .
• µX • Step ; X

end

Figure 5: Structure of the Simulator process.

If the sequence of events is empty, the action terminates. Otherwise, it calls the action ExecuteEvent on the
first event of the list (head events) and the set of active events, and recursively calls the action ExecuteEvents
on the rest of the list and the set of active events.

ExecuteEvent =̂ e : EVENT ; aes : PEVENT •(
if e ∈ aes−→ ExecuteChart(e)4 (interrupt simulator −→ interrupt chart −→ Skip)
8 e 6∈ aes−→ Skip
fi

)

The action ExecuteEvent takes a single event and the set of active events, and executes the chart if the event
is in the set. Otherwise, the action terminates.

The execution of the chart, that is, the action ExecuteChart , can, at any moment, be interrupted (4) by
early return logic. The interrupting action waits for a synchronisation on the channel interrupt simulator ,
and then synchronises on the channel interrupt chart . Early return logic occurs when a recursive execu-
tion (triggered by a local event broadcast) deactivates a state; this is signalled by the chart process using the
channel interrupt simulator . If early return logic occurs, immediately after the execution is interrupted, the
chart’s action is interrupted. This is signalled to the chart process using the channel interrupt chart .

By way of illustration, we consider the chart in Figure 6 adapted from an example in [2]. This rather
artificial example, shows a situation where an event (E) triggers the execution of a transition, which raises a
different event (F). This event then triggers a different transition, and since the first one was not completed
before the event F was raised, it is abandoned and the simulation proceeds with the second transition. The
first time this chart receives an input event E, the state A is entered. When the second event E is received, the
first outer transition from A is attempted; since its trigger is true, the transition is valid, and the condition
action is executed. It broadcasts the local event F, which triggers the reexecution of the chart under F. The
reexecution considers the outer transitions of the active state, A. The first outer transition is not possible
because the trigger does not contain F, but the second transition is possible. It is taken, A is exited, and
the state C is entered. The reexecution finishes, but the execution of the chart cannot proceed because the
transition from A to B can no longer be executed, since A is not active anymore. In this case, the original
execution is interrupted, the assignment data=1 is not executed, and the step of execution finishes.

8



Figure 6: Early return logic example.

As captured in the definition of Step above, the execution of a chart is driven by a Simulink model that
communicates a set of events through input event . It is, however possible to define charts that are not driven
by input events. This is accommodated in our model by defining a null event NULLEVENT , and allowing
the Simulink model to trigger the execution of the chart by communicating {NULLEVENT}.

The execution of a chart depends on whether it is inactive. The definition of ExecuteChart is omitted. If
the chart is inactive, it calls ExecuteInactiveChart defined below, otherwise, ExecuteActiveChart is called.

The execution of an inactive chart c triggers the activation of the state identified by c.identifier , which
represents the chart as a whole. ExecuteInactiveChart uses the channel activate to request that the chart pro-
cess carry out this activation. Afterwards, ExecuteInactiveChart attempts to execute the default transitions
using ExecuteDefaultTransition. A parallel action monitors whether they are successfully executed or not. If
they are, this is signalled by ExecuteDefaultTransition using the channel stsuccess. In this case, the whole
parallelism terminates. If we have a failure, this is signalled by stfail , and the parallel monitoring action checks
whether the state has a parallel decomposition (c.decomposition = SET ) or not. If this is the case, it enters
all substates (c.substates) in the appropriate order as defined by EnterStates explained below. Otherwise, the
parallel monitoring action indicates an error to the Simulink diagram using error . As previously mentioned,
a model of a well-formed Stateflow chart should never lead to the raise of an error.

ExecuteInactiveChart =̂ c : State; cevent : EVENT • activate!(c.identifier)−→

ExecuteDefaultTransition(c, c, cevent)
J | statetransition | K stsuccess −→ Skip @ stfail −→


if c.decomposition = SET−→

EnterStates(c.substates, c, cevent)
8 c.decomposition 6= SET−→

error −→ Skip
fi




 \ statetransition

The simple definition of ExecuteActiveChart is omitted. If the chart is not inactive, ExecuteActiveChart
executes its active substates (c.substates). If there are no substates, it is executed as an inactive chart.

3.1.2 Transition

The execution of a transition is one of the most complicated aspects of the semantics of Stateflow charts; it
is modelled by the action ExecuteTransition that attempts to execute a sequence of transitions. It takes as
parameters the identifier tid of the first transition, the sequence path of identifiers of the transitions that have
been successfully executed, the source state of the transition path, and the current event cevent .

ExecuteTransition =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT •

if tid = nulltransition.identifier−→
if path = ∅−→ stfail −→ Skip

8 path 6= ∅−→
(

transition!(last path)?lt−→
ExecuteTransition(lt .next , (front path), source, cevent)

)
fi


8 tid 6= nulltransition.identifier −→ CheckValidity(tid , path, source, cevent)
fi


ExecuteTransition compares tid to the identifier of the null transitions (nulltransition.identifier). If they are
equal, then ExecuteTransition evaluates path. If it is empty (path = ∅), no transition has been followed, and,
since tid = nulltransition.identifier , there are no new transitions to try. In this case, the execution fails; this

9



is signalled using stfail . If path is not empty, ExecuteTransition uses the identifier of the last transition suc-
cessfully followed (last path) to obtain that transition lt itself through the channel transition. It then executes
the transition that follows lt (lt .next) on a reduced path excluding the last transition followed (front path),
and the original source state. If tid does not correspond to the null transition, ExecuteTransition calls the
action CheckValidiy on tid , the path, the source state, and the current event.

The action CheckValidity receives the identifier tid of a transition, a sequence path of transition identifiers,
a state source, and an event cevent , and requests the chart to evaluate its trigger by communicating tid and
cevent through the channel checktrigger . It then takes the boolean response e through the channel result .
Next, it gets the evaluation c of the condition of the transition through evaluatecondition. If the trigger and
the condition are true (e = True ∧ c = True), then CheckValidity requests the execution of the condition
action through executeconditionaction, calls the action LocalEvent , and proceeds with the execution of the

destination node by calling the action Proceed on the path extended by the transition identifier (path a 〈tid〉).
(Since the transition was successfully followed, it is added to path). LocalEvent deals with any local event
broadcasts by the condition action. If the trigger or the condition is false, then the transition is invalid: the
transition t that corresponds to tid is obtained through the channel transition, and the next transition (t .next)
is executed on the same path, source state, and event.

CheckValidity =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT •
checktrigger !tid !cevent −→ result !tid !cevent?e −→ evaluatecondition!tid?c−→ if e = True ∧ c = True−→

(
executeconditionaction!tid !(source.identifier)!cevent−→

LocalEvent ; Proceed(tid , path a 〈tid〉, source, cevent)

)
8 ¬ (e = True ∧ c = True)−→ transition!tid?t −→ ExecuteTransition(t .next , path, source, cevent)
fi


Whenever the process Simulator requests the execution of a chart action, there is a possibility that local
events are broadcasted. In this case, LocalEvent recursively offers a choice between treating an event and
waiting for other local events, or terminating. The first option is modelled by an action that waits for a
communication on the channel local event . If it occurs, the action TreatLocalEvent is called and LocalEvent
recurses. The second option waits for a synchronisation on end action; the chart process agrees on that when
a state or transition action terminates. In this case, LocalEvent terminates.

LocalEvent =̂ (µX • local event?e?s −→ (TreatLocalEvent(e, s) ; X ) @ end action −→ Skip)

TreatLocalEvent takes an event e and a destination state s. If s has type CHART (s.type = CHART ), it
executes the chart as defined by ExecuteChart on e. Otherwise, TreatLocalEvent executes s using ExecuteState
again on the new event. Finally, it signals the end of the local execution on the channel end local execution,
thus allowing the broadcasting action of the chart (discussed in the next section) to terminate.

TreatLocalEvent =̂ e : EVENT ; s : State •

(
if s.type = CHART −→ ExecuteChart(e)
8 s.type 6= CHART −→ ExecuteState(s, e)
fi

)
;

end local execution −→ Skip

This treatment of local events unifies the notions of event broadcast, directed and qualified event broadcasts.
The form of broadcast modelled is the directed form. A simple broadcasting is a directed broadcast to the
chart. A qualified broadcast is a directed broadcast to the qualifying state.

Proceed requests the transition identified by tid through the channel transition. It then identifies the
type of the destination node identified by t .destination. If it is a state, t .destination is in the range of the
function snode, which produces node identifiers from state identifiers. Otherwise, the destination node is
a junction (and t .destination is in the range of the function jnode, which associates a node identifier to a
junction identifier). If the destination is a state dest , Proceed recovers it through the channel state, and
then calls the action proceedToState. The state identifier is obtained from the node identifier by applying the
inverse of the function snode ((snode ∼)t .destination). If the identifier of the destination node corresponds to
a junction identifier, the action proceedToJunction is called.

Proceed =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT • transition!tid?t−→ if t .destination ∈ ran snode−→
(

state!((snode ∼) t .destination)?dest−→
proceedToState(source, dest , path, cevent)

)
8 t .destination ∈ ran jnode−→ proceedToJunction(tid , path, source, cevent)
fi


The definition of proceedToState is based on the closest common parent lub(src, dest) of the source and
destination states src and dest . This is the state that is an ancestor of both src and dest , and that has no
substate that is also an ancestor of both these states. The function lub determines the least upper bound of an
ancestor relation between states [29]. The action proceedToState exits all the active substates of the common
ancestor ((lub(src, dest)).substates), executes path as defined by executePath, enters dest using EnterState,

10



and signals the success of the transition execution through stsuccess. EnterState takes the closest ancestor of
src and dest as a second parameter; it is further discussed later on.

proceedToState =̂ src, dest : State; path : seq TID ; cevent : EVENT •(
ExitStates((lub(src, dest)).substates, cevent) ; executePath(path, src, dest , cevent);
EnterState(dest , lub(src, dest), cevent) ; stsuccess −→ Skip

)
The path execution runs each of its transition actions; this is defined by the action executePath.

executePath =̂ path : seq TID ; src, dest : State; cevent : EVENT •
if # path = 0−→ Skip

8 # path > 0−→
(

executetransitionaction!(head path)!((lub(src, dest)).identifier)!cevent−→
LocalEvent ; executePath(tail path, src, dest , cevent)

)
fi


If the path is empty (# path = 0), then executePath does nothing. Otherwise, it requests the execution of the
transition action of the first transition in the path by communicating its identifier (head path) and the closest
common parent of the source and destination of the path (lub(src, dest)) and the current event through
executetransitionaction. It then calls LocalEvent to deal with any local event broadcast by the transition
action, and recurses the rest of the path (tail path).

It is worth mentioning that the Stateflow User’s Guide requires that after the source state (and relevant
parent states) are exited, only “the transition action of the final transition segment of the full transition path
is executed” [2]. This, however, is not observed in the simulation tool; the simulation of all examples we
tested shows that all the transition actions in the transition path are executed.

The action proceedToJunction obtains the transition t with identifier tid through the channel transition,
and then the destination junction dj of t by communicating its identifier (jnode ∼) t .destination through
junction. If dj is not a history junction, it calls executeJunction on dj , the sequence path, the state source,
and the event cevent . Otherwise, it obtains the state identifier lsid that is stored in the history junction by
communicating the identifier of the parent of the junction (dj .parent) through the channel history . If lsid is
the identifier of the null state (lsid = nullstate.identifier), the default transitions of the state are executed
using ExecuteDefaultTransition. Otherwise, proceedToJunction recovers the state ls identified by lsid through
channel state, and calls proceedToState with ls as target state.

proceedToJunction =̂ tid : TID ; path : seq TID ; source : State; cevent : EVENT •
transition!tid?t −→ junction!((jnode ∼) t .destination)?dj−→

if dj .history = False−→ executeJunction(dj , path, source, cevent)
8 dj .history = True−→ history !(dj .parent)?lsid−→

if lsid = nullstate.identifier−→
state!(dj .parent)?s −→ ExecuteDefaultTransition(s, s, cevent)

8 lsid 6= nullstate.identifier−→
state!lsid?ls −→ proceedToState(source, ls, path, cevent)

fi


fi


The Stateflow User’s Guide discusses inner transitions to history junctions, but outer and default transitions
are not mentioned. Our experiments show that outer transitions to history junctions have a behaviour similar
to that of inner transitions. On the other hand, default transitions to history junctions may lead to inconsis-
tencies. In our model, this may lead to divergence: the first time a default transition to a history junction is
followed, it stores nullstate.identifier , and the default transitions are attempted again, in a potentially infinite
loop. Moreover, inner transitions to history junctions can lead to an attempt to enter an already active state;
in this case, the state is exited, and reentered. This is captured in proceedToState; as previously explained,
it calls ExitStates on the substates of the closest common parent of the source and destination states. In
this case, they are the substates of the state with the inner transition. At least one of them is active, and is
deactivated before any attempt at entering.

The execution of a junction consists of executing its outgoing transitions. If there are none, the transition
path fails. The action executeJunction compares the identifier of the first outgoing transition (j .transition)
to the identifier of the null transition. If they are the same, there are no transitions out of the junction, and
the execution failure is signalled by stfail . Otherwise, executeJunction calls ExecuteTransition.

executeJunction =̂ j : Junction; path : seq TID ; source : State; cevent : EVENT •(
if j .transition = nulltransition.identifier −→ stfail −→ Skip
8 j .transition 6= nulltransition.identifier −→ ExecuteTransition(j .transition, path, source, cevent)
fi

)
The key actions that model the execution of transitions are ExecuteTransition, which we presented above,
and ExecuteDefaultTransition. The latter extends the former by treating the possibility that there are no
default transitions to follow, but the choice of which state to enter is deterministic. This is the case when,
for example, there is only one substate. The definition of ExecuteDefaultTransition is in [29].

11



1. If the parent of the state is not active, perform steps 1-4 for the

parent.

2. If this is a parallel state, check that all siblings with a

higher (i.e., earlier) entry order are active. If not, perform

entry steps 1-5 for these states first.

3. Mark the state active.

4. Perform any entry actions.

5. Enter children, if needed:

(a) If the state contains a history junction and there was an

active child of this state at some point after the most recent

chart initialisation, perform entry steps 1-5 for that child.

Otherwise, execute the default flow paths for the state.

(b) If this state has parallel decomposition, i.e., has children

that are parallel states, perform entry steps 1-5 for each

state according to its entry order.

6. If this is a parallel state, perform all entry steps for the

sibling state next in entry order if one exists.

7. If the transition path parent is not the same as the parent of the

current state, perform entry steps 6 and 7 for the immediate parent

of this state.

Figure 7: Steps for entering a state

3.1.3 Entering a state

The process of entering an inactive state is described in Chapter 3 of the Stateflow User’s Guide, and in
the appendix Semantic Rules Summary. These descriptions are inconsistent with each other, and with the
behaviour observed in the Stateflow tool. In particular, there are inconsistencies in the use of terminology
regarding entry actions and the entry steps. For example, both descriptions in the User’s Guide require that if
the history junction in a state points to one particular substate, the entry action of that state is executed. This
would imply that the substates of that child state are not entered because the entry steps are not executed
on it. This, however, is not the observed behaviour of the simulator. (This type of inconsistency can also be
found in the description of the process of exiting a state in Chapter 3 of the User’s Guide; however, it was
corrected in the appendix Semantic Rules Summary.)

Figure 7 presents a modified version of the steps for entering a state. It merges the two descriptions in
the Stateflow User’s Guide, adopts a consistent terminology, and define the correct steps that are recursively
executed. In the case described above, we observe that, in fact, the entry steps from 1 to 5 are executed
on that child. Step 6 can be ignored because the state is sequential, and step 7 is not executed because the
immediate parent of the child state is already active, as it triggered the entering of this state.

A second source of problems is the range of entry steps that are executed in certain situations. For
instance, when entering a parallel state, if the left sibling is not active, the description in Chapter 3 requires
the execution of all entry steps. The appendix, on the other hand, requires the execution of the steps from 1
to 5 only. We have observed that the latter is correct, and include it in our description (step 2 in Figure 7).

To keep close to the informal description, we preserve its structure and granularity in the actions that
model the simulation semantics. The procedure for entering a state s is defined by the action EnterState
below. For each step in Figure 7, we define an action whose name is EnterState postfixed by the number of the
associated step. For instance, step 1 is formalised by the action EnterState1. These actions are composed in
sequence to define actions that represent the execution of several steps. For example, the execution of steps 1-4
is modelled by EnterState14, which is the sequential composition of EnterState1, EnterState2, EnterState3,
and EnterState4. Finally, all the steps are combined in sequence to defined EnterState.

EnterState =̂ s, tpp : State; cevent : EVENT •

(
EnterState14(s, tpp, cevent);
EnterState5(s, tpp, cevent);
EnterState67(s, tpp, cevent)

)

Here we present the action EnterState5a that formalises the step 5a of the procedure in Figure 7. The

12



complete formalisation of all steps can be found in [29].

EnterState5a =̂ s, tpp : State : cevent : EVENT •

if s.decomposition 6= CLUSTER−→ Skip
8 s.decomposition = CLUSTER−→

if s.history = True−→ history !(s.identifier)?lsid−→(
if lsid 6= nullstate.identifier −→ state!lsid?ls −→ EnterState15(ls, tpp, cevent)
8 lsid = nullstate.identifier −→ ExecuteDefaultTransition(s, tpp, cevent)
fi

)
8 s.history = False−→ ExecuteDefaultTransition(s, tpp, cevent)
fi


fi


If s does not have a sequential decomposition (s.decomposition 6= CLUSTER), then EnterState5a terminates
immediately. Otherwise, if s has a history junction (s.history = True), then it recovers the state identifier
lsid in the history junction by communicating the state identifier (s.identifier) through the channel history . If
lsid is the identifier of the null state (lsid = nullstate.identifier), EnterState5a calls ExecuteDefaultTransition
on s. Otherwise, it obtains the state ls identified by lsid through state, and executes the steps from 1 to 5.
If s does not have a history junction, the default transitions are executed.

Checking that s has a sequential decomposition is not explicitly required in the informal description of step
5a, but it is needed to avoid attempting to execute default transitions of a state with parallel decomposition
and issuing an error. Although it is possible to define default transitions to parallel states, they are ignored.
This fact is confirmed by the simulation tool of Stateflow.

EnterStates takes as parameter a sequence ss of state identifiers to be entered. If ss is empty (# ss = 0), it
terminates. Otherwise, it takes the first identifier in the sequence, and determines whether the corresponding
state is active or not through status. If it is not, EnterStates recovers that state through state, and calls
EnterState on it. If it is active, nothing is done. Finally, we have a recursive call on the rest of the sequence.

EnterStates =̂ ss : seq SID ; tpp : State; cevent : EVENT •

if # ss = 0−→ Skip
8 # ss > 0−→ status!(head ss)?active−→(

if active = False−→ state!(head ss)?first −→ EnterState(first , tpp, cevent)
8 active = True−→ Skip
fi

)
;

EnterStates(tail ss, tpp, cevent)
fi


The processes of executing and exiting states are modelled by the actions ExecuteState and ExitState, and
are omitted. In the next section, we describe the process that represents the structure of the chart and
complements the Simulator process in order to model the execution of the chart.

3.2 Chart process

The chart process records the structure of the chart (state, transitions, and junctions) using constants, as
this information does not change throughout the execution of the chart. The state records the data declared
in the chart, and information particular to its execution. The structure of the chart process c shift logic
corresponding to our example in Figure 1 is depicted in Figure 8.

A schema StateflowChart captures the general structure of a Stateflow chart. It is defined outside of the
scope of the chart process, since it is the same for every chart.

StateflowChart
identifier : SID
states : SID 7→ State
transitions : TID 7→ Transition
junctions : JID 7→ Junction

nullstate 6∈ ran states
nulltransition 6∈ ran transitions
nulljunction 6∈ ran junctions
#{s : ran states | s.type = CHART} = 1
(states(identifier)).type = CHART
∀n : SID | n ∈ dom states • (states(n)).identifier = n
∀n : JID | n ∈ dom junctions • (junctions(n)).identifier = n
∀n : TID | n ∈ dom transitions • (transitions(n)).identifier = n

13



process c shift logic =̂ begin

StateflowChart

. . .

SimulationData == [state status : SID 7→ B; state history : SID 7→ SID | . . .]
InitSimulationData == [SimulationData ′ | . . .]
SimulationInstance == [v gear , v speed , v throttle, v up th, v down th : R]
InitSimulationInstance == [SimulationInstance ′ | . . .]
InitState == (InitSimulationInstance) ∧ (InitSimulationData)
. . .
Activate == ΞSimulationInstance ∧ ((ActivateWithHistory ∨ ActivateNoHistory) ∨ ActivateFail)
. . .
Deactivate == ΞSimulationInstance ∧ (DeactivateSuccess ∨ DeactivateFail)
state (SimulationInstance ∧ SimulationData)
entryaction downshifting =̂ executeentryaction.(s downshifting)?o?ce −→ Skip
. . .
entryactions =̂ entryaction downshifting @ . . . @ entryaction steady state
duringaction downshifting =̂ executeduringaction.(s downshifting)?o?ce −→ Skip
. . .
duringactions =̂ duringaction downshifting @ . . . @ duringaction steady state
exitaction downshifting =̂ executeexitaction.(s downshifting)?o?ce −→ Skip
. . .
exitactions =̂ exitaction downshifting @ . . . @ exitaction steady state
conditionaction third fourth =̂ executeconditionaction.(t third fourth)?o?ce −→ Skip
. . .
conditionactions =̂ conditionaction third fourth @ . . . @ conditionaction default steady state
transitionaction third fourth =̂ executetransitionaction.(t third fourth)?o?ce −→ Skip
. . .
transitionactions =̂ transitionaction third fourth @ . . . transitionaction steady state upshifting
condition third fourth =̂ evaluatecondition.(t third fourth)!(True)−→ Skip
. . .
conditions =̂ condition third fourth @ . . . condition steady state upshifting
trigger default first =̂ checktrigger .(t default first)?e −→ result .(t default first).(e)!(True)−→ Skip
. . .
triggers =̂ trigger third fourth @ . . . @ trigger upshifting steady state26
getstate =̂ state?x : (x ∈ dom(states))!(states(x ))−→ Skip
getjunction =̂ junction?x : (x ∈ dom(junctions))!(junctions(x ))−→ Skip
gettransition =̂ transition?x : (x ∈ dom(transitions))!(transitions(x ))−→ Skip
getchart =̂ chart !(states(identifier))−→ Skip
status =̂ status?x : (x ∈ dom(state status))!(state status(x ))−→ Skip
history =̂ history?x : (x ∈ dom(state history))!(state history(x ))−→ Skip
activation =̂ activate?x −→Activate
deactivation =̂ deactivate?x −→Deactivate
ChartActions =̂ . . .
InterfaceActions =̂ . . .
Inputs =̂ . . .
Outputs =̂ . . .
AllActions =̂ . . .
broadcast =̂ e : EVENT ; sid , dest : SID • . . .
broadcast taction =̂ e : EVENT ; sid , dest : SID • . . .

• InitState ; µX •

(
µY

(
(AllActions 4 (interrupt chart −→ Skip)) ; Y
@
end cycle −→ Skip

) )
; X

end

Figure 8: Structure of the c shift logic process.

14



The component identifier indicates the state that corresponds to the chart. Identifiers for states, transitions,
and junctions are drawn from the sets SID , TID and JID , defined as disjoint given sets. The sets State,
Transition and Junction are defined by schemas (presented later); they are sets of bindings (records) all
including a component identifier . The components states, transitions and junctions are, therefore, partial
functions from identifiers to bindings. The invariant defines basic structural constraints enforced by the
Stateflow notation. Each of the states, transitions, and junctions components must not contain the null
object (of the appropriate type), the range of states must contain a single state of type CHART , that is
indicated by identifier , and the application of each of the functions states, transitions, and junctions to an
identifier n in its domain must yield a binding whose component identifier is equal to n.

The schema State records the identifier of the state, the identifiers of its first (if any) default, inner and
outer transitions, the identifier of its parent state (or chart), left and right siblings, the sequence of the
identifiers of its substates, its decomposition type, its type, and whether or not it has a history junction.

State
identifier : SID
default , inner , outer : TID
parent , left , right : SID ; substates : seq SID
decomposition : DECOMPOSITION ; type : TYPE ; history : B

The schema Junction records the identifier of a junction, the identifier of the first (if any) transition leaving
it, the identifier of its parent state (or chart), and whether or not it is a history junction.

Junction == [identifier : JID ; transition : TID ; parent : SID ; history : B]

Transition records the identifier of a transition, the identifiers of its source and destination nodes, the identifier
of the next transition (if any) in a sequence, and the parent state (or chart) of that transition.

Transition == [identifier : TID ; source, destination : NID ; next : TID ; parent : SID ]

The set NID contains node identifiers, which are taken from the sets SID and JID .
In the chart process (see Figure 8), an axiomatic definition includes StateflowChart , promoting its com-

ponents to process constants, and identifying their values. For our example, the axiomatic definition de-
fines that identifier = c shift logic and that states includes the pairs (s downshifting ,S downshifting),
(s gear state,S gear state) and so on, where s downshifting and s gear state are state identifiers.

The definition of SimulationData is independent of a particular chart. It declares the state components
of a chart process that record the status of each state in the chart (state status), and the last active substate
for those with a history junction (state history). If state status n is true, the state n is active; state history
is a function from state identifiers to state identifiers.

SimulationData
state status : SID 7→ B
state history : SID 7→ SID

dom state status = dom states
dom state history = {j : ran junctions | j .history = True • j .parent}

The predicate of SimulationData states that the domain of state status contains the identifiers of all states,
and that the domain of state history contains the identifiers of all parent states of history junctions. The (omit-
ted) initialisation operation InitSimulationData for SimulationData marks all states as inactive, and associates
all states in the domain of state history with the identifier of the null state.

The schema SimulationInstance (in Figure 8) declares the data defined in the chart. For our example,
these are v gear , v speed , v throttle, v up th, v down th. The initialisation action InitSimulationInstance
assigns to them the default values of their types; in this case, it sets them to 0.

In summary, the state of a chart process includes all the components declared in SimulationInstance,
which defines the data declared in the chart, and in SimulationData, which records the status of the states
and history junctions. The main action of a chart process initialises its state and recursively offers a choice
of actions that are selected by the process Simulator through the channels in interface.

The choice of actions available is encoded in the Circus action AllActions, which can be interrupted by the
Simulator through the channel interrupt chart . As shown below, AllActions is defined as the external choice
of actions called conditions, triggers, Inputs, Outputs, ChartActions, and InterfaceActions.

AllActions =̂ (conditions @ triggers @ Inputs @ Outputs @ ChartActions @ InterfaceActions)

The Circus action conditions offers the choice of all the actions that encode the evaluation of a condition in
a transition. The Circus action triggers similarly offers the actions encoding the evaluation of a trigger. The

15



Circus actions Inputs and Outputs offer the possibility of reading the inputs or writing the outputs of the
chart. The Circus action ChartActions offers the choice of all the state and transition actions, and once the
selected action is completed, it synchronises on end action signaling that the chart action has finished; this
is necessary because the simulator waits for a local event broadcast or the end of the chart action. Finally,
InterfaceActions offers the actions used by the Simulator to obtain information about the chart.

The evaluation of a condition is specified as a Circus action that communicates true through the channel
evaluatecondition if the condition holds, and false otherwise. For example, the condition of the transition
between the states steady state and downshifting (in Figure 1) is defined as follows.

condition steady state downshifting =̂(
if (v speed<Av down th) 6= 0−→ evaluatecondition.t steady state downshifting !True−→ Skip
8 ¬ ((v speed<Av down th) 6= 0)−→ evaluatecondition.t steady state downshifting !False−→ Skip
fi

)

The predicate (v speed<Av down th) 6= 0 is evaluated, and if it is true, this action offers a synchronisation
on evaluatecondition with the identifier of the condition’s transition, t steady state downshifting , and the
boolean value True. Otherwise, it offers a communication with False. The operation <A returns 0 if the
first operand is not less than the second operand, otherwise, it returns a number different than 0.

The evaluation of a transition trigger is defined by a Circus action that waits for the communication of an
event e, along with the transition identifier through checktrigger , and then evaluates the trigger with respect
to e. Afterwards, it communicates the identifier, e, and the boolean result of the evaluation through result .
For the trigger of the transition between the states first and second, we have the action below.

trigger first second =̂

checktrigger .t first second?e −→

(
if e = e UP −→ result .t first second .e!True−→ Skip
8 ¬ (e = e UP)−→ result .t first second .e!False−→ Skip
fi

)

It returns True if the event received through the channel checktrigger is e UP , otherwise, it returns False.
The Circus action Inputs waits for a synchronisation on read inputs and reads the values of the input

variables in interleaving; there is a channel for each input. In our example, there are two input variables,
v speed and v throttle, and their values are communicated through the channels i speed and i throttle.

Inputs =̂ read inputs −→

(
i speed?x −→ v speed := x
||[{v speed} | {v throttle}]||

i throttle?x −→ v throttle := x

)

The interleaving requires the declaration of the state components that are altered by each parallel action.
This action only terminates when all the input variables are read.

The Circus action Outputs is defined in a similar fashion. For our example, it is as follows.

Outputs =̂ write outputs −→ o gear !(v gear)−→ Skip

The only output variable in the example is v gear , so there is no need for an interleaving.
The action ChartActions offers a choice between the actions entryactions, duringactions, exitactions,

conditionactions, and transitionactions, which are all defined as the external choice of all the actions of the
appropriate type. For example, entryactions is defined by an external choice of all the Circus actions that
model the execution of an entry action. In our example, the state first, for instance, has an entry action that
consists of assigning the value 1 to the variable gear; this is modelled by the following Circus action.

entryaction first =̂ executeentryaction.(s first)?o?ce −→ v gear := 1

This action waits for the communication of the state’s identifier on executeentryaction, and the input of a
state identifier o and an event ce, and assigns the value 1 to the state component v gear . The input o records
the state whose execution requested the execution of the entry action; this is used when broadcasting a local
event. The input ce is necessary because one type of during action, namely an on action, is only executed for
particular events. We keep ce as an input to all types of actions for uniformity, and to allow the extension of
the model to treat temporal actions, which depend on the current event as well.

The same approach is taken for the other types of actions. For example, the condition action of the first
transition from upshifting to steady state is modelled as follows.

conditionaction upshifting steady state26 =̂ executeconditionaction.(t upshifting steady state26)?o?ce−→
broadcast(e UP , o, s gear state)

We postfix this action’s name with a number that makes the transition unique, given that there are two
transitions with the same source and destination states. The action waits for the communication of the

16



transition identifier through executeconditionaction, and broadcasts the event e UP to the state s gear state.
In this example, the broadcast is used to trigger a change of state in the parallel state gear state.

The Circus action broadcast that specifies the broadcasting mechanism takes three parameters: the local
event e, the identifier dest of the destination state, and the state identifier origin for either the state, or the
source or parent of the transition that issued the broadcast.

broadcast =̂ e : EVENT ; origin, dest : SID • local event !(e, states(dest))−→(
µX •

(
AllActions ; X
@
end local execution −→ Skip

) )
;

 if state status(origin) = True−→ Skip
8 state status(origin) = False−→

interrupt simulator −→ Skip
fi


The action broadcast communicates e and destination state states(dest) through local event , and recur-
sively offers a choice between AllActions followed by a recursive call to X , and a terminating action that
waits for a synchronisation on end local execution, and finishes the recursion. Once the recursion ends,
broadcast checks the status of the state origin according to the function state status, and if it is no longer
active (state status(origin) = False), interrupts the simulator by synchronising on interrupt simulator .

The early return logic for broadcasts from transition actions contains an extra condition. If any of the
substates of origin is active, the execution is interrupted. This is modelled by the following action.

broadcast taction =̂ e : EVENT ; origin, dest : SID • var s : State; b : B • broadcast(e, origin, dest);

s := states(dest) ; (HasActiveSubstates) ;
(

if b = True−→ interrupt simulator −→ Skip
8 b = False−→ Skip
fi

)

This action calls broadcast , and, if it completes, broadcast taction recovers the state identified by dest ,
stores it in the local variable s, and calls the action HasActiveSubstates that assigns True to b if the
state s has active substates, and False otherwise. If s has active substates, broadcast taction signals on
interrupt simulator that ExecuteChart must be interrupted. Otherwise, broadcast taction terminates. Notice
that the origin of a transition action is the parent of the transition path that contains the action.

For our example, we have the Circus action below, which models the execution of the condition action
gear state.DOWN of the transition of number 2 from downshifting to steady state.

conditionaction downshifting steady state25 =̂
executeconditionaction.t downshifting steady state25?o?ce −→ broadcast(e DOWN , o, s gear state)

The arguments used in the call to the Circus action broadcast are the event e DOWN , which models the chart
event DOWN, the identifier o received through the channel executeconditionaction, and which, in this case, is
s downshifting , and the identifier s gear state of the target of the broadcast.

The only during action in the chart in Figure 1 involves the use of the Simulink function calc th. This is
specified as the application of a Z function of the same name whose definition must be provided in a separate
Z library. The Circus action that models the during action waits for the communication of the state identifier,
s selection state, through executeduringaction and executes the assignment.

duringaction selection state =̂ executeduringaction.(s selection state)−→ var aux : R× R •
( aux := calc th(v gear , v throttle) ; v down th := aux .1 ; v up th := aux .2)

Since calc th returns a pair whose elements are assigned to a vector formed by two components of the process
state, we define an auxiliary variable aux , assign the pair to it, and then assign the values in aux to the
appropriate state components. More precisely, the first value of aux , that is, aux .1 is assigned to v down th,
and the second value ( aux .2) is assigned to v up th.

The action InterfaceActions offers a choice of actions that are the same for every chart. The action
getstate, for example, receives a state identifier and outputs the corresponding state.

InterfaceActions =̂

(
getchart @ getstate @ getjunction @ gettransition
@status @ history @ activation @ deactivation

)
These Circus actions allow the Simulator to recover the bindings that specify objects of the chart using their
identifiers, obtain information about the status of a state, or about the history junction of a state, and activate
and deactivate a state. The specification of these actions is omitted and can be found in [29].

Finally, the main action of the chart process consists of two nested recursions. The inner recursion
repeatedly offers a choice between AllActions (which can be interrupted) and a synchronisation on end cycle,
which terminates the inner recursion, and marks the end of an execution step.

In the next section, we discuss the formalisation of a translation strategy that generates automatically
models of Stateflow charts, such as the one presented in this section.

17



4 Translation from Stateflow charts to Circus

As explained in the previous section, our models of Stateflow charts are formed by two Circus processes
composed in parallel: one is the model of the simulator, and the other is the model of a particular chart. The
separation between the simulator and chart processes allows us to reduce the amount of specification that
must be generated for each chart. In this section, we explain and formalise an algebraic strategy to translate
a Stateflow chart into a Circus model. It takes the form of a set of translation rules; Section 4.1 introduces
the preliminary encodings necessary to formalise the rules, and Section 4.2 discusses the formalisation.

4.1 Preliminary encodings

In this section, we lay the ground for the formalisation of the translation rules. Each rule takes an element of
the Stateflow notation and translates it into an element of the Circus notation. To allow their formalisation,
it is necessary to have a formal model of both notations, so we specify their syntaxes in Z.

The syntax of Stateflow charts is captured by seven main groups of objects: charts, states, junctions,
transitions, functions, events and data. Each of these objects is defined by a set of parameters that can
include identifiers, names, expressions and actions. We use Z schemas to formalise these objects; for example,
a state is formalised by the schema State below. This is a concrete representation of a state as it is encoded in
the textual accounts of Stateflow charts defined in the tool. It differs from the representation provided by the
schema State in the previous section in that it contains more information than is necessary in the Circus models
of Stateflow charts. For instance, the schema State in this section includes the syntactical representation of
the actions of the state (entry, during and exit actions). In the Circus model, this information is encoded as
Circus actions, not components of the schema State.

State
identifier : SID ; name : SNAME
parent : CID ∪ SID
decomp : DECOMP ; type : STYPE
entry , exit : seq ACTION ; during : seq DACTION
binding : seq (ENAME ∪DNAME)
history : B
default , inner , outer : opt TID
left , right : opt SID ; substates : seq SID

The schema State above records the identifier and name of the state, the identifier of the parent of the state,
which is either a state identifier (SID) or a chart identifier (CID), the decomposition (decomp) of the state
and its type, the sequences of entry , exit and during actions, the sequence of event and data names that are
bound to the state (binding), information about whether the state has a history junction or not (history), the
identifiers of the first default transition (if one exists), the first inner transition (if one exists), and the first
outer transition (if one exists), the identifier of left sibling (if one exists), the identifier of the right sibling (if
one exists), and the sequence of the identifiers of the substates.

The set SID contains the state identifiers, SNAME is the set of names of states, and CID is the set of
chart identifiers. We define disjoint sets of identifiers for all seven types of objects, and disjoint sets of names
for charts, states, functions, events and data. The sets DECOMP and STYPE identify the decomposition and
type of a state. The sets ACTION and DACTION define the possible actions and during actions. ENAME
is the set of event names, and DNAME is the set of data names. The set of transition identifiers is TID . The
opt operator is used to declare a component whose value is optional; for example, the component left can
contain a state identifier, or be empty, indicating that the state has no left sibling.

A during action is either an action from the set ACTION defined below, or an on action, which is defined
as an association between an event name and a sequence of actions.

ACTION ::= bcast〈〈ENAME〉〉 | expr〈〈EXPR〉〉 | assign〈〈DNAME × seq EXPR × EXPR〉〉 |
massign〈〈seq DNAME × EXPR〉〉

The constructors of ACTION , that is, bcast , expr , assign, and massign, reflect the various types of actions
available. An action can be the broadcasting of an event (represented by the constructor bcast), an expres-
sion (constructor expr), an assignment (constructor assign), or a multiple assignment (constructor massign).
In general, Stateflow actions alter the values of the chart variables and do not have an associated value. The
set EXPR denotes the set of expressions; these can be logical and arithmetical expressions, name expressions,
value expressions, function applications, temporal expressions, and so on.

We formalise well-formedness conditions for the syntax of Stateflow charts. These conditions are not
surprising, but are necessary to formalise the translation rules as total functions from well-formed elements
of the Stateflow notation. Their definitions can be found in [30].

18



The Circus notation is embedded in Z by defining a series of free types whose constructors are used to
build elements of the language, such as actions and processes, as well as elements of the Z notation, such as
axiomatic definitions and schemas. The well-formedness conditions and the embedding of Circus in Z can be
found in [30]. The formalisation of the translation rules is described next.

4.2 Formal translation rules

The model obtained by applying these rules to a particular chart consists of a set of preliminary defini-
tions (such as, identifier, names, bindings, and so on), and a chart process. As already said, the process
c shift logic presented in Section 3.2 is the chart process for the example in Figure 1.

A translation rule is an equation that contributes to the definition of a function mapping a construct of
the Stateflow notation, to a Circus construct expressed in the embedding discussed in the previous section.
The main translation rule defines the total function translate; it takes a well-formed chart, and produces a
Circus program that is composed of Z paragraphs, channel declarations, and process declarations.

translate : WF CHART → Program

∀ c : WF CHART • translate(c) = let
identifiers == 〈zparagraphdeclaration(StateIdentifierDeclaration(c)),

zparagraphdeclaration(JunctionIdentifierDeclaration(c)),
zparagraphdeclaration(TransitionIdentifierDeclaration(c))〉;

states == set2seq({s : ran c.states • zparagraphdeclaration(StateDeclaration(c, s))});
junctions == set2seq({j : ran c.junctions • zparagraphdeclaration(JunctionDeclaration(c, j ))});
transitions == set2seq({t : ran c.transitions • zparagraphdeclaration(TransitionDeclaration(c, t))});
events == 〈zparagraphdeclaration(EventsDeclaration(c))〉;
channels == 〈ChannelsDeclaration(c)〉;
proc == 〈processdeclaration(ProcessDeclaration(c))〉 •
program(identifiers a states a junctions a transitions a events a channels a proc)

The function translate is defined for all well-formed charts: elements of the set WF CHART . The result
for a chart c is the application of the Circus constructor program to a sequence of paragraphs formed by the
concatenation of seven sequences: identifiers, states, junctions, transitions, events, channels and proc.

The sequence identifiers contains three paragraphs defining the identifiers of states, junctions and tran-
sitions. In our example, it contains, for instance, a paragraph that defines the state identifier s gear state
as a constant of type SID . The sequence states holds all Z paragraphs that declare state bindings; in our
example, this sequence contains an axiomatic definition that declares the name S gear state of type State
and equates it to the binding that corresponds to the state gear state. The function set2seq takes a set and
returns a sequence whose range is equal to the set. The sequences junctions and transitions are similar to
states; they contain the paragraphs that declare junction and transition bindings. Our example does not con-
tain junctions, therefore junctions is empty. The sequence transitions contains an axiomatic definition that
declares, for instance, the name T first second of type Transition and equates it to the binding that speci-
fies the transition from first to second. The paragraph that declares the events is contained in the sequence
events, and in our example consists of an axiomatic definition that declares the names e UP and e DOWN
of type EVENT . The channel declarations are in the sequence channels. In our example, channels contains,
for instance, the declaration of i speed and i throttle. The sequence proc contains just the definition of the
Circus process that characterises the chart (for our example, c shift logic).

To define translate, we use the functions StateIdentifierDeclaration, JunctionIdentifierDeclaration, and
TransitionIdentifierDeclaration, which produce axiomatic definitions that declare the identifiers of the states,
junctions and transitions. For example, StateIdentifierDeclaration is defined as follows.

StateIdentifierDeclaration : WF CHART → Paragraph

∀ c : WF CHART • StateIdentifierDeclaration(c) = let
snames == set2seq({s : ran c.states • decl(stateid(c, s))});
cname == 〈decl(chartid(c))〉;
type == reference(ref (STATEID)) • let

decl == declpart(〈variable(snames a cname, type)〉) •
axiomaticdescription(schematext(〈decl〉, 〈〉))

For all well-formed charts c, the application of StateIdentifierDeclaration to c yields an axiomatic definition
built using the constructor axiomaticdescription applied to a SchemaText . It is obtained by the application of
the constructor schematext to a sequence of declarations and a sequence of predicates. In the case above, the
sequence of predicates is empty, and the sequence of declarations contains the local name decl whose value
is the application of the constructor declpart to a sequence of variables. The sequence of variables is built

19



by the constructor variable applied to a sequence of names and a type expression. The names are those in
snames and cname, that is, the identifiers of the states and of the chart. The type expression is formed from
the name STATEID that identifies the type SID of identifiers of states.

As illustrated above, the formal definition of the translation rules, while useful for reasoning purposes, is
hard to read because of the amount of constructor applications used to build the expressions. In the sequel,
we present the rules in a semi-formal fashion. The complete formalisation of the rules can be found in [30].
As an example, the rule for StateIdentifierDeclaration presented above can be restated as follows.

StateIdentifierDeclaration(c) =

stateid(c.states(1)), . . . , stateid(c.states(# c.states)), chartid(c) : STATEID

This rule takes a well-formed chart c, and yields an axiomatic definition that declares the state and the chart
identifiers to be of the type STATEID . The identifiers of the states c.states(1), . . . , c.states(# c.states) in c
are constructed by the function stateid . The identifier of the chart is constructed by chartid .

The application of this rule to the chart in Figure 1 results in the axiomatic definition sketched below.

s downshifting , s gear state, s fourth, s second , s third , s first , . . . , c shift logic : SID

An identifier of type SID is defined for each state and for the chart.

The functions StateDeclaration, JunctionDeclaration and TransitionDeclaration take a chart and, respec-
tively, a state, a junction, or a transition as parameters, and produce an axiomatic definition that declares a
variable of the appropriate type and equates it to a binding that represents the state, junction or transition
received as parameter. For example, the function JunctionDeclaration is defined as follows.

JunctionDeclaration(j ) =

junctionname(j ) : JUNCTION

junctionname(j ) = 〈|junction identifier(j ), junction transition(j ), junction parent(j ), junction history(j )|〉

The name of the junction j is determined by the function junctionname that guarantees its uniqueness; this
name is declared to be a constant of type JUNCTION . The predicate of the axiomatic definition defines
that the value of the constant is the binding formed by the results of the applications of the functions
junction identifier , junction transition, junction parent , and junction history to j . Each of these functions
produces an element of a binding that equates a component of the schema Junction (see Section 3.2), and a
value of that component. For example, junction identifier is defined as follows.

junction identifier(j ) = IDENTIFIER == junctionid(c, j )

The result of this function is an association between the component whose name is given by IDENTIFIER
and the identifier of the junction obtained by the function junctionid . The functions StateDeclaration and
TransitionDeclaration are similarly defined, as are EventsDeclaration and ChannelsDeclaration.

The rule junction identifier when applied to the bottom junction in the example in Figure 2 yields the
following expression identifier == j 23. This is used in the application of the rule JunctionDeclaration to
the same junction resulting in the following axiomatic definition.

J 23 : JID

J 23 = 〈|identifier == j 23, transition == t 23 FACT , parent == s FUNCTIONS , history == False|〉

The name J 23 and the identifier j 23 are unique in the model, as is t 23 FACT .

The process declaration rule takes a well-formed chart and produces a Circus process. We show a partial
definition of this rule below. The result of its application to the chart shown in 1 is the process sketched
in Figure 8. For a chart c, this gives a process whose name is the result of applying processname to c; this
yields the name of the chart. The body of the process consists of a series of schema and action declarations

20



obtained by applying the appropriate translation functions.

ProcessDeclaration(c) =



process processname(c) =̂ begin
ChartDeclaration(c)
SimulationInstanceDeclaration(c)
InitSimulationInstanceDeclaration(c)
SimulationDataDeclaration
InitSimulationDataDeclaration
InitState == InitSimulationInstance ∧ InitSimulationData
HasActiveSubstateDeclaration
ActivateDeclarations
DeactivateDeclarations
state (SimulationInstance ∧ SimulationData)
EntryActionDeclaration(s1)
. . .
EntryActionDeclaration(sn)
EntryActionsDeclaration(c)
. . .
ConditionActionsDeclaration(c)
. . .
ConditionsDeclaration(c)
. . .
TriggersDeclaration(c)
GetStateDeclaration
. . .
• MainActionDeclaration

end


For instance, the axiomatic definition that declares the chart structure (states, junctions, and transitions) is
specified by the application of the translation rule ChartDeclaration. Other functions define the SimulationInstance
schema and its initialisation operation. The state is always the same: the conjunction of SimulationInstance
and SimulationData. The schemas that define the activation and deactivation operations are declared by
the rules ActivateDeclarations and DeactivateDeclarations. All the groups of actions are also constructed by
specific functions. For example, the entry actions are translated by EntryActionDeclaration. Finally, the
function MainActionDeclaration determines the main action of the chart process.

For a state s, the function EntryActionDeclaration gives the encoding of a Circus action modelling the
entry action of s.

EntryActionDeclaration(s) = (EntryActionName(s) =̂
executeentryaction.stateid(s)?o?ce −→ translateActs(s.entry))

The name of the resulting Circus action is obtained by the function EntryActionName based on the name of
s. The action itself is a prefixing with a communication through executeentryaction of the identifier of the
state and of inputs o and ce, followed by the translation of the sequence of the entry actions s.entry of s as
defined by translateActs . The application of EntryActionDeclaration to the state first in Figure 1 is shown in
Section 3.2, as well as the result of the application of the rule translateActs to the assignment in the entry
action of that state. All the rules for state and transition actions are specified in a similar fashion.

The function translateActs translates sequences of actions from the set ACTION . The rule that specifies it
constructs a Circus action by composing in sequence the results of applying the function translateAct to each
action in the sequence. The function translateAct is defined inductively for each type of Stateflow action; for
example, the definition of this function for an assignment name = e is shown below.

translateAct(name = e) = dataname(getdatabyname(name)) := translateExpr (e)

We recover the data to which name refers, using the function getdatabyname, determine its name using the
function dataname, and use it and the translation of the expression e to build an assignment.

Multi-dimensional vectors are specified as finite functions, and the assignment name[e1] . . . [en ] = e of
a value e to a position identified by the indices [e1] . . . [en ] needs to alter the function name only in that
position. The corresponding translation rule is presented below. We obtain the name of the data, and build
an assignment from that and from an expression built by applying the override operator (⊕) to the name of
the variable and a mapping that specifies the change to the vector position. This mapping is composed by
the translated indexes of the vector position and the translated expression that is being assigned.

translateAct(name[e1] . . . [en ] = e) = (dataname(getdatabyname(name)) :=

dataname(getdatabyname(name))⊕ {(translateExpr (e1), . . . , translateExpr (en)) 7→ translateExpr (e)})

21



Figure 9: Architecture of s2c: main packages.

The complete formalisation of the translation strategy that supports the construction of Circus models of
Stateflow charts consists of over 80 formal translation rules. It has been mechanically checked, and can be
found in [30]. In the next section, we discuss the implementation of the translation rules in the tool s2c.

5 The s2c translation tool

The process of manual translation is extremely error prone. Moreover, the translation of larger diagrams is
prohibitively costly. One of our experiments on an industrial case study yielded a 180-page specification.

A mechanisation of the translation process can reduce costs, thus increasing the viability of any task that
depends on a Circus model. In addition, it provides extra validation of the model (and translation rules),
uncovering potential errors and inconsistencies. Since the Circus models are meant to be used in the formal
verification of implementations of Stateflow charts, the mechanical translation increases the number and size
of charts that can be tackled, and minimises the possibility of translation errors.

In this section, we describe the tool s2c, which implements the translation rules discussed in the previous
section. This tool takes a .mdl file, that is, the file provided by Simulink that contains a textual representation
of charts, and produces a Circus process for each of the charts. The .mdl file is assumed to define a well-
formed Stateflow chart, in the sense that it is properly compiled by the simulator. Since Simulink and
graphical functions are not translated, but are widely used in charts along with MATLAB and C functions,
we deal with them by requiring the user to supply a Z definition for them (in Z libraries).

The implementation of s2c has approximately 5000 lines of Java code, excluding automatically generated
parsing classes. It can be found in www.cs.york.ac.uk/circus/s2c. There we also present various examples
of .mdl files describing diagrams whose Circus models we have generated using s2c.

Section 5.1 describes the architecture of s2c, and Section 5.2 elaborates on the implementation of rules.

5.1 Architecture

The implementation of s2c is organised in five main packages: parser, stateflow abstract syntax, Cir-
cus syntax, Z syntax and translator. Figure 9 depicts them and their relationships. The translator

package is the main one, and uses all the other packages to perform the translation. The packages stateflow
abstract syntax, Circus syntax, and Z syntax mechanise the formalisation of the Stateflow syntax and
Circus syntax, and the package parser contains the automatically generated classes that take a textual repre-
sentation of Stateflow charts and builds the corresponding syntactic representation. The package translator

holds the main part of the tool, that is, the implementation of the translation rules. Figure 10 shows the
architecture of the translator package. In the sequel, we discuss each package in more detail.

The Translator class contains a method translate that takes a Stateflow chart represented in the
abstract syntax and produces the Circus specification of the chart. The translator has an implementation of the
Circus syntax and of the NameGenerator interfaces. They determine the methods that must be implemented
to generate a specification in the appropriate mark-up language. Our implementations generate text that uses
the Circus LATEXmark-up; this is the notation currently accepted by the parser.

The name generator takes Stateflow objects and constructs their names in an appropriate format. For
example, we disambiguate state names (when needed) by prefixing the name of the state’s parent. State
identifiers are obtained by prefixing the (disambiguated) name of the state with a lower case ”s”, while state
names are obtained by prefixing the name with a capital ”S”. The Translator class uses a static class
ObjectGetter that contains methods for recovering objects from the chart using their names or identifiers.

22



Figure 10: Architecture of s2c: the package translator.

5.2 Implementation of translation rules

The translation of Stateflow diagrams into Circus models is defined in a manner that makes it suitable for
mechanisation: using formal, yet very concrete, translation rules as presented in the previous section. The
design of s2c is guided by one main principle: to keep a close relationship between the implementation and
the formalisation of the translation rules. The advantage is that it is easy to identify how components of the
code map to the formal rules, thus facilitating the validation of the implementation and of the rules.

We illustrate the strategy used for implementing the translation rules through an example. The formal
specification of the translation function for name expressions is shown below.

translateExpr : WF EXPR→ Expression

∀n : DNAME ; es : seq EXPR; c : WF CHART | (c,name(n, es)) ∈WF EXPR •
translateExpr (c,name(n, es)) =(

if # es = 0
then reference(ref (dataname(c, getdatabyname(c,n))))
else functionapplication(app(dataname(c, getdatabyname(c,n)), translateExprs(c, es)))

)

This function takes a well-formed expression (an element of the set WF EXPR) and produces a Z (Circus)
expression. In the case of the rule above, the resulting Z expression depends on whether the name expression
name(n, es) represents a simple variable or a position in an vector. If it is a simple variable (# es = 0), the
function returns a reference to the appropriate data by applying the constructors reference and ref to the
unique name of the data. If the name expression is a position in an array, translateExpr returns the appli-
cation of the name of the appropriate data (dataname(c, getdatabyname(c,n))) to the translated expressions
contained in the index sequence (translateExprs(c, es)) by using the constructors functionapplication and app;
multi-dimensional vectors are implemented as functions from a set of indexes to R.

Figure 11 shows the implementation of the rule translateExpr for name expressions: a Java method called
translate expr. The local variables introduced by the let expression in the formal rule are translated
into local variables of the method. The function getdatabyname is mapped to a static function of the same
name (contained in the class ObjectGetters of the package translator), and the function dataname is
mapped to a function from the object n of a class that implements the interface NameGenerator. The
constructor functions are used exactly in the same way as in the formal specification; each of them is mapped to
a method of the same name contained in the object c of a class that implements the interface CircusSyntax.
Calls to other translation functions are mapped to methods of the Translator class with equivalent names.
For example, the function translateExprs is mapped to the method translate exprs. The implementation
of the translation rule for name expressions is straightforward once we provide an embedding of the syntax
of Stateflow diagrams, of Circus, and of Z operations used in the formal specification.

For a complete discussion about the implementation of the translation rules, see [30]. In the next section,
we discuss the validation of s2c, covering also the model of Stateflow charts and the translation rules.

5.3 Validation

As a first step in the validation of our approach to formal modelling of Stateflow charts, we have compared
our models to the informal description of the semantics of Stateflow charts. This is made possible by the way
the model of the simulator is built; the strong relation between the structure of the formalisation and of the
informal description allows us to compare them and assess their correspondence.

23



public St r ing t r a n s l a t e e x p r ( Chart c , EXPR e ) {
i f ˜( e instanceof v a r i a b l e ) {

St r ing n =˜(( v a r i a b l e ) e ) . dname ;
Li s t<EXPR> es =˜(( v a r i a b l e ) e ) . e s ;
Data d = ObjectGetters . getdatabyname ( c , n ) ;
i f ˜( es . s i z e ( ) == 0) {

return c . r e f e r e n c e ( c . r e f ( n . dataname ( c , d ) ) ) ;
}
else {

return c . f u n c t i o n a p p l i c a t i o n ( c . app (
n . dataname ( c , d ) ,

t r a n s l a t e e x p r s ( c , e s ) ) ) ;
}

}
. . .

}

Figure 11: Implementations of the translation rule for variable expressions.

We have also animated the models and compared the results to those of the Stateflow simulator. For that,
we have translated the Circus model to CSP, and used ProBE [31] (a CSP animator) and FDR2 [32] (a CSP
model checker) to simulate the CSP specification. We have used ProBE to manually investigate traces of the
model, and FDR2 to automatically test if a trace obtained from the simulator is a trace of the model.

The formalisation of the translation strategy has yielded a third form of validation of the models. The
validation of the translation rules has reinforced our confidence on the model of Stateflow charts by forcing a
systematic review of the model, and by supporting the formal derivation of models of Stateflow charts. The
formalisation of the translation rules are correctly parsed and type-checked by the CZT toolkit [33].

Finally, the implementation and validation of s2c provides validation also for the model and translation
rules. An automatic translation tool like s2c supports the derivation of models of large and complex Stateflow
charts. This allows us to evaluate the robustness of the tool and of the translation rules. In this way, we have
a chain of validation that culminates in the evaluation of s2c.

Our evaluation strategy has consisted of testing s2c on three sets of examples: basic charts, complete
examples, and industrial case studies. These examples, excluding the industrial case studies and those that
accompany Stateflow, are in www.cs.york.ac.uk/circus/s2c. The basic charts exercise specific features of
Stateflow; for example, for each type of action, we have a chart with a single state with an entry action of
that type. These examples revealed mainly programming errors and limitations of the translation rules.

The complete examples are charts (or collection of charts) that model a simplified system (usually toy-
examples), but whose complexity is larger; the chart in Figure 1 belongs to this group. The tests using charts
in this set pointed out to the same types of error reveled by the tests with the basic charts, and some errors
in the translation of events, in particular, in the calculation of the source and destination states.

The third group of examples includes two models supplied by industrial collaborators. The tests with the
industrial case studies pointed out features that were not treated, one known and the other unknown. The
former is the treatment of functions, and the latter is the use of the time symbol t .

We have used the basic-charts test set in different stages of development, and errors found have been
corrected. The same has been done for the other examples, but less frequently.

In testing with the basic charts, we can track any errors to the specific feature being tested. Moreover,
since these models are very small, it is possible to check the generated specification and notice any potential
errors. With this approach, while validating the tool, we also validate the translation strategy and the model
presented in Section 3. The complete examples allow us to test the interaction between different features
of the notation, and while their size makes it difficult to manually check the generated specification, it is
still feasible to track errors in the translation process to features of the Stateflow model. The specifications
generated by industrial case-studies are very large, and, therefore, not tractable manually. While it is possible
to track translation errors to pieces of the model, it is a demanding task. Testing industrial case studies,
nevertheless, has allowed us to evaluate the robustness and scalability of the tool.

The treatment of functions is not a simple issue, because they are not restricted to the types of functions
that can be defined within a chart: MATLAB and even C functions can be used. As previously discussed,
our approach to this assumes the existence of a library of Z definitions of the functions used in the chart.
It is worth mentioning that this approach is limited in the sense that it does not allow the specification
of graphical functions with side effects, that is, graphical functions that change the state of the chart. The
symbol t represents the “absolute time inherited from a Simulink signal” [2]. Its proper treatment is, therefore,

24



delegated to the Simulink diagram and updated through a channel time.

The industrial case studies have been provided by Embraer and Airbus. The example from Embraer has
been translated without difficulties. It consists of a single chart, with a very simple structure. It uses the abs
function; this reinforced the need to consider the treatment of functions, and motivated the use of Z libraries.
The case study from Airbus is larger; it contains over 50 charts, organised in a five-level hierarchy. In general,
the individual charts have a simple structure. History junctions are not used, but parallel and sequential
states, connective junctions, and functions are extensively used. The Stateflow model seems to avoid the use
of events, and transitions are controlled by boolean variables. The translation of four charts resulted in a
180-page specification. It also requires the treatment of functions and the symbol t . The charts contained
in both case studies extensively used functions (MATLAB functions and graphical functions), and that the
approach to the treatment of general functions by use of Z libraries has proved successful.

In its current version, the tool translates, without errors, all the tested examples, and the specifications
generated by the tool are all correctly parsed and type checked by the Circus CZT toolkit [33].

6 Conclusions

In this paper, we have proposed a semantics of Stateflow charts based on Circus, a formal notation that
supports analysis of models and verification of implementations based on refinement. The operational nature
and the structure of the model provide an informal, but intuitive, relationship with the description of Stateflow
in the manual; this has allowed validation by inspection. The separation between the structure of a Stateflow
chart and its interpretation (simulation semantics) reduces the amount of specification that must be derived
for each chart, and also limits the scope of any changes that might be necessary.

We have defined and formalised (using Z) a strategy for the translation of Stateflow charts to a Circus pro-
cess. The formalisation depends on Z embeddings of the Stateflow and Circus notations, and is structured
inductively over the syntax of Stateflow charts. The translation process is carried out in a top-down manner,
and produces a specification that contains the chart process, all auxiliary definitions (identifier, bindings,
channels, and so on), and references to external libraries of function definitions.

We have also implemented the translation strategy in the tool s2c. The design of s2c implements the
translation rules in a manner that emphasises the correspondence between the code and the formalisation
of the rules. We have extensively tested s2c with various examples (from toy examples to industrial case
studies), and the results of the translation are correctly parsed and type-checked.

Our approach to modelling Stateflow charts can cater for edge-triggered events, data, actions, parallel and
exclusive states, connective and history junctions, and all forms of transitions. The features that distinguish
this model are the unrestricted treatment of states, junctions and transitions, the partial support of functions,
the treatment of local event broadcasts and multi-dimensional data types, and the possibility of verifying
implementations of Stateflow charts in the context of Simulink diagrams.

The handling of transitions to history junctions has raised some issues. This kind of scenario is poorly
documented in the User’s Guide, and only inner transitions to history junctions are mentioned. In our model,
inner and outer transitions to history junctions work as observed in the Stateflow simulator, but default
transitions lead to nontermination, instead of issuing an error.

There are several approaches to the formal analysis of Stateflow diagrams. Operational and denotational
semantics are proposed by Hamon and Rushby [34], and Hamon [35]; these support static analysis, interpre-
tation, and compilation of Stateflow charts. Concerns with coverage of the simulation technique provided by
Simulink are addressed in [36, 37] using symbolic analysis of simulation traces. Translations of Stateflow into
notations that support model checking are presented in Banphawatthanarak and Krogh [38], Tiwari [39], and
Scaife et al. [40]. Verification in these approaches is based on temporal logics and bisimulation, rather than
refinement, thus verification of implementations is not the objective. Toyn [41] uses Z to verify that the chart
satisfies a set of requirements, but places strong restrictions on the Stateflow notation.

Most of the work done on formalising the Stateflow notation tries to identify a well-behaved subset of the
language, and then defines the semantics of the notation restricted to that subset. Hamon and Rushby [34]
provide an operational semantics of a subset of the Stateflow notation. Their semantics has been validated
against the Stateflow simulator, and supports execution and efficient compilation into other notations (notably
imperative languages and input languages of model checkers). This work, however, does not cover history
junctions and imposes restrictions on transitions.

Hamon [35] proposes a denotational semantics based on an interesting use of continuations to capture the
execution of transitions. The main goal is to formalise the compilation process of Stateflow charts into other
notations. Hamon claims that the denotational semantics covers most of the notation, but history junctions,
Simulink functions, and events of type function-call are not mentioned. Moreover, the possibility of early
return logic in the context of local event broadcasts seems not to be taken into account.

25



Banphawatthanarak et al. [42] propose a translation from Stateflow charts to the notation of the SMV
symbolic model checker. This allows the verification of chart properties using a very successful tool. They
applied their technique to a chart that specifies a two-mode estimation algorithm, and proved three properties.
They, however, impose restrictions on the types of input signals, number of transitions reaching a junction,
outputs signals, and transition actions used in a chart. A customised tool is available.

Scaife et al. [40] propose and implement a strategy to translate Stateflow to the synchronous language
Lustre [43], which also provides support for model checking. They applied their technique to an alarm
controller, and their results lead to a review of the original model. This work, however, also imposes a series
of restrictions on the charts. It does not allow multi-segment transition paths that represent loops. Variable
assignment on transitions must be made on transition actions or the condition action of the last segment. It
forbids backtracking by requiring that conditions of outgoing transitions from junctions form a cover, that is,
the conjunction of the conditions is true. It also avoids relying on ordering determined by position of elements
in the chart by requiring that the transitions leaving a node have disjunct conditions, for instance. On the
other hand, they can also construct Lustre models for Simulink diagrams.

Toyn and Galloway [41] formalise Stateflow charts in Z. The models are combined with requirements on the
states of the chart to produce healthiness conditions. Their verification validates the model with respect to the
requirements of the system. This work imposes even stronger restrictions on charts; it does not cover parallel
states, junctions, local variables, and so on. A tool automates the construction of healthiness conditions, and
the Z theorem prover CADiZ is used to prove them. CADiZ tactics are used to automate these proofs. Their
case study is a simplified model of a jet-engine starting process.

We treat graphical and Simulink function only partially. In principle, however, given the current work and
the existing treatment of Simulink diagrams [25] in Circus, we are able to use the models of Stateflow charts
and Simulink diagrams in order to represent such functions.

We do not treat function-call events. This type of event can be supported in the current model by refining
the definition of events to account for type, modifying the procedure for reading input variables and writing
output variables, and modifying the model of Simulink diagrams in order to execute the function-call block
and the chart in interleaving. Temporal expressions are not treated; they can be supported by refining the
definition of events in order to record information about the number of times an event has been broadcasted.
Elements such as sub-charts and super-transitions are also not covered by our approach; we believe that the
treatment of these elements will be simple, because they are basically the encapsulation of already supported
elements. As far as we know, none of the works discussed above cover any of these features either.

Our treatment of input and output events and data is not entirely consistent with that of the Simulink
model presented in [25]. To fully integrate them, the Simulink model must be extended to conform to the
input and output protocols of the Stateflow block. The standard protocol is for the chart to read the input
variables in the beginning of a cycle, and pass the output variables to the Simulink diagram in the end of the
cycle. This does not occur when we have a broadcast of an output event of type function call. In this case,
the execution of the function-call subsystem is parallel to that of the broadcasting chart, and the outputs of
the subsystem are immediately available to the chart during the cycle.

As a more substantial piece of future work, we will devise a refinement strategy that allows us to verify
implementations of Stateflow charts. It will be compatible with the strategy formalised for verification of
Simulink diagrams, so that implementations of a wider range of diagrams can be verified. The Circus model
of a Simulink diagram is a parallel composition of processes that model the blocks. The refinement strategy
presented in [44] consists of four steps that systematically collapse the massive parallelism of the specification
in order to match the processes of the implementation model, prove that each of the procedures in the
implementation refine the action that specifies it in the corresponding process, and finally, prove that the
main programs refine the process that specifies the system. The main actions of component processes are
always put in a normal form where they are defined as the iterative execution of a step. The steps consists
of reading the inputs in interleaving, calculating the outputs and updating the state, writing the outputs in
interleaving, and synchronising on the channel end cycle.

The step of execution of the Simulator process is similar, but it has an extra initial step that waits for
an event; moreover, the step can be interrupted by the chart. We need to define a strategy to collapse the
parallelism between the chart process and the Simulator process, and put the main action of this new process
in the normal form. It is possible that the requirements of the refinement strategy of the implementation of a
Stateflow chart are different from those of a Simulink diagram; this needs to be assessed and the refinement
strategy must cater for this scenario. The strategy will then be applied to the case studies.

References

[1] The MathWorks,Inc., Simulink, http://www.mathworks.com/products/simulink.

26



[2] The MathWorks,Inc., Stateflow and Stateflow Coder 7 User’s Guide, http://www.mathworks.com/

products/stateflow.

[3] The MathWorks,Inc., Simulink Design Verifier, http://www.mathworks.co.uk/products/

sldesignverifier.

[4] The MathWorks,Inc., Simulink Verification and Validation, http://www.mathworks.com/products/

simverification.

[5] The MathWorks,Inc., Real-Time Workshop, http://www.mathworks.com/products/rtw.

[6] The MathWorks,Inc., Stateflow Coder, http://www.mathworks.com/products/sfcoder.

[7] The MathWorks,Inc., xPC Target, http://www.mathworks.com/products/xpctarget.

[8] BS EN 61508-3:2002, Functional safety of electrical/electronic/programmable electronic safety related
systems – Part 1: General requirements (2002).

[9] DO-178b, Software considerations in airborne systems and equipment certification (1992).

[10] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, P. Niebert, From simulink to SCADE/lustre to
TTA: a layered approach for distributed embedded applications, ACM SIGPLAN Notices 38 (7) (2003)
153–162. doi:http://doi.acm.org/10.1145/780731.780754.

[11] A. Toom, T. Naks, M. Panter, M. Grandriau, I. Wati, Gene-Auto: an Automatic Code Generator for
a safe subset of Simulink/Stateflow and Scicos, in: ERTS’08, 4th European symposium on Real Time
Systems, 2008.

[12] R. Lublinerman, C. Szegedy, S. Tripakis, Modular code generation from synchronous block diagrams:
modularity vs. code size, in: Proceedings of the 36th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’09, ACM, New York, NY, USA, 2009, pp. 78–89.
doi:http://doi.acm.org/10.1145/1480881.1480893.
URL http://doi.acm.org/10.1145/1480881.1480893

[13] A. Cavalcanti, P. Clayton, C. O’Halloran, From control law diagrams to Ada via Circus, Formal Aspects
of Computing (2011) 1–4810.1007/s00165-010-0170-3.
URL http://dx.doi.org/10.1007/s00165-010-0170-3

[14] M. V. M. Oliveira, A. L. C. Cavalcanti, J. C. P. Woodcock, Unifying Theories in ProofPowerZ, Formal
Aspects of Computing, online firstDOI 10.1007/s00165-007-0044-5.

[15] J. Woodcock, J. Davies, Using Z: specification, refinement, and proof, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1996.

[16] A. W. Roscoe, The Theory and Practice of Concurrency, Prentice-Hall Series in Computer Science,
Prentice-Hall, New York, 1998, Oxford.

[17] E. W. Dijkstra, Guarded commands, nondeterminacy and formal derivation of programs, Commun. ACM
18 (8) (1975) 453–457. doi:http://doi.acm.org/10.1145/360933.360975.

[18] C. C. Morgan, Programming from Specifications, 2nd Edition, Prentice Hall International Series in
Computer Science, 1994.

[19] C. A. R. Hoare, H. Jifeng, Unifying Theories of Programming, Prentice Hall, 1998.

[20] A. L. C. Cavalcanti, A. C. A. Sampaio, J. C. P. Woodcock, A Refinement Strategy for Circus, Formal
Aspects of Computing 15 (2 - 3) (2003) 146 — 181.

[21] M. A. Xavier, A. L. C. Cavalcanti, A. C. A. Sampaio, Type Checking Circus Specifications, in: A. M.
Moreira, L. Ribeiro (Eds.), SBMF 2006: Brazilian Symposium on Formal Methods, 2006, pp. 105 – 120.

[22] M. V. M. Oliveira, A. L. C. Cavalcanti, ArcAngelC: a Refinement Tactic Language for Circus, Electronic
Notes in Theoretical Computer Science 214C (2008) 203 – 229, Elsevier B. V.
URL http://dx.doi.org/10.1016/j.entcs.2008.06.010

[23] A. F. Freitas, A. L. C. Cavalcanti, Automatic Translation from Circus to Java, in: J. Misra, T. Nipkow,
E. Sekerinski (Eds.), FM 2006: Formal Methods, Vol. 4085 of Lecture Notes in Computer Science,
Springer-Verlag, 2006, pp. 115 – 130.

27



[24] M. V. M. Oliveira, A. L. C. Cavalcanti, J. C. P. Woodcock, Unifying theories in ProofPower-Z, in:
S. Dunne, B. Stoddart (Eds.), UTP 2006: First International Symposium on Unifying Theories of Pro-
gramming, Vol. 4010 of LNCS, Springer-Verlag, 2006, pp. 123–140.

[25] A. L. C. Cavalcanti, P. Clayton, C. O’Halloran, Control Law Diagrams in Circus, in: J. Fitzgerald, I. J.
Hayes, A. Tarlecki (Eds.), FM 2005: Formal Methods, Vol. 3582 of Lecture Notes in Computer Science,
Springer-Verlag, 2005, pp. 253 – 268.

[26] R. Arthan, P. Caseley, C. O’Halloran, A. Smith, ClawZ: control laws in Z, in: ICFEM, 2000, pp. 169.

[27] M. M. Adams, P. B. Clayton, ClawZ: Cost-Effective Formal Verification for Control Systems, in: K.-K.
Lau, R. Banach (Eds.), ICFEM, Vol. 3785 of Lecture Notes in Computer Science, Springer, 2005, pp.
465–479.
URL http://dx.doi.org/10.1007/11576280_32

[28] D. Harel, Statecharts: A visual formalism for complex systems, Science of Computer Programming 8 (3)
(1987) 231–274.

[29] A. Miyazawa, A. Cavalcanti, Towards the formal verification of implementations of Stateflow Diagrams,
Tech. Rep. YCS-2010-449, University of York (2010).

[30] A. Miyazawa, A. Cavalcanti, A formal semantics of Stateflow charts, Tech. Rep. YCS-2011-461, University
of York (2011).

[31] Formal Systems (Europe) Ltd., Process Behaviour Explorer, www.fsel.com.

[32] Formal Systems (Europe) Ltd., Failures-Divergence Refinement, www.fsel.com.

[33] P. Malik, M. Utting, CZT: A Framework for Z Tools, in: ZB. Lecture, Springer, 2005, pp. 65–84.

[34] G. Hamon, J. Rushby, An operational semantics for Stateflow, in: M. Wermelinger, T. Margaria-Steffen
(Eds.), Fundamental Approaches to Software Engineering:7th International Conference (FASE), Vol.
2984 of Lecture Notes in Computer Science, Springer-Verlag, Barcelona, Spain, 2004, pp. 229–243.

[35] G. Hamon, A denotational semantics for stateflow, in: W. Wolf (Ed.), EMSOFT, ACM, 2005, pp. 164–
172.
URL http://doi.acm.org/10.1145/1086228.1086260

[36] R. Alur, A. Kanade, S. Ramesh, K. C. Shashidhar, Symbolic analysis for improving simula-
tion coverage of simulink/stateflow models, in: Proceedings of the 8th ACM international con-
ference on Embedded software, EMSOFT ’08, ACM, New York, NY, USA, 2008, pp. 89–98.
doi:http://doi.acm.org/10.1145/1450058.1450071.
URL http://doi.acm.org/10.1145/1450058.1450071

[37] A. Kanade, R. Alur, F. Ivančić, S. Ramesh, S. Sankaranarayanan, K. C. Shashidhar, Generating and
Analyzing Symbolic Traces of Simulink/Stateflow Models, in: Proceedings of the 21st International
Conference on Computer Aided Verification, CAV ’09, Springer-Verlag, Berlin, Heidelberg, 2009, pp.
430–445. doi:http://dx.doi.org/10.1007/978-3-642-02658-4 33.
URL http://dx.doi.org/10.1007/978-3-642-02658-4\_33

[38] C. Banphawatthanarak, B. H. Krogh, Verification of stateflow diagrams using smv: sf2smv 2.0, Tech.
Rep. CMU-ECE-2000-020, Carnegie Mellon University (2000).

[39] A. Tiwari, Formal semantics and analysis methods for Simulink Stateflow models, Tech. rep., SRI Inter-
national, http://www.csl.sri.com/∼tiwari/stateflow.html (2002).

[40] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, F. Maraninchi, Defining and translating a ”safe” subset of
simulink/stateflow into lustre, in: G. C. Buttazzo (Ed.), EMSOFT, ACM, 2004, pp. 259–268.
URL http://doi.acm.org/10.1145/1017753.1017795

[41] I. Toyn, A. Galloway, Proving properties of Stateflow models using ISO Standard Z and CADiZ, in: In
ZB-2005, vol. 3455 of LNCS, 2005, pp. 104–123.

[42] C. Banphawatthanarak, B. Krogh, K. Butts, Symbolic verification of executable control specifications,
in: Proceedings of the 1999 IEEE International Symposium on Computer Aided Control System Design,
1999, pp. 581–586.

28



[43] N. Halbwachs, P. Caspi, P. Raymond, D. Pilaud, The synchronous data-flow programming language
LUSTRE, in: Proceedings of the IEEE, Vol. 79, 1991, pp. 1305 – 1320.

[44] A. L. C. Cavalcanti, P. Clayton, Verification of Control Systems using Circus, in: Proceedings of the 11th
IEEE International Conference on Engineering of Complex Computer Systems, IEEE Computer Society,
2006, pp. 269 – 278.

29


