
A Theory of Pointers for the UTP

Will Harwood1, Ana Cavalcanti2, and Jim Woodcock2

1 Citrix Systems (R & D) Ltd, Venture House, Cambourne Business Park
Cambourne, Cambs, UK

2 University of York, Department of Computer Science
York, UK

Abstract. Hoare and He’s unifying theories of programming (UTP)
provide a collection of relational models that can be used to study and
compare several programming paradigms. In this paper, we add to the
UTP a theory of pointers and records that provides a model for ob-
jects and sharing in languages like Java and C++. Our work is based
on the hierarchical addressing scheme used to refer to record fields (or
object attributes) in conventional languages, rather than explicit notions
of location. More importantly, we support reasoning about the structure
and sharing of data, as well as their, possibly infinite, values. We also
provide a general account of UTP theories characterised by conjunctive
healthiness conditions, of which our theory is an example.

Keywords. semantics, refinement, relations, object models.

1 Introduction

Interest in reasoning about pointers is not recent [4], and has been renewed by
the importance of sharing in object-oriented languages [1, 16]. The classic model
of pointers [17] uses two functions: one associates memory addresses to values,
and the other associates names to memory addresses. Similarly, most models use
indexes to represent memory locations or embed a heap [13, 24]. Modern object-
oriented languages, however, do not directly support manipulation of addresses.

The unifying theories of programming (UTP) [11] provide a modelling frame-
work for several programming paradigms. It is distinctive in that its uniform
underlying alphabetised relational model allows the combination of constructs
from different theories, and supports comparison and combination of notations
and techniques. Currently, there are UTP theories for imperative languages,
functional languages, CSP, timed notations, and so on.

In this paper, we present a UTP theory for pointers based on the hierarchical
addressing created by data types defined by recursive records. For example, for
a variable l , we have the address l itself, and possibly addresses like l .label and
l .next .item, if the object value of l contains attributes label and next , and the
value of l .next is another object with an attribute item.

We have three components in our model: a set of (hierarchical) addresses, a
function that associates the addresses of attributes that are not object valued
to their primitive values, and a sharing relation. Our addresses are particular

to each variable, and we abstract from the notion of specific locations. This
simplifies our theory, as compared, for example, to our own previous work [5].

We assume that all values have a location, including primitive values. Vari-
ables are names of locations, as are attribute access expressions like l .next , which
define composed names of locations. These names, however, also have a value.
A distinguishing feature of our model is that it represents sharing in a program
as an updatable automaton that also associates (some) addresses to values. This
allows us to define a simple de-referencing operator to tie the values in the au-
tomaton to those of the programming variables and of attribute accesses. In this
way, we can, to a large degree, separate specifications into pure logical expres-
sions on values, and update expressions involving pointers.

We do not assume strong typing, and so can cater for the use of pointers in
languages like Lisp and, to some extent, C, although we do not cover pointer
arithmetic. Infinite values are constructible by loops in pointer references; they
are explicitly definable by fixed points and are generally represented by partial
functions. In our model, de-referencing a pointer yields a partial function that can
represent an infinite value. Finally, we do not model unreachable locations: we
have automatic garbage collection. The only way of naming a location is by a
path (composed name) that leads (refers) to it; if there is no path to a location, it
does not exist. This does mean that we cannot reason about issues like memory
leakage, but have a simpler model to reason about the functionality of a program.

In this paper, we also define a few constructs related to creation and assign-
ment of records. We give their predicate model, and establish the adequacy of the
definitions by proving that the predicates are healthy. The reasoning technique
encouraged by the UTP is based on algebraic laws of refinement; our theory,
however, can also be used to justify the soundness of techniques based on Hoare
triples, for example. An account of Hoare logic in the UTP is available in [11].

Our long-term goal is to provide a pointer semantics for an object-oriented
language for refinement that supports the development of state-rich, concurrent
programs. In particular, we are interested in OhCircus [6]; it combines Z and
CSP, with object-oriented constructs in the style of Java, and, as such, it has
in the UTP an appropriate choice of semantic model. Following the UTP style,
we are considering individual aspects of the OhCircus semantics separately. The
theory presented here will be integrated with the copy semantics of OhCircus.

The UTP relational models are defined in a predicative style similar to that
adopted in Z or VDM, for example. They comprise a collection of theories that
model specifications, designs, and programs; a theory is characterised by a set
of alphabetised predicates that satisfy some healthiness conditions.

There is a subtle difficulty in defining a pointer theory that can be easily
combined with the existing UTP theories: the UTP is a logical language where
variables range over values. To illustrate the issue, we consider a variable l that
holds a value of a type List ::= (label : Z; next : List) of recursive records with
fields label and next . After the assignments l .label := 1 and l .next := l , the
value of l is an infinite list, but it is constructed as a pointer structure. Pointers
are used for two distinct purposes: to construct infinite values by self-reference,

and to share storage. We need a model that records the sharing, but allows
appropriate reasoning about values, to simplify specification.

A simple solution is to model storage as a graph and to use fixed points to
handle self-references when constructing the denotation of a value. In this case,
however, the update operations explicitly use fixed points (for the values) and
reasoning is cumbersome. Instead, we create a model where updates act directly
on the values associated with the graph as well as on its structure.

A large number of healthiness conditions used to characterise UTP theories
are defined by a conjunction. In this case, a function H from predicates to pred-
icates is defined as H(P) = P ∧ ψ, for some predicate ψ; the healthy predicates
are the fixed points of H: those for which H(P) = P . A number of properties
are satisfied by these predicates, independently of the particular definition of ψ.
We present and prove some of these results; they simplify proof in our theory.

In [5], we also present a theory of pointers and records for the UTP. It is
based on the model of entity groups in [21] to formalise rules of a refinement
calculus for Eiffel [15]. In that work, the complications of an explicit model of
the memory are also avoided; each entity (variable) is associated with the set of
variables that share its location (entity group). Here, we use a binary relation to
model sharing, and record the set of valid names and values explicitly to simplify
definitions and proof. This is in addition to the simplification that arises from
the separate treatment of healthiness conditions defined by conjunction.

In the next section, we describe the UTP. Section 3 describes our model
informally. In Section 4, we present general results about theories characterised
by healthiness conditions defined by conjunctions, before we formalise our theory
in Section 5. A model for usual programming constructs is presented in Section 6.
Finally, in Section 7 we consider some related and future work.

2 Unifying theories of programming

In the unifying theories of programming, relations are defined by predicates over
an alphabet (set) of observational variables that record information about the
behaviour of a program. In the simplest theory of general relations, these include
the programming variables v , and their dashed counterparts v ′, with v used to
refer to an initial observation of the value of v , and v ′ to a later observation. In
the sequel, we use v to stand for the list of all programming variables, and v ′ to
the corresponding list of dashed variables. The set of undecorated (unprimed)
variables in the alphabet αP of a predicate P is called its input alphabet inαP ,
and the set of dashed variables is its output alphabet outαP . A condition is a
predicate whose alphabet includes only input variables.

Theories are characterised by an alphabet and by healthiness conditions de-
fined by monotonic idempotent functions from predicates to predicates. The
predicates of a theory with an alphabet A are all the predicates on A which are
fixed points of the healthiness conditions. As an example, we consider designs.

The general theory of relations does not distinguish between terminating
and non-terminating programs. This distinction is made in the UTP in a theory

of designs, which includes two extra boolean observational variables to record
the start and the termination of a program: ok and ok ′. All designs can be
split into precondition/postcondition pairs, making them similar to specification
statements of a refinement calculus. The monotonic idempotents used to define
the healthiness conditions for designs can be defined as follows, where P is a
relation (predicate) with alphabet {ok , ok ′, v , v ′}.

H1(P) =̂ ok ⇒ P H2(P) =̂ P ; J , where J =̂ (ok ⇒ ok ′) ∧ v ′ = v

If P is H1-healthy, then it makes no restrictions on the final value of variables
before it starts. If P is H2-healthy, then termination must be a possible outcome
from every initial state. The functional composition of H1 and H2 is named H.
Our definition of H2 is different from that in [11], but it is equivalent [7]; it uses
the sequence operator that we define below.

Typically, a theory defines a number of programming operators of interest.
Common operators like assignment, sequence, and conditional, are defined for
general relations. Sequence is relational composition.

P ; Q =̂ ∃w0 • P [w0/w
′] ∧ Q [w0/w], where outα(Q) = inα(Q)′ = w ′

The relation P ; Q is defined by a quantification that relates the intermediate
values of the variables. It is required that outα(P) is equal to inα(Q)′, which is
named w ′. The sets w , w ′, and w0 are used as lists that enumerate the variables
of w and the corresponding decorated variables in the same order.

A conditional is written as P ⊳ b ⊲ Q ; its behaviour is (described by) P if
the condition b holds, else it is defined by Q .

P ⊳ b ⊲ Q =̂ (b ∧ P) ∨ (¬b ∧ Q), where α(b) ⊆ α(P) = α(Q).

A central concern of the UTP is refinement. A program P is refined by a pro-
gram Q , which is written P ⊑ Q , if, and only if, P ⇐ Q , for all possible values
of the variables of the alphabet. The set of alphabetised predicates form a com-
plete lattice with this ordering. Recursion is modelled by weakest fixed points
µX • F (X), where F is a monotonic function from predicates to predicates.

The programming operators of a theory need to be closed: they need to take
healthy predicates to healthy predicates. In Section 4, we provide some general
results for healthiness conditions defined by conjunctions.

3 A model for pointers

In this section we introduce a straightforward and intuitive model of a storage
graph that we call a pointer machine. Afterwards, in Section 3.2 we introduce
an alternative representation for a pointer machine that is easier to model in the
UTP. The new UTP theory itself is presented in Section 5.

3.1 The pointer machine

A simple model for storage is a labelled graph, in which the labels are names of
attributes, and terminal nodes hold values. It is useful to think of this graph as
a particular kind of automaton, a pointer machine that accepts addresses (at-
tribute by attribute) and produces values when you reach a terminal node.

Intuitively, arcs represent pointers, internal nodes represent storage locations
for pointers, and terminal nodes, storage locations for values. A mapping assigns
attribute names to arcs for selecting pointers and values, and another gives the
values stored at a terminal node. For example, Figure 1 gives a pointer machine
for the variable l defined in Section 1. There is only one internal node X , the
initial node, and one terminal node, Y . The arcs are {X 7→ X ,X 7→ Y }; we
write a 7→ b to describe the pair (a, b). The set of labels is {l , label ,next}, and
the labelling functions are { (X 7→ X) 7→ next , (X 7→ Y) 7→ label } for the arcs,
and just {Y 7→ 1 } for the terminal node.

X

Y
1

l

label

next

Fig. 1. A labelled graph representation for a pointer machine

In fact, a pointer machine naturally represents a structure in which there is
a single entry point.Conceptually, we regard the start node as a fictional root of
all memory, whose arcs correspond to simple variable names.

3.2 A simpler model

We represent pointer machines by a triple 〈A,V ,S 〉, where A is the set of
addresses that the machine accepts, V is a partial function mapping addresses
to primitive values, and S is an equivalence relation on addresses, recording
that two addresses lead to the same node. The addressing map V defines which
addresses yield values: the difference between A and domV is the set of addresses
that are accepted by the machine, but do not yield a primitive value. The set
A defines the valid addresses. The storage map S records the sharing. For the
pointer machine in Figure 1, A contains l , all the addresses formed only by
accesses to next (l .next , l .next .next , and so on), and those that end with an
access to label , possibly after (repeated) accesses to next (l .label , l .next .label ,
l .next .next .label , and so on). The V function maps all accesses to label to 1.
Finally, S relates l to all (repeated) accesses to next , all these addresses to each
other, and all accesses to label to each other as well.

The set of finite addresses FAd =̂ (seqLabel) \ { 〈 〉 } contains the non-empty
sequences of labels. An infinite address is an element of seq∞ =̂ N1 → Label ,
that is, a total function from the positive natural numbers to Label . Finally, an
address in Ad =̂ FAd ∪ seq∞ can be finite or infinite.

Equality Two equalities are definable: value equality, written =v , and pointer

equality, which is written =p . The former holds for pointers that have the same
value. It establishes that, if you follow the pointers, and use the nodes you arrive
at as the start nodes of two pointer machines, say 〈A1,V1,S1 〉 and 〈A2,V2,S2 〉,
then A1 = A2 and V1 = V2, that is, the domains of definition and the addressing
map of the machines are the same. This means that two pointers are equal if
further addressing off these pointers leads to the same values (and the same fail-
ures). Pointer equality holds for pointers that point to exactly the same location.

For a finite p, we define the p-projection 〈A.p,V .p 〉 of the machine with
A.p =̂ { q : Ad | p.q ∈ A } and V .p =̂ { q : Ad | p.q ∈ domV • q 7→ V (p.q) }.
We use the dot operator to combine addresses, as well as to append an attribute
name to the end of an address. The value associated with the object pointed
by p is the tree coded by 〈A.p,V .p 〉. Value equality is defined by equality of
pointer projections, and pointer equality is defined by the storage map.

p =v q =̂ (A.p = A.q ∧ V .p = V .q) p =p q =̂ (p, q) ∈ S

For our simple example, we have that l .next is both value and pointer equal to
l . The l -projection of the machine described above is formed by stripping off the
leading l in all addresses in A and domV .

4 Conjunctive healthiness conditions

We refer to a healthiness condition that is, or can be, defined in terms of con-
junction as a conjunctive healthiness condition. In this section, we consider an
arbitrary conjunctive healthiness condition CH(P) = P ∧ ψ, for some predicate
ψ. All the healthiness conditions of our theory are conjunctive.

Conjunction, disjunction, and conditional are closed with respect to CH.

Theorem 1. If P and Q are CH-healthy predicates, then P ∧ Q, P ∨ Q, and

P � c � Q are CH-healthy.

The proof of this and every other result in this paper can be found in [10].
To establish closedness for sequence, we consider a specific kind of conjunctive

healthiness condition: those in which ψ is itself the conjunction of conditions
ψi and ψ′

i over the input and output alphabets, respectively. In this case, CH

imposes similar restrictions on the input and output alphabets. (As expected,
the predicate P ′ is that obtained by dashing all occurrences of the observational
variables in P .) With these results, we can prove closedness of sequence.

Theorem 2. If P and Q are CH-healthy, where CH(P) = P ∧ ψ ∧ ψ′, for

some condition ψ on input variables, then P ; Q is CH-healthy as well.

The set of CH-healthy predicates is a complete lattice, since it is the image
of a monotonic idempotent healthiness condition [11]. So, recursion can still be
defined using weakest fixed points; closedness is established by the next theorem.

Theorem 3. If F is a monotonic function from CH-healthy predicates to CH-

healthy predicates, then µch X • F (X) = CH(µX • F (X)), where µch X • F (X)
is the least fixed point of F in the lattice of CH-healthy predicates.

This states that a recursion is a CH-healthy predicate, if, for instance, its body
is built out of CH-healthy predicates itself using closed constructors.

Designs In general, a theory of CH-healthy predicates is disjoint from the theory
of designs: on abortion, a design provides no guarantees, but a CH-healthy pred-
icate requires ψ to hold. Of course, if ψ is true, in which case CH is the identity,
we do not have a problem, but for interesting CH, there is a difficulty. We follow
the UTP approach used to combine the theory of reactive processes and designs
to combine the theory of designs with a theory of CH-healthy predicates. We
take CH as a link that maps a design to a CH-healthy predicate.

What we have is an approximate relationship between the two theories: for
a CH-healthy relation P , CH ◦ H1(P) ⊑ P . This is a property of a Galois
connection that translates between the theories. The healthiness condition H2

is not a problem: it commutes with CH, provided ψ does not refer to ok ′.

Theorem 4. CH ◦ H2 = H2 ◦ CH, provided ok ′ is not free in ψ.

Galois connection Our proof of the existence of a Galois connection between
the theories of CH-healthy predicates and designs relies on two simple lemmas
about H1, CH, and refinement. In fact, instead of considering H1 in particular,
we consider an arbitrary implicational healthiness condition IH(P) = φ⇒ P .

Lemma 1 (IH-refinement). IH(P) ⊑ IH(Q) if, and only if, IH(P) ⊑ Q.

This lemma lets us cancel an application of IH on the right-hand side of the
refinement. This works because IH(P) is a disjunction, and the cancellation
strengthens the implementation. Something similar can be done with CH, but
since CH is a conjunction, the cancellation takes place on the specification side.

Lemma 2 (CH-refinement). P ⊑ CH(Q) if, and only if, CH(P) ⊑ CH(Q).

Applications of the above lemmas justify the main result for a combination of
the theories of IH-healthy and CH-healthy predicates.

Theorem 5. There is a Galois connection between IH-healthy and CH-healthy

predicates, where CH is the right adjoint and IH is the left one.

P ⊑ IH(Q) if, and only if, CH(P) ⊑ Q .

Here, P is IH-healthy, and Q is CH-healthy.

For designs, more specifically, we have the result below.

Theorem 6. CH and H form a Galois connection between designs and CH-

healthy predicates.

D ⊑ H(P) if, and only if, CH(D) ⊑ P .

Here, D is a design, and P is CH-healthy.

Proof of closedness of the operators in the combined theories is simple.

5 Pointers and records in the UTP

The alphabet of our theory includes three new observational variables A, V , and
S that record separately the components of the pointer machine.

The first healthiness condition, named HP1, guarantees that A is prefix
closed. We write x < y when x is a (finite) strict prefix of the address y.

HP1 P = P ∧ ∀ a1 : A; a2 : FAd | a2 < a1 • a2 ∈ A

This means that if x .y.z , for instance, is a valid address, then x .y and x must be
as well. As already said, the healthiness conditions are characterised by functions,
so in accordance with the UTP style, we use the name of the healthiness condition
as the name of the corresponding function. In the case of HP1, for example, we
have a function HP1(P) =̂ P ∧ ∀ a1 : A; a2 : FAd | a2 < a1 • a2 ∈ A.

To formalise HP2, we define the subset term(A) of addresses of terminal
nodes. In general, term(X) =̂ { x : X ∩ FAd | ¬ ∃ y : X • x < y}, that is,
a terminal address is finite and has no valid extensions. In HP2, we connect
domV and A by requiring each terminal in A to have a value defined by V .

HP2 P = P ∧ domV = term(A)

The third healthiness condition HP3 connects the programming variables in the
alphabet to pointers in the pointer machine. For every variable x , we use ′x to
refer to its name. We require in HP3 that ′x is a variable in the pointer machine,
and that the value of x is consistent with that assigned by V . The variables of
the pointer machine are the first elements of the addresses: for a set of addresses
X , the variables are vars(X) =̂ {x : X • x (1)}. If ′x is a terminal, then x must
have value V (′x). If ′x is not a terminal, then the value of x is a partial function
that maps addresses to values defined by the projection of V at ′x , that is,
V .(′x). For every x in inα(P) \ {A,V ,S}, we define the de-referencing operator
!x as follows: !x =̂ if x ∈ term(A) then V (x) else V .x . For a dashed variable,
the definition is !(x ′) =̂ if x ∈ term(A′) then V ′(x) else V ′.x . In HP3 we use
this operator to constrain the values of the input variables.

HP3 P = P ∧ v1 = ! ′v1 ∧ . . . ∧ vn = ! ′vn ∧ {′v1, . . . ,
′ vn} = vars(A)

where {′v1, . . . ,
′ vn} = inα(P) \ {A,V ,S}

The remaining healthiness conditions are related to S . It should involve only
addresses in A and should be an equivalence relation. We use R∗ to describe the
reflexive, symmetric, and transitive closure of R.

HP4 P = P ∧ S ∈ (A ↔ A) ∧ S = S ∗

Also, if two addresses are equivalent under S , then any extension by the same
address should be equivalent. We define an equivalence relation E between ad-
dresses to be forward closed with respect to a set of addresses A to mean that once
two addresses are equivalent, then their common extensions are equivalent, that

is fclosA E =̂ ∀ x , y, a : Ad | (x , y) ∈ E ∧ (x .a ∈ A ∨ y.a ∈ A) • (x .a, y.a) ∈ E .

HP5 P = P ∧ fclosA S

Finally, if two terminals share a location, then they have the same value.

HP6 P = P ∧ ∀ a, b :Ad | (a, b) ∈ S ∧ a ∈ domV • b ∈ domV ∧V (a) = V (b)

We also have extra healthiness conditions HP7-HP12 that impose the same re-
strictions on the dashed variables. Our theory is characterised by the healthiness
condition HP, the functional composition of all these healthiness conditions.

All our healthiness conditions are conjunctive; consequently, HP is conjunc-
tive, and moreover, it imposes the same restrictions on S , V , and A, and on S ′,
V ′ and A′, as studied in Section 4. So, we can conclude, based on Theorems 1,
2, and 3, that the usual specification and programming constructs are closed
with respect to HP. In addition, HP and H are adjuncts of a Galois connection
that defines a theory of pointers for terminating programs. We only need to be
careful with the definition of HP2. In the theory of pointer designs, ok and ok ′

are not programming variables, and just like A, V , and S , they are not to have
space allocated in the pointer machine. So, ok is not to be included in the vector
v of variables considered in HP2, and ok ′ is not to be included in v ′ in HP8.

In the sequel, we define some programming constructs; for that, it is useful to
define HPI =̂ HP1 ◦ HP2 ◦ HP3 ◦ HP4 ◦ HP5 ◦ HP6. It imposes restrictions
only on the input variables. These definitions illustrate the use of the healthiness
conditions also to simplify definitions; in particular HP9 is very useful, as it
relates changes in the machine to changes in values of variables. Most of the
healthiness conditions are restrictions that characterise the automata that model
pointer machines. In the case of HP3, and the corresponding HP9, however,
we have healthiness conditions that unify the structural and logical views of
variables. They are the basis for a reasoning technique that copes in a natural
way with (infinite) values whose storage structure is also of interest.

6 Programming constructs

We can update the pointer machine using a value assignment, which we write
x := e for a finite address x in A, or a pointer assignment x :− y, where both x

and y are finite addresses in A. Both types of assignment may change an internal
or a terminal node, and consequently alter A, V , and S .

6.1 Value assignment

We define, for an address x , the set share(x) =̂ S (| {x} |) of addresses that share
its location; S (| {x} |) is the relational image of {x} through S : all elements
related to x in S . A value assignment to a terminal address is defined as follows.

x := e =̂ HPI ◦ HP9(A′ = A ∧ V ′ = V ⊕ {a : shareS (x) • a 7→ e}) ∧ S ′ = S)

provided x ∈ domV

The symbol ⊕ is used for the functional overriding operator. In the new value

of V , x and all the addresses that share its location are associated with the
value e. The application of the healthiness condition HPI ensures that the input
variables are healthy; HP9 ensures that the values of the programming variables
are updated in accordance with the changes to V .

For an internal address, the definition of assignment is a generalisation of
that above. Before we present it, we define the set ext(x) =̂ shareS (x)↑ of all
addresses that extend x or any of the other addresses that share the location
of x . The set X ↑ =̂

⋃
{x : X ∩ FAd • x∞} contains all addresses that extend

those in a set X , and x∞ =̂ { a : Ad • x .a } contains all the extensions of the
finite address x . All the addresses in ext(x) become invalid if x is assigned a
value; they are removed from A, from the domain of V , and from the domain
and range of S . The operators for domain and range subtraction are −⊳ and −⊲.

x := e =̂

HPI ◦ HP9

A′ = A \ extS (x) ∧
V ′ = (extS (x) −⊳ V) ∪ {a : (shareS (x) \ extS (x)) • a 7→ e} ∧
S ′ = extS (x) −⊳ S −⊲ extS (x)

provided x ∈ A and x /∈ domV .

For a terminal address x , the set x∞∩ A is empty, and so is extS (x) ∩ A. So,
in the definition of assignment to a terminal address, we do not change A and
S . In V , we include the addresses that share a location with x according to the
new storage map S ′, that is, shareS (x) \ extS (x).

As an example, we consider again the variable l in Figure 1; after the assign-
ment l .next := 3, all extensions of l .next become invalid. The set shareS (l .next)
contains l and all accesses to next ; so, ext(l .next) contains all addresses in A,
except l . So, after l .next := 3, A contains only l , S only associates l to itself,
and finally, the domain of V is wiped out, and l is added: it is mapped to 3.

The proofs of HP-healthiness [10] provide validation for our definitions.

6.2 Pointer Assignment

We present here just the definition of pointer assignment to an internal address.
As a motivating example, we consider the variables l , m, and n depicted in
Figure 2(a). After the assignment l :− m.link , the value and sharing properties
of l and its extensions are completely changed, but no other variable is affected: l

now points to the same location as m.link , but n, for example, does not change.
The address l is still valid, but its extensions, like l .next , l .label , and so on, cease
to exist. Instead, all addresses formed by concatenating a suffix of m.link to l

are now valid. For example, l .value, l .link , l .link .link and so on become valid.
Accordingly, in the definition of x :− y, we remove x∞ from A, and add the

set {a : A.y • x .a } of new addresses. In the case of V , we remove x∞ from its
domain, and give x and its new extensions the values defined by y, if any. In our
example, after the assignment l :− m.value, since m.value is a terminal, with
value 3, then l also becomes a terminal with the same value. On the other hand,

(a)

l

label

next
n

m

value

link

1 3

(b)
l

stepstep step

Fig. 2. Two pointer machines

after l :− m.link , the new terminal locations correspond to those of m.link .
Namely, we have new terminals l .value, l .link .value and so on, all with value 3.

If x and y share the same location, the pointer assignment x :− y has no
effect and, in particular, S does not change. If, however, they point to different
locations, the sharing information for x and all elements of x∞ change. To
simplify the definition of S ′, we define the set bsh(x) =̂ {x} ∪ x∞ of addresses
whose sharing is broken. The existing sharing information about these addresses
is eliminated, and their new sharing with y and its extensions is recorded.

Conditional expressions are used below: the value of e1 ⊳ b ⊲ e2 is e1 if the
condition b holds, otherwise its value is e2.

x :− y =̂

HPI ◦HP9

A′ = A \ x∞∪ {a : A.y • x .a } ∧

V ′ =

(x∞−⊳ V) ∪
({x 7→ V (y)} ⊳ y ∈ domV ⊲ ∅) ∪
{ a : domV .y • x .a 7→ V (y.a) }

 ∧

S ′ =

S ⊳ (x , y) ∈ S⊲

(bsh(x) −⊳ S −⊲ bsh(x)) ∪
({x} × ((S (| {y} |) \ x∞) ∪ {x})) ∪⋃
{a : A.y • {x .a} × ((S (| {y.a} |) \ bsh(x)) ∪ {x .a})}

∗

provided x /∈ domV and x is a simple name.

The address x now shares its location with y and all the addresses that already
share a location with y: those in S (| {y} |). It may be the case, however, that y

shares a location with an extension of x , and in this case that address does not
exist anymore, and needs to be eliminated. In our example, after l :− n.label ,
l should be associated with n.label , n.next .label , n.next .next .label and so on;
however S (| {n.label} |) also includes l .label , l .next .label , and all other accesses to
label via l ; these need to be excluded. The same comment applies to the sharing
information related to the new extensions l .a of x ; they should be related to
S (| {y.a} |), but the extensions of x should be eliminated. If present, x should
also be eliminated, as information about it in S is no longer valid. In the case of
S (| {y} |), we know that x does not belong to this set, since (x , y) /∈ S .

Finally, we need to consider the cases in which S (| {y} |) is contained in
x∞, so that S (| {y} |) \ x∞ is empty, or S (| {y.a} |) is contained in bsh(x),
so that S (| {y.a} |) \ bsh(x) is empty. The machine in Figure 2(b) gives us an
example: after l :− l .step, the valid addresses are l and l .step, and S ′ should
be the identity. When we eliminate l and all its extensions from S , however,
we get the empty relation; furthermore, S (| {l .step} |) contains only l .step, and

similarly, S (| {l .step.step} |) is {l .step.step}. To guarantee that S ′ includes all
valid addresses, we explicitly associate x and each new x .a to themselves.

A value assignment x := y affects the value of all addresses that share the
location of x . In the case of a pointer assignment, however, not all of them are
affected. For example, as we discussed above, even if the variables x and z share
a location, x :− y does not affect z . On the other hand, x .a :− y affects both x .a
and z .a, since x .a is an attribute of both x and z . The definition of x .a :− y is
similar to that of x :− y, but it takes into account the fact that other addresses,
and not only x .a and x .a∞ are affected. Details are in [10].

6.3 Object creation

New structures are created in programming languages by allocating storage. The
effect in the pointer machine is to make new addresses available.

In our untyped theory, we define that the attributes of newly created objects
have an unspecified value. We introduce a construct x : new(a), which allocates
new storage for an object that becomes accessible from x ; here a is a list of
the attribute names. We use the notation {x .ai} to refer to the set of addresses
formed by appending an attribute ai in a to x . Similarly, we write {x .ai 7→ vi}
to denote the set of pairs that associate each x .ai to the corresponding element
of a list v of values; similarly {x .ai 7→ x .ai} associates each address x .ai to itself.
The definition of x : new(a) is much like that of a pointer assignment to x , and
we consider below the case in which x is a simple name.

x : new(a) =̂ HPI ◦ HP9

A′ = (A \ x∞) ∪ {x .ai} ∧
∃ v • V ′ = ((x∞∪ {x}) −⊳ V) ∪ {x .ai 7→ vi} ∧

S ′ =

(
((x∞∪ {x})−⊳ S −⊲ (x∞∪ {x})) ∪
{x 7→ x} ∪ {x .ai 7→ x .ai}

)

provided x ∈ A and x is a simple name.

Its proof of healthiness is similar to that for assignment.

6.4 Variable declaration and undeclaration

Pointer variables can be introduced by the operator begin(x) and removed by
end(x).

begin(x) =̂ HPI ◦ HP9

A′ = A ∪ { x } ∧
∃ v • V ′ = V ⊕ { x 7→ v } ∧
S ′ = S ∪ {x 7→ x}

 provided x 6∈ A

In this case HP9 guarantees that the output alphabet includes x ′, corresponding
to the new variable x , which is now in A.

end(x) =̂ HPI ◦ HP9

A′ = A \ (x∞∪ { x }) ∧
V ′ = (x∞∪ { x }) −⊳ V) ∧
S ′ = (x∞∪ { x }) −⊳ S −⊲ (x∞∪ { x })

These constructs correspond to the (var x) and (end x) operators of the UTP;
they do not create a variable block.

7 Conclusions

We have presented a UTP theory of programs with variables whose object values
and their attributes may share locations. We capture an abstract memory model
of a modern object-oriented language based on (mutually) recursive records.

These have also been considered by Naumann in the context of higher-order
imperative programs and a weakest precondition semantics [19]. In that work,
many of the concerns are related to record types, and the possibility of their
extension, as achieved by class inheritance in object-oriented languages. Here,
we are only concerned with record values. We propose to handle the issue of
inheritance separately, in a theory of classes with a copy semantics [25].

The idea of avoiding the use of explicit locations was first considered in [3]
for an Algol-like language. The motivation was the definition of a fully abstract
semantics, which does not distinguish programs that allocate variables to differ-
ent positions in memory. In that work, sharing is recorded by a function that
maps each variable to the set of variables that share its location; a healthiness
condition ensures that variables in the same location have the same value. A
stack of functions is used to handle nested variable blocks and redeclaration. We
do not consider redeclarations, but we handle the presence of record variables,
and sharing between record components, not only variables.

Hoare & He present in [12] a theory of pointers and objects using an analogy
with process algebras. They draw attention to the similarities between pointer
structures, automata and processes, and use of trace semantics and bisimulation
in discussing pointers. They use a graph model based on a trace semantics: a set
of sets of traces, each set of traces describing the paths that may be used to access
a particular object. This work, however, stops short of providing a specification
or refinement framework for pointer programs. We take the view that pointer
structures are not just like automata, they are automata; this leads naturally to
the view that updatable pointer structures are updatable automata. We handle
the correspondence between the values of object variables and attribute accesses,
and the sharing structure of these variables and their components in the unified
context of a programming theory. To manage complexity, we use healthiness
conditions to factor out basic properties from definitions.

Work on separation logic [23] and local reasoning [20] also provided inspira-
tion for our work. These approaches establish a system of proof rules to address
the frame problem. When a change is made to a data structure, variables not
affected by the change maintain their values; standard approaches to reasoning
require explicit invariants for every variable that does not change its value, with
a large overhead in specification and reasoning. Any effective theory must ad-
dress this problem in some way. Our work builds a semantic view of pointers
which we believe supports derived rules of inference that mirror those used in
local reasoning. At the moment, we are concerned with local reasoning, rather
than separation logic, because we want to work with classical logic to simplify
connection with other UTP theories.

Chen and Sanders’ work [8] lifts and extends combinators of separation logic
to handle modularisation and abstraction at the levels of specification and design.

This work is based on the model in [12], and as such it also does not consider
the relationship between the pointer structure and the values of programming
variables and attribute accesses. On the other hand, they present a number of
operators and laws to support reasoning about the graph structures.

Möller [18] uses relations to represent pointer graphs; the extension of this
work to Kleene algebra [9] provides a natural formalism to capture self-referential
structures. Since we adopt the automaton view of pointers, there is inevitably a
correspondence with Kleene algebras: all our constructions could be expressed in
terms of an updatable Kleene algebra. The difference is one of perspective: if we
were concerned with data structures, our work would provide results similar to
Möller’s, although expressed in terms of automata. We aim, however, at a theory
for specification and refinement, so our model is directly linked to the UTP
framework via the healthiness conditions that connect the updatable automaton
to the program variables.

Bakewell, Plump, and Runciman [2] suggest the explicit use of a graph model
to reason about pointers. With this perspective, it is natural to talk about in-
variants of the graph and about pointer structure manipulations in terms of
invariant preservation. This is at the heart of the work in [2], in which a set
of invariants are defined for pointer graphs and program safety is defined in
terms of preservation of suitable sets of these invariants. The technique would
be directly applicable to automaton models, including ours.

The refinement calculus for object systems (rCOS) [14] and TCOZ [22], an
object-oriented language that combines Object-Z [26], CSP, and timing con-
structs, have been given a UTP semantics. In both works, objects have identities
which are abstract records of their location in memory. Object identities refer
explicitly to storage and, as already discussed, prevent full abstraction.

In the short term, we plan to investigate refinement laws of our theory, and
explore its power to reason about pointer programs in general, and data struc-
tures and algorithms typically used in object-oriented languages in particular.
After that, we want to go a step further in our combination of theories and
consider a theory of reactive designs with pointers.

References

1. R. J. Back, X. Fan, and V. Preoteasa. Reasoning about Pointers in Refinement
Calculus. In APSEC 2003, page 425. IEEE Computer Society, 2003.

2. A. Bakewell, D. Plump, and C. Runciman. Specifying Pointer Structures by Graph
Reduction. In Applications of Graph Transformations with Industrial Relevance,
v. 3062 of LNCS, pages 30 – 44, 2006.

3. S. D. Brookes. A Fully Abstract Semantics and a Proof System for an Algol-
like Language with Sharing. In A. Melton, editor, Mathematical Foundations of

Programming Semantics, v. 239 of LNCS, pages 59 – 100. Springer, 1985.
4. R. M. Burstall. Some techniques for proving correctness of programs which alter

data structures. Machine Intelligence, 7:23 – 50, 1972.
5. A. L. C. Cavalcanti, W. Harwood, and J. C. P. Woodcock. Pointers and Records

in the Unifying Theories of Programming. In UTP’06, v. 4010 of LNCS, pages 200
– 216. Springer, 2006.

6. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Unifying Classes
and Processes. SoSyM, 4(3):277 – 296, 2005.

7. A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial Introduction to CSP in
Unifying Theories of Programming. In Refinement Techniques in Software Engi-

neering, v. 3167 of LNCS, pages 220 – 268. Springer, 2006.
8. Y. Chen and J. Sanders. Compositional Reasoning for Pointer Structures. In MPC,

v. 4014 of LNCS, pages 115 – 139. Springer, 2006.
9. J. Desharnais, B. Möller, and G. Struth. Modal Kleene Algebra and applications

a survey. Methods in Computer Science, (1):93 – 131, 2004.
10. W. Harwood, A. L. C. Cavalcanti, and J. C. P. Woodcock. A Model of Point-

ers for the Unifying Theories of Programming – Extended Version. Technical
report, University of York, Department of Computer Science, UK, 2008. www-
users.cs.york.ac.uk/˜alcc/publications/HCW08.pdf.

11. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

12. C. A. R. Hoare and He Jifeng. A trace model for pointers and objects. Programming

methodology, pages 223 – 245, 2003.
13. Samin Ishtiaq and Peter W. O’Hearn. BI as an assertion language for mutable

data structures. In POPL. ACM Press, 2001.
14. Z. Liu, J. He, and X. Li. rCOS: Refinement of Component and Object Systems. In

Formal Methods for Components and Objects, v. 3657 of LNCS. Springer Verlag,
1994.

15. B. Meyer. Eiffel: the language. Prentice-Hall, 1992.
16. B. Meyer. Towards practical proofs of class correctness. In ZB 2003, v. 2651 of

LNCS, pages 359 – 387. Springer, 2003.
17. R. Milne and C. Strachey. A Theory of Programming Language Semantics. Chap-

man and Hall, 1976.
18. B. Möller. Calculating with pointer structures. In IFIP TC 2 WG 2.1 International

Workshop on Algorithmic Languages and Calculi, pages 24 – 48. Chapman & Hall,
Ltd., 1997.

19. D. A. Naumann. Predicate Transformer Semantics of a Higher Order Imperative
Language with Record Subtypes. SCP, 41(1):1 – 51, 2001.

20. P. O’Hearn, J. Reynolds, and H. Yang. Local reasoning about programs that
alter data structures. In Computer Science Logic, v. 2142 of LNCS, pages 1 – 19.
Springer, 2001.

21. R. F. Paige and J. S. Ostroff. ERC – An object-oriented refinement calculus for
Eiffel. Formal Aspects of Computing, 16(1):5, 2004.

22. S. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation for TCOZ in Uni-
fying Theories of Programming. In FME2003, v. 2805 of LNCS, pages 321 – 340.
Springer, 2003.

23. J. Reynolds. Separation logic: a logic for shared mutable data structures. In IEEE

Symposium on Logic in Computer Science, pages 55 – 74. IEEE Press, 2002.
24. J. C. Reynolds. Intuitionistic reasoning about shared mutable data structure. In

Millenial Perspectives in Computer Science. Palgrave, 2001.
25. T. L. V. L. Santos, A. L. C. Cavalcanti, and A. C. A. Sampaio. Object Orientation

in the UTP. In UTP’06, v. 4010 of LNCS, pages 18 – 37. Springer, 2006.
26. G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers,

1999.

