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Abstract SysML is a variant of UML for systems de-

sign. Several formalisations of SysML (and UML) are

available. Our work is distinctive in two ways: a seman-

tics for re�nement and for a representative collection of

elements from the UML4SysML pro�le (blocks, state

machines, activities, and interactions) used in combi-

nation. We provide a means to analyse and re�ne de-

sign models speci�ed using SysML. This facilitates the

discovery of problems earlier in the system develop-

ment lifecycle, reducing time and costs of production.

Here, we describe our semantics, which is de�ned us-

ing a state-rich process algebra and implemented in a

tool for automatic generation of formal models. We also

show how the semantics can be used for re�nement-

based analysis and development. Our case study is a

leadership-election protocol, a critical component of an

industrial application. Our major contribution is a frame-

work for reasoning using re�nement about systems spec-

i�ed by collections of SysML diagrams.
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1 Introduction

The increasing complexity of systems have led to in-

creasing di�culty in design. The standard approach to

development, based on trial and error, with testing used

at later stages to identify errors, is costly and leads to

unpredictable delivery times. In addition, for critical

systems, for which safety is a major concern, early ver-

i�cation and validation (V&V) is recognised as a valu-

able approach to promote dependability. In this con-

text, we identify three important and desirable features

of a V&V technique: (i) a graphical modelling language;

(ii) formal and rigorous reasoning, and (iii) automated

support for modelling and reasoning.

Our goal is to address these points with a re�nement

technique for SysML [1] supported by tools. SysML is

a UML-based language. There is wide availability of

literature on SysML [2,3], tool support from vendors

like IBM [4], Atego [5], and Sparx Systems [6].

Re�nement in our context is a technique to assess

behaviour preservation. If a model M1 is re�ned by a

model M2, then M2 preserves the behaviour of M1: the

traces of interactions, deadlocks, and divergences ofM2

are also possible for M1. With re�nement, we enable

reasoning at various levels of abstraction, and about

model transformations that may take place between

an abstract and a concrete model capturing particular

architectural designs, data representations, and (dis-

tributed) algorithms. For example, if state machines

are built as part of the conceptual and low-level design

models, we can make sure that the state machine in the

low-level design respects the requirements embedded in

that of the conceptual diagrams.

SysML provides �exibility and generality for model

development and evolution. Its semantics is described

in natural language. To apply automated techniques for
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analysis and veri�cation of SysML models, however, we

require a precise well-de�ned semantics.

Our main contributions are: (i) guidelines of usage

for construction of meaningful SysML models; (ii) a

state-rich process algebraic semantics for SysML mod-

els, in particular, a CML semantics; and (iii) applica-

tions of the CML model in reasoning at the diagram-

matic level. Our focus is on SysML due to our interest

in system engineering, particularly design of systems,

but most of our results are also relevant for UML.

We support re�nement-based analysis and veri�ca-

tion by providing a semantics for SysML elements based

on CML (COMPASS Modelling Language) [7]. Many

have pursued formalisation of SysML and UML: there

are works on individual diagrams [8�11], and on combi-

nations of diagrams [12]. Typically, approaches for col-

lections of elements represented in di�erent diagrams

consider constrained subsets of the abstract syntax.

The fUML (Semantics of a Foundational Subset for

Executable UML Models) [13], for example, proposes

a standard semantics for a subset of UML limited to

classes and activities. It has an executable semantics de-

scribed in Java, and an axiomatic semantics. The PSCS

(Precise Semantics of UML Composite Structures) [14]

is an extension of fUML and was developed to enable

the usage of UML composite structures. Various works

provide support for reasoning about fUML models via

transformation to a target language for which formal

veri�cation techniques are available [15,16]. Our main

contribution is support for re�nement-based reasoning.

We support automatic generation (via translation rules)

of re�nement models from the diagrammatic notation

and automated analysis of the generated models.

We focus on diagrams that facilitate design, namely

the block-de�nition, internal block, state machine, ac-

tivity, and sequence diagrams. Our work is distinctive

in its coverage of the abstract syntax of the model ele-

ments, and, most importantly, it adopts an integrated

approach. We de�ne a single formal model that cap-

tures the data and behavioural aspects of a SysML

model that uses a collection of diagrams. It is an in-

tegrated semantics in that the semantics of the individ-

ual elements are combined to support reasoning about

complete models that include information about related

blocks, activities, state machines, and interactions.

To support reasoning at the level of the diagrams,

so that developers and veri�ers are not required to have

expertise on CML or formal techniques, our semantics

can be used for automatic generation of CML models

from SysML models. It takes the form of a function that

maps SysML to CML and is de�ned by transformation

rules, which are implemented in a model-generation

tool based on Atego's Artisan Studio [5].

To enable the construction of meaningful CMLmod-

els, we de�ne usage guidelines for SysML. Basically,

block diagrams are used to de�ne the system and its

components, internal block diagrams to de�ne the rela-

tionship between them, each operation is implemented

as a state machine or an activity, but not both, and

sequence diagrams de�ne scenarios of the system. Our

guidelines ensure that we can produce useful CML mod-

els, but are not restrictive. Using an industrial case

study, namely, a leadership-election protocol used in an

industrial multimedia system of systems, we illustrate

the guidelines and the use of re�nement.

CML semantics for block, internal block, activity,

and sequence diagrams have been presented in [17�19].

Here, we provide a revised and integrated version of

these works. The CML semantics of each of the SysML

elements has been changed to accommodate the inte-

gration. To establish its relevance, we discuss and illus-

trate the kind of analysis enabled by these comprehen-

sive models. We note, however, that due to the com-

positionality of the CML constructs with respect to re-

�nement, independent analysis of the individual SysML

elements and of their components is still possible.

Using our CML semantics, we can de�ne notions

of re�nement for complete SysML models as well as

individual elements and their constructs. We show how

these notions can be used to underpin re�nement laws

that support the sound transformation of diagrammatic

models. We also show how we can use re�nement to

analyse properties of diagrammatic models.

Next, we give an overview of SysML and CML.

Section 3 presents the SysML modelling pattern that

characterises our guidelines of usage. Sections 4 and 5

present our CML semantics: we give an overview of

our approach to integrated modelling and discuss the

model of the individual SysML elements. Section 6 is

concerned with the analysis of models. In Section 7 we

present our e�orts to implement and validate our tech-

nique. Section 8 presents related work, and in Section 9

we summarise our results and indicate future work.

2 Preliminaries

Here, we brie�y introduce SysML (structural and be-

havioural diagrams) and CML, including the key con-

cept of re�nement in CML.

2.1 SysML

Like UML, SysML provides several diagrammatic mod-

elling constructs. Here, we describe the structural and

behavioural model elements covered by our semantics;
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Fig. 1: A block-de�nition diagram.

a comprehensive account is in [1�3]. To illustrate the

SysML notation, we use diagrams of our case study,

the leadership-election protocol. It is a system (of sys-

tems) including a number of devices that automatically

elect a leader among them. The main requirement is

that there is exactly one leader. This is captured in

a conceptual design speci�ed by an abstract SysML

model. The implementation uses a distributed archi-

tecture with no centralised control; it is speci�ed by an

alternative, more concrete, SysML model.

2.1.1 Structural diagrams

These include the block-de�nition and internal block

diagrams, which we describe next.

Block-de�nition diagrams depict blocks and their re-

lationships. A block can represent any abstract or real

entity: a piece of hardware, a software, or a physical ob-

ject, for instance. The whole system is also represented

by a block. Figure 1 shows a diagram for the concrete

model of our case study. There are three blocks: SoS

represents the complete system (of systems), Device,

three devices, and Bus, one bus.

Blocks can have attributes and operations. Attrib-

utes are properties of a block. For instance, in Figure 1,

id is an integer attribute of the block Device, and packs

is an attribute of Bus. The attributes pD and pB are

ports, which are used for connecting blocks.

An operation captures functional behaviour prov-

ided by the block. For instance, the state of a Device can

be updated via the operation updateDeviceInfo(). Oper-

ations are triggered by synchronous or asynchronous re-

quests. A signal, on the other hand, does not have a spe-

ci�c behaviour, but may trigger behaviours in state ma-

chines and activities. It is used for asynchronous com-

munication between blocks or with the environment.

A block can be related to another by an associa-

tion, which indicates a potential relationship between

parts of the blocks. Blocks can also be related by com-

position, indicated by an arrow with a �lled diamond

Fig. 2: Abstract model: block-de�nition diagram

Fig. 3: An example of an internal block diagram.

at one end. A composition establishes a whole-part re-

lationship: the block at the diamond end is the whole

composite block and those at the other end are the part

blocks. A part owned by composition de�nes a local us-

age of its de�ning block within the speci�c context to

which the part belongs. In our example, SoS is a com-

posite block; its parts are three Devices and one Bus.

In the abstract model of the leadership-election pro-

tocol, the system is modelled by the block LE SoS in

Figure 2, which has three properties, devices, Active

and Elected, the operations turn on and turn o�, and

the signal tick. The attributes record the devices, those

that are Active, and the current Elected leader. The type

of Elected is a set because the system can be in an unde-

sired state where no devices claim to be the leader. The

type Device has a single component, id, that records the

identi�er of a device. The operations of LE SoS take as

a parameter an identi�er in devices and model the ac-

tivation and deactivation of the corresponding device.

The signal tick models the discrete passage of time.

Internal block diagrams are similar to block-de�nition

diagrams, but typically show the internal connections

between parts of a block. Figure 3 shows the parts of

the block SoS de�ned in the diagram in Figure 1.

In an internal block diagram, a connector links two

or more parts of a block, either directly or via ports, to

allow them to communicate. For example, in Figure 3,

three Device parts named dev are connected to one Bus

part named bus. This is de�ned via the connector be-
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Fig. 4: Abstract model: state machine diagram

tween the ports pD and pB, represented by a solid line.

This is in contrast with an association, which speci�es

that there can be links between any parts of the asso-

ciated blocks, rather than that there is a link between

parts owned by the same other part.

Ports can de�ne interfaces. For example, the ports

pD and pB de�ne provided and required interfaces. A

provided interface is depicted as a circle and identi�es

a port that produces outputs to its client. A required

interface is depicted as a semicircle and identi�es a port

that takes inputs from its client.

Finally, the number in a port de�nes its multiplicity.

For instance, each device has a port pD with multiplic-

ity one, whereas the port pB of the single instance of

the bus has multiplicity 3. This speci�es the connection

of one bus with three devices.

2.1.2 Behavioural diagrams

We now give a brief overview of the notation for state

machine, activity and sequence diagrams.

state machine diagrams in SysML are described in a

notation that is more restrictive than that of UML, but

compatible [20, pp. 541]. A state machine model reacts

to events from the environment stored in an event pool.

The order in which events in the pool are processed is

unspeci�ed. Figures 4 and 5 show examples of state

machines from our case study. The state machine in

Figure 4 is from the abstract model. The state machine

in Figure 5 is for a Device block of the concrete model.

States can be simple or composite. Simple states

do not have substates. For instance, O� in Figure 5 is

simple, while On is composite. Initial states are depicted

as �lled circles. Figure 5 shows two initial states: that

of the entire state machine and that of the state On.

A state may have three types of behaviour: entry

and exit actions, and do activities. Entry actions are

executed when the state is activated, exit actions, when

the state is exited, and do activities, when the entry ac-

tion �nishes its behaviour. Do activities may either stop

or continue inde�nitely until a transition interrupts it

and exits the state. Figure 5 shows the do activities of

the states Unde�ned, Follower and Leader. These activi-

ties store in currentState the new value currentState+1

modulo the number nDevices of devices.

A transition connects a source to a target state; it

can be triggered by a signal and have a guard. For ex-

ample, in Figure 5, the transition from the state O� to

the state On is triggered by a signal turnOn. The tran-

sition from Unde�ned to Leader takes place whenever

the state Unde�ned is active, its do activity has �nished,

and the guard currentState == id and nLeaders == 0

and petitionAccepted is true. (This means that a de-

vice becomes a leader whenever its petition has been

accepted and there are no leaders.)

The state machine in Figure 4 contains a single

state with four transitions: two represented implicitly

inside the state, triggered by turn on and turn o�, and

two shown explicitly, both triggered by tick. The for-

mer model the activation and deactivation of devices

by adding and removing their identi�ers from Active.

Two transitions are triggered by the signal tick. The

�rst is executed when there are active devices, but ei-

ther there is no leader or it is no longer active; it spec-

i�es that Elected must be updated to contain exactly

one of the identi�ers of the active devices. The second

transition is executed if there is a leader but no active

devices, and speci�es that Elected must be emptied.

The state machine depicted in Figure 5 shows how

a device decides whether it is a leader. Since there is

no centralised control, each device maintains informa-

tion about all others. A device communicates with the

others in cycles, in which it receives information from

the others and broadcasts its data. At the end of each

cycle a device knows the roles of all devices.

Activity diagrams are based on classic �ow charts and

are used, for example, for low-level modelling of the de-

tailed behaviour of an operation, or high-level modelling

of work�ows or processes.

An activity diagram has three basic elements: activ-

ity nodes, edges, and regions. An activity node repre-

sents an action, a control or an object. An action node

denotes a behaviour in the activity. In Figure 6, up-

dateDeviceInfo, �Value Speci�cation Action� and update-

CurrentState are action nodes. The node named �Value

Speci�cation Action� computes the value of an expres-

sion (++currentState) mod nDevices that is then sent

to updateCurrentState via the output pin s.

Control nodes manipulate the �ow of actions, for

example, via decisions, forks and joins. A decision is,
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Fig. 5: A state machine diagram.

Fig. 6: Example of an activity diagram.

typically, an if-then-else choice. A fork creates parallel

�ows, and a join de�nes a point where they unite.

Object nodes represent data used by an activity: in-

puts and outputs to the activity or to its nodes. For

example, in Figure 6, DeviceID is an object node taken

as input by the node updateDeviceInfo via the pin id.

Edges can be of two types: control �ow or object

�ow. A control �ow de�nes when and in which order

the actions run. Control �ows are shown as dashed ar-

rows. An object �ow describes how inputs and outputs

�ow between actions. Object �ows are depicted as solid

arrows; in Figure 6 the DeviceID object is passed to up-

dateDeviceInfo and ((++currentState) mod nDevices) is

sent to the action updateCurrentState.

Activities use a token semantics to control the �ow

of execution. A node can be executed only when all its

inputs have received tokens, and, once it �nishes its be-

haviour, it provides tokens on its outputs. Some nodes

create tokens (for instance, an initial node provides to-

kens on its outputs), while others remove tokens (for

instance, a �ow �nal node consumes tokens that arrive

on it). An activity �nishes its execution when there are

no tokens �owing through it.

Sequence diagrams are used to de�ne and present UM-

L/SysML Interactions [21,1]. They describe operational

scenarios of a system with an emphasis on sequences of

interactions between objects. This is achieved through

the use of lifelines. Each participant of the diagram,

typically, an instance of a block, possesses a lifeline, so

that we can represent a message-exchange order.

The sequence diagram in Figure 7 presents a sce-

nario of our example where a user turns on three de-

vices and each of them noti�es the bus that the leader

is unde�ned. The user is depicted as an actor, while

the three devices and the bus are instances Dev1, Dev2,

Dev3, and bus of a block. A lifeline is represented by a

dotted vertical line under each participant.

Participants communicate via messages. For exam-

ple, Figure 7 shows the actor sending messages to turn

on devices. Messages are sent in sequence along a par-

ticipant lifeline. So, the �rst message sent by the actor

is to Dev1, the second to Dev2, and the third to Dev3.

Messages can be of three types: asynchronous (open

arrow), synchronous call (closed arrow), or reply from

a synchronous call (dashed arrow). All messages shown

in Figure 7 are asynchronous.

A lifeline can include a state invariant: a constraint

on the blocks. If the constraint holds, any message-

exchange order just established is a valid scenario of

the system, otherwise, it is forbidden. State invariants

de�ne properties of the system in terms of the attributes

of a block. At the bottom of the lifeline Dev3 in Fig-

ure 7, there is an invariant Dev3.claim == Undecided,

which veri�es that the value of the attribute claim of
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Fig. 7: Example of a sequence diagram.

Dev3 is Undecided after it has been turned on and all

its packages have been transmitted.

A sequence diagram can include an InteractionUse

element to refer to another sequence diagram, so that

part of its de�nition is provided by the referenced di-

agram. In this way, a sequence diagram can be used

several times in the de�nition of others.

Message exchanges can be grouped inside combined

fragments that describe operators like parallel compo-

sition, conditional, and loops. Figure 7 shows a parallel

combined fragment PAR.

A complete SysML model contains several elements

modelled and visualised through diagrams. Each dia-

gram provides a di�erent point of view of a system

that must complement and be consistent with the oth-

ers. State machine and activity diagrams describe be-

haviours using the attributes and calling the operations

of blocks. A state machine diagram may call an activ-

ity. state machine and activity diagrams may call an

operation and send a signal to a block. Finally, a se-

quence diagram describes a scenario where exchanged

messages between blocks are used to represent either

operation calls or transmission of signals.

Our semantics de�nes an integrated view of the var-

ious elements de�ned by these diagrams.

2.2 CML

CML is a formal language based on VDM [22] (Vi-

enna Development Method), for data modelling, and

CSP [23] (Communicating Sequential Processes), for in-

teraction modelling, with support for re�nement. We

introduce CML through excerpts from the semantics of

the SysML model of the leadership-election protocol.

A comprehensive description is in [24], and we explain

any extra notation as needed later on.

Like in CSP, a system and its components are mod-

elled in CML as processes that communicate via chan-

nels. A core concept is re�nement, a behaviour-preserv-

ing relation between processes. If a CML process P is re-

�ned by another process Q, written P vP Q, then Q can

only engage in interactions that are possible for P, and

can only deadlock or livelock, when P can. Re�nement

is the main reasoning technique available for CML, and

we exploit it in our work to reason about SysML models

via their CML semantics de�ned here.

A CML speci�cation is formed of a sequence of para-

graphs that specify types, values, functions, channels,

and channel sets to support the speci�cation of pro-

cesses. For example, in our semantics, each block of a

SysML model is identi�ed by a value of the type ID

de�ned below as a sequence of tokens.

types

ID = seq of token ...

The primitive type token supports only equality. Record

types, like turnOnS below, are declared for operations

and signals. In this example, the records of the type

turnOnS have a single �eld $id.

turnOnS :: $id: token ...

Union types like S below are used to gather these records.

S = ... | turnOnS | turnOffS

Values are constants used in the model. For instance,

the value empty_bag in our example is de�ned below as

the empty map. We represent bags as functions that

associate a value with its multiplicity.

values

public empty_bag = {|->}

Similarly, functions may be declared to manipulate val-

ues. For instance, the function in_bag, which checks if a

value is in a bag, is declared as follows.

functions

public in_bag: token * Bag -> bool

in_bag(o,b) == (o in set dom b) and b(o) > 0

For a token o and a bag b, we have that in_bag(o,b)

is true if, and only if, o is in the domain of b and is

associated with a value b(o) greater than zero.

Communication in CML takes place through chan-

nels that may communicate zero or more values. In our

example, interaction with a device takes place via oper-
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ation calls and signal transmissions. These interactions

are modelled by channels like Device_sig declared below.

channels

Device_sig: nat*ID*ID*S ...

It communicates a natural number that identi�es a sig-

nal transmission, the identi�er of the block transmitting

the signal, the identi�er of the target of the transmis-

sion, and the signal, represented by an element of S.

A set of communications can be grouped in channel

sets, which can be used to make communications inter-

nal or to de�ne synchronisation requirements in a par-

allelism. In our example, the communications allowed

by the model of the part device(1) of the block SoS are

speci�ed by the following channel set.

chansets

cs_Device1 =

{| Device_sig.n.o.([ mk_token("device (1)")])

| n: nat , o: ID|} ...

This set includes the events associated with the channel

Device_sig, where the �rst parameter n is any natural

number, the second is any identi�er o, and the third is

the identi�er [mk_token("device(1)")] of device(1).

A process declares a state, auxiliary actions, and

a main action at the end that speci�es its behaviour.

For example, the process simple_Device below models the

basic aspects of the block Device to provide access to

attributes, signals and operations.

process simple_Device = $id: ID @ begin

state devices: DeviceSequence

id: int

...

enabled: Bag := empty_bag

The state of a process is encapsulated, that is, not vis-

ible outside the process. Above, the state devices of

simple_Device contains one component for each prop-

erty (id,...) of the block Device, plus the extra com-

ponent enabled, which records the operations that have

been called but not completed yet.

Actions are de�ned using a combination of VDM

data operations and CSP operators. For example, the

auxiliary action Device_state of simple_Device shown be-

low models access to attributes. It is a recursive action.

actions Device_state = mu X @ (

Device_get_id?o!$id!id -> Skip

[]

Device_set_id?o!$id?x -> id := x

[]

...

); X

Recursion is introduced by the construct mu X @ F(X),

which de�nes the name X for use in the action F(X) to

stand for recursive calls. In each iteration of the recur-

sion in Device_state, an external choice ([]) of communi-

cations, representing reads or writes to the state compo-

nents, is o�ered to the environment of the process. Com-

munications are speci�ed using CSP-like pre�xings, in

which a communication like Device_get_id?o!$id!id is

followed by an action. In communications, the parame-

ters of the channel are decorated with ? or ! to denote

inputs or outputs. The action Skip describes immediate

termination; id := x assigns the input value x to id.

In the de�nition of a process, auxiliary actions, if

any, are composed to specify a main action that comes

at the end to de�ne the overall behaviour of the process.

For simple_Device, the main action is as shown below.

@ Device_state

[||{ devices , id, ...} | {enabled }||]

Device_requests

end

It is speci�ed as the parallel composition of auxiliary

actions Device_state and Device_requests without syn-

chronisation, that is, in interleaving, as de�ned by the

operator [||...||]. Any parallel composition must par-

tition the state between the parallel actions to avoid

data races. In this case, Device_state has write access to

all the components corresponding to attributes of the

block Device, and Device_requests has access to enabled.

They can both read the initial value of all components.

There is also a notion of re�nement for actions; we

write A vA B when an action A is re�ned by an ac-

tion B. Like for processes, A vP B means that B can

only engage in interactions that are possible for A, and

can only deadlock or livelock when A can. Overall, re-

�nement corresponds to reduction in non-determinism,

but in the case of processes, the data model is hidden.

A process may also be de�ned in terms of other pro-

cesses. For instance, in the CMLmodel of the leadership-

election protocol, simple_Device is composed with an-

other process controller_Device to de�ne a new process

with the added capability of storing received events in

a pool and managing the pool.

Models evolve during development, and sometimes,

practitioners need to verify that a new model conforms

to an earlier, perhaps more abstract, version. Re�ne-

ment allows the veri�cation that the behaviour of the

new model conforms to that of the abstract model in

the sense previously described, where the notion of be-

haviour includes interactions, deadlocks, and livelocks.

In addition, we can use re�nement to analyse a model

by comparing it to a description of properties, that is,

a validation model, rather than another system model.
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Re�nement can be used to reason about SysML

models of a system once the SysML elements have an

integrated formal semantics for re�nement.

3 Modelling patterns

One of the main features of SysML, namely its �ex-

ibility, hinders the task of enriching it with a formal

semantics. Certain uses of the notations are not ad-

dressed in the informal semantics, and even explicitly

allowed omissions (like operation de�nitions) can lead

to incomplete SysML models that do not have mean-

ingful CML models. To avoid these problems, we pro-

pose guidelines of usage for SysML. In what follows, we

describe these guidelines and illustrate them using the

leadership-election case study.

Overall, the guidelines maximise the de�nedness of

a SysML model and are similar to constraints imposed

by most tools to enable automatic code generation. We

have four types of guidelines: entity-de�nition, instance-

level, action-language assumption, and simpli�cation

assumptions. The action-language assumptions �ll in

an omission regarding the notation in which SysML ac-

tions (for instance, entry actions in state machine di-

agrams) are expressed, and the simpli�cation assump-

tions identify a manageable, yet comprehensive, subset

of SysML models to characterise our approach.

We now describe each type of guideline.

A. Entity-de�nition:

1. operations are de�ned;

2. composite blocks contain only parts, ports and

connectors (that is, do not have attributes, op-

erations, or signals);

3. associations are realised by connectors between

parts;

4. aggregations are not used (since the distinction

to an association seems rather ambiguous and

weak);

5. connectors between ports, as opposed to those

that realise associations, are not typed.

B. Instance-level :

1. composite blocks have their structure speci�ed

by internal block diagrams;

2. multiplicities with the * character are not al-

lowed;

3. all blocks in a composition appear in the associ-

ated internal block diagram in numbers compat-

ible with their multiplicities;

4. ports are connected only to other ports.

C. Action-language assumption: actions are expressed

in a subset of CML used to de�ne data operations,

enriched with statements for sending a signal or call-

ing an operation of another block through a port or

association, and for calling an activity;

D. Simpli�cation assumptions:

1. the behaviour of a block is speci�ed by a state

machine (or not at all);

2. activities are used to model operations and aux-

iliary behaviours;

3. sequence diagrams are used to model scenarios;

4. activity and sequence diagrams must not be re-

cursive (mutually or otherwise);

5. operation calls are synchronous.

While our entity-de�nition guidelines disallow compos-

ite blocks that contain state machines and activities,

it is possible to model such blocks by adding a non-

composite part block that holds the state machines and

activities. As for the restriction on connection types,

since a connection between ports is speci�ed by the

provided and required interfaces of the connected ports,

typing information on the connector is unnecessary.

The instance-level guidelines disallow multiplicities

with upper bound of *, because they add the possibility

of dynamic creation of blocks, which leads to intractable

CML models due to state explosion. A port can be con-

nected directly to a part, but this feature is not treated

in this version of the formalisation.

Regarding the action-language assumption, it does

not allow channel-based communication to model in-

teractions as in CML. Instead, attributes, signals and

operations de�ne the services provided by an applica-

tion. SysML actions are, therefore, data operations that

explain how the state embedded in blocks and other op-

erations can be used to specify the services. We could

use any data language to specify the actions, and we

choose the CML data language for convenience. The

really important point is that the language is de�ned.

These guidelines capture the way in which the rel-

evant diagrams are commonly used. More detailed de-

scriptions and examples can be found in [25].

Besides these guidelines, the designer must use the

subset of the UML/SysML abstract syntax covered by

our semantics. Figure 8 indicates the constructs cov-

ered for the di�erent model elements. We note that, to-

gether, the CML model generator and the CML parser

enforce the use of our guidelines.

The abstract and concrete models of the leadership-

election protocol in Section 2.1 respect the guidelines

presented. The block-de�nition and internal block di-

agrams satisfy the entity-de�nition (A) and instance-

level (B) guidelines. For instance, as required by guide-

line A1, all the operations of the block LE SoS in Fig-

ure 2 are de�ned using the state machine diagram in

Figure 4. Moreover, as required by B2, we assume a

�xed number of devices: three.
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Fig. 8: Constructs covered by our semantics.

Regarding the action-language assumption, the do

activities actions of the states Unde�ned, Leader and

Follower of the state machine in Figure 5 are speci�ed

as CML assignments. In the activity shown in Figure 6,

the action updateCurrentState is opaque: its behaviour

is not de�ned using diagrams. Instead, we use the CML-

based data language also following our guidelines.

Finally, we have sequence diagrams that specify sce-

narios (guideline D3). Figure 7 shows a possible initial-

isation of the system where three devices are turned on

and they send their data in parallel to the network.

For didactic reasons, most of the diagrams presented

are simpli�ed. The complete model is available in [26].

4 Model integration

While a SysML model can be visualised via diagrams,

its actual representation is a set of interconnected ele-

ments conforming to the metamodel speci�ed in [1,21].

For instance, a block-de�nition diagram is not recorded

explicitly in the SysML model; it is just a means of

declaring blocks of the model. Furthermore, di�erent

diagrams may contribute to the same model element.

For example, if a block-de�nition diagram introduces

a block B with a property n, and an internal block di-

agram adds a port p to the block B, in the model, B

contains both the property n and the port p.

Accordingly, a SysML model that follows our guide-

lines is, essentially, a collection of blocks, state ma-

chines, activities, and interactions. The parts of com-

posite blocks are structured using connectors, simple

blocks have state machines specifying their behaviours,

operations are speci�ed either by the block's state ma-

chine or by an associated activity, and activities and

state machines use CML data operations.

Typically, a SysML model contains several simple

and composite blocks as components, with the system

as a whole modelled by a composite block. Since the

CML construct used to represent systems and their

components is a process, blocks, state machines, activ-

ities and ports are all modelled as CML processes.

The services de�ned by a SysML model are the oper-

ations, signals, and public attributes of its blocks. These

are all represented in CML by channels that are used

by the CML process that models the system for com-

munication with the environment, and that, therefore,

characterise the interface of this CML process.

In this section, we present our approach to de�n-

ing the CML model corresponding to a SysML model

integrating several diagrams as described above. We

�rst address in Section 4.1 the case of a system de-

�ned just by a simple block; we call such basic models

non-hierarchical. An example is the abstract model of

the leadership-election protocol. Models containing sev-

eral simple blocks can be handled by considering each

of the blocks (and associated diagrams) in isolation.

Next, we explain how our approach extends to con-

sider the integration of elements in hierarchical mod-

els, which include composite (as well as simple) blocks.

The modelling approach in this case builds on that for

non-hierarchical models. Finally, in Section 4.3, we dis-

cuss the models of interactions, and how they de�ne

properties of the overall model of a system.

4.1 Non-hierarchical models

Figure 9 gives an overview of the architecture of the

CML models that we use to capture the semantics of

SysML models containing a single simple block. They

are de�ned by a composition of interacting processes,

each of which models the individual elements (state ma-

chines, activities, ports, and so on) of the SysML model.

Figure 9 depicts these processes as nodes. Five nodes

are shown: a block B, a state machine S1, a port p1, and

activities A1 and A2. The required cooperation between

them is indicated as arrows annotated with the set of

channels on which the processes synchronise. The mod-

elling strategy described allows elements to be mod-

elled and analysed independently. The compositionality

of parallelism (and all other CML constructs) with re-

spect to re�nement ensures that established properties

are preserved by the whole model.

The services of a SysML block are characterised by

its operations, signals, and attributes. As in the case of

a SysML model, this interface is represented in CML by

channels, which de�ne the interface of the process that

models the block. We have channels to represent oper-

ation calls, signal transmissions, and get-and-set opera-

tions that allow access to attributes, and channels that
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Fig. 9: Overview of the integration points of the semantics of a SysML model.

support the evaluation by state machines and activities

of a SysML event, which can be related to an operation

call or a signal reception.

A state machine accepts requests to process oper-

ations and signals of its block. So, the interface of the

CML process corresponding to a state machine includes

a channel that accepts a request to react to events cor-

responding to an operation call or a signal reception,

and another to provide responses regarding the realisa-

tion of the event. For instance, in the CML model of

the example displayed in Figure 5, the communications

between the Device block and its state machine happen

through the channels Device_inevent and Device_consumed.

In general, as shown in Figure 9, a channel B_inevent is

used by the block process B to send (a representation

of) a SysML event for treatment by the state machine,

and B_consumed is used by the state machine process to

indicate the result of evaluating such an event.

Additionally, in order to handle these SysML events,

the state machine may access the block's attributes.

This interaction between a block B and a state ma-

chine S1 is represented by the channels B_get_A and

B_set_A shown in Figure 9. They allow the state ma-

chine to read from and write to the attribute A of B.

For example, in Figure 5 the Device state machine ac-

cesses the block's attributes, for instance, in the action

petition:=petition-1. In the corresponding CML process,

these attribute accesses are carried out through the

channels Device_get_petition and Device_set_petition.

Besides accessing its block's attributes, the state

machine can call operations and send signals to that

block. This is achieved via the channels B_op and B_sig

indicated in Figure 9 for communication between B and

S1. These channels can be used by the environment to

request services of the block, and by other blocks, state

machines, and activities to use those services.

We observe that the channels detailed so far are

in the interface of both the block and state machine

processes. This ensures that when they are composed

in parallel, the block process can send SysML events to

be treated by the state machine process, and similarly,

the state machine can request services of the block.

The interface of a CML process that models an ac-

tivity contains channels that can be used to start the

execution of the activity, interrupt it, and indicate its

termination, and channels that can be used to call other

activities and wait for their termination, access block

operations, signals and attributes, and check the oc-

currence of an event in a block and request it. For

instance, the state machine LeadershipElection in Fig-

ure 5 calls the activity ActBroadcast with Leader as a

parameter. This is modelled by communications on the

channels named startActivity_ActBroadcast, for initiali-
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sation, interruptActivity_ActBroadcast, for interruption,

and endActivity_ActBroadcast, for termination.

Activities can also interact with a block to access its

attributes, send signals, and call operations. In CML,

these interactions take place using the same channels

used by state machines as described above. Namely, as

shown in Figure 9, the process for an activity A1 inter-

acts with that for a block B via the channels B_hasevent

and B_getevent to search and obtain events from the

block, B_op and B_sig to access operations and signals

of the block, B_get_A and B_set_A to access an attribute

A, and startActivity_A1 and endActivity_A1 to allow the

block to call the activity and wait for its termination.

Additionally, an activity may call another activity A2

through the channels startActivity_A2, endActivity_A2.

The interface of a process for a port p1 has channels

that allow sending and receiving operation calls and sig-

nals. The channels in this interface are divided in two

sets, which we call internal interface and external inter-

face. The channels in the internal interface are used to

interact with the process for the block that contains the

port as well as with those for its parts, state machines

and activities. The names of the channels in the inter-

nal interface are of the form p1_int_op and p1_int_sig as

shown in Figure 9. The external interface allows block

processes to interact with the port process via the pro-

cesses for their own ports. It contains channels named

p1_ext_op and p1_ext_sig, which are omitted in Figure 9,

and further illustrated in Figure 10.

We note that in the interface of a block process B,

the names of the channels used to model events corre-

sponding to operation calls and signals are of the form

B_op and B_sig. In the case of a port process, they are

p1_int_op and p1_int_sig. We use di�erent names be-

cause a port can restrict the operations and signals that

a block may accept or require. For instance, in Figure 3

the port pD communicates only calls to operations and

signals described in the interfaces DeviceInterface and

BusInterface. So, the CML process that models pD does

not include events that do not correspond to these calls

to operations and signals in its alphabet.

On the other hand, in the composition of processes

for a port and its block, events corresponding to the

same operation calls or the same signals need to be iden-

ti�ed. For this purpose, we use CML renaming, which

allows the renaming of the channels used in a process

or action. For instance, the action c?x -> Skip waits for

a value on the channel c and terminates, while the re-

named action (c?x -> Skip)[[c <- a, c <- c]] is equiva-

lent to (a?x -> Skip [] c?x -> Skip), that is, it waits for

a value on either the channel c or a before terminating.

In our models, this operator is used to rename the

channels p1_int_op and p1_int_sig of the internal inter-

face to B_op and B_sig, perhaps restricting the possible

communications through these channels if p1 is realis-

ing speci�c SysML interfaces as described earlier. This

mechanism allows the block and the port processes to

interact. In our example, as just mentioned, Figure 1

shows a Device block with a pD port, hence, we rename

the port channels pD_int_op and pD_int_sig to Device_op

and Device_sig, but restrict the accepted synchronisa-

tions to those corresponding to the operations and sig-

nals described in DeviceInterface and BusInterface.

The interaction between two port processes is also

modelled using renaming, but in this case the channels

in the external interfaces of the ports are renamed to

new channels that model the connector between the

ports. This is discussed in the next section.

Finally, the interaction between processes for a port

p1, state machines, and activities take place through

the channels p1_int_op and p1_int_sig and B_op, where B

is the block that contains the port. The �rst two chan-

nels are used by the processes for the state machines

and activities to call operations and send signals via

the port process, and the third channel to indicate the

completion of an operation call that they have handled.

Some of the presented channels are just for internal

communication, that is, they are not relevant for the

external environment of a block. For example, a block

should not access the state machine or the activities of

another block directly. The hiding operator of CML is

used to make channels internal; it is written A \\ {|c|}

for an action A and channel c, whose communications

are made not visible externally to A. By hiding the chan-

nels that a block process uses to communicate with its

state machine process, the block process cannot com-

municate on such channels externally. Also, these in-

ternal channels are indexed by the identi�cation of the

block's instance, and that prevents the communications

being sent to another instance's state machine as well.

Considering the channels shown in Figure 9, we have

that the channels B_inevent and B_consumed related to the

state machine processes, channels B_hasevent, B_getevent,

startActivity_A1, interruptActivity_A1 and endActivity_A1

related to the process for the activity A1, the similar

channels for the process for the activity A2, and the

channels p1_int_op and p1_int_sig, related to the pro-

cess for the port p1, are hidden to the environment of

the process for B. Finally, any channels B_get and B_set

related to private attributes of B are also hidden, as

are the communications on B_get and B_set channels

that are related to public attributes, but whose source

and target are elements of the diagrams themselves.

These communications correspond to internal uses (via

accesses and assignments) of the attributes of a block,
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rather than external observations described, for exam-

ple, in a sequence diagram.

Conversely, the services of a block are represented

by the remaining channels, which correspond to sig-

nals, operations, attributes with public visibility, and

the external interface of ports. In our example, they are

LE_SoS_get_Active, LE_SoS_set_Active, LE_SoS_get_Elected,

LE_SoS_set_Elected, LE_SoS_op, and LE_SoS_sig. In general,

for a process block B like that in Figure 9, we have

channels B_op, B_sig, p1_ext_op, p1_ext_sig, and B_get_A

and B_set_A, for attributes A of B with public visibility.

These channels communicate at least three pieces of

control data relevant to the interactions. Two of them

are identi�cations of the sender and the receiver of the

interaction. For instance, in the leadership-election ex-

ample, we have three instances of the Device block inter-

acting with one instance of a Bus block, as depicted in

Figure 3, and each of the devices can send transmitPack

signals to the bus. Each channel Bus_sig that commu-

nicates the transmitPack signal carries the information

of which device sent the signal and the target of the

message, which is the instance of the block Bus.

This control information is important for several

reasons. Firstly, it is used to ensure correct communi-

cation between the CML processes for block instances,

which run in parallel and synchronise on these chan-

nels. Additionally, with the control information in the

communications, the traces of the CML processes rep-

resent accurately communications between the di�erent

block instances of a system. Finally, it is used to ensure

that the reply of an operation call is returned to the

speci�c block process that requested it. The same call

can be sent by di�erent elements of behaviour (state

machine or activity) in a block. For example, the block

B from Figure 9 can call an operation of another block

through its state machine S1 or through its activity A1.

The event corresponding to the return of this operation

call must be sent exactly to the element of behaviour

that requested it to allow it to continue.

In the CML model, the identi�er of an element is

a sequence of tokens that describes the position in the

SysMLmodel hierarchy of that element. Thus, when the

state machine S1 process makes the call, the identi�er

of the sender is <B,S1>, where B is the token representing

an instance of the block B and S1 is that representing

the state machine S1. Similarly, when the call comes

from the activity process A1, the identi�er is <B,A1>.

A third piece of control data is needed when the

same interaction can occur concurrently inside the same

element of behaviour: for instance, two calls to the same

operation and with the same target, each originating

from two di�erent parallel regions (r1 and r2) of a state

machine S1. In order to di�erentiate the calls, each

channel communicates a unique index of the call repre-

sented by a natural number. Therefore, the communi-

cation corresponding to the call from r1 has a natural

number index, while for the call from r2 we use a dif-

ferent index. These indices avoid that the reply to the

call from r1 is delivered to the r2 action or vice-versa.

This third piece of control data is not relevant for

the environment of the block process that represents

the system. It is part of an internal protocol to ensure

correct communication between processes and actions.

The top-level block that represents the system, there-

fore, exposes a di�erent version of the channels without

this index. This is achieved through renaming. For in-

stance, the LE SOS block process has its operations re-

named in LE_SOS[[LE_SOS_op.m <- LE_SOS_OP | m: nat]] to

de�ne the system model. Communications LE_SOS_op.m,

where m is a natural number representing the index that

identi�es the communication context, are renamed to

LE_SOS_OP, which is a version of LE_SOS_op without the

index. The same strategy is applied to signal channels.

4.2 Hierarchical models

We now address blocks that are structured in hierar-

chies. Figure 10 depicts the CML processes that model

such blocks, and their ports, activities and state ma-

chines. In this �gure, processes are represented by solid

boxes, and the sets of channels that allow them to inter-

act are included in dashed boxes associated with arrows

connecting the relevant processes.

In Figure 10, while the block B is simple (and its

CML model has the structure illustrated in Figure 9),

A is composite and contains a block C as a part. The

SysML model to which A belongs is, therefore, hierar-

chical. The block C may also have a state machine and

activities, but C can only communicate with B through

the interface of its owner block A. Although it is not

shown in this example, our semantics caters for mod-

els with hierarchies of any depth; for example, C could

have other blocks as its parts.

As indicated in the previous section, in general, as

shown in Figure 10, processes for blocks can commu-

nicate through channels A_op, A_sig, A_get_X, A_set_X,

p_ext_op and p_ext_sig, where A is the name of the block,

X is the name of a public attribute of A, and p is the

name of a port of A. As explained, for simple blocks,

the channels p_int_op and p_int_sig corresponding to a

port p are renamed to model communications between

the processes for p and for its associated block.

In the case of a composite block, a port is used for

communication with its part blocks rather than with

state machines or activities. We recall that our guide-

line A2 requires that composite blocks do not have state
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Fig. 10: Overview of the communication between the models of multiple blocks.

machines and activities. So, in this case, the channels

r_ext_op and p2_int_op used by the processes for the

ports r and p2 in Figure 10 are renamed to c_r_p2_op,

and similarly the channels r_ext_sig and p2_int_sig are

renamed to c_r_p2_sig. Using this strategy, the block

process A can relay a message received by the port pro-

cess p2 by sending it to the port process r.

4.3 Scenarios

According to our guidelines, described in Section 3, se-

quence diagrams are used to validate the system model.

Since a SysML model is composed of several ele-

ments visualised through a variety of diagrams, estab-

lishing that they de�ne a consistent integrated view of

a system is not an easy task. In addition, �nding unde-

sired behaviours is hard due to the lack of tools. To ad-

dress these issues, our guidelines cater for the possibility

of analysis of the SysML model against scenarios de-

scribed by sequence diagrams. Using the CML models

of both the SysML system model and of an interaction,

we can compare the traces speci�ed by an interaction

against those of the system model through re�nement.

Thus, the scenario described by a sequence diagram, for

example, takes the role of a rule that should be valid

for the SysML model. This approach provides a �exi-

ble way for validation because sequence diagrams can

be constructed using a rich variety of constructors that

increases the expressiveness of the validation models.

To perform this validation, we must relate the mes-

sages depicted in an interaction to the services of the

SysML system model. As said before, these services are

operations and signals of the blocks. A sequence dia-

gram de�nes interactions in terms of the messages ex-

changed by the blocks, corresponding to these services.

The messages of a sequence diagram are modelled

in CML by communications similar to those used in

the CML speci�cation of a SysML system model. An

additional channel inv is used to identify traces of sce-

narios de�ned by a sequence diagram as forbidden. This

channel is in the interface of the CML model of an in-

teraction, but not in that of the CML system model.

The channels used in the model of an interaction to

represent messages have slightly di�erent types when

compared to those in the CML system model. In the

model of an interaction, the channels communicate iden-

ti�ers of the source and the target of the messages. In

addition, they communicate an index to identify a mes-

sage in the interaction and an extra tag corresponding

to the point where the message is sent (tag s) or where

it is received (tag r). The de�nition of the CML pro-

cess for an interaction, like that for a system model, uses

renaming to eliminate the index and the tag. Since in-
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SysML meta-model element CML element

Block Process
Activity Process
State Machine Process
Interaction Process
Port Process
Connector Channel
InterfaceBlock Set of tokens
Operation Record Type
Signal Record Type
Event Communication

Table 1: SysML-CML correspondence

dices and tags are used for internal control, they are not

relevant when we compare the CML models of an in-

teraction and a system. The re�nement-based analysis

strategy for comparison is discussed in Section 6.

This section has provided an integrated view of how

the CML model of the di�erent SysML elements relate

to each other. This uses the individual semantics pro-

vided for each element discussed in the next section.

5 CML generation

We now present our formalisation of the individual ele-

ments of SysML. We describe models of blocks in Sec-

tion 5.1, of state machines in Section 5.2, of activities

in Section 5.3, and of interactions in Section 5.4.

Table 1 summarises the correspondence between el-

ements of a SysML model and elements of CML. As

discussed in the previous section, SysML elements that

exhibit some form of behaviour, namely, blocks, ports,

activities and state machines, are modelled by CML

processes. Interactions described in terms of sequence

diagrams are also represented by a CML process. Con-

nectors, which specify communication links, are mod-

elled by channels. Static elements (that is, without in-

trinsic behaviour), namely operations and signals, are

modelled by record types. Operations are considered

static because they specify the message that is sent

to blocks, not the behaviour of the operation itself,

which is speci�ed by a state machine or activity. In-

terfaceBlocks, which are collections of static elements,

are modelled by sets of tokens.

Our formalisation of SysML models is a denota-

tional semantics: we de�ne functions from the constructs

of the SysML metamodel to constructs of the CML ab-

stract syntax. These functions are described by trans-

lation rules that take well-de�ned elements of SysML

and output well formed CML components. The types

of both the parameters and the return value of the func-

tions are speci�ed in the rules. Table 2 lists the main

semantic functions and the elements to which they ap-

Semantic function SysML element

t_model Model

t_simple_block Simple block

t_composite_block_process Composite block

t_port Port

t_type_operation Operation

t_type_signal Signal

t_statemachine State machine and Block

t_activity_diagrams Activity and Block

t_interaction Interaction

Table 2: Main semantic functions for SysML models.

t_model(m: SysML model): program =

"types

ID = seq of token"

...

for each b in m.AllBlocks do

if b.isSimple

then t_simple_block(b)

else t_composite_block_process(b)

end if

end for

for each int in m.AllInteractions do

t_interaction(int)

end for

Fig. 11: Translation rule for SysML models.

ply. Since a state machine or activity is de�ned in the

context of a block, the semantic functions for these el-

ements take a block as a second parameter.

The function that de�nes the semantics of a SysML

model is t_model. It is de�ned by the application of other

semantic functions in a top-down fashion. Figure 11

shows an excerpt of the corresponding translation rule;

the complete de�nition of this and all other rules can

be found in [25]. We use a meta-language to de�ne the

rules that resembles a simple programming language

with if-then-else and for each commands, function

calls, and access to SysML metamodel elements; text

between double quotes is explicit CML code.

The function t_model takes a SysML model m as an

input, and de�nes a CML program. As illustrated in Sec-

tion 2.2, the CML model de�nes types. For instance,

ID identi�es the sources and targets of messages and

is de�ned as a sequence of tokens; types for the op-

erations, signals and interfaces, omitted in Figure 11,

are also de�ned. Next, we have the de�nition of the

processes for each block as identi�ed in the component

AllBlocks of m (in accordance with the SysML meta-

model). If it is a simple block, then we use the function

t_simple_block(), otherwise, we use t_composite_block()
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to give the de�nition. At the bottom of the rule, we

have the de�nition of the processes for interactions: the

function t_interaction() is used for each interaction, as

identi�ed in the component AllInteractions of m.

In what follows, we give an informal description of

the semantic functions.

5.1 Blocks

While Section 4 discusses the interfaces of the block

models, here, we discuss the structure of those models.

The result of applying either t simple block or

t composite block process to a block B is a pro-

cess whose state components are the attributes of B

and whose behaviour consists of accepting operation

calls and signals, which are modelled as communica-

tions through channels B_op and B_sig (see Figure 9).

For a composite block, like A in Figure 10, the CML

model re�ects its structure. The CML process A is de-

�ned by the parallel composition of the processes that

model the parts of A: a process for C in parallel with

processes for the ports r and p2, synchronising as ex-

plained in Section 4. The required synchronisation is

identi�ed by the connectors in the internal block dia-

gram of A. For instance, the internal representation of

SoS in Figure 1 is re�ected in the internal block dia-

gram in Figure 3, which illustrates the communication

between instances of Device and Bus. Hence, the process

for SoS is de�ned by the parallel composition of three

processes for the instances of Device, three for each port

of each instance of Device, one for the instance of Bus,

and another three for each port of the instance of Bus.

The synchronisation is determined by the connectors

between the ports pD and pB as they require and pro-

vide services of DeviceInterface and BusInterface.

A process that models a simple block is de�ned by

a parallel composition as well. In this case, the paral-

lel processes include those that represent the ports, the

state machine and the activities of the block, and two

other processes. The �rst models the handling of op-

erations, signals, and access to attributes. The second

models the management of events (received operations

and signals) via a pool and an associated queue of de-

ferred events. The event pool records events for later

treatment, and the queue of deferred events is where

events that are deferred by the state machine are stored.

For instance, the block B in Figure 10 is simple: it

has a state machine and two activities. Its process is

the parallel composition of the processes simple_B, which

models its services (operations, signals and access to at-

tributes), controller_B, which models the management

of events, port_p1, which models the port p1 and con-

trols the routing of operations and signals in and out of

Fig. 12: Overview of the model of state machines.

B, stm_S1, which models the state machine, and act_A1

and act_A2, which models the activities.

5.2 State machines

The CMLmodel of a state machine is de�ned by a single

process whose actions model the elements of the state

machine as shown in Figure 12. Each state, region, �nal

state, transition (starting from a state), join and fork

pseudostate is modelled by a CML action, and all these

actions are composed in parallel to de�ne the overall

behaviour of the CML process.

As previously indicated, the process that models

a state machine is de�ned by the application of the

function t statemachine to that state machine and

its block. This process is parametrised by an identi�er

for the instance of the block to which the state machine

belongs. Its behaviour is de�ned by a recursion that, at

each iteration, receives an event through the channel

B_inevent, communicates it to the actions for its active

states and regions, and indicates through B_consumed the

result of processing the event. This processing may lead

to actions being executed, transitions being triggered,

and states being activated and deactivated. The model

of the execution of actions and the veri�cation of con-

ditions of transitions may involve communications over

the channels B_get_ (to read the state of the block's pro-

cess), B_set_ (to modify that state), and *_op (to answer

and send operation calls) and *_sig (to send signals),

where * stands for any block name.

The CML actions that model elements of the state

machine (for instance, states and transitions) de�ne

protocols that specify how they interact with each other.

This level of granularity allows us to focus on particular

elements when analysing the CML model, and to trace

back any issues to the original SysML model.

The actions that model the elements of the state

machine are coordinated by a machine action. It de�nes

the iterative behaviour described above; it initialises

the state machine and controls the processing of events.

In the initialisation, machine requests the actions that

model the top regions of the state machine to carry out
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Fig. 13: Overview of the representation of activities in CML.

the behaviour corresponding to entering the regions.

(This leads to a request for substates to be entered,

and so on, until all regions of an active state are active,

and exactly one substate of each active region is active.)

The processing of events is de�ned by a loop in

which, at each iteration, the machine action accepts an

event from the block (process), sends it to the top-

region actions, which de�ne the result of processing the

event, sends the result back to the block process, exe-

cutes the actions for the transitions whose triggers con-

tain the event and whose guards evaluate to true, and

waits for the transition actions to �nish executing, be-

fore recursing. The pattern of interactions between the

actions that model states and regions is similar.

5.3 Activities

The translation of the activities of a block is speci�ed by

the function t activity diagrams, which introduces

a process de�ned by the interleaving of the processes for

each activity. Each individual activity is translated by

t activity diagram, which uses functions that de�ne

two processes: one that models the activity itself, and

another that composes in parallel the �rst process with

the processes for other activities that are invoked by

call behaviour actions. This allows parallel executions

of the same activity, if it can be called by a block and

by another activity in parallel, for example.

Figure 13 depicts how an activity process is struc-

tured, taking as an example the activity A1 of block B

from Figure 9. Each activity is described by means of a

process (Main Process) whose behaviour is speci�ed as

the parallel composition of a process that models the

(internal) behaviour (Internal Process) of the activity it-

self with other processes for activities that may be used

inside this activity as call behaviour actions (CBA Pro-

cess). If there is no call behaviour action, then the main

process is simply the internal process.

In the de�nition of the internal process, we have a

CML action for each node of the activity. Due to the to-

ken semantics of activities, there is also a CML action

(Token Manager) for managing tokens; it models the

control of the ending of an activity according to avail-

able tokens. All CML actions are composed in parallel

in the main action of the activity internal process.

Control and object �ows are established via syn-

chronisations. Actions that model nodes have channels

in their alphabet used for this purpose, so that the al-

phabetised parallelism of these actions enforce the or-

der of execution of nodes depicted in the activity. We

provide a CML representation for object nodes, all con-

trol nodes, and several actions including call operation,

send signal, accept event, opaque, value speci�cation,

call behaviour, read self, and read structural feature.

The main action of the internal process is recursive,

with each iteration de�ning the behaviour of one exe-

cution of the activity via a sequential composition of

three actions (Figure 9). The �rst, Start Activity, syn-

chronises on the startActivity_A1 channel to �re the be-

ginning of the activity �ow and take any value when

needed. For instance, the state machine Leadership Elec-

tion of Figure 5 calls the activity ActBroadcast using

call ActBroadcast passing the value corresponding to

the claim of the Device. In the CML model, the state

machine and the activity processes synchronise on the

channel startActivity_ActBroadcast.

The Start Activity action is followed by the parallel

composition of the CML actions for all nodes of the

activity along with Token Manager. The third action,

End Activity, communicates that the activity �nished

along with any output values via the endActivity_A1. For

instance, when the activity ActBroadcast ends its �ow,
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Fig. 14: Semantic representation of interactions in

CML.

it synchronises with the process for the state machine

LeadershipElection on endActivity_ActBroadcast.

5.4 Interactions

The function t interaction de�nes the translation of

an interaction using two other functions. If the inter-

action has no InteractionUse elements, t simple int

is used. Otherwise, we use t complex int, which is it-

self de�ned in terms of t simple int. Any interaction

referenced by an InteractionUse element is also trans-

lated. We note that there can be no mutual dependen-

cies, via InteractionUse elements, in the construction of

sequence diagrams. This is not explicitly ruled out in

SysML, but it is in our guidelines (D4).

The CML process that models an interaction takes

as parameters the identi�cations of the block instances

that either are used in a lifeline or send messages through

gates. This makes the model of the interaction as generic

as the interaction itself, which is valid for any instances

of the block types used in the interaction.

Figure 14 shows how the semantics of interactions

is captured by CML elements. The interaction de�ned

by the diagram on the left-hand side is translated to a

CML process, whose structure is indicated in the box

on the right-hand side. This CML process is de�ned by

the parallelism of three CML actions: two related to

the lifelines of the interaction and another to model is

MessagesBu�er. Each lifeline is represented by a CML

action de�ned by the sequential composition of CML

actions that represent interaction fragments in the life-

line: either message occurrences or combined fragments.

Each message exchange is represented in CML by

two communications, one corresponding to the point

where the message is sent and another to the point

where it is received. The channels used are B_op and

B_sig presented in Section 4.

The CML action MessagesBuffer coordinates the mes-

sage exchange between lifelines of the interaction. It in-

terleaves CML actions for each of the messages.

A message action (for example, msg_m1, msg_m2 and

msg_m3 in Figure 14) synchronises on the sending com-

munication with the sender lifeline and then on the re-

ceiving communication with the receiver lifeline. In the

action for a sender lifeline, in the case of a synchronous

message, the sending communication is followed by the

reply communication, so that the sender stays blocked

until the reply is received. For asynchronous messages,

the sender is ready to proceed with its behaviour after

the sending communication. If the constraint of a state

invariant yields false, a synchronisation on the extra

channel inv, which is used speci�cally in our semantics

for interactions, marks an invalid scenario.

The main action of the interaction CML process

composes in parallel the lifeline actions together with

the MessagesBuffer action.

Next we present how our semantics can be used for

analysis and re�nement of SysML models.

6 Applications of our semantics

This section describes applications of our semantics.

The �rst, covered in Section 6.1, is a re�nement cal-

culus for SysML, and the second, in Section 6.2, is the

use of the CML techniques to analyse SysML models.

6.1 Re�nement in SysML

One of the immediate results that can be obtained from

our semantics is a notion of re�nement for SysML. For

example, we say that a block B1 is re�ned by a block

B2, written B1 vM
Block B2, if, and only if, the CML

process B1 that models the block B1 is re�ned by the

process B2 that models B2.

De�nition 1 (Block re�nement) LetM be a SysML

system model, and B1 and B2 blocks of M, then

B1 vM
Block B2 ⇔

t model(M).B1 vP t model(M).B2

The function t model produces the CML semantics of

the SysML model and is presented in Section 5. Since a

system is speci�ed by a block in a SysML model, block

re�nement is the main relation that must be veri�ed to

establish re�nement between SysML models.

As already said, blocks de�ne systems by de�ning

the operations and signals they o�er and require, and

their public attributes. A re�nement B1 vM
Block B2,

therefore, requires the following properties to hold.
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1. B1 and B2 must accept exactly the same public

signals and public operations;

2. B1 and B2 must have exactly the same public at-

tributes (in this way, both blocks o�er the same pos-

sibilities for setting their values);

3. for each public operation of B1, if its return value

is non-deterministically chosen from a set S, the

same operation on block B2 must return a value

that is non-deterministically chosen from a subset

of S. Moreover, the inputs of each public operation

of B1 must be accepted by that operation on block

B2;

4. for each attribute ofB1, if its value is non-deterministically

chosen from a set S, the same property on the block

B2 must have a value non-deterministically chosen

from a subset of S.

In our example, it is possible to show that, in a scenario

of stability (that is, a period where no devices turn on

or o� and the election can terminate) the abstract sys-

tem model is re�ned by the concrete model we have

presented. This re�nement holds because the abstract

and concrete interfaces are the same and, during sta-

bility, the abstract LE SoS selects non-deterministically

a leader, while the concrete SoS chooses the leader de-

terministically using internal communications to share

information among the distributed devices.

To establish re�nement of blocks compositionally, it

is necessary to de�ne re�nement relations for the di�er-

ent elements of SysML (state machines, states, transi-

tions, activities, and so on). In what follows, we discuss

the formalisation of these relations in terms of the CML

semantics of a SysML model and CML re�nement.

The notions of re�nement for state machines and

several other elements of a SysML model are de�ned in

a way similar to that used in De�nition 1. Such direct

lift of the CML notion of process re�nement, is not

possible for all elements, though.

For instance, re�nement of states is de�ned in terms

of CML action re�nement, and requires consideration of

behaviours involving substates, subregions and internal

transitions. The hierarchical structure of a state ma-

chine is not represented in the structure of the parallel

composition that de�nes the main action of the state

machine process, though (see Figure 12). All actions for

all components of the state machine are auxiliary ac-

tions of its process, irrespective of their position in the

state machine. It is the alphabets of the actions in the

parallel composition that specify on which channels the

actions synchronise to execute the protocol that de�nes

the interaction between states and substates, states and

transitions, and so on. In other words, instead of repro-

ducing the hierarchical structure of the state machine in

CML, we use the alphabets to restrict the interactions

to the appropriate group of actions (for instance, those

for a state and its substates), and hide all interactions

that are internal to the state machine after all actions

are composed. This is necessary due to certain features

of state machines, such as interlevel transitions, which

break the simple hierarchy of states and substates by

allowing one element to a�ect the execution of elements

at unrelated levels of the hierarchy.

When comparing two states, however, it is neces-

sary to consider just the aspects of the protocol that

a�ect other parts of the state machine, for instance,

transitions reaching and leaving the state as well as any

actions such as operation calls and assignments. Other

aspects of the protocol that a�ect only the subregions

and substates of the states being compared, such as

communications that allow a transition to exit a sub-

state and enter another, should be considered internal.

Accordingly, informally, a state s1 is re�ned by an-

other state s2, written s1 vM
State s2, if, and only if, the

overall (external) behaviour of the action for s1 is re-

�ned by the overall behaviour of the action for s2. The

action for a state s includes those for the subregions,

substates, and transitions, but with channels used to

establish the internal behaviours hidden.

Formally, the de�nition of state re�nement uses the

following syntactic functions that can be easily de�ned

for any SysML model: reg, a function from a state to

the set of subregions of that state, st, a function from

a states to the sets of substates of that state, trans,

a function from a state to a set of transitions whose

source or target, but not both, is the state or one of its

substates, int, a function from a state to a set of transi-

tions whose source and target are the state or one of its

substates, and name, a function from a state, region or

transition to the name used in CML for the action that

models the given element. De�nition 2 characterises the

behaviour of a state s via a function behaviour that

takes a model M and a state s, and speci�es the action

that combines the behaviours of the substates, subre-

gions and internal transitions of s in parallel, and hides

the channels used to de�ne the internal protocol of s.

De�nition 2 (State re�nement) LetM be a SysML

model, and s1 and s2 be states of M, then

s1 vM
State s2 ⇔ behaviour(M, s1) vA behaviour(M, s2)

where

behaviour(M, s) =

(|| e in set ({s} ∪ reg(s) ∪ st(s) ∪ trans(s)) @

[chanset_name(e)] t_model(M).name(e)

)\\ dunion {e in set (reg(s) ∪ st(s) ∪ int(s)) @

ichanset_name(e)

}
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Law 1 Region introduction.

vM
State

Law 2 Block decomposition.

vM
Block

provided

1. I1 ∩ I2 = ∅ ∧ I1 ∪ I2 ⊆ Block;
2. triggers(R1) ∩ triggers(R2) = usedV (R1) ∩ usedV R2 = ∅;
3. provided(I1) ∩ trigger(R2) = required(I1) ∩ used(R2) = ∅;
4. provided(I2) ∩ trigger(R2) = required(I2) ∩ used(R2) = ∅.

where

1. Block1 ∩Block2 = ∅ ∧ Block1 ∪Block2 = Block;
2. provided(II1) = Block1 ∩ used(R2) ∧ required(II1) = Block2 ∩ used(R1);
3. provided(II2) = Block2 ∩ used(R1) ∧ required(II2) = Block1 ∩ used(R2).

Intuitively, state re�nement allows the internal struc-

ture of a state to be modi�ed as long as the observable

behaviours (for instance, operation calls) are preserved.

The channel set chanset_name(e) identi�es all the

communications on which the action for a SysML el-

ement e can engage. By considering all elements in

{s} ∪ reg(s)∪ st(s)∪ trans(s), we characterise all com-

munications involved in the actions that model the ex-

ecution of s as a whole. The set ichanset_name(e), on

the other hand, identi�es the subset of chanset_name(e)

containing only those communications that are used to

control the interaction of e with other state machine el-

ements. This excludes, for example, communications to

access attributes and call operations. Above, by consid-
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ering all elements in reg(s)∪ st(s)∪ int(s), we hide the
communications related to the internal protocol of s. It

is worth mentioning that int(s) ⊆ trans(s) and, only

the channels associated with the transitions in int(s),

which are internal to s, are hidden.

It is possible to re�ne our abstract model of the

leadership-election protocol to obtain a concrete model.

To express all laws that are needed, we have to extend

SysML to include some concepts central to re�nement,

like hiding. We describe below, however, a viable re-

�nement strategy with three phases. The �rst phase

introduces the Bus block in Figure 1. The second phase

introduces parallel regions into the state machine in

Figure 4, and parallelises the election algorithm using

these regions and the Bus block to allow communication

between the regions. Finally, the third phase breaks the

block LE SoS into a set of Device blocks, introducing the

concrete architecture depicted in Figures 1 and 3.

We illustrate the de�nition and use of SysML re�ne-

ment laws through Laws 1 and 2, which are applied in

the second and third phases. The �rst introduces par-

allel regions that are later completed with distributed

behaviours, and the second decomposes a block with

parallel behaviour into two separate blocks.

Law 1 applies to a composite state with a single

region (and any number of substates and transitions).

It can be used to re�ne such a state into a composite

state with two regions: the �rst is the original region,

and the second is empty. This re�nement holds because

the two regions are executed in parallel, and the empty

region does not introduce new behaviours observable

outside the composite state.

In our example, as shown in Figure 15, Law 1 can

be used to introduce an empty region in parallel with

another containing Atomic State. Further re�nements

can enrich the empty region with the behaviours of an

individual device. At the end of the second phase, a

new parallel region has been introduced for each device,

and the (centralised) behaviour has been distributed

through the new parallel regions.

Law 2 is a block-re�nement law that applies to a

simple block with two ports, p1 and p2, and a state

machine that at the top level has two regions, R1 and

R2. The interfaces I1 and I2 represent the provided and

required interfaces of the ports p1 and p2. Law 2 can

be used to re�ne such a simple block into a composite

block with the same two ports and two parts (typed by

Block1 and Block2) each with two ports (p1 and ip1,

and p2 and ip2), and each with its own state machine

derived from one of the regions R1 and R2.

In the third phase of our re�nement strategy, Law 2

is applied three times to turn the block SoS into a com-

posite block containing an instance of the block Bus

and three instances of the block Device. The behaviour

of the newly introduced block Device is the behaviour

speci�ed by a single region of the state machine ob-

tained at the end of the second phase.

The provisos of Law 2 guarantee that no new op-

erations or signals are introduced and that their treat-

ments (in the state machine) are independent and, there-

fore, can be separated. In other words, Law 2 can be

applied as long as a subset of the operations and sig-

nals (the external ones) of the original block are parti-

tioned in the interfaces I1 and I2 (proviso 1), the tran-

sitions of the two top regions of the state machine have

no triggers in common, and the two regions do not share

block properties (proviso 2); the provided items (oper-

ations and signals) of I1 are not used in the triggers of

the transitions of region R2 and the required items of I1

are not used in the actions of the states and transitions

in R2 (proviso 3), and similarly the provided items of

I2 are not used in the triggers of the transitions of R1

and the required items of I2 are not used in the actions

of the states and transitions in R1 (proviso 4). Further

details of re�nement laws can be found in [27].

In our example, since the parallel regions of the

block SoS do not share operations (they use the Bus

block to communicate), the internal ports (ip1 and

ip2) do not require or provide any operations and can

later be removed using another re�nement law. Finally,

it is possible to apply Law 2 multiple times obtaining a

deep block decomposition, and then apply speci�c laws

to �atten the hierarchy. The resulting model obtained

after the application of the third phase is the model

presented in Figures 1 and 3.

The veri�cation of a re�nement is particularly useful

in the context where it is easier to verify properties of

the abstract model. The veri�cation of properties of

SysML models is discussed in the next section.

6.2 Analysis of SysML models

Here we describe how we can use the re�nement notions

of CML to validate a SysML model. In particular, we

focus on the use of animation and model checking of

the corresponding CML models.

For animation or model checking, the in�nite types

used in our semantics or de�ned in the SysML model

need to be eliminated. We have developed a tool to de-

�ne automatically �nite subsets of values of these types

using existing information about the CML semantics or

provided input regarding the SysML model types. For

instance, for the leadership-election protocol example,

the subset of identi�ers actually used in the CML model

is automatically de�ned, but the possible sets of Device,

a type de�ned in SysML, must be provided.
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vM
Stm

Fig. 15: Application of law Region introduction to abstract state machine.

Animation provides a means to exercise the SysML

model by executing the communications of the CML

model. This allows analysers to identify possible sce-

narios arising from usages of the services modelled. For

instance, in the leadership-election example, the com-

munication between the devices and the bus can be ex-

ercised according to the behaviours described by their

state machines and activities.

Another approach uses re�nement model checking

to verify that the system can execute according to sce-

narios described by a sequence diagram. Using traces

re�nement, we can verify that the traces de�ned by the

CML model of an interaction are in the set of traces of

the CML model of a SysML model de�ned via a collec-

tion of diagrams. In this case, the scenarios de�ned by

the interaction are valid for the system.

More formally, if M is the CML system model and

I is the CML model of the interaction, then M vT I

asserts that the traces of I are traces of M. The CML

trace semantics is adequate for analysis based on se-

quence diagrams because, in this case, we are inter-

ested only on the services of the system. We recall that

these correspond to operation calls, signals, and access

to attributes of blocks. Availability of services (dead-

lock) and divergences (livelocks) are not relevant for

properties de�ned by sequence diagrams.

As an example, we consider the �rst two sequence

diagrams in Figure 16, describing scenarios of the ab-

stract leadership-election model. Diagram 16a shows a
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(a) Valid scenario (b) Forbidden scenario
(c) Forbidden scenario
with state (d) Forbidden state

Fig. 16: Sequence diagram examples.

valid scenario, where the devices 1 and 2 are turned on

and the control event tick happens; we ignore the state

invariant card(s.Elected = 1) for now. Diagram 16b de-

scribes a forbidden scenario: the second message is a

turn o� operation call for the device 2, which has not

been turned on. For Diagram 16a, the model checker

does not return any counterexample, so the traces of

the interaction de�ned by the �rst sequence diagram

are valid. In the case of Diagram 16b, a counterexam-

ple shows a trace of the interaction that is not a trace of

the system model: <[A].[B].turnOn.1,[A].[B].turnOff.2>,

where [A] is the identi�er of the lifeline for Actor, and

[B] of the lifeline for LE SoS. This con�rms that the

scenario of Diagram 16b is not valid for the system.

We note, however, that when we consider the use

of state invariants like in Diagrams 16a, 16c, and 16d,

the re�nement M vT I may not hold even when the se-

quence diagram does specify a valid scenario of the sys-

tem. Unless there are no values of the state components

that violate the invariant, some of the traces of I in-

clude a synchronisation on the channel inv not used in

M. This is perhaps surprising, but since I does not have

a record of the state of M, and takes the value of the

state components as input (through get channels)

to evaluate the invariant, its traces covers all possible

values that a state component can have. On the other

hand, the de�nition of M typically restricts the possible

values of a state component in a given scenario via the

de�nition of the data operations and their behaviour.

For instance, in the Diagram 16a the state invariant

de�nes a property of the attribute Elected. Hence, the

CML process I for the interaction that the diagram de-

�nes takes an input on the channel LE_SOS_get_Elected

to evaluate the state invariant. Since this input is not

constrained, there are traces of I for all values that

Elected can take in this communication, including those

for which the constraint does hold: the empty set and

sets with more than one element. Continuations of such

traces include a synchronisation on inv, which is never

present in a trace of the CML process M for the leader-

ship-election protocol model. In addition, in M, the value

that can be output on LE_SOS_get_Elected after the com-

munications corresponding to the operations turnOn in-

dicated in the sequence diagram, are restricted. So,

traces for other communications on LE_SOS_get_Elected

are not included in M. In summary, there are several

traces of I that are not traces of M, even though the

sequence diagram presents a valid scenario of model

Consequently, to perform an accurate veri�cation

involving sequence diagrams with state invariants, we

use another strategy performed in two steps. We note

that the process M ‖
Σ\{inv}

I, which composes M in paral-

lel with I, synchronising on all their common channels,

captures the behaviour of the interaction when it uses

state information provided by the system model cap-

tured by M. The set Σ contains all the communications

used in our CML models. The traces of M ‖
Σ\{inv}

I are

the traces of I whose communications are also allowed

by M. Consequently, the problematic traces mentioned

above, recording spurious values for the state compo-

nents not allowed by M, are no longer included. On the

other hand, traces may be eliminated due to deadlocks

that arise when a trace of I is not allowed by M, not

because of the get and inv channels, but because

the communications corresponding to the sequence of

messages de�ned in the interaction are not allowed by

M. In this case, M ‖
Σ\{inv}

I is a traces re�nement of M,

even though the interaction is not valid for the system.

As an example, we consider Diagram 16c, which is a

variation of Diagram 16b with an added state invariant.

The sequence of messages de�ned by 16c are not valid

for the reasons already discussed earlier in relation to

Diagram 16b. In spite of that, the process M ‖
Σ\{inv}

I is a

traces re�nement of M. The parallelism M ‖
Σ\{inv}

I dead-

locks after the communication corresponding to the �rst
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message turnOn(1). At this point, the interaction pro-

cess I is ready only for a communication corresponding

to the second message turnO�(2), but such a communi-

cation is not available in the process M for the system

model at this point. The traces of the parallelism are

only the empty trace and the singleton trace with the

communication for turnOn(1). Both of these are traces

of M, and so M ‖
Σ\{inv}

I is a trace re�nement of M, al-

though the interaction is not valid.

Therefore, our analysis strategy based on sequence

diagrams with state invariants has two steps. First, we

verify the validity of the scenario in the sequence dia-

gram, ignoring all state invariants. Afterwards, we con-

sider the properties de�ned in state invariants.

Formally, in the �rst step, we check the re�nement

M vT I \\ {|inv, ∗ get ∗|}, where we consider only

traces of I without communications related to state in-

variants. We use * get * to refer to all get channels,

which are used in I only to access attributes for evalu-

ation of state invariants. If the re�nement holds, then

we check M vT (M ‖
Σ\{inv}

I) as suggested above.

When using this strategy, we �nd no counterex-

amples when considering Diagram 16a. As already ex-

plained, Diagram 16c describes a forbidden scenario

with a state invariant. In this case, only the �rst step

is necessary because, as the scenario is not valid, the

re�nement fails. The same counterexample presented

above as part of the analysis based on Diagram 16b

is relevant here. Diagram 16d, on the other hand, de-

scribes a forbidden scenario, where after two devices

are turned on and the tick event takes place, the num-

ber of elected leaders is two: only one leader must ex-

ist when there are active devices after a tick event. In

terms of our re�nement checking strategy, the re�ne-

ment checked in the �rst step holds, but a counterex-

ample for the re�nement checked in the second step

is the trace <[A].[B].turnOn.1, [A].[B].turnOff.2, inv>,

where inv indicates that card(s.Elected = 2) is violated.

7 Implementation and validation

To validate our semantics and enable automatic genera-

tion of CML models from SysML diagrams, we have de-

veloped a model-to-text transformation plug-in for At-

ego's Artisan Studio. This tool can produce code writ-

ten in various languages, using the ACS (Automatic

Code Synchronizer) generator. ACS is a real-time syn-

chroniser that keeps a model and its generated code

synchronised, and can also generate code on demand.

We use ACS to implement the SysML to CML trans-

formation rules described in Section 5 and produce a

CML model generator. When it is added as a plug-in,

the CML model-generation algorithm becomes avail-

able alongside those for other languages.

ACS generates code using a generation scheme im-

plemented using the Transformation Development Kit

(TDK). Our implementation of the CMLmodel-generation

consists of an encoding of the SysML to CML transfor-

mation rules, which the TDK then translates into a

CML generator plug-in.

All the rules of the block, state machine, and activ-

ity semantics are implemented. This has made it fea-

sible to use CML tools to validate the speci�ed CML

models. Besides syntactic errors, important modelling

issues have been identi�ed and addressed. For instance,

the encoding of interfaces as subsets of operations and

signals had to be modi�ed to cope with �niteness con-

straints imposed on sets (as opposed to types) by CML.

Other category of problems that has been addressed

is related to gaps between the semantics of the di�erent

elements, which became apparent during the implemen-

tation of the rules and the validation of the models gen-

erated by them. For example, the event management

processes (controller_B processes), which were part of

the models of state machines, have become part of the

models of blocks. The semantics of state machines was

initially developed in isolation, and, while the integra-

tion of the models for state machines and blocks did

not reveal any issues with the management of events,

the incorporation of activities uncovered issues in the

interaction of blocks, state machines, and activities via

events. It has been necessary for the controller process

to become part of the parallelism that de�nes a block

process to allow an activity process to search for par-

ticular events in a block's pool of events.

Figure 17 shows the analysis process supported by

the CML tool set. In step 1, we can use Artisan Studio

for building SysML models according to our guidelines,

and, in step 2, the CML plug-in can be used to gen-

erate an associated CML model. The translation via

compositional rules ensures full traceability from the

CML model back to SysML elements. In order to per-

form analysis via animation and model checking, how-

ever, we have to tailor the CML model to the particular

tools we have available. This is the aim of steps 3 (for

animation) and 5 (for model checking).

The transformed models can be animated using the

Symphony1 [28] tool in step 4. Symphony is an inte-

grated development environment for CML. It has sev-

eral tools for editing and executing CML speci�cations,

including an animator. Finally, the re�nement analy-

sis is performed in step 6 using the FDR3 [29] re�ne-

ment checker for CSP. For that, the CML speci�ca-

1 Available in http://symphonytool.org/.
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Fig. 17: Overview of the modelling approach work�ow.

tion is given a CSP representation optimised for model

checking as described in [30].

The modelling approach we have presented here is

the result obtained after validation with the tools de-

scribed in Figure 17. A number of example models gen-

erated by the tool are available in [26], including the

leadership-election example we have been discussing.

8 Related work

Here we discuss works on the formalisation of SysML

and UML models. Besides describing their main char-

acteristics, we also make a comparison regarding the

coverage of di�erent model elements.

Breu et al. [31] have proposed a formal language

called system model to specify object-oriented systems

in the style of UML. A system model speci�cation has

a pre-de�ned mathematical structure comprising object

identi�ers, message passing, behaviour, communication

histories, states, and so on. A UML diagram is modelled

as a projection of a system model, which is regarded

as a complete and uni�ed model of the entire system.

Class diagrams, state machine diagrams and sequence

diagrams can be translated to a system model. On the

other hand, although the semantics of these diagrams

is de�ned in a single formalism, the veri�cation of the

consistency among the diagrams and the development

of tools has not been reported.

The project Precise UML (pUML) started the devel-

opment of a precise semantic model for UML diagrams.

Lano and Evans [32] have proposed a systematic de-

velopment process using UML and a mix of syntactic

checks and formal veri�cation of consistency, enhance-

ments and re�nements among class diagrams, state-

charts, sequence, and collaboration diagrams. Model-

ling and veri�cation are carried out by hand, using

�rst-order set theory. No general translation strategy

like that presented here has been developed.

Kuske et al. [33] have proposed an integrated se-

mantics for UML class, object, and state machine dia-

grams using graph transformation. A state machine is

modelled as a transformation of an object diagram. The

integrated semantics allows us to visualise the evolution

of a particular object diagram with respect to the state

machine. This is, however, the only consistency check

supported. A consistency check similar to ours, based

on sequence diagrams, is proposed as future work.

Rasch and Wehrheim [34] have presented extensions

to the UML class-diagram notation in which bodies of

methods, their pre and postconditions, and the initial-

isations of attribute are speci�ed in Object-Z [43]. An

integrated semantics in CSP is proposed for these ex-

tended class diagrams and for state machine diagrams.

Five notions of consistency are used: at least one trace

does not deadlock (satis�ability); the model is dead-

lock free (basic consistency); every method is called at

least once (executability); and every method becomes

enabled in�nitely often (availability). We do not con-

sider all these checks, but they can be done in CML.

Additionally, our approach does not extend the SysML

diagrams, thus, formalisms are hidden from modellers.

In particular, the behaviours of operations are speci�ed

by activities and state machines.

Davies and Crichton [12] have also proposed a for-

mal semantics in CSP for UML class, object, state-

chart, sequence and collaboration diagrams. Both in-

ter and intra-object concurrency are addressed. Inter-

object concurrency allows objects to run in parallel,

while intra-object concurrency allows concurrent calls

of operations of a single object. The semantics is used

to verify both re�nements and the consistency between

sequence and the remaining diagrams. The translation
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Diagram
bdd obj coll ibd stm act sd par Formalism Purpose

Breu et al. [31] X X X N/A System Model Spec

Lano et al. [32] X X X N/A Set Theory Cons, Ref

Kuske et al. [33] X X X N/A Graph Theory Cons

Rasch et al. [34] X X N/A CSP Cons

Davies et al. [12] X X X X X N/A CSP Cons, Ref

Hamilton et al.[35] X N/A N/A X X X 001AXES Spec

Graves [36�38] X N/A N/A X Description Logic Well-Form

Café et al. [39] X N/A N/A X X SystemC-AMS Sim

Broy et al. [40�42] X X Set Theory Well-Form

fUML + PSCS [13,14] X X X PSL Well-Form

Our work X N/A N/A X X X X CML Cons, Ref

Table 3: Summary of related works.

from UML to CSP has been illustrated via examples.

No general transformation rules are introduced.

A semantics for SysML is proposed by Hamilton et

al. [35] in terms of axioms of the Universal Systems

Language 001AXES. This language is based on a set

of axioms and rules for applying function mappings

and type mappings. Three primitive structures spec-

ify a mapping via sequential and parallel composition,

and choice. Hamilton et al. have provided examples of

how to model block, internal block, parametric and ac-

tivity diagrams. No formal veri�cation is proposed in

this work; the focus is on the bene�ts of using a formal

semantics to prevent the introduction of bugs.

Graves [36�38] has proposed a semantics for SysML

block and internal block diagrams using a knowledge-

based model for UML class diagrams. Both diagrams

are formally speci�ed using the logic ALCQI [44]; this

encoding is proved to capture the part-decomposition

relation correctly as a tree-like structure. No other di-

agrams of SysML have been formalised in this work.

Café et al. [39] have proposed a semantics for SysML

block, internal block, and state machine diagrams as

a SystemC-AMS [45] program, an extension of Sys-

temC [46] for heterogeneous systems. Their main con-

tribution is an interpretation of SysML diagrams for

systems that mix continuous and discrete signals. Once

the SysML diagrams are translated to SystemC-AMS,

they can be simulated on standard tools. No formal

veri�cation is employed in that work.

Broy et al. [40�42] propose one of the �rst founda-

tional semantics for a subset of UML2, which is called

the system model. It is de�ned in terms of state ma-

chines that describe the behaviour of objects and their

data structures. The system model is formalised using

mathematical theories instead of existing formalisms. It

is claimed that the semantics of any UML model can

be represented in terms of the system model. Classes,

actions and activities are mapped to the system model

representation. Although the approach is signi�cant in

providing a unambiguous UML semantics, it lacks au-

tomatic support for analysing the models.

The fUML standard [13] provides a precise semantic

for UML classes, activities and actions, and an exten-

sion to fUML has been developed to cover composite

structures [14]. It has an executable semantics described

in pseudo Java-code, formally de�ned using PSL (Pro-

cess Speci�cation Language) [47], an axiomatic founda-

tional language. Despite providing a reliable semantics

for a subset of UML, fUML lacks tools for formal rea-

soning. Some works have proposed transformations to

other formal languages to enable analysis [15,16], and

fUML provides a basis for validation of these transfor-

mations. Besides the constructs covered by fUML, our

work considers state machines and interactions.

Table 3 summarises the works described above. The

columns bdd, obj, coll, ibd, stm, act, sd and par refer to

block-de�nition or class, object, collaboration, internal

block or composite structure, state machine, activity,

sequence and parametric diagrams. A tick X indicates

that the corresponding diagram is formalised by the

work of the authors named. Parametric diagrams are

not available in UML, while object and collaboration

diagrams are not used in SysML, so their coverage is not

applicable (N/A) in some lines of work. The purposes of

the formalisations are classi�ed as Spec (speci�cation),

Cons (consistency), Ref (re�nement), Well-Form (well-

formedness), and Sim (simulation).

Our work is distinctive in its de�nition of an in-

tegrated semantics for a substantial subset of SysML.

We have a comprehensive result in terms of both the

amount of diagrams covered (�ve diagrams�tied with

Davies and Crichton [12]) and the amount of construc-

tors covered per diagram. Our semantics cover 10 block-

de�nition diagram constructs, 12 state machine con-

structs, 21 activity diagram constructs, and 12 sequ-

ence-diagram constructs. Only [48�50] cover as many

constructs as we do per diagram and none, to our knowl-

edge, covers more constructors than we do. Moreover,
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our semantics is mechanised, that is, it is implemented

in a tool in order to generate CML speci�cations from

the SysML model automatically, and can be used as

part of a tool set for reasoning about SysML models.

9 Conclusions

We have presented a formal semantics for a compre-

hensive subset of SysML through a mapping into CML.

Building on, and adapting, our previous work on a CML

semantics for individual elements, we have de�ned a se-

mantics for an integrated view of a SysML model pro-

vided by the relationships between elements in a typi-

cal SysML design. Our work is extensive with respect

to the coverage of both elements and constructions of

diagrams, when considered in isolation.

To allow a coherent interpretation of a SysMLmodel,

we have proposed guidelines that assign some design

roles to be played by each of the considered elements

in an integrated model. The structural model and the

behaviour of its internal components are captured by

block, internal block, state machines and activity di-

agrams. Desired interactions that the model must (or

must not) allow are speci�ed by sequence diagrams.

Apart from generality and integration, the following

concerns have guided the design of our models.

� Abstraction. The semantics is given at a level of

abstraction that makes them suitable for a variety

of analysis techniques, including theorem proving.

They are not executable, but we have shown how

instantiation (to limit, for instance, the number of

blocks and operations that are allowed) can produce

an executable version of the model.

� Compositionality. Parts of the CML models can be

analysed independently, and problems found can be

traced back to elements of the SysML model.

� Independence of particular tools. The models de�ne

a theory of re�nement and programming for SysML.

We have explored this feature by considering re�ne-

ment notions and laws for SysML models.

The main purpose of our formal semantics is to serve

as a sound basis for a comprehensive reasoning strategy

for SysML models based on re�nement.

We take advantage of the wide range of CML con-

structions and operators, concerning both state and

control behaviour, as well as its re�nement theory. The

semantics is presented as a set of compositional trans-

lation rules whose automation contributes both for val-

idation and applicability of our work.

With the mapping of SysML into CML, it is possi-

ble to check whether traces de�ned by interactions are

valid or not in the obtained model. This can be auto-

matically achieved, via re�nement checking, using the

CML model checker being developed, or by translat-

ing the CML model into an input notation for other

tools. So far, we have translated CML into CSP and

used the re�nement checker FDR. Another form of val-

idation that we have discussed is animation using the

CML simulator, which exercises the SysML model by

executing the communications of the CML model.

In addition to scenario veri�cation, another support

for reasoning is a re�nement calculus for SysML. Re�ne-

ment notions for SysML have been de�ned by lifting

CML relations for process and action re�nement. This

has allowed us to de�ne a family of re�nement relations

for block, state machine, and state, for instance. Based

on these relations, some re�nement laws have been de-

�ned, as exempli�ed by state decomposition laws.

We do not relate our notion of re�nement with the

�re�ne� stereotype of SysML because there is no formal

de�nition for it. On the other hand, we do formalise a

notion of re�nement, and it would not be di�cult to

use that notion to underpin the use of this stereotype.

The entire approach has been illustrated using an

industrial leadership-election case study. The semantic

mapping has been exempli�ed for some constructions

of the several elements, and both model re�nement and

scenario validation have been carried out.

There are some interesting opportunities for further

research that will contribute to the proposed approach.

One of the challenges of our approach is to achieve

complete traceability between CML elements, at the

semantic level, and SysML constructions of the source

diagrammatic model. This has been addressed by de�n-

ing the translation rules in a compositional manner and

documenting the generated CML to facilitate traceabil-

ity. This limitation persists, however, when we optimise

the generated CML in order to perform model checking

because the traceability information is lost.

Another concern is the maintainability of our trans-

lation rules. Again, compositionality is helpful. Our rules

are organised into groups according to the SysML el-

ements they address, so changes are contained to the

groups concerned with the elements a�ected. A more

sophisticated mechanism of maintenance is best con-

sidered in the context of Artisan Studio.

Regarding our guidelines of usage of SysML, to fa-

cilitate their communication to practitioners and their

implementation in other tools, it can be bene�cial to

formalise them, using OCL, for example. In addition,

practitioners can also bene�t from a method to con-

struct SysML models that satisfy our guidelines; this

can complement automated support to check that an

existing model follows the guidelines.
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A more theoretical line for future work is the use of

the precise semantic de�ned by fUML to establish con-

sistency between fUML and our CML semantics, for

the constructs covered by fUML. Besides its denota-

tional semantics, CML has an operational semantics,

used in its animator and model checker, and an alge-

braic semantics, used in its theorem prover and re�ne-

ment editor. Exploring the relationship between PSL

and CML, in the context of the Unifying Theories of

Programming [51], which are used to give the a denota-

tional semantics for CML, is a promising way forward.

The generated CML models are not suitable for hu-

man readers. Whereas this is not relevant for our goal

of reasoning purely at the SysML level, readability can

be useful in other contexts. Further modularisation of

the CML model to separate the semantics of the SysML

protocols from the CML models of features of particu-

lar elements can improve readability. This most likely,

however, requires the use of higher-order actions, a fea-

ture not currently available in CML.

One of our major objectives is to develop a com-

prehensive framework to allow reasoning purely at the

SysML diagrammatic level, with the CML models and

analyses totally hidden from the developer. We plan

to develop other case studies to explore the semantic

mapping and the reasoning strategy described here.

As discussed, we have implemented our translation

rules and the transformations required for simulation

using the CML animator. Other opportunities for au-

tomation include support for re�nement in general, es-

pecially at the SysML diagrammatic level, and for op-

timising model checking in FDR and other tools.

Moreover, we aim to expand the coverage of our ap-

proach. We plan to provide semantics for other SysML

features, including new concepts, like the parametric

diagram, and exclusive characteristics of SysML.

Finally, extension of SysML to include CML con-

cepts for re�nement, and of CML to include SysML

concepts, like asynchronous communication and shared

variables, are interesting avenues for further work. What

we have now, however, is a comprehensive and formal

account for re�nement of SysML, as it is currently avail-

able and supported in commercial tools.
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