
Assurance Cases for Block-configurable Software

Richard Hawkins1, Alvaro Miyazawa1, Ana Cavalcanti1, Tim Kelly1,
and John Rowlands2

1 Department of Computer Science, University of York, York, UK
2 BAE Systems, Warton Aerodrome, Preston, PR4 1AX, UK

Abstract. One means of supporting software evolution is to adopt an
architecture where the function of the software is defined through recon-
figuring the flow of execution and parameters of pre-existing components.
For such software it is desirable to maximise the reuse of assurance assets,
and minimise re-verification effort in the presence of change. In this pa-
per we describe how a modular assurance case can be established based
upon formal analysis of the necessary preconditions of the component.
Our approach supports the reuse of arguments and evidence established
for components, including the results of the formal analysis.

1 Introduction

Software maintenance and evolution is typically very costly. In the safety-
critical domain, extensibility and reconfigurability have to be traded for
simplicity, with impact on maintainability. We consider here what we call
block-configurable software, which achieves this compromise by adopting
an architecture that supports configuration via structured input data.

Block-configurable software comprises a number of components that
provide particular functionality, and a manager, which uses configuration
data to define how the components cooperate. The architecture resembles
that of a control-law diagram with connections defined by configuration
data. Block-configurable software is a convenient means of implementing
control systems for which changes in dynamic behaviour can be restricted
to changes in the parameters and connections of a fixed set of components.

Block-configurable software facilitates changes: to add or to change a
function, it may be not be necessary to touch the code at all. It is also
easier for a third-party to implement changes, since it may be enough
simply to provide appropriate data. So, the integrity of the code can be
maintained, whilst flexibility is still provided to the user.

This gives rise, however, to a challenge for assurance. To realise the
benefits of block-configurable software, it is necessary to limit the work
required for validation in the face of changes. Also from an assurance
perspective, the impact should be limited to the configuration data.

The validity of the configuration data provided is a key aspect of the
assurance case. We need to identify the constraints that characterise valid
data, and to consider the way in which validity is established. This can
be related to concerns regarding exceptional behaviour, use of resources,
or any other general properties. To address both the identification and
verification of constraints on the data we adopt the use of formal analysis.

Our contribution is a general pattern for assurance cases that can be
made for block-configurable software using a combination of formal anal-
ysis and more traditional verification. Safety-argument patterns provide
a way of documenting and reusing argument structures by abstracting
the fundamental strategies from the details of a particular argument. It
is possible to create specific arguments by instantiating the patterns in a
manner appropriate to the application. We present a number of options
for supporting various aspects of the assurance cases. We also consider
the effect that changes to the software have on the assurance case, and
how the impact can be minimised. We maximise reusability both at the
level of the structural arguments and of the formal analysis.

Our assurance cases are not for particular properties of the system;
they demonstrate that the software does not adversely affect the system
in which it is embedded. We have applied our approach in an industrial
case study, but use a quadratic-equation solver as an example here.

To represent assurance arguments clearly, we use a graphical nota-
tion: the Goal Structuring Notation (GSN), as it is mature, widely used,
and standardised [6]. We observe, however, that our results apply to any
notation that conforms to the meta-model of the OMG standard for struc-
tured assurance cases (including Adelard’s CAE, for example) [12].

Section 2 defines the characteristics of block-configurable software.
Our assurance-case pattern is described in Section 3. Section 4 discusses
the well-behavedness arguments, and in particular termination. Section 5
discusses the effects of likely changes. Section 6 explains how the validity
of configuration data can be established using a formal approach. Finally,
Section 7 discusses related work and Section 8 provides conclusions.

2 Block-configurable software

Block-configurable software is created from generic components. It may
be used to implement a solution for any problem that requires a vector of
inputs to be transformed to a vector of output values. The functionality
of the block-configurable software is determined at runtime through the
connection of the components and the provision of parameters to them as

Block-configurable software

-Pre-condition
-Post-condition

Generic Algorithm Configuration Data

Input

*

-recieves

1

Output-generates

1 *

-Inputs
-Outputs

Output Manager

-Constraints

Reconstructor1*

1
1

1

1

Function Specific Data

1

-configures

1

*

Fig. 1. Structure of block-configurable software

defined using loaded configuration data specific to a particular function.
A unique characteristic of this type of software, in comparison for example
to data-driven software, is that data is also the means by which software
is configured at design-time, through defining parameters for the code
blocks and connections between them.

A key feature of block-configurable software is that it is extensible;
it allows the user to employ any number of components, which can be
used in any sequence to derive the required outputs. The configuration
data provides all the information required to define the inputs that are
needed, the outputs that are to be generated from the inputs using the
components, and the parameters that are given to each component.

Figure 1 shows the structure of block-configurable software. Inputs
and Outputs characterise its interface. A Reconstructor characterises
the functions provided by the software using one or more generic compo-
nents. Configuration Data for a function is selected at runtime. Func-
tion Specific Data configures the software for a particular function.
The Output Manager is a component that defines the parameters pro-
vided to the other components and their order of execution. Each function
must include an output manager, and it must be the first component exe-
cuted (to define how the others are used). The design of the reconstructor
and the output manager are the same in all block-configurable software.
The only changes ever required to the reconstructor are small adaptations
to take into account the introduction and removal of components.

A deployment of block-configurable software may include a number of
different functions. Each function is reconstructed using a subset of the
components available and function-specific configuration data. A deploy-
ment, therefore, consists of a set of generic components, a reconstructor
that can reference all of them, and configuration data for each function.
New functions can be added to the deployment by adding new configu-
ration data, as long as only the existing components are required.

As an example, we consider a quadratic-equation solver; its Ada imple-
mentation is presented in [13]. Its inputs are the coefficients of a quadratic
equation and it generates as output its solutions. The configuration data
can be used to select one or both of them as output. The reconstruc-
tor uses generic components called OUTPUT MANAGER, ADDER, MULTIPLIER,
SQRT, and so on. The software may, therefore, implement different func-
tions that uses addition, and square root, for example.

3 An assurance case for block-configurable software

In defining the structure for the assurance arguments of block-configurable
software, there have been two primary considerations: resilience to ex-
pected change scenarios and creation of libraries of assurance-case mod-
ules for generic components and function-specific configuration data. Fig-
ure 2 shows the structure of the assurance-case pattern we have defined.

Figure 3 shows the argument within the top Block-Configurable Soft-
ware module, which supports the overall claim that the block-configurable
software does not adversely affect the system. To demonstrate this, we
show that the software itself does not adversely affect the system and all
the constraints are met by the configuration data for that application.

The claims relating to the components and the configuration data are
in separate modules. This allows the demonstration that the configuration
data meets the constraints to be done independently from the analysis of
the components. The connection between the two parts of the argument
is the constraints, which are derived as part of the generic-components
argument and used by the configuration-data argument. In Figure 3 this
is captured by Away Context definitions (boxes with rounded top) as-
sociated with the Away Goal regarding the data constraints. The Away
Goal is defined in the module Configuration Data (as named in the bot-
tom of the Away Goal symbol). The Away Contexts are defined in the
Generic-Component module (also named at the bottom).

Our approach relies on the use of the block-configurable software pat-
tern. The assurance argument must, therefore, include evidence that the

Spinal

DC Application

Spinal

Generic Algorithms

Description Generic
Algorithms

Spinal

Configuration Data

Description
Configuration Data

Generic Components

Block-Configurable S/w

Top-level Flow Configurable
Software Assurance Argument

Generic Components Well-
Behaved Argument Configuration Data Constraint

Satisfaction Argument

Function X Configuration Data
Constraint Satisfaction Argument

SpinalSpinalSpinalz
Spinal

Generic Algorithm X

Generic Component X Well-Behaved
Argument

SpinalSpinalSpinal
Spinal

Function X Configuration Data
Constraint Satisfaction Argument

Function X Config Data
Generic Component X

Fig. 2. Assurance-Case Architecture

software has the necessary characteristics identified by this pattern. This
can be demonstrated, for example, through a simple manual check of the
structure of the software modules against the pattern.

The argument regarding the generic components demonstrates that
the software is “well behaved”. In the argument, we assert that “if well
behavedness is demonstrated, this ensures that the software does not ad-
versely affect the system”. Notions of interest for “well behavedness” are
related to termination, resources, and exceptions. Here, we only consider
the argument made for termination. In [13], we explore other arguments.
A confidence argument is required to show that the identification of con-
cerns regarding well behavedness is complete and correct. The argument
considers each of these concerns in turn.

The argument regarding termination must be valid for all functions
of the deployment. As shown in the instantiation of our pattern for the
quadratic solver example in Figure 4, the argument considers the ter-
mination guarantees of the reconstructor as well as those of each of the
generic components. The claim that must be demonstrated is that the
guarantee of termination is achieved for each component if the defined
constraints on the configuration data are met.

An argument module (Generic Component X) is created for each of
the generic components and for the reconstructor. This allows the argu-

Goal: BCswWellBehaved

The block-configurable software
will not adversely affect other
system functions

Strat: DDWIwellBehaved

Argument over the generic
modules and the
configuration data used to
create the software

Goal: GAwellBehaved_Generic
Algorithms

Data-configured software generated from the
Generic Algorithms will not adversely affect
other system functions

Generic Algorithms

Goal: ConfigData_Configuration
Data

Configuration data meets all required
constraints for the software application

Configuration Data

Con:
appDescription

Description of
software

Con: structCons
_Generic Algorithms

Structural constraints are...

Generic Algorithms

Con: timingConstr _Generic
Algorithms

Timing constraints are ... (e.g. limits
on no.of calls to particular GAs, total
size of data tables etc)

Generic Algorithms

Con: memConstr _Generic
Algorithms

Memory constraints are ... (e.g toal
file size, no. of data items etc.)

Generic Algorithms

Goal: appConstr _Generic
Algorithms

Application-level
constraints

Generic Algorithms

Con: termCalc _Generic
Algorithms

Calculated termination constraints
are ... (weakest pre-conditions for the
algorithm)

Generic Algorithms

Goal: DCsoftware

The software has all the
necessary characteristics of
data-configured software

Fig. 3. Assurance Argument: BC Software Module

ment for each component to be reused for different functions. The recon-
structor may require small changes for different deployments. A generic
component, on the other hand, may be reused, as is, for any deployment.
Since it is expected that the generic components are used across different
applications, this can provide a large saving in reverification effort.

We omit the pattern for the Configuration Data module; it can be
found in [13]. Its argument establishes that the configuration data meets
all of the constraints determined within the components argument.

We have a separate argument for each function, with the assumption
that only one function executes at any time (otherwise combinations of
functions need to be considered). This argument structure creates assur-
ance components for function-specific configuration data, and facilitates
reuse for particular functions across multiple deployments.

We envisage three strategies that can be adopted to show that the
constraints are upheld by the configuration data. First, if the constraints
are simple, manual review is possible. This is easy to implement and
requires no specialist tools or techniques. It is, however, infeasible for
more complex data and constraints, and provides low assurance.

Rather than checking the configuration data, it is possible to consider
the process for its generation. A systematic process may begin with an
abstract representation of the function (such as a data-flow diagram in-
cluding the relevant generic components). This abstract model can be

Goal: quadSolveWellBehaved

Quadratic Solver software
generated from the Generic
Algorithms will not adversely
affect other system functions

Strat:
quadSolveWellBehaved

Argument over the
characteristics of 'well
behaved' software

Goal: progExceptions

Quadratic Solver software will
not give rise to exceptions due
to termination errors

Goal: resourceExceptions

Quadratic Solver software will
not give rise to exceptions due
to insufficient resources

Goal: appProp

Quadratic Solver software will not
give rise to application-level
behaviour that adversely affects
other system functions

Goal: timingExceptions

The Quadratic Solver software
running on the software platform
will not give rise to exceptions
due to insufficient CPU time

Con: Platform

Software platform
description

Strat: termination

Argument over the Reconstrictor
for the Quadratic Solver
functions and the Generic
Algorithms used by the
Reconstructor

Con: Algorithms

The GAs used by theQuatratic
Solver Reconstructor are:
OUTPUT_MANAGER,
BOOLEAN, CONST, ADDER,
MULTIPLIER, SQRT, DIVIDE,
TRACE

Goal: Reconstructor Gtees
_Reconstructor

Termination guarantees for Reconstructor
will be met for all configuration data that
meets the defined constraints

Reconstructor

Goal: OUTPUT MANAGER Gtees _OUTPUT
MANAGER

Termination guarantees for OUTPUT
MANAGER will be met for all configuration data
that meets the defined constraints

OUTPUT MANAGER

Goal: BOOLEAN Gtees _BOOLEAN

Termination guarantees for BOOLEAN
will be met for all configuration data that
meets the defined constraints

BOOLEAN

Goal: CONST Gtees _CONST

Termination guarantees for CONST will
be met for all configuration data that
meets the defined constraints

CONST

Goal: ADDER Gtees _ADDER

Termination guarantees for ADDER will
be met for all configuration data that
meets the defined constraints

ADDER

Goal: MULTIPLIER Gtees
_MULTIPLIER

Termination guarantees for MULTIPLIER
will be met for all configuration data that
meets the defined constraints

MULTIPLIER

Goal: SQRT Gtees _SQRT

Termination guarantees for SQRT will be
met for all configuration data that meets
the defined constraints

SQRT

Goal: DIVIDE Gtees _DIVIDE

Termination guarantees for DIVIDE will
be met for all configuration data that
meets the defined constraints

DIVIDE

Goal: TRACE Gtees _TRACE

Termination guarantees for TRACE will
be met for all configuration data that
meets the defined constraints

TRACE

...

Fig. 4. Quadratic-Solver Assurance Argument: Components Module

verified to check that it is structured to ensure essential properties, like
the correct number of parameters are defined for each block. This can
also be an effective method of establishing application-level constraints,
since it provides a view of the required inputs and outputs as well as
an end-to-end view of the components used. The process of transforming
that abstract model into configuration data can also be used to enforce
constraints on the data. This requires reliable (probably bespoke) tool
support and correct encoding of the constraints within the tool.

Finally, it is possible to prove formally that the configuration data
satisfies the constraints using SAT (Satisfiability) or SMT (Satisfiabil-
ity Modulo Theories) solvers. There are a number of tools available that
implement such techniques [7]. This has the potential to give the high-
est available level of assurance. Its feasibility, however, depends on the
structure of both the constraints and the configuration data.

4 Termination

In this section, we consider the arguments for well behavedness as defined
in the Generic Component X argument module (Figure 5). It illustrates
our approach to combining structured argumentation and formal analysis.

Goal: GCX Gtees

Termination guarantees for
{Generic Component X} will be
met for all configuration data that
meets the defined constraints

Goal: unitTesting

Testing of {Generic Algorithm X}
using indicative configuration data
has not identified a counter-
example to the termination
guarantees

Goal: constGuess

Asserted and verified constraints
are sufficient to prove the
program guarantees if defined
structural constraints are met

Goal: constCalc

Calculated approximations of weakest
pre-conditios for the component prove
the program guarantess if defined
structural constraints are met

Con: termCalc

Calculated termination
constraints are ... (weakest
pre-conditions for the GC
and structural constraints)

Con: termrGuess

Asserted and verified
termination constraints
are ... (pre-conditions for
the GC)

Con: GCX Gtees

Termination
guarantees of {Generic
Component X} are ...

Strat: Formal

Argument over a formal
approach to demonstrating
guarantees are met

Strat: Testing

Argument over a testing
approach to demonstrating
guarantees are met

Goal: testingConf _Confidence

The testing performed using indicative
configuration data provides sufficient
confidence that termination guarantees will be
met for all configuration data

Confidence

Sol: WPcalcs

WP calculations
for {Generic

Component X}

Goal: WPcalcsCorrect
_Confidence

WP calculations are correct

Confidence

Con: structCons

Structural
constraints are...

Goal: structCons
_Confidence

Structural constraints are
correct

Confidence
Sol:
testResGAX

Test results for
{Generic

Algorithm X}

Con: indicData

Indicative
configuration data

Con: testCases

Test casesGoal: VCproof

Verification conditions (VCs)
generated from asserted
preconditions are proved

Goal: assertPre

Preconditions sufficient to
guarantee termination are
asserted

Goal: guessPre

Preconditions are
determined using an
educated guess

Sol: VCproof

VC proofs for
{Generic

Component X}

Goal: VCcorrecct _Confidence

VCs have been correctly generated
from the asserted preconditions

Confidence

Goal: Aliasing _Confidence

Alising does not occur in the
algorithm

Confidence

Fig. 5. Assurance Argument: Generic Component X

In arguing termination, a possible approach is to test the components.
This requires test cases that provide sufficient coverage of the configura-
tion data. Without unrealistically constraining the configuration data,
however, this is extremely difficult. It is possible to use typical data, but
extrapolating those test results would not provide much confidence. An

alternative would be to test the components every time new configuration
data is used. This, however, does not permit reuse of evidence.

In addition, testing gives no indication of the constraints that need to
be satisfied, and so no guidance for the definition of configuration data.
The constraints can serve as a contract between the software developers
and those configuring the software to provide particular functionality.

An alternative is to use formal analysis to prove that the termina-
tion guarantees are always met. There are two possibilities: to calculate
weakest preconditions that guarantee termination of the components, or
assert constraints that are believed to be sufficient and then verify that
they guarantee termination. The asserted preconditions can be obtained
through an educated guess, based on an understanding of the code.

There are advantages and disadvantages to each of these possibilities.
The advantage of formal analysis is that it gives the highest available level
of assurance, as it is based on proof. The disadvantage is that currently
no tool support exists for calculating the weakest preconditions of Ada
programs. We note, however, that due to the structure of the assurance
argument, the calculations for each generic algorithm only needs to be
performed once, and after that can be reused for all functions requiring
that algorithm. The main advantage of the guess-and-verify approach is
that there is an existing tool set available - the SPARK toolset [21] - that
can generate and prove verification conditions. The disadvantage is that
guessing the precondition may be difficult, and there is no guarantee that
the correct precondition will be found. Based on this, we have decided to
adopt a weakest precondition approach.

Weakest preconditions [8, 9] can be calculated using a function WP.P.ψ
that defines, for a given program P and postcondition ψ, the weakest pre-
condition φ that guarantees that, if P is executed in a state that satisfies
φ, then it terminates and the final state satisfies ψ. The predicates φ and
ψ establish restrictions on the values of the programming variables, and
in our case, the preconditions are restrictions on the configuration data
imposed by the implementation. (More details are provided in Section 6.)

Confidence arguments are required to demonstrate that constraints
are complete and correct. An example is provided in [13] of a confidence
argument to demonstrate the correctness of the weakest precondition cal-
culations. This ensures completeness as well.

In Figure 6, we present the argument in the reconstructor module,
which instantiates the pattern in Figure 5. The instantiation is guided by
the adoption of a weakest precondition approach. There are confidence
arguments that must also be provided. The argument for the reconstruc-

tor is similar in all block-configurable software. The similar argument for
a specific component is provided in [13]. The argument for the output
manager is exactly the same for all block-configurable software.

Goal: Reconstructor Gtees

Termination guarantees for
Reconstructor will be met for all
configuration data that meets the
defined constraints

Con: Reconstructor
Gtees

Termination guarantee
of Reconstructor is
`true'

Goal: constCalcRecon

Calculated approximations of weakest
pre-conditios for the Reconstructor
prove the program guarantee if the
defined structural constraints are met

Con: termCalcRecon

Calculated weakest pre-
conditions for the
Reconstructor are defined
in Section 8.3.2

Strat: FormalRecon

Argument over a formal
approach to demonstrating
Reconstructor termination
guarantees is met

Sol:
WPcalcsRecon

WP calculations for
Reconstructor (see

Section 8.3.2)

Goal: WPcalcsCorrect
_Confidence

WP calculations are correct

Confidence

Con: structCons

The structural
constraints are
defined in section 8.1

Goal: structCons
_Confidence

Structural constraints are
correct

Confidence

Goal: Aliasing _Confidence

Alising does not occur in the
algorithm

Confidence

Fig. 6. Quadratic-Solver Assurance Argument: Termination Argument

As shown in Figure 3, the top-level argument requires a Configuration
Data module that demonstrates that the constraints are met by all the
configuration data. An argument module needs to be created for each set
of configuration data. For the quadratic example, we assume that two
different sets of configuration data are used by the reconstructor, which,
for instance, require a different subset of the equation solutions.

5 Managing changes to block-configurable software

We consider three of the most likely change scenarios for block-configurable
software, and discuss their effect on the assurance argument and evidence.

Add a new function to a deployment In this scenario, we assume that the
new reconstructor only requires the use of the existing generic compo-
nents. In this case, another Function X Configuration Data module must

be created for the new configuration data, and the Configuration Data
module must be updated with an additional away goal reference to it.

Modify configuration data for an existing function Here, the behaviour
of a function needs to be modified, but there are no required changes to
generic components. In this case, only the existing Function X Configu-
ration Data module for the changed function must be updated.

Introduce a new generic component Now, a new function or a change to an
existing function requires a new generic component, and, correspondingly,
a new Generic Component X argument module. This can generate new
constraints, and so, the Function X Configured Data argument modules
need to demonstrate that all constraints, including the new constraints,
are met. In addition, due to required changes to the reconstructor, its
Generic Component X argument module needs to be reassessed.

In conclusion, the best possible outcome is if, as a result of changes, all
that is required is a reverification of data constraints. For that, it must be
possible to demonstrate the required guarantees purely through data con-
straints. In addition, these required guarantees must remain unchanged.
In practice, this is possible only in restricted scenarios of change. It is
crucial, however, that the argument considers each generic component
independently. It is also necessary to be able to make generic guarantees
for the components in the absence of specific data.

Changes to the structure of the reconstructor (that is, those not imple-
mented through configuration data), should be avoided. If object-oriented
features can be used in a particular rendering of a block-configurable soft-
ware, this becomes easier. In this case, the reconstructor can be imple-
mented (and assured) once and for all, in terms of an abstract class that
captures a generic interface for a component.

6 Validity of configuration data

There are different sources and kinds of constraints. Structural constraints
derive from the way the block-configurable software is designed. These
constraints are mostly independent of the particular application for which
the software is used (except in the definition of the particular data types
used in the generic components).

We have formalised the structural constraints using Z [18, 1]. Our Z
data model is the same for all deployments of block-configurable software,
except only for the data types of the generic components. Changes are,

therefore, only needed if different components are considered, and, in any
case, the modelling effort required is small, since the data types are just
records that can be directly represented in Z.

Our model ignores the use of pointers. For the quadratic solver, we
have an Ada implementation where access types are used just to allow
the use of unconstrained array types in a way that ensures absence of
aliasing. In general, we need a technique to ensure that aliasing does not
occur. This is addressed by a structured argument as shown in Figure 5.

To illustrate how we model the data types of generic components,
we show below the model for the ADDER component of the quadratic
solver. It is a straightforward translation of the Ada code to Z. The
DATA PACKET TYPE is a record (schema) that includes the parameter
and the components of the Ada record. The predicate (invariant) of the
schema defines the range restriction in the declaration of the type.

RECONSTRUCTOR ADDER DATA PACKET TYPE
INPUT SIZE : POSITIVE WORD TYPE
INPUT SCALING : PARAMETER ARRAY TYPE

INPUT SCALING = INPUT SIZE

Other constants, which define inputs and an identifier for the generic
component, are also defined by a direct translation of the code.

More interesting is the model of the OUTPUT MANAGER, which embodies
the structures that allow the data configuration. This model, except in its
dependency on the definitions of the DATA PACKET TYPE schemas
for each of the generic components, is the same for all deployments. This
is the most complex part of the model, but since the output manager is a
generic component, what we have is a DATA PACKET TYPE record.

RECONSTRUCTOR O M DATA PACKET TYPE
OUTPUT MANAGER DATA : O M DATA TYPE

The O M DATA TYPE , however, is a record with six components that
define the size of the output vector, the vector of outputs actually pro-
vided and its size, and the dependencies between the outputs and inputs.
The Z model for it and all the quadratic solver components is in [13].

The configuration data is an array of DATA PACKET TYPE records.

CONFIGURATION DATA TYPE ==
ARRAY [POSITIVE WORD TYPE ,

RECONSTRUCTOR DATA PACKET TYPE]

The instantiation of this model for a particular deployment defines the
type RECONSTRUCTOR DATA PACKET TYPE , which aggregates
the possible DATA PACKET TYPE records used in the components.
We calculate the weakest precondition of the reconstructor, which re-
stricts the values of a record CONTRACT that includes a component
of type CONFIGURATION DATA TYPE , and two others to represent
the input and a selection of outputs.

There may also be domain constraints on inputs that arise in the
area of application. They typically restrict the range of the values of the
inputs (for example, height, speed, and so on). For our example, we require
that the first coefficient of the equation is different from 0, otherwise it is
not a quadratic equation. It is necessary to prove that any configuration
data to be used satisfies the programming and structural constraints. For
that, domain constraints can be assumed to hold. This is demonstrated
in the Configuration Data argument module.

To calculate weakest preconditions, we define the function WP(S).ψ,
and consider the postcondition True. The definition of WP(S).ψ is mostly
standard, except that we consider that expressions can raise exceptions
and prevent proper termination. We, therefore, use auxiliary functions
that determine when a expression or a command terminates. Definitions
are provided in [13], along with calculations for the quadratic solver.

A significant part of those calculations, namely, the treatment of the
reconstructor and the output manager, is reusable, and does not need to
be revisited for other software. In addition, as long as the components
terminate, the calculation of the weakest precondition is compositional: if
a component is added, it can be considered in isolation, and no recal-
culation is needed. This is despite the fact that the components can be
enlisted by the reconstructor in any order.

7 Related work

As far as we know, there has not been a lot of work on assuring software
whose behaviour is configured using data. There are results on validating
the data used in systems that use large quantities of data to perform their
function [14, 10] and on safety-related information systems [17]. They de-
scribe specification and verification techniques for data, but do not con-
sider systems whose flow of execution is itself determined by data.

Calculation of weakest preconditions is a demanding task; an auto-
mated calculator is essential to make it practical and scalable. To our
knowledge, there are almost no tools that can handle realistic languages

and their types, except perhaps Java [2]. The extension of a tool like that
in [4] to handle a safe language is, therefore, an interesting problem.

Weakest preconditions are the basis of the calculator in [4], which
is implemented using the HOL theorem prover [11]. The simple imper-
ative language considered includes recursive procedures; all HOL types
are available. A similar calculator is described in [16], but it uses weakest
liberal preconditions, which cannot be used to reason about termination.

Termination is also not treated in the more recent approach to in-
variant calculation in the tool in [15]. Their idea of using patterns of
programs to identify invariants, on the other hand, merits further inves-
tigation. Given the constrained nature of block-configurable software, it
may well be possible to identify a catalogue of program patterns and
associated invariants to afford automation.

Availability of tool support is a strong point of the assert-and-verify
approach, which is a clear alternative to the technique explored here. For
Ada, the SPARK tools merit further investigation to assess automation.
For C, the C verifier VCC [5] handles annotated concurrent programs.

Our work is concerned with a component-based verification and as-
surance technique. Work in this area has typically concentrated on the
definition of languages for component connectors, and associated compo-
sitional techniques. For example, the approach in [20] advocates verifica-
tion by model checking in a framework called X-MAN. The work in [19],
on the other hand, considers object-oriented models and can be a good
basis for description of our work. It is possible that we can specify the
block-configurable architecture in the languages for components consid-
ered in these works to take advantage of their results for the generation
of evidence. We have here, however, dealt directly with (Ada) programs,
rather than a high-level modelling language. In addition, these works have
not covered the construction of assurance arguments like we do here.

8 Conclusions

We have described how assurance cases can be created for block-configurable
software. Our approach maximises resilience of arguments and evidence
to expected changes, and enables the build up of reusable assurance-case
modules for both components and configuration data. To provide evidence
of termination, we have explored the use of weakest preconditions to de-
termine the required constraints. Simple modelling and clearly prescribed
adaptations are needed when the set of components changes.

The assurance case demonstrates that the software is “well behaved”,
by which we mean that the software does not adversely affect the rest
of the system. We have identified that the notions of interest for “well
behavedness” are related to termination, resources, and exceptions. In this
paper we have only considered the argument made for termination. In [13],
however, we also explore the arguments for resources and exceptions.

An accurate comparison between the assurance effort entailed by con-
ventional and by block-configurable software is difficult. There is some
additional effort required for a block-configurable software. Firstly, the
constraints must be determined, but this is offset if a formal approach is
used as testing for the particular properties needed in the assurance case
is not required. Secondly, the configuration data must be verified. This
is expected to be a simple task for the anticipated constraints, and the
effort should, therefore, be less than is involved in testing.

For a conventional application, adding new functions requires changes
to the code, and the entire program must, therefore, be reverified. For
block-configurable software it is required only that the configuration data
for the new functions is verified. It is when new functions are integrated
into the system that savings in the assurance effort are realised.

A major drawback is the absence of tools to support weakest precon-
dition calculations. This technique can be used to produce evidence for
any functional property that can be specified by a postcondition. As we
consider more elaborate properties, however, automation becomes more
difficult. It is possible to use approximations like in [3]. In this case, we can
ensure that invalid data is rejected, but valid data may also be rejected.

Acknowledgements We are grateful to Jane Fenn for her support.

References

1. ISO/IEC 13568:2002. Information technology—Z formal specification notation—
syntax, type system and semantics. International Standard.

2. G. Barthe, L. Burdy, J. Charles, B. Grégoire, M. Huisman, J.-L. Lanet, M. Pavlova,
and A. Requet. JACK - A Tool for Validation of Security and Behaviour of Java
Applications. In FMCO, volume 4709 of LNCS, pages 152 – 174. Springer, 2007.

3. A. L. C. Cavalcanti, S. King, C. O’Halloran, and J. C. P. Woodcock. Test-Data
Generation for Control Coverage by Proof. Formal Aspects of Computing, 2013.
Online first. DOI 10.1007/s00165-013-0279-2.

4. A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Semantics
for Circus. In Communicating Processing Architectures 2002. IOS Press, 2002.

5. E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal, T. Santen,
W. Schulte, and S. Tobies. VCC: A Practical System for Verifying Concurrent C.
In TPHOL, volume 5674 of LNCS, pages 23 – 42. Springer, 2009.

6. GSN Standardisation Committee. GSN community standard, November 2011.
7. L. de Moura and N. Bjørner. Satisfiability modulo theories: introduction and

applications. Communications of the ACM, 54(9):69 – 77, 2011.
8. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
9. E. W. Dijkstra and C. S. Scholten. Predicate Calculus and Program Semantics.

Texts and Monographs in Computer Science. Springer-Verlag, 1989.
10. A. G. Faulkner, P. A. Bennett, R. H. Pierce, I. H. J. Johnston, and N. Storey.

The Safety Management of Data-Driven Safety-Related Systems. In SAFECOMP,
volume 1943 of LNCS, pages 86 – 95. Springer, 2000.

11. M. J. C. Gordon and T. F. Melham, editors. Introduction to HOL: A Theorem
Proving Environment for Higher Order Logic. Cambridge University Press, 1993.

12. Object Management Group. Structured assurance case metamodel (SACM). OMG
Standard Document, 2013. OMG Document Number: formal/2013-02-01.

13. R. Hawkins, A. Miyazawa, A. L. C. Cavalcanti, T. Kelly, and J. Rowlands.
Assurance Cases for Data-configured Software. Technical report, University
of York, Department of Computer Science, York, UK, 2014. Available at
www-users.cs.york.ac.uk/~rhawkins/HMCKR14.pdf.

14. J. C. Knight, E. A. Strunk, W. S. Greenwell, and K. S. Wasson. Specification and
Analysis of Data for Safety-Critical Systems. In ISSC, 2004.

15. O. Mraihi, W. Ghardallou, A. Louhichi, L. Labed Jilani, K. Bsaies, and A. Mili.
Computing preconditions and postconditions of while loops. In ICTAC, volume
6916 of LNCS, pages 173 – 193. Springer, 2011.

16. T. Nipkow. Winskel is (almost) Right: Towards a Mechanized Semantics. Formal
Aspects of Computing, 10(2):171 – 186, 1998.

17. J. Tillotson. System safety and management information systems. In F. Redmill
and T. Anderson, editors, Aspects of Safety Management, pages 13 – 34. Springer,
2001.

18. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

19. M. Broy. A core theory of interfaces and architecture and its impact on object
orientation. In International Conference on Architecting Systems with Trustworthy
Components, pages 26–47, 2006. Springer-Verlag.

20. K.-K. Lau and C. M. Tran. X-man: An mde tool for component-based system
development. 39th Euromicro Conference on Software Engineering and Advanced
Applications, 0:158–165, 2012.

21. J. Barnes. High Integrity Software: The SPARK Approach to Safety and Security.
Addison-Wesley, 2003.

