
An Architecture for Circus Tools
Leo Freitas1, Jim Woodcock1, Ana Cavalcanti1

1Department of Computer Science, University of York YO10 5DD, York, UK
{leo,jim,Ana.Cavalcanti}@cs.york.ac.uk

Abstract. Circus is a concurrent language tailored for refinement that combines
Z, CSP, and the refinement calculus using Hoare and He’s Unifying Theories of
Programming (UTP). In this paper we present our architecture that extends an
ongoing effort of Community Z Tools (CZT) that implements tools for Standard
Z. This includes: a specification processing front-end that allows parsing, pretty-
printing, and typechecking of Circus; a theorem proving module; a compiler
useful for animation and prototyping; and a refinement model checker.

1. Introduction
Community Z Tools (CZT) is an initiative started in 2002 that is geared towards providing
extensible tool support for Standard Z [ISO/IEC 13568 2002] in Java. Since then, some
Z extensions have been implemented. In this paper, we detail how we have built on the
top of CZT’s architecture a foundation for tools to a Z extension: Circus. We also detail
a set of tools built from this foundation, as well as other tools that benefited from this
architecture. The point is to show a successful case study on how one could use CZT’s
foundation to effectively produce Standard Z compliant tools.

Circus [Woodcock and Cavalcanti 2001] is a concurrent language tailored for re-
finement that combines Standard Z with CSP [Roscoe 1997] and the refinement calcu-
lus [Morgan 1994], where its semantical background is based on the Unifying Theories
of Programming [Hoare and Jifeng 1998]. That is, syntactically the language resembles
both Z and CSP, as well as the constructs from the refinement calculus. Semantically,
it follows Hoare and He’s denotational theory of programming that enables theoretical
combination and extension of various paradigms. Despite the architecture explained in
this paper being instantiated for Circus, many of the techniques explained later on can
be reused within CZT for different extensions, hence most of the ideas presented here are
reusable in different contexts, as we motivate throughout the paper. If one wants to reuse
CZT for extending a new Z-based language, this paper serves as a guideline. That is, the
various modules presented here could be adapted to other circumstances and languages.

In this paper, we present four modules that are used as building blocks for var-
ious Circus tools, some of which we mention along with the module descriptions. In
the next section we present a specification processing module that represents Circus as
an abstract data type, and provides basic functionality like parsing and typechecking. It
is the foundation for all Circus tools. After that, in Section 3 we define a general the-
orem proving architecture used by the Circus tools to discharge verification conditions
(VCs). In this process, the user is given greater flexibility in how the architecture can be
fine-tuned, which is important to get higher-levels of automation. This is achieved either
via configurable interfaces or integration with external tools. We also mention how we
integrate the architecture with the Z/Eves theorem prover [Meisels et al. 1997]. Next, in
Sections 4 and 5 we present more specialised modules related to compilation and refine-
ment search. The former builds an automaton representing Circus specifications from

Parser Printer

Typechecker

AST
AST+

AST

Specification processing module (SPM)

AST+

AST

AST

Unicode

XML

LaTeXSource

Unicode

XML

LaTeX Source

Figure 1. Circus SPM design

the Circus AST produced by the specification processing module, whereas the later per-
forms an exhaustive search over this automaton in order to establish refinement or some
properties of interest.

Related work. CZT supports other extensions with parsing, pretty-printing and type-
checking, such as Object-Z [Smith 2000]—an object oriented flavour for Z— and
TCOZ [Qin et al. 2003]—another Z extensions that includes time and concurrent as-
pects to Object-Z. Details on how to use CZT for new extensions are available
in [Miller et al. 2005]. In [Xavier et al. 2006] a Circus typechecker was implemented
but not within the CZT framework. Also, in [Freitas and Cavalcanti 2006] a translator
tool from Circus to Java was built.

2. Specification processing module (SPM)
This module comprises a data type representing Circus programs together with a parser,
pretty-printer, and typechecker, as shown in Fig. 1. Programs can be given in differ-
ent markup formats. A Circus font and LATEX style macros extending the Standard
Z [ISO/IEC 13568 2002] ones from CZT are also available.

Circus AST. Following the design decisions in Community Z Tools
(CZT) [Malik and Utting 2005], we defined an XML markup format for Circus
that extends the existing one for Z1. The idea of using XML for Z has also been explored
in [Meisels et al. 1997]. XML is used as an interchange format to exchange parsed
specifications between sessions and tools. An XML format is a good choice, as it is
trivial to write parsers for XML, in contrast with the complexity of writing parsing tools
for LATEX. This XML format is the basis of an Annotated Syntax Tree (AST) data type
represented as Java classes and interfaces.

To manipulate ASTs, we provide a customised interface for each Circus construct.
These interfaces together with their implementations are automatically generated from the
Circus XML using XML manipulation tools. For instance, apart from the usual imple-
mentation using the Factory design pattern, it also produces a more efficient Fly-weight
version [Gamma et al. 1995] useful in some scenarios, but this is still an experimental
feature. Although these Circus AST classes shall seldom change, in the case where the
language is to be extended with new constructs, or amendments are requested upon de-
mand, modifications are done centrally in a single XSD file. This strategy dramatically
reduces the time required to develop extensions, ensures a common style of interface,

1This Z XML is called ZML (see http://czt.sourceforge.net/zml).

and improves maintainability and documentation. Modularity is also guaranteed by XSD
importing: the Circus XSD imports the Z XSD. Various traversal strategies for the AST
are available: they use a variation of the visitor design pattern [Gamma et al. 1995]. This
Visitor has been described in detail in [Malik and Utting 2005]. It is a variant of the
acyclic [Martin 1997] and the default [Nordberg III 1997] visitor design patterns. Ad-
vantages over the standard visitors are that it allows the AST interfaces and classes to
be extended without affecting existing visitors, and that it allows a visitor to take advan-
tage of the AST inheritance relationships, hence achieving greater levels of code reuse.
This basic architectural elements provides Circus with: (i) choice of coding style for
generic low-level algorithms, and other term-specific high-level algorithms via the dif-
ferent visiting mechanisms; (ii) automatic code generation of AST interfaces and imple-
mentations; (iii) reuse through the CZT visitor allowing traversal algorithms to be recy-
cled in flexible ways; and (iv) extensible ASTs. In total, there are 847 Java classes (and
about 33Kloc—thousand lines of code) representing the complete Circus AST. The Cir-
cus XSD file is about 4.8Kloc, where 2.2Kloc are imported from the Z XSD. From this,
we generate 33Kloc (i.e., 85% of the AST classes are automatically generated).

This exemplifies how CZT allows great generality and extensibility without the
burden of a high-level of maintainability. The XML file generates one abstract interface
with two or three concrete implementations for varied purposes. For instance, one with
plain AST classes, and another with the Flyweight pattern for smaller memory footprint.
For a new extension, one only needs to create a new XSD file extending either the Z or
Circus ones. In fact, colleagues in Brazil have just used this strategy to extend Circus
with an inference rules engine implementing the Circus refinement calculus.

Circus parser. A Circus parser is used to instantiate the AST representing Circus spec-
ifications. This is the starting point for all Circus tools. The parser is built using a LALR
grammar and the Java CUP parser generator [Appel 97]. Similarly, Java Flex is used to
generate scanners2. This follows the CZT design for Standard Z. This separation of con-
cerns leads to great levels of modularity, reusability and extensibility, which contributes
towards good software engineering practice taken throughout the whole development.

Code from parser generators like CUP is not easily reusable. So, we use XML
again for defining parser and scanner templates that enable a more efficient way of inher-
iting object-oriented code from the Z parser. The XML templates are transformed into
a series of Java (.java), CUP (.cup), and Flex (.jflex) files that are in turn com-
piled into the final parser/scanner Java code. These different XML files representing the
parsers and the scanners are processed using XSLT, a language for transforming XML
documents. This maximises the commonality between the parsers/scanners, and min-
imises versioning and maintenance problems. The whole parser code is around 30Kloc,
and it is generated from around 16.5Kloc of XML template files (i.e., 43% of generated
code). We also provide support for pretty-printing from an AST to any of the available
markup formats. This is particularly useful when using different tools in the pipeline
that do not understand XML, but do understand LATEX or Unicode. On the other hand,
the XML printer can be used to enable interoperability among different programming
languages implementing tools for Z and/or Circus.

2See www2.cs.tum.edu/projects/cup/ and http://jflex.de/.

A major difference in the Circus parser from the original CZT design is in er-
ror recovery. The user can control the parsing depth for fatal errors, as well as follow
context-sensitive error messages. The latter is very useful when users are not familiar
with the idiosyncratic typesetting aspects of standard Z (and Circus). The technique
is quite simple, yet very effective: introduce spurious production rules throughout the
LALR grammar wherever common mistakes are likely to happen. So, instead of a general
“Syntax Error” message, the user gets a series of context-based errors depending on
which spurious (erroneous) production the error passed through. As those spurious pro-
ductions introduce no parsing conflict, they cannot recognise correct specifications, hence
represent a safe and sound solution for handling parsing errors. And this is a general
strategy that can be reused for different parsing tasks using LALR grammars parser gen-
erators. We also support a warning system hinting to the user potential mistaken and/or
less-common specification choices that are, however, syntactically correct. This follows
the trend of modern compilers for complex programming languages. For instance, the
parser/typechecker handling generics in Java 1.6 warn the user in the case of potentially
dangerous run-time type cast that might be entirely correct/appropriate.

Multiple markups. The parser supports multiple markups, as different markup lan-
guages suit different communities. For example, LATEX is preferred by researchers, while
Unicode WYSIWYG editing might be more attractive for students or industrial users. At
present, Unicode, LATEX, and XML formats are supported. In order to avoid having to
provide a parser for each markup language, all specifications are first translated into Uni-
code and subsequently parsed by a Unicode parser3; the AST is markup independent.
This is a necessary precondition for allowing different sections of a specification to be
(possibly) written in different markups. If a parser for a new markup is required, only a
translator to Unicode is needed.

In order to support LATEX markup, it is convenient to provide a LATEX toolkit for a
given extension that defines new operators and keywords for that language; this forms a
LATEX markup section [ISO/IEC 13568 2002, Ap. B]. In addition to defining new opera-
tors, these LATEX markup documents contain LATEX markup directives used to specify how
certain LATEX commands are to be converted into Unicode. For Circus, this section of
keywords, operators, and other directives, are defined in the circus toolkit.tex
file. And the users can layer their Circus (or Z) specifications in a similar (modular)
fashion through section inheritance, which can be multiple but not circular, as defined
in the Z Standard [ISO/IEC 13568 2002, Sec. 13.2.2]. The LATEX to Unicode translator
parses these definitions and converts each LATEX command into the corresponding Uni-
code sequence. Nevertheless, for new LATEX environments (i.e., \begin{xxx} and
\end{xxx}), we cannot use LATEX markup directives. Instead, the LATEX to Unicode
converter needs to be adapted directly. This is possible if we add new rules to the converter
XML template. The LATEX directives/commands defined in circus toolkit.tex are
typeset using LATEX macros defined in the circus.sty style file, which enables correct
LATEX typesetting for Circus. The definitions of these LATEX macros in circus.sty
rely on selecting the appropriate Unicode character from the font where they come from.
That means we also need to provide a Circus font. We extend CZT’s true-type, metafont
and Adobe Type1 fonts for Circus. An additional benefit of following CZT’s approach

3See [Malik and Utting 2005] for a more detailed description of the parser architecture.

AST

AST+ 3

2
4

1

Typechecker

Sect

Env

Type

Env

Unify

Env

Carrier

Set

Type environments

Given

Type

Power

Type

Prod

Type

Schema

Type

Type implementations

Generic

Type

Variable

Type

Name

Sect

Type

Unknown

Type

Action

Type

Process

Type

Channel

Type

Circus

Set

Type

Spec

Checker

Para

Checker

Pred

Checker

Expr

Checker

Term checkers

SchText

Checker

Decl

Checker

CharTpl

Checker

Post

Checker

Action

Checker

Process

Checker

Comm.

Checker

Cmd

Checker

Typecheck

Properties

Typecheck

Resources

Type information

Error

Messages

Figure 2. Circus typechecker design

using intermediate Unicode is that we reduce the number of converters needed between
markups to be implemented from M ∗ (M − 1) to 2 ∗ (M − 1), where M is the number of
markup languages supported.

Typechecker. We extend CZT’s Z typechecker with Circus typing
rules [Xavier et al. 2006]. As the parser provides an AST as a Java object, each
extension has its own typechecker. So, using XML templates is unnecessary because
unlike the parsers, Java interfaces and inheritance can be used to extend the Z type-
checker. When a Circus specification AST is typechecked, all the typechecking rules
are applied, and if the specification is type-correct, it annotates the original AST with
type information as defined in the ISO standard [ISO/IEC 13568 2002, Sec. 10]. If the
specification contains type errors, a list of error messages describing them (including
their line and column positions) is available.

Most of the typechecker is written using the visitor pattern. While it is tempting to
write it as one large visitor, this would create maintenance problems as this visitor would
be quite large and monolithic. So, we (re)use the rather elegant and more sophisticated
CZT design extended for Circus, as shown in Fig. 2. This architecture using individual
checkers per different AST syntactical categories breaks up the overall task of typecheck-
ing into several (currently nine) smaller Checker visitors — each subclass of Checker
typechecks a different kind of syntactic construct, such as paragraphs, predicates, ex-
pressions, etc. The Checker class itself defines some shared resources, such as typing
environments and the type unification facilities, as well as common “helper” methods
used throughout the implementation, such as error reporting. In addition, each checker
subclass object has a reference back to the top-level TypeChecker object, which has
links to all the checkers — this allows one checker to call (the right version of the) other
Checker via the TypeChecker object. In this way, the typechecker design is much
like promotion in Z specifications [Woodcock and Davies 1996, Ch. 13].

For example, for typechecking a schema text [Decl | Pred] of an AxPara term
representing a Z schema, the ParaChecker class, which typechecks Z paragraphs,
needs to typecheck both the declaration and predicate parts of the schema text. Although
visiting through the given AST is the general solution, the typechecking is delegated to

the DeclChecker and PredChecker classes, respectively. The DeclChecker in
turn uses the ExprChecker to ensure that expressions defining the declaring variables
type are well-formed. Because each of these visitors share the same TypeChecker
reference, and hence the same references to the type environments, declarations added
to the type environment by the DeclChecker will be accessible by the other check-
ers. Successful typechecking returns an AST+ annotated with type information for
each of its relevant terms with a general SectTypeEnv class containing type anno-
tations [ISO/IEC 13568 2002, Sec. 10]. Other constructs are decomposed accordingly.
There are a few additional classes that are used by the typechecker: a type environment
containing all known types and variables; a UnificationEnv class that performs uni-
fication of two types for type inference and for checking type consistency; and so on. This
splitting of the overall typechecking task into several visiting parts increases modularity
and maintainability, and provides better encapsulation for the different checkers. This
aids debugging, and allows development of the checkers to be somewhat independent
(e.g., assigned to different teams).

An interesting feature of this design is that each Checker class can be ex-
tended and plugged into the main TypeChecker class independently. For instance,
the DeclChecker for Circus extends the Z version with qualified formal parameter
declarations that reuse the Z PredChecker but needs to extend the ExprChecker
for the extended expressions present in the Circus grammar (i.e., channel set expressions
used in parallel composition). Another advantage is that each Checker is typecheck-
ing similar kinds of terms (e.g., expressions), so can have a uniform visiting protocol,
which increases regularity, and helps to reduce coding errors. For example, all the visitor
methods of the ExprChecker class typechecks expressions, and all its visitor meth-
ods return a Type term with resolved reference parameters in which type unification and
generic actuals inference have already been performed.

3. Theorem proving module (TPM)

The module is unrelated to (and independent from) the CZT design decisions. And when
combined with the parsing and typechecking capabilities of the SPM (see Fig. 1), it can
be used as an independent tool. It is an extended version of the prototype described
in [Freitas 2005, Ch. 5]. The TPM discharges Verification Conditions (VCs) generated
by other Circus tools or input directly by the user, such as the compiler or refinement
model checker described below. For instance, VCs can be predicates to be discharged as
a result of some term manipulation, such as the application of refinement laws. Firstly, a
type correct AST+ representing the VC is passed to the symbolic-set utility tools, which
perform syntactic transformations over the AST+ in order to try to evaluate expressions,
solve predicates, or manipulate schemas. For instance, they can exploit some set theoretic
laws that are syntactically recognisable, such as the zero laws for set union (i.e., A ∪ ∅ =
A = ∅∪A). Within the symbolic-set utilities (see Fig. 3), one can attach their own syntactic
evaluation facility. In fact, those evaluators are layered with different implementations in
an “onion-like” shape, where outer layers syntactically transform the term, and then pass it
along to the inner layers (if any). For instance, suppose we are using a 3-layer shape with
relational, prepositional, and predicative operator transformers. A term would first pass
through the relational layer, where all relational operator application or set containment
expressions would be modified. Quantifiers (or quantified set operations like

⋃
) are left

Theorem proving module (TPM)

Symbolic set utilities

Prop

Op

Pred

Op

Inter

Op

MC

Op

Rel

Op

??

Op

Evaluators

PredExpr Sch

AST-Q

AST-A

SPM

AST-Q

LaTeX-Q

LaTeX-A

AST-A

AST+

TP Manager

TP

Bridge

TP Solver n

TP Solver ...

TP Solver 1

TP

Registr

y

Ask user

solver

AST-A

AST-Q

AST+

Figure 3. Circus TPM design

public interface RelationalSetOp {
public Pred isMember(Expr e, Expr S) throws ...;
public Pred subset(Expr S, Expr T) throws ...; }

public interface PropositionalSetOp {
public Expr union(Expr a, Expr b) throws ...;
public Expr intersection(Expr a, Expr b) throws ...; }

Figure 4. Some TPM set utility operations interface by category

unchanged until they reach the predicative inner-layer. In Fig. 4, we present some of the
interfaces of these transformers. A similar, yet simpler, set of interfaces is also available
for the case where only finite (enumerable) sets are used. In this case, we have not only
more automation, but also other complex operations, such as power set construction.

For each (of the five currently available) syntactic-set utility interfaces, the user
could mix any of the five layers of syntactic transformer implementations. That is, we
have five different implementations of the relational operations layer, and so on for the
others in Fig. 3. The user could also define new interfaces if needed. Each layer may
(or may not) transform the term, depending on the term’s structure. For instance, for the
union operation from the PropositionalSetOp interface above, the available im-
plementation (“onion-like”) layers are ordered as: (i) plain sets that directly apply the
given operation (i.e., union(s1, s2)= (s1 ∪ s2)); (ii) set extension that exploits
the set structure (i.e., union({e1, e2}, {e3})= { e1, e2, e3 }); (iii) Z Toolkit laws
(i.e., union(s1, {})= s1); (iv) typechecked VCs, when expression transformation is
needed; and (iv) definition expansion (i.e., union(s1, s2)= { e : σ T | e ∈ s1 ∨
e ∈ s2 }), where σ T represents the unified carrier set (or unified maximal type) from
the union elements. Default settings are in place so that nothing is required from the
user at first. Nevertheless, fine-tuning (or extending) the available facilities proves help-
ful in increasing levels of automation when dealing with specific kinds of expressions
and predicates. That is, as the disposition of these layers affects the efficiency and au-

tomation levels, the user is given the choice on how to accommodate them, with default
values in case this is not of concern. For instance, for model checking, we added two
new layers (with the five above implementations each) for model checking operations
(e.g., MCOp) as well as interactive operations like nondeterministically choosing an ele-
ment from a set (e.g., InterOp). As we can introduce additional interfaces (i.e., skin
layers for our ”onion-like” structure of transformers) with different implementations (i.e.,
different skin “colours” for each layer), greater generality is possible. It also opens a
wide range of opportunities for fine-tuning the TPM for VCs from different application
domains. In general, as we can have as many “onion-skin” layers with as many possible
implementations as we like/need, the general formula for possible combinations is given
as

∑n−2
i=0 (n !

i ! × mn−i), where n is the number of possible “onion-skin” layers or set utility
interfaces, and m is the number of available implementations for each ni layer. Currently,
with five layers (n = 5) and five implementations each (m = 5), there are 458, 025 possi-
ble combinations for fine-tuning the TP Manager for VC evaluation. Yet, many of these
permutations are commutative, so the actual number is considerably reduced in practice.
An interesting research opportunity is to find a taxonomy of permutations tailored for
different application domains that would lead to higher-levels of automation. So far, we
have done this only for a small variety of case studies.

The AST+ is passed to the symbolic evaluators, which perform semantic trans-
formations over expressions, predicates or schema texts, in order to try to automatically
simplify them. For instance, a trivial evaluator of expressions and predicates is available,
wherever constituent parts are numbers or enumerated sets. This trivial evaluator can cope
with arithmetic expressions, and some relational predicates involving numbers, symbolic
variables and constants. It forms the basis of a simple propositional calculus SAT solver.
All tools using TPM are provided with benchmarking facilities in terms of CPU execution
time, memory requirements, number of (different) VCs (by category), and so on.

These VCs AST+ in the TPM can be interpreted as questions (AST-Q) that expect
some simplified answer (AST-A). Upon termination, if the predicate or expression still
require manipulation (i.e., a predicate is not true, or an expression is not a number), it is
passed to the TP Manager in order to try one of the stacked solvers. Each stacked solver
represents a tool trying to discharge one of the transformed VCs. The TP Registry is a pool
of available tools to chain the request for discharging the VCs, whereas the TP Bridge is a
minimal Java interface all external tools must satisfy in order to be used by the TPM (see
Fig. 5 below). Ultimately, if after both syntactic manipulation of terms from the symbolic-
set utilities, and semantic manipulation of terms from the symbolic evaluators, terms are
not fully simplified, a final low-level evaluator is used. This evaluator is always enabled
and translates the current AST-Q into LATEX (or other chosen markup format), presenting
the result to an assigned output stream, usually the standard output (i.e., LATEX-Q). That
means the user is challenged with a query about the truth of a predicate, or the actual
value of a expression, for which a corresponding answer (in the selected markup format)
is expected (i.e., LATEX-A). Similarly as before for the symbolic-set utilities, we have
symbolic-evaluator interfaces for semantic transformation together with some available
implementations. These entities can again be layered up in an “onion-like” structure used
for fine-tuning semantic transformation of VCs passing them through the TPM.

public interface SymbolicEvaluator {
public boolean setProperty(String name, Object value);
public Object getProperty(String name) throws ...; }

public interface ExprEvaluator extends SymbolicEvaluator {
public Expr evaluate(Expr expr) throws ...; }

public interface PredEvaluator extends SymbolicEvaluator {
public Pred evaluate(Pred pred) throws ...; }

public interface SchExprEvaluator extends ExprEvaluator {
public ZSchText evaluate(ZSchText term) throws ...; }

Figure 5. TP Bridge minimal Java interface

Theorem proving bridge. The minimal Java interface to implement in order to inte-
grate with the stacked solvers is given in Fig. 5. The evaluate methods are called by
the TP Manager whenever some internal evaluator could not cope with the term being
passed as a parameter. In fact, because of this stacked solvers interface, the user could
implement or integrate other evaluation tools. For instance, the user could have extra
symbolic-evaluators implementations as Java libraries. The get/setProperty meth-
ods can be used by the tools to get/pass useful information. To cope with the schema
calculus, a particular feature of Z (and Circus), we also have an evaluator for schema
texts (i.e., [Decl | Pred]).

Integration with tools. From CZT, we borrow three internal set evaluation (Java)
tools: a schema unfolder that is useful to simplify VCs containing schema texts into
a predicate or expression; the ZLive Z animator, which allows symbolic evaluation of
certain (finite-type) VCs; and a rewriting engine for Z that resembles a simple natural
deduction tactic language. They are all available from CZT. The schema unfolder is use-
ful for normalising the schema calculus to a minimal subset of operations, which makes
precondition calculation and other schema calculus operations easier to perform. The
rewriting engine enables one to specify, in any of the available markups, natural deduc-
tion rules, which allows a simplified term-transformer tactic language in the spirit of An-
gel [Martin et al. 1996]. Finally, ZLive is an animator for Z specifications that is a revised
extension of Jaza [Utting 2005], which follows constraint solving principles. To integrate
external tools, one needs to perform three setting up tasks: (i) support at least one of the
available parsing markup formats; (ii) implement the minimal Java interface bridge de-
scribed above; and (iii) recognise set-theoretical expression and predicate terms, where
manipulation of Z schemas is a bonus but not a requirement, since schemas can be pre-
viously unfolded into predicate. So far, we have integrated one external tool: the Z/Eves
theorem prover [Meisels et al. 1997]. TheZ/Eves back-engine runs as a network service
through a socket connection that listens to clients “speaking” their proprietary XML for-
mat [Saaltink et al. 2005]. Thus, to connect with this engine, we need to set an IP address
and a port for the host machine where the engine is running.

4. Circus compiler

The Circus compiler implements the operational semantics specified in [Freitas 2005,
Ch. 3], and is currently being updated to reflect a newer version of the seman-
tics [Woodcock et al. 2007]; its architecture is detailed in Fig. 6. The operational se-

Compiler

AST+ IPTS

TPM
IPTS

LaTeX-Q

AST-S
AST+

AST-S

SPM

LaTeX-Q

AST+

NPTS

LaTeX-A

Operational Semantics

Enabled

Arcstep
Div

proviso
UStUpd

1

5 2

4
3

Normalisation

Minimal

accs
USt

Manager
Regions

1 3

24

Figure 6. Circus compiler design

mantics compiles typechecked AST+ trees into the specialised automata theory devised
for Circus and formalised in [Freitas 2005, Ap. A.3]. Compilation takes place on-the-fly
as needed, and it produces either an IPTS (Implementation Predicate Transition System),
or a NPTS (Normalised Predicate Transition System) object representing the semantics
of Circus. The normalised IPTS (NPTS) is a deterministic automaton used during model
checking as the specification side of a refinement check. Normalisation is important dur-
ing model checking as it ensures that possible counterexamples obtained are the smallest
possible, that their paths representing failures are unique, and that debugging information
after the refinement search can be purposefully cast into human-readable format with the
least effort possible. For mode details on this, see [Freitas 2005, Ch. 3–4]. If model check-
ing is not intended, and only process exploration is used, no normalisation is required.
Like the TPM, the compiler exists as an individual tool that can be used to explore the be-
haviour of Circus process, much like ProBE [Probe 2000] does for CSP [Roscoe 1997].

During compilation VCs might be generated in order to identify possible new
paths in the underlying specification, for example, when guards from input prefixing need
to be evaluated. These are compilation VCs (or cpVCs) and are usually application de-
pendent, as they come directly from the Circus semantics. That is, the more complicated
the data types within a Circus specification, the more complicated the cpVCs generated
by the compiler. Also, these are the VCs closest to the kind of theorems one would be
proving about the specification anyway, hence some form of automation libraries might
already be available, or the user would tend to be familiar with the shape of the VC.

The operational semantics rules are implemented by two different visitors,
namely Enabled and ArcStep, together with two additional auxiliary visitors, namely
DivProviso and UStUpd. The Enabled visitor returns sets of type correct com-
munication expressions for each Circus AST+ term: it calculates the set of immediately
available events for every Circus construct that will form the arcs of the IPTS automaton.
The ArcStep visitor builds up the IPTS nodes reachable from previously calculated
Enabled arcs. It returns a list of INodes (i.e., IPTS implementation nodes) for each
Circus construct, provided one of the immediately available communicating events re-
turned by Enabled is chosen. The UStUpd visitor performs updates on the state of
the current process being compiled, depending on the Circus construct used. Finally,

the DivProviso visitor is an experimental feature for “early divergence” (or rather
explicit divergence) detection and propagation caused by some language constructs. In
Circus, early divergence can be detected (and propagated) from its basic constructs, such
as Chaos, SchExpr (outside their preconditions), and so on. These provision conditions
are essentially quite simple conjoined (boolean) predicates that, when evaluated to false,
would characterise divergent behaviour. On the other hand, implicit divergence usually
caused by hiding too many events or via unguarded recursion, cannot benefit from this
strategy. Instead, implicit divergence is detected just like in the FDR refinement model
checker [Goldsmith 2000] for CSP: silent loops in the IPTS representing the specification.
Silent loops are represented by an arc containing the empty set (i.e., Enabled = { ∅ }),
whereas deadlock is represented by no enabled arcs at all (i.e., Enabled = ∅). As di-
vergence detection is a bottleneck in FDR’s performance due to its implementation need
to use depth-first search, our early (or explicit) divergence detection scheme might pay
off in performance gains. Furthermore, it turns out that these conjoined predicates built
by the DivProviso visitor might also be useful in calculating some data independent
abstractions of infinitely recursive (yet finite-state) processes.

The normalisation sub module performs semantically-equivalent transformation
of compiled IPTS, so that they become deterministic (NPTS). As IPTS arcs rep-
resent (possibly infinite) sets of communicating events, rather than a single event
as in FDR automata, normalisation is more than mere textbook subset construc-
tion [Hopcroft et al. 2001], and it becomes a non-trivial task. Essentially, we need to
build the normalised arcs as the individual regions of (possibly nondeterministically) de-
fined communication expressions. For example, the compiled IPTS for action A below
contains two arcs with an interleaved enabled (communicable) value (c.1) yet different
refusal sets for each path.

channel c : { 0, 1, 2 }
A =̂ (c?x : (x ∈ { 0, 1 }) → A) 2 (c?y : (y ∈ { 1, 2 }) → A)
enabled (A) = { { c.0, c.1 }, { c.1, c.2 } } refusals (A) = { { c.2 }, { c.0 } }

Thus, to make it deterministic we need to separate the three possible regions of events,
namely: those unique to the left (i.e., (c.0)) and right (i.e., (c.2)) sides, respectively; and
those shared (i.e., (c.1)) by both sides. The Regions sub module in the compiler
implements a general transformation strategy for situations like this, which boils down
to generalised disjointness of all possible subsets (i.e., power sets) from the results of
Enabled (A). This semantic-equivalence preservation also takes care of failures in-
formation through the calculation of minimal acceptances (or maximal refusals) from
(possibly) different nondeterministic paths. Again, like the UStUpd, the UStManager
visitor is responsible for the specialised rules for joining the state of the collapsed au-
tomata nodes during the determinisation procedure.

Although the architecture of Fig. 6 is tailored for Circus, we believe it can be
reused for other state-based languages that is represented with some sort of automata
theory [Hopcroft et al. 2001], and wish to integrate automata generation with theorem
proving capabilities. Only normalisation is specifically related to the automata theory
for Circus. Still, whenever deterministation of a more general automata is needed, this
module would still be useful in general. Thus, we see this architecture as a good starting
point for many state-based language and/or process algebra implementation.

1

2

Ref.

Properties

TPM

AST+

LaTeX-A

LaTeX-Q

wts

Refinement search engine

setflags

srchalgo

iobuff

evalflags

invchk

Search environment

Ref.

Params

Search

threads
Search

buffers

Witness

Set

1
1

2

3
4

IPTS

NPTS

wr

mode

model

Search Algorithm (Strategy Pattern)

Violation

Condition

Witness

Search

JML

Invariant

Checker

1 3

Compiler

5

2 4

Figure 7. Circus refinement engine design

5. Circus refinement engine
A Circus model checker combining refinement model checking with theorem proving
was the initial motivation behind the architecture extension of CZT for Circus. Taking
our own medicine, we decided to use formal verification technique early in the devel-
opment stage and use Circus itself to bootstrap the formal specification of its own ver-
ification tool, as explained in [Freitas et al. 2006]. Following this path of development,
the refinement engine code was derived using the refinement calculus [Morgan 1994],
and few aspects of it have changed since. Those aspects still changing are related to
the way VCs are generated and handled by the TPM. The architecture for this mod-
ule is given in Fig. 7. For every refinement check (S vM I), the refinement search
engine expects two automata: one normalised NPTS representing the specification side
(S) of the refinement relation; and one IPTS automaton for the implementation (I).
Other refinement search parameters are also expected, such as: the number (wr) of
witnesses requested; the model (vM) (or level of detail) to consider; and the search
mode as model testing (i.e., “error finding”), or model checking (i.e., “correctness
checking”). This information is given to the search environment, which runs the ac-
tual searching threads and I/O buffers. The user can also configure other global refine-
ment search properties. The iobuff defines the appropriate interface with the user
through input and output streams, and can be used to pipeline different tools. The
setflags and evtflags are bit masks defining the fine-tuned combination of TPM
symbolic-set utilities and evaluators, respectively (see Sec. 3). CZT provides proto-
type translators from Z to the Java Modelling Language (JML) [Leavens et al. 2004].
We used some of these facilities whilst translating to Java the results of the for-
mally derived model checker refinement search algorithm [Freitas 2005, p.121]. The
invchk flag determines if the invariants calculated from this derived code and trans-
lated to JML should be checked. Finally, the srcalgo parameter specifies the vari-
ation of the search algorithm to use: it acts just like Gamma’s Strategy design pat-

tern [Gamma et al. 1995]. At the moment we only have a sequential version. Never-
theless, this design leaves open a research opportunity to use more advanced/efficient
approaches, such as parallelisation [Orni et al. 1996, Martin and Huddart 2000] or graph-
prunning [Dillenburg and Nelson 1993, Fleischer et al. 2000].

During the model checking search process, which is essentially a guided behaviour
exploration using the compiler, some VCs related to either normalisation or possible paths
to follow are generated. As the refinement engine drives the search process, it feeds back
to the compiler the desired “paths” to follow, which in turn need to be derived during
the on-the-fly construction of the IPTS. These model checking VCs (or mcVCs) are
more general, as they are independent from the Circus specifications under concern. This
makes these VCs more repetitive, which means they are more likely to have a theory use-
ful for all model checking sessions. For instance, we have already built a general theory
for the regions and minimal acceptances functionality used during normalisation that
has shown to be quite useful and reusable. On the other hand, the very fact they are gen-
eral and application independent leads to the inconvenient aspect that these mcVCs may
seem at first unfamiliar to the user. Also, most of these expressions involving regions
are non-trivial, and require some more powerful theorem proving facilities (and general
theories) in order to be automatically discharged. Debugging facilities are yet limited. At
the moment they are just user-friendly text messages written to standard output informing
the different nature of refinement search failures.

Once again, although this architecture is tailored for Circus, it can be generalised
to other (state-based) process algebra, provided it is representable using automata theory
(i.e., nodes and arcs associated through a transition relation representing a language). That
is, given a compiler that feeds the search engine with such automata, and different forms
of validation conditions, this architecture could be instantiate for CSP, for example. The
difference from FDR would be that it has theorem proving support, which allows more
expressive specifications at the cost of potential interactivity via theorem proving.

6. Conclusion

In this paper we present an overview of the architecture of Circus based tools that we
are developing. It includes some level of detail from all the constituent components. The
complete architecture is composed by several modules, from which independent tools can
be derived. So far, we have four (prototype) analysis tools: (i) a specification processing
front-end that can parse, pretty-print, and typecheck Circus programs; (ii) a general (yet
rather simple) theorem proving environment that can cope with expressions, predicates,
and Z schemas (iii) a Circus compiler useful for exploring process behaviour; and (iv) a
Circus model checker able to perform refinement checks for Circus.

These modules are combined in different ways, and four tools have been assem-
bled. The textual interfaces of all these tools have benchmarking facilities in terms of
CPU execution time, memory requirements, number of (different) VCs (by category),
and so on. (1) We have a front-end tool for the SPM with a textual interface, as well as
integration with development environments, such as jEdit and Eclipse. It enables the user
to validate (i.e., parse or pretty-print, and typecheck) Circus programs. When embedded
in a development environment, the user can also type the specification while validating it.
(2) The process explorer enables the user to investigate the behaviour of programs, much

like what the ProBE [Probe 2000] tool does for CSP [Roscoe 1997]. It comprises the
specification front-end mentioned above, together with the compiler and the TPM. TPM
is needed as the Circus operational semantics might generate VCs (cpVCs), depending
on the levels of complexity and expressiveness used. (3) The model checker tool per-
forms refinement checks of programs, much like what FDR [Goldsmith 2000] does for
CSP. It is the most complex of available Circus tools using all the modules described in
this paper. It combines the two tools above with a refinement engine and a debugger. The
refinement engine is a knowledgable explorer during on-the-fly compilation. Essentially,
from an initially compiled AST, the engine drives the compiler forward by building the
relevant parts of the graph that are important for the refinement claim. In this process, fur-
ther model checking VCs (mcVCs) might be generated. Such claims can be for either: a
property satisfied by a Circus specification, like deadlock freedom; or a correctness crite-
ria check while introducing some improved design for the original abstract specification.
Whenever witnesses are found, a debugger is used to appropriately present results to the
user. (4) The VC elimination engine tool composes the specification front-end with the
TPM. It is a stand-alone version of the theorem proving facilities available for both the
model checker and the process behaviour explorer. It can be useful as plugins to other
tools that might handle Circus. That is, instead of using our architecture to verify Circus
programs, we could use other tools for this purpose, where peculiar Circus constructs
could be handled by this tool. For instance, it could be integrated with the RODIN4

tools for Event-B [Schneider 2002]. Nevertheless, apart from Z schema text and Circus
constructs it manipulates, as the VCs it can discharge are general predicates and expres-
sions, the engine could be embedded as a solver for other tools and (possibly) achieve
higher-levels automation, provided good application oriented theories are available and
appropriate fine-tuning of the TPM configuration are in place.

The next step after further testing is to switch off programming language debug-
ging aids, such as Java assertions and JML static checking, and assemble the various mod-
ules adequately for a first beta release of these tools. We have also included some initial
support for the jEdit generic development environment with extensions for the available
CZT Standard Z plugins for Circus. A character map plugin allows one to hit some
buttons, where the corresponding character is input into the current opened buffer in the
corresponding markup format chosen (i.e., hitting the button with P power set includes
\powerwhen in LATEX markup mode). A tree panel plugin presents ASTs visually so that
one can browse through the tree, while the corresponding piece of syntax is highlighted
in the corresponding opened buffer. A command-line console plugin enables starting up
individual tools, such as the Circus process explorer or the model checker, to operate on
one of the opened and already processed (i.e., parsed and typechecked) buffers. Finally, an
incremental parsing plugin wraps around the Circus SPM to enable incremental parsing
(i.e., parse-as-you-type) functionality. These plugins are connected with jEdit’s error re-
porting facility, so that errors and warnings for the various tools are displayed accordingly
and uniformly. More details can be found at both Circus and CZT web-sites5.

Future work. For the SPM, we need to polish up usage examples. For the TPM, we are
currently exploring the ability to tag VCs with manipulation parameters from its point of

4See http://rodin.cs.ncl.ac.uk/Publications/RODIN-Desc.pdf
5See www.cs.york.ac.uk/circus and http://czt.sourceforge.net.

origin, so that batch (i.e., completely automatic) execution can take place. These param-
eters would act as “default” (automatic) decisions to be taken. This facility is particularly
useful at early stages of development, where the designer is mostly concerned in find
early design bugs, rather than proving correctness of desired properties, or some refine-
ment among specifications. We also envisage some sort of low-level VC caching, so that
trivial (immutable) results are calculated only once, hence lowering the potential number
of user interaction whilst discharging more complicated VCs. Luckily, as VCs tend to
follow a pretty repetitive pattern, case studies over particular application domains should
shed light on most appropriate tuning options of the TPM for model checking Circus pro-
grams. We see these facilities being useful for both the process explorer and the model
checker. Moreover, we see integration with other external tools as paramount towards
efficiency and greater levels of automation while discharging VCs. We have preliminary
studies for integration with other interesting tools, such as PVS’s ICS solver [ICS 2005]
or ProofPower-Z theorem prover [Arthan 2003], so that we could bridge their term trans-
formation capabilities within our theorem proving architecture from Fig. 3. Finally, an
interesting experiment would be to establish a systematic rationale for choosing the ap-
propriate stacked solvers, and/or most efficient TPM flags to increase automation.

Acknowledgements. We received considerable support from many CZT members. In
particular, Mark Utting, Petra Malik, and Tim Miller. Ian Toyn provided insight on some
obscure Z features. We are also greatful to QinetiQ Malvern for their long term support
for the development of Circus tools.

References
Appel, A. (97). Modren Compiler Implementation in Java. Cambridge University Press.

Arthan, R. (2003). ProofPower Tutorial. Lemma-One.

Dillenburg, J. and Nelson, P. C. (1993). Improving the efficiency of depth-first search by
cycle elimination. Information Processing Letters, 45:5–10.

Fleischer, L., Hendrickson, B., and Pinar, A. (2000). On Identifying Strongly Connected
Components in Parallel. In 15th IPDPS, pages 505–511. Springer-Verlag.

Freitas, A. F. and Cavalcanti, A. L. C. (2006). Automatic Translation from Circus to
Java. In Misra, J., Nipkow, T., and Sekerinski, E., editors, FM 2006: Formal Methods,
volume 4085 of LNCS, pages 115 – 130. Springer-Verlag.

Freitas, L. (2005). Model Checking Circus. PhD thesis, University of York.

Freitas, L. et al. (2006). Taking our own medicine: Applying the refinement calculus to
state-rich refinement model checking. In 8th ICFEM, pages 697–716.

Gamma, E. et al. (1995). Design Patterns. Addison Wesley.

Goldsmith, M. (2000). FDR2 User’s Manual version 2.67. Formal Systems (Europe) Ltd.

Hoare, C. A. R. and Jifeng, H. (1998). Unifying Theories of Programming. International
Series in Computer Science. Prentice-Hall.

Hopcroft, J., Motwani, R., and Ullman, J. D. (2001). Introduction to Automata Theory,
Languages, and Computation. Addison Wesley, 2nd edition.

ICS (2005). ICS Manual (Version 2.0). SRI International.

ISO/IEC 13568 (2002). Information Technology—Z Formal Specification Notation—
Syntax, Type System and Semantics. ISO/IEC.

Leavens, G. T. et al. (2004). JML Reference Manual. Iowa State University. v.1.93.

Malik, P. and Utting, M. (2005). CZT: A Framework for Z Tools. In 4th ZB. Springer.

Martin, A. C. (1997). Acyclic Visitor. In Pattern Languages of Program Design 3.
Addison Wesley.

Martin, A. P. et al. (1996). A tactic calculus. FACJ, 8(E):244–285.

Martin, J. M. R. and Huddart, Y. (2000). Parallel algorithms for deadlock and livelock
analysis of concurrent systems. Communicating Process Architectures.

Meisels, I. et al. (1997). Z/Eves 1.5 Reference Manual. ORA Canada. TR-97-5493-03d.

Miller, T., Freitas, L., Malik, P., and Utting, M. (2005). CZT Support for Z Extensions.
In 5th IFM, number 3771 in LNCS, pages 227–245. Springer-Verlag.

Morgan, C. (1994). Programming from Specifications. Prentice-Hall.

Nordberg III, M. E. (1997). Default and Extrinsic Visitor. In Pattern Languages of
Program Design 3. Addison Wesley.

Orni, R. et al. (1996). Two Computer Systems Paradoxes: Serialize-to-Parallelize, and
Queuing Concurrent-Writes. Technical report, University of Maryland.

Probe (2000). ProBE User’s Manual version 1.28. Formal Systems (Europe) Ltd.

Qin, S. C. et al. (2003). A Semantic Foundation of TCOZ in Unifying Theory of Pro-
gramming. In 12th FM, Pisa, number 3582 in LNCS. Springer-Verlag.

Roscoe, A. W. (1997). The Theory and Practice of Concurrency. Prentice-Hall.

Saaltink, M. et al. (2005). The Core Z/Eves API (DRAFT). Technical Report TR-99-
5540-xxa, ORA Canada.

Schneider, S. (2002). The B-Method—an Introduction. Palgrave.

Smith, G. (2000). The Object-Z Specification Language. Kluwer Academic.

Utting, M. (2005). Jaza User Manual and Tutorial. University of Waikato, New Zealand.

Woodcock, J. and Davies, J. (1996). Using Z. Prentice-Hall.

Woodcock, J. C. P. and Cavalcanti, A. L. C. (2001). A Concurrent Language for Refine-
ment. In IWFM’01: 5th Irish Workshop in Formal Methods.

Woodcock, J. C. P., Cavalcanti, A. L. C., Gaudel, M.-C., and Freitas, L. J. S. (2007).
Operational Semantics for Circus. Formal Aspects of Computing. To appear.

Xavier, M. A. et al. (2006). Type Checking Circus Specifications. In SBMF 2006: Brazil-
ian Symposium on Formal Methods, pages 105 – 120.

