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Abstract. Safety-Critical Java (SCJ) introduces a new programming
paradigm for applications that must be certified. The SCJ specifica-
tion (JSR 302) is an Open Group Standard, but it does not include
verification techniques. Previous work has addressed verification for SCJ
Level 1 programs. We support the much more complex SCJ Level 2
programs, which allows the programming of highly concurrent multi-
processor applications with Java threads, and wait and notify mecha-
nisms. We present a formal model of SCJ Level 2 that captures the state
and behaviour of both SCJ programs and the SCJ API. This is the first
formal semantics of the SCJ Level 2 paradigm and is an essential ingre-
dient in the development of refinement-based reasoning techniques for
SCJ Level 2 programs. We show how our models can be used to prove
properties of the SCJ API and applications.

1 Introduction

Safety-Critical Java (SCJ) [20] is a version of Java that embeds a new program-
ming paradigm for applications that must be certified for example, using the
highest level of the avionics standard ED-12/DO-178 [4]. To aid certification,
SCJ is organised into three compliance levels. Level 0 applications are simple
single-processor programs executed by a cyclic executive. Level 1 applications
introduce concurrency and less-restricted release patterns. By contrast, Level 2
applications are highly concurrent, potentially multi-processor, and make use of
suspension and a variety of release patterns.

The verification of SCJ programs requires specific techniques, but these are
not covered by the SCJ specification. Verification has been addressed for Level 1,
but not Level 2. SCJ, and its Level 2 profile in particular, present several chal-
lenges for verification. The new programming paradigm of SCJ restricts the pro-
gram structure and provides a predictable memory model. The unique features of
Level 2 allow programming applications that may contain multiple modes of op-
eration or independently developed subsystems, and computations that require
non-standard release patterns or suspension [23].

In this paper, we provide support for verification of SCJ Level 2 programs
by modelling its programming paradigm using the state-rich process algebra
Circus [24]. This is a combination of Z [18] for modelling state, CSP [8] for
modelling behaviour, and Morgan’s refinement calculus [14]. A Circus program
is organised around processes, which contain variables and actions, to describe
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a data model and reactive behaviours. Each process has a main action that
defines its behaviour, possibly using a combination of other actions in the pro-
cess. Communication between processes is achieved via channels. In our work we
use the Circus extensions OhCircus [2], which introduces object orientation and
inheritance, and Circus Time [16] to specify timers and deadlines.

Circus has already been used to model SCJ Level 1 [25]. Circus has also
been used to produce a refinement strategy [3] to derive SCJ programs that are
correct by construction. Our models provide the the possibility of extending the
refinement strategy to target SCJ Level 2 programs.

What we present in this paper is the first formalisation of SCJ Level 2. The
SCJ API covers approximatively 112 pages of the specification [20] as a collection
of approximately 36 classes and interfaces. Our work characterises a semantics
for SCJ Level 2 programs. To support its use, we have developed a tool that
generates Circus models from SCJ programs. We have used the models to prove,
via model checking, properties of both the SCJ API and of specific programs.

In Sect. 2 we describe the unique features of the SCJ Level 2 paradigm.
Section 3 describes our modelling approach, model structure, and how we model
Java synchronisation and suspension behaviour. Section 4 describes the direct
applications of our models for verification, including a brief account of our tool.
Section 5 presents related work. Finally, Sect. 6 concludes this paper with a
summary of our contribution and a discussion of future work.

2 Safety-Critical Java Level 2 Paradigm

Safety-Critical Java (SCJ) is a version of Java that adopts a new programming
paradigm. SCJ programs have a specific concurrent design and use region-based
memory management (instead of garbage collection); specialised virtual ma-
chines [15,17] are available to execute SCJ programs. SCJ also uses the real-time
constructs introduced in the Real-Time Specification for Java [21], but enforces
a more structured programming paradigm.

An SCJ program is controlled by a safelet object, which manages the top-
level mission sequencer. This is used to activate an application-defined sequence
of missions. A mission encapsulates a particular function or phase of operation
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as a set of schedulable objects to perform a particular task. An SCJ API supports
the programming of these components.

Each mission progresses through an initialisation, execution, and cleanup
phase, as shown in Fig. 1. During initialisation, a mission’s schedulable objects
are created and registered. These schedulables are activated simultaneously at
the start of the execution phase. A mission’s schedulables execute until one
of them requests termination, or they all terminate, when a cleanup phase is
performed. At the end of the cleanup phase, the mission may indicate that no
further missions should execute, in which case the sequence will terminate. If
not, and there are more missions to run, the next mission is prepared.

At Level 2, schedulable objects may adopt one of four release patterns. Peri-
odic event handlers execute once in a given time period, aperiodic event handlers
execute when triggered by a method call, one-shot event handlers execute once
after a time offset, and managed threads simply run to completion. Level 2
supports the execution of concurrent missions by allowing missions to manage
schedulable mission sequencers. Level 2 can also use Java suspension methods,
wait() and notify(), but they may only be called on this.

To illustrate some of the features of SCJ Level 2 programs we introduce
FlatBuffer, which is a simple solution to the Producer-Consumer Problem, using
a one-place buffer. FlatBuffer is structurally simple, only containing one mission
and two schedulables, but uses two of Level 2’s unique features: managed threads
and suspension. Larger examples of applications that use the unique features of
Level 2 can be found in [23].

Figure 2 shows an object diagram of the FlatBuffer program at the end of its
mission’s initialise phase. It is controlled by the safelet FlatBuffer, which starts
the top-level mission sequencer FlatBufferMissionSequencer. This mission se-
quencer starts the mission, FlatBufferMission, which starts the two managed
threads. The Writer is the producer and the Reader is the consumer.

The FlatBufferMission holds the buffer and controls access to it. The mis-
sion has a bufferEmpty() method to indicate if the buffer if empty or full, a
read() method to control reading from and resetting the buffer, and a write()
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method to control updating the buffer. The read() and write() methods both
use synchronisation to control access to the buffer.

In an example execution of FlatBuffer, illustrated in Fig. 3, the Reader runs
first, and calls the mission’s read() method. The method calls bufferEmpty()

on the mission, which returns a boolean indicating that the buffer is empty.
Because there is nothing to read, the method calls wait() to suspend the Reader.

Next, the Writer runs, calling the mission’s write() method. This method
calls bufferEmpty() on the mission, which still indicates that the buffer is empty,
prompting the Writer to update the buffer. Then, the method calls notify()

on the mission – which resumes the Reader. When the Reader resumes, it is still
inside the read() method. The method calls bufferEmpty(), which indicates
that the buffer is full, so the value is read and the buffer is reset. Since this is a
simple test program, the Writer terminates the mission after 5 writes.

Despite SCJ’s restricted infrastructure, the unique features of Level 2 mean
that its programs can become very complex. Providing the first semantics for
this paradigm and devising a model for Level 2 programs is, therefore, a chal-
lenging task. We need to deal with a variety of schedulable objects, a preemptive
scheduler that guarantees absence of priority inversion, a complex protocol for
termination of missions, and suspension in the context of all of these features.
We discuss our approach to modelling SCJ Level 2 in the next section.

3 Modelling Approach

We view the programming paradigm of SCJ separately from its realisation in
Java. We capture this paradigm, abstracting away from most of the details of
its Java implementation. Our modelling approach is agnostic of Java.

We model the state and behaviour of application objects in the program and
the use of suspension. We also capture exceptions, but not the Java exception



Action Syntax Description

Skip Skip A simple operator that terminates

Simple Prefix c −→A Simple synchronisation with no data

Input Prefix c?x −→A Synchronisation with a value bound to x

Output Prefix c!x −→A Synchronisation outputting the value of x

Parameter Prefix c.x −→A Synchronisation with some data x

Sequence A ; B Executes A then B in sequence

External Choice A @ B Offers a choice between two actions A and B

Interrupt A4 c −→ Skip Executes A unless c occurs, which terminates A

Recursion µX • A ; X A process X that executes A then X

Wait wait t Waits for t time units and then terminates

Chaos Chaos The action that immediately diverges

Table 1. Summary of Circus operators

handling mechanism. We only capture exceptions where they indicate a misuse of
the paradigm. Specifically we capture exceptions when: a thread is interrupted,
a thread attempts to use suspension without holding the lock, a thread attempts
to lock an object with a priority lower than the thread’s, a method receives an
inappropriate argument, or a mission attempts to register a schedulable that is
already registered to another or the same mission.

Our models consist of two parallel components, following the approach in [25].
The framework component captures the behaviour of the library supporting the
SCJ API and is reused for all programs. The application component captures
the specific behaviour of a particular program. Each framework process has a
counterpart application process. The complete specification of the framework
model [12] comprises approximately 3700 lines of Circus over 11 processes.

Table 1 summarises the Circus action operators that we use in this paper.
Most of them are familiar to users of CSP. We describe them to support the
discussion of our model; a comprehensive account of Circus is in [24]. We note
that Circus processes can also be combined using most CSP operators.

We describe our models in Sect. 3.1 and present our approach in more detail
in Sect. 3.2 using the mission models as an example. Finally, in Sect. 3.3, we
discuss how we model synchronisation and suspension.

3.1 Model Overview

Each SCJ library class and application object is represented by a Circus process.
Each process retains the name of the class it models, suffixed with ‘FW ’ for
framework processes or ‘App’ for application processes. Methods are represented
by an action in the relevant process. Method calls and returns are represented
by (usually pairs of) events; this allows method calls between processes.

Figure 4 shows the framework processes in our model and the channels that
they use to communicate. The channels with underscores in their names are
control signals (for example, start mission) and those in camel case represent
method calls (for example, initializeCall and initializeRet). Some of the channels
have been omitted for brevity, indicated by three dots. The layering indicates



SafeletFW
   

   
   

To
pL

ev
el

M
is

si
on

Se
qu

en
ce

rF
W

MissionFW

SchedulableMissionSequencerFW

ManagedThreadFW

AperiodicEventHandlerFW

start_toplevel_sequencer

PeriodicEventHandlerFW

OneShotEventHandlerFW

start_mission

done_mission

requestTermination

initializeRet

signalTerminationCall

signalTerminationRet

start_mission
done_mission

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall

cleanupSchedulableRet

signalTerminationCall
signalTerminationRet

cleanupSchedulableCall
cleanupSchedulableRet

done_toplevel_sequencer

...

...

...

...

...

initializeCall
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potentially multiple instances in one model. Each of these framework processes
communicate with an application process; these are not shown in Fig. 4.

When a framework process encounters application-specific behaviour, it sig-
nals its application counterpart to take control and perform the behaviour. Con-
trol is returned to the framework with another signal. These signals are call-
return event pairs that retain the method name, suffixed with ‘Call ’, for the
event modelling the method call, or ‘Ret ’, for the event modelling its return.

Each application process is assigned a unique identifier, allowing framework
processes to communicate with their application counterparts. An exception is
the SafeletFW process, which only has one instance because there is only one
safelet in an SCJ program. If a program class has multiple instances in the
program, then each instance has its own Circus process identifier.

Our model uses OhCircus classes to capture non-reactive behaviour, such as
methods that are purely data operations. OhCircus classes are similar to Java
classes: they may hold variables, specify constructors, make use of inheritance,
and must be instantiated before use. Specifically, data operations are captured
in methods, which may be called from processes. In contrast to Circus processes,
OhCircus classes can be related by inheritance.

Instead of simply adding Level 2 features to the Level 1 model [25], we also
capture Level 1 features not found in the previous model. Namely, we consider
that a period or deadline may be overrun and capture exceptions and synchro-
nisation. While Level 1 programs may not use suspension, they are allowed to
use synchronisation. In addition, in contrast to the Level 1 model, we provide
separate framework processes for each of the three kinds of event handlers, each
encapsulating their particular release pattern. This simplifies the application
models considerably and lessens the burden on translation. Further, as already
mentioned, our model raises an exception if a schedulable is registered twice.



InitializePhase =̂
initializeCall .FlatBufferMissionMID−→
register ! ReaderSID ! FlatBufferMissionMID−→
register ! WriterSID ! FlatBufferMissionMID−→
initializeRet .FlatBufferMissionMID−→
Skip



Fig. 5. The FlatBufferMissionApp’s InitializePhase action

Safelet The framework process SafeletFW handles the operations of the safelet.
SafeletFW gets the identifier of the top-level mission sequencer from its applica-
tion counterpart and starts it. Additionally it raises an exception if the program
attempts to register a schedulable that is already registered. This is the process
that defines the main execution flow of the program.

Mission Sequencers Two framework processes model mission sequencers. The
TopLevelMissionSequencerFW process models the top-level mission sequencer
and the SchedulableMissionSequencerFW models a mission sequencer used as a
schedulable. This simplifies both processes because they each only have to be
involved in events relevant to their context.

Both flavours of mission sequencer fetch the identifier of the next mission
from their application counterpart and start that mission. However, SafeletFW
starts TopLevelMissionSequencerFW , which signals to the entire model when it
is terminating, to indicate that the program is done.

SchedulableMissionSequencerFW is started by a mission and signals to that
mission once terminated. Since it is a schedulable, it must respond to termination
requests from either its controlling mission or the mission it is executing.

Mission The MissionFW process is started by a mission sequencer process. It
then allows its application counterpart to register schedulables. It starts each
schedulable and deals with their termination and cleanup. If requested, it ter-
minates itself and its active schedulables, and signals to its controlling mission
sequencer that it has done. In Sect. 3.2 we describe the MissionFW process in
more detail and present the model of one of its actions.

Schedulables Schedulables are modelled by PeriodicEventHandlerFW , for pe-
riodic event handlers; AperiodicEventHandlerFW , for aperiodic event handlers;
OneShotEventHandlerFW , for one-shot event handlers; ManagedThreadFW , for
managed threads; and SchedulableMissionSequencerFW , for mission sequencers
used as schedulables. Each is started by a mission, performs its behaviour, ac-
cepts termination requests from its mission, and cleans up after it terminates.

Each event handler has actions that control its specific release pattern. Event
handlers may have deadlines associated with them, and periodic event handlers
have an associated period. Our models consider that periods may be overrun and



Register =̂
register ? s ! mission−→

(
checkSchedulable .mission ? check : (check = True)−→
AddSchedulable

)
@checkSchedulable .mission ? check : (check = False)−→

throw .illegalStateException−→
Chaos





Fig. 6. The MissionFW ’s Register action

deadlines may be missed, and captures the response if this happens. This allows
our models to be used to check if, for example, an event handler may overrun its
deadline. Managed threads are simpler and begin their release as soon as they
are started. Mission sequencers used as schedulables are described above.

3.2 Mission Example

The Circus model of a mission is ideal to illustrate our modelling approach.
The FlatBuffer application in Sect. 2 contains one mission, FlatBufferMission,
which we model using three components described next.

As previously indicated, like every mission, an instance of MissionFW rep-
resents the behaviour of the mission prescribed by the SCJ paradigm. It is out-
lined above. The non-reactive application-specific behaviour is captured in the
OhCircus class FlatBufferMissionClass. It contains the buffer variable, corre-
sponding to the buffer field of the FlatBufferMission, and the bufferEmpty()

method, because it is purely a data operation without any reactive behaviour.
The FlatBufferMissionApp process captures the reactive application-specific

behaviour of the mission. It has actions modelling the behaviour of the API
methods initialize() and cleanup() and actions modelling the application-
defined methods: writeSyncMeth, readSyncMeth, and bufferEmptyMeth. It stores
a reference to an instance of FlatBufferMissionClass, which contains the method
bufferEmpty(). The bufferEmptyMeth action wraps this method, so that it can
be called by other processes.

Channels on which the instance of MissionFW and FlatBufferMissionApp
communicate are parametrised by the mission identifier FlatBufferMission; this
ensures that the FlatBufferMissionApp communicates with the right frame-
work process. The FlatBufferMissionApp instantiates and communicates with
the FlatBufferMissionClass to call its bufferEmpty() method.

In an SCJ program, the Mission’s initialize() method is overridden to
register the schedulables that this particular mission manages. In Fig. 5 we show
the InitializePhase action of the FlatBufferMissionApp process, which models
the initialize() method in FlatBufferMission. The events initializeCall and
initializeRet model the call to and return from initialize().

The registration of a schedulable is modelled by the event register .s.m, where
m is the identifier of the mission registering the schedulable and s is the iden-



tifier of the schedulable being registered. The order of registration shown in
Fig. 5 corresponds to the order in the program. After registration, all registered
schedulables are started simultaneously.

In MissionFW , initializeCall triggers the Register action (Fig. 6), which
accepts a register event, with any schedulable identifier as long as the mission
identifier is the same as this mission’s. The checkSchedulable event indicates, via
the variable check , if the schedulable may be registered.

If check is True, then Register can add the schedulable. If check is False,
then the schedulable is already registered and we use the throw channel to model
an exception being thrown and then diverge (Chaos). This allows the detection
of an attempt to register a schedulable more than once.

3.3 Synchronisation and Suspension

The synchronisation model of SCJ constrains that of Java. First, SCJ programs
cannot use synchronized blocks, only synchronized methods. Second, threads
queue for a lock in order of eligibility. In SCJ, the most eligible thread is the
thread at the highest priority level that has been waiting for the longest time.
We model this using the type PriorityQueue, which is a total function from
PriorityLevel to injective sequences of ThreadID . PriorityLevel is a free type
containing the priorities available to the system and ThreadID is the set of
thread identifiers.

Our models use extra processes to control synchronisation and suspension. In
SCJ, each schedulable is executed by a thread. In our model, schedulables that
call a synchronised method are associated with an instance of the ThreadFW
process. ThreadFW holds the thread identifier and keeps track of its priority
and interrupted status. Overall, the framework model of a schedulable that calls
a synchronised method is the parallel composition of its associated ThreadFW
process with the appropriate framework process, which depends on the type of
schedulable (event handler, managed thread, and so on).

Additionally, each object used as a lock is associated with an instance of the
ObjectFW process, which stores the threads waiting on this object and controls
the threads trying to lock this object. In the FlatBuffer, the mission is used
as a lock, so it has an associated instance of ObjectFW . Again, the overall
framework model of each object that represents a paradigm component and is
used as a lock is its framework process in parallel with an instance of ObjectFW .
Non-paradigm objects used as locks are modelled in the framework by just an
instance of ObjectFW .

The FlatBuffer program uses synchronisation and suspension to control ac-
cess to the buffer in its mission. The synchronised read() method suspends the
calling thread (by calling wait()) if the buffer is empty. This is wrapped in a
loop that checks if the buffer is empty, to deal with spurious wake ups.

The FlatBufferMission’s read() method is modelled by the readSyncMeth
action in the FlatBufferMissionApp process (Fig. 7), which shows the pattern
we use for modelling all synchronised methods. The action begins and ends with
the familiar call-return event pair, readCall and readRet , which correspond to



readSyncMeth =̂ var ret : Z •

readCall .FlatBufferMissionMID ? caller ? thread−→

startSyncMeth .FlatBufferMissionOID . thread−→
lockAcquired .FlatBufferMissionOID . thread−→


µX •



var loopVar : B • loopVar := bufferEmpty();
if (loopVar = True)−→waitCall .FlatBufferMissionOID . thread−→

waitRet .FlatBufferMissionOID . thread−→
Skip

 ; X

8 (loopVar = False)−→ Skip
fi




;

var out : Z • out := this . buffer;
this . buffer := 0;
notify .FlatBufferMissionOID ! thread−→
ret := out


;

endSyncMeth .FlatBufferMissionOID . thread−→
readRet .FlatBufferMissionMID . caller . thread ! ret −→ Skip




Fig. 7. The FlatBufferMission proceess’s readSyncMeth action

the call to and return from the method. In this case, however, because this is a
synchronised method, these events take an extra parameter thread , which is the
identifier of the thread that is calling the method.

The ObjectFW process associated with the FlatBufferMissionApp process
controls the synchronisation and suspension behaviour using the startSyncMeth,
lockAcquired , and endSyncMeth events. The startSyncMeth event models the be-
ginning of a synchronized method and triggers the ObjectFW process to request
a lock on this object by the thread calling this action.

Because the lock may already be held by another thread, the readSyncMeth
action waits for the lockAcquired event (from the ObjectFW process) to signal
that it has the lock and can proceed. After the body of the method, the endSync
event signals that the synchronised method is complete, to trigger ObjectFW to
release the lock on the mission currently held by the calling thread. We note that
SCJ does not support Java’s ReentrantLock, however, SCJ does support reen-
trant locking by allowing synchronised methods to call other synchronised meth-
ods in the same object. The ObjectFW process provides this behaviour; to un-
lock the object, after the first lockAquired event, each subsequent startSyncMeth
event (which must be from the same thread) must be matched by a endSyncMeth
event from the locking thread.

We model the call to wait() using the call-return event pair waitCall and
waitRet . These events take the identifier of the associated ObjectFW instance
(FlatBufferMissionOID , in Fig. 7) and the identifier of the thread calling this
action. The instance of ObjectFW associated with the mission adds thread to
its queue of waiting threads. The process calling waitCall waits for waitRet to
communicate its identifier.



We model the call to notify() using the event notify . Like waitCall and
waitRet , this event also takes the identifier of the associated ObjectFW process
and the identifier of the thread calling this action. The notify event triggers the
ObjectFW process to resume the most eligible thread. If there are no waiting
threads, then ObjectFW allows the call to notify , but does nothing. To resume a
thread, ObjectFW calls waitRet with the identifier of the thread to be resumed.
SCJ Level 2 can also use notifyAll(), which resumes all the waiting threads. We
model a call to notifyAll() with the event notifyAll . It triggers the ObjectFW
to call waitRet with the identifier of each waiting thread in eligibility order.

The complete Circus models of the framework processes can be found in [12],
and the application processes of the FlatBuffer in [11]. In the next section, we
discuss the validation and application of our models.

4 Initial Evaluation

Our Circus model is written to closely correspond with the SCJ API. We have
frozen development of our model at version 0.100 of the SCJ language specifica-
tion. One of the authors is a member of the SCJ Expert Group, which helped
in clarifying ambiguities in the language specification.

Our model of Level 2 is based on the Circus model of Level 1 presented in [25],
which has been validated against the SCJ language specification. Our model adds
the features of Level 2 and updates the model to reflect recent changes in the
language specification.

Our modelling effort has influenced the development of SCJ. In [13], which
is under review, we present a model of the SCJ termination protocol and a pro-
posed simplified termination protocol. The comparison of these models shows
that our proposed protocol reduces the number of states in the system. This
simplified protocol is useful for improving programmer understanding and fur-
ther modelling efforts. Our simplified termination protocol was adopted by the
SCJ expert group from version 0.96.

We have, by hand, translated 10 SCJ programs to Circus using our approach;
the examples are summarised in Table 2. The programs are constructed to cover
the features of SCJ. They range from simple tests of SCJ’s features, such as
different release patterns or synchronisation and suspension, to more complex
programs that use nested mission sequencers to provide concurrent missions.

Further, we have developed a prototype tool1 to automatically generate the
Circus application models of a given SCJ application, called TightRope. We have
used this prototype to produce the application models of the FlatBuffer appli-
cation presented in this paper and a more complex example, both summarised
in Table 3. The 10 hand-translated examples, and more realistic programs, will
be considered for automatic translation as TightRope matures.

TightRope is a small Java program that compiles an SCJ application and ex-
plores the resulting abstract syntax trees to extract the information required for

1 TightRope can be found at www.cs.york.ac.uk/circus/hijac/tools.html.

www.cs.york.ac.uk/circus/hijac/tools.html


Name Description № Classes

Mission1 A single mission with periodic event handler that re-
leases an aperiodic event handler

5

Mission2 A single mission with a managed thread and a one-
shot event handler

5

ThreeOneShots A single mission with three one-shot event handlers 6

ThreeThreads A single mission with three managed threads 6

SequentialMissions Two sequential missions, each with two managed
threads

8

NestedSequencer1 A single mission with a single nested mission se-
quencer

7

NestedSequencer2 A mission, with three nested mission sequencers. Each
has one mission controlling a periodic event handler

14

NestedSequencer3 A mission, with a nested mission sequencer that has
two sequential nested missions, each with a managed
thread.

8

NestedSequencer4 A complicated example using two levels of nesting. It
contains 4 missions and 3 managed threads

12

NestedSequencer5 Extends NestedSequencer4, combines complex nest-
ing, all schedulable types, and sequential missions

12

Table 2. Summary of SCJ programs translated by hand

the translation. TightRope generates the Circus processes, OhCircus classes, and
Circus channels required to model the application-specific behaviour of the input
program. These are combined with the existing fixed models of the framework
previously described, to form a specification of the whole program.

To facilitate model checking and animation using FDR3 [5], we have trans-
lated our models of the framework and of full programs into CSPm. This transla-
tion has been optimised so that FDR3 can check specifications of even complex
programs in an acceptable amount of time. We have proved that the CSPm ver-
sion of the framework model is deadlock- and divergence-free, which lends extra
validation to the framework. We have also proved that the models of the full
programs that we translated do not deadlock or diverge.

Using the version of the CSP animator ProBE that is included in FDR3, we
have animated the CSPm versions of the framework model and compared their
behaviour with that prescribed in the SCJ language specification. This gives us
confidence that the models capture the behaviour of the SCJ API. We have also
used ProBE to examine the behaviour of these full models, to compare them
to the running programs. We have compared the execution of our example SCJ
Level 2 programs, using the IceLab [9] implementation, to animations of our
models of these programs. These comparisons examined the behaviour and out-
put from the executing programs with the corresponding events in the animated
model to ensure that they have the same behaviour.

Future work in the analysis of our models includes extending the checks we
make to cover more SCJ-specific criteria. We intend to check that the program
does not attempt to register its top-level mission sequencer or throw any of the
exceptions that we model. Because we model exceptions using an event followed



Name Description № Classes Translation Time

FlatBuffer Small program using managed threads and
synchronisation

6 1.2 seconds

Aircraft Program using a schedulable mission se-
quencer to represent phases of aircraft
flight

25 2.3 seconds

Table 3. Summary of SCJ programs translated by TightRope

by divergence, they are flagged by a divergence-freedom check. However, the
counter examples provided by a specific check would be more useful during SCJ
development. These SCJ-specific checks will be standardised for easy reuse.

In summary, because our framework model captures the behaviour of the
SCJ paradigm separately from the program-specific behaviour, we can reason
about it in isolation. We have used FDR3 to prove that the framework model
does not deadlock or diverge. Models of full SCJ Level 2 programs can be model
checked and animated in FDR3. Our formal semantics of the Level 2 paradigm
enables further areas of study for SCJ Level 2, such as theorem proving.

5 Related Work

This is the first work supporting verification for SCJ Level 2 programs. K-Java [1]
models a subset of SE Java 1.4 and produces executable specifications for model
checking. However, SCJ programs have features not included in SE Java. The
authors of [22] present a technique for translating SCJ programs into timed
automata models. However, their technique appears to only be aimed at Lev-
els 0 and 1. Further, neither of these techniques provide support for top-down
refinement of SCJ Level 2 programs or refinement-based reasoning.

RSJ [10] is a adaptation of the Java PathFinder [7] that explores all possi-
ble schedulings of the threads within an SCJ program to check for scheduling-
dependent errors. It, however, does not cater for SCJ Level 2 programs.

Older versions of the SCJ specification define annotations for specifying com-
pliance level, behavioural, or memory restrictions. Previous approaches to ensur-
ing the safety of SCJ programs have used these annotations to provide run-time
checks [19] or to specify checkable program constraints [6]. However, the mem-
ory annotations have been moved to an appendix of the standard as they were
judged not ready for standardisation.

Our modelling approach is similar to that of [25] in capturing the paradigm
of SCJ Level 1. The underlying structure of programs written in Level 2 and
Level 1 is the same, however, Level 2 allows much more complicated program
hierarchies and provides more complicated features (such as suspension).

6 Conclusion

We have presented the first formal semantics of SCJ Level 2, using the Circus fam-
ily of specification languages. It is an essential ingredient to enable customised



top-down development of SCJ Level 2 programs that are correct by construction.
Our models provide this development process with a target for SCJ Level 2.

The features Circus provides make it a good fit for modelling object-orientated
languages, such as SCJ. A Circus process provides similar encapsulation to classes
and the language can capture variables and methods. This means that our models
correspond very closely to the programs they model.

We have validated our model of the SCJ API and Level 2 programs by
translating them into CSPm and model checking it using FDR3 to show that it
does not deadlock or diverge. Our prototype tool, called TightRope, has produced
Circus models of SCJ applications. Work is ongoing to update the tool, so that
it can generate the models for all of our example applications.

In addition to the further areas of study that our work enables, future work
includes the formalisation of the translation strategy that we use to derive the
application models from the SCJ programs. The translation strategy also needs
to be evaluated on more applications to further test our modelling approach.
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