
“11334_21” — 2006/2/13 — 15:07 — page 1 — #1

Innovations Syst Softw Eng (2006)
DOI 10.1007/s11334-006-0021-9

ORIGINAL PAPER

Leo Freitas · Jim Woodcock · Ana Cavalcanti

State-rich model checking

Received: 21 October 2005 / Accepted: 8 December 2005 / Published online: 2006
© Springer-Verlag 2006

Abstract In this paper we survey the area of formal veri-
fication techniques, with emphasis on model checking due
to its wide acceptance by both academia and industry. The
major approaches and their characteristics are presented, to-
gether with the main problems faced while trying to apply
them. With the increased complexity of systems, as well as
interest in software correctness, the demand for more pow-
erful automatic techniques is pushing the theories and tools
towards integration. We discuss the state of the art in com-
bining formal methods tools, mainly model checking with
theorem proving and abstract interpretation. In particular, we
present our own recent contribution on an approach to inte-
grate model checking and theorem proving to handle state-
rich systems specified using a combination of Z and CSP.

Keywords Model checking · Theorem proving · Abstract
interpretation · Formal method tools

1 Formal verification methods

The growing complexity of new hardware technologies and
software systems inevitably increases the complexity in the
functionality of these artifacts. When more complex func-
tionality becomes necessary, the likelihood of subtle errors
increases, pushing the demand for development techniques
that foster reliability and safety [20].

The role of formal methods in computer science is anal-
ogous to the role of mathematical models and calculation
in traditional engineering; see Table 1, which is based on
information from [20]. Calculation can be used to predict the
behaviour of a design while interacting with its environment.
These calculations can be carried out in a series of steps
towards the final implementation, guaranteeing the imple-
mentation of the original desired properties. This method

Leo Freitas (B) · Jim Woodcock · Ana Cavalcanti
Department of Computer Science,
University of York, York, UK
E-mail: leo@cs.york.ac.uk, jim@cs.york.ac.uk, alcc@cs.york.ac.uk

Table 1 Analogies of formal methods with respect to other fields

Field Classical physics Computing Engineering

Example Dynamics theory Security protocol Building
Design Expressiveness Message contents Shape of walls

Precision Order of delivery Placement
of doors

Environment Vacuum Communication Resistance
of materials

Gravity forces Concurrency Properties
of fluids

Calculation Differential Formal verification Structural
calculus calculus
Particle Automated Differential
acceleration deduction equations

creates programs that are correct by construction; it is known
as stepwise refinement.

There are many kinds of computer systems and many
corresponding ways to model and design them. Sequential
programs are expected to terminate, producing some output
from some input values. On the other hand, the behaviour of
reactive and concurrent systems can be observed or altered
at intermediate stable states; they are normally formed by
several components. Reactive systems are expected to inter-
act with an environment, exchanging data through commu-
nication, where the environment is normally another system
component, or the final user. This interaction often occurs
concurrently, and is expected to remain stable and active
indefinitely.

For sequential systems, the enumeration of behaviours is
not too hard to achieve. By selecting suitable test data, it is
possible to check desired properties through direct execution.
With sequential programs, it is fairly acceptable to reach a
level of stability of a design without exploring all possible
behaviours, despite the fact that this does not guarantee cor-
rectness.

For concurrent or reactive systems, however, due to the
complexity of the interaction of the components, this enumer-
ation must be done in a more reliable approach. A real explo-
sion in behaviour complexity occurs when the components



“11334_21” — 2006/2/13 — 15:07 — page 2 — #2

2 L. Freitas et al.

interact concurrently with each other or with their environ-
ment. In order to understand designs and to predict their prop-
erties, some way to comprehend all these behaviours is nec-
essary [91].

Different kinds of systems demand different degrees of
correctness. For instance, it might be acceptable that a spread-
sheet program fails to print large files once in a while. Reac-
tive systems, however, are normally related to critical func-
tionality that must go neither wrong nor unstable. For exam-
ple, a flight control system must not behave unexpectedly,
and must always be responsive to the pilot and other compo-
nents of an aircraft under all circumstances during a flight.
Therefore, correct and predictable behaviour is
essential.

The use of formal verification does not a priori guar-
antee correctness. Nevertheless, it can greatly increase the
understanding of a system at early stages by revealing its
inconsistencies, ambiguities, and incompleteness that would
go unnoticed otherwise.

Formal methods can benefit system design in two differ-
ent ways: (i) by providing mathematical concepts and nota-
tions to help reasoning development, and communication of
ideas; and (ii) by exploring properties of our designs through
mathematical modelling. Validating the faithfulness of the
system and environment models, as well as the accuracy
of calculations, are separate problems in formal verifica-
tion [94].

So, to apply formal verification we need: (i) a mathemat-
ical model, (ii) a specification language, and (iii) a method
of proof. If the language, the model, and the method of proof
are properly represented, it is likely that formal verification
techniques can be carried out automatically to a substantial
extent.

A mathematical model must provide an expressive frame-
work for capturing the behaviours of a system; its expressive-
ness should be sufficient to capture the design concerns. The
framework is a theoretical account of what kinds of systems
can be represented and analysed.

In order to apply any verification technique, the descrip-
tion of the system must be adequate. A specification language
allows (possibly partial) characterisation of system behav-
iours through a comprehensible, concise, and unambiguous
notation. It can be used to describe what can be computed
by the system, instead of how this computation is carried
out. A specification language enables the characterisation of
the possible system inputs, and the environment assumptions
that are necessary in order to guarantee correct behaviour.

A theory that predicts and calculates the observations (or
behaviours) is required in order to make the model repre-
senting the specification meaningful. A method of proof is
the theory that provides support for verification that speci-
fied properties are satisfied. The method of proof must be
sound with respect to the mathematical model; otherwise,
proof calculations could be in contradiction with the intended
semantics by generating wrong conclusions. The verification
method should also be complete: if there is a bug, then it
should be found.

Fig. 1 Selecting formal verification techniques

Nevertheless, there are techniques that compromise sound-
ness or completeness for higher-level automation, such as
Java extended static checking with JML [Query1] [14], or
Microsoft’s device-driver analysis with SLAM [Query2] [65].
That is possible because their target domain of application is
not safety-critical. Compromising soundness requires care-
ful inspection of results as there can be false bugs. On the
other hand, compromising completeness implies that a flaw-
less check does not guarantee a flawless system, since the
technique may not be able to identify existing bugs.

Two main concerns of formal verification are the read-
ability of the obtained result, and the level of interaction with
the user in order to achieve the desired goals of calculating,
interpreting, and reasoning about the results. These elements
vary according to the degree of complexity of the system,
the kind of properties to verify, and the chosen verification
method itself. The criteria for the selection of a method are
based on two main factors: effort and expressiveness; see
Fig. 1, which is based on a similar one in [100]. The account
of the effort is measured by the amount of interaction required
from the user. The expressiveness is measured by the variety
of properties and systems one can check. The reward is anal-
ysed most often with respect to the strength of the argument
claimed regarding soundness and completeness.

For example, on one side of the graph one can find ad hoc
tests on system prototypes, which do not give a good re-
ward: there is no guarantee of either system correctness or
reliability. At the other extreme, mechanical proof via the-
orem proving of a formally specified design can be used to
guarantee the satisfaction of desired properties, but at the ex-
pense of high expertise and interactivity from the user. In
between come various (mostly finite-state) methods.

The last three techniques on the right aim at formal veri-
fication of properties, where correctness is the main concern.



“11334_21” — 2006/2/13 — 15:07 — page 3 — #3

State-rich model checking 3

The other techniques aim at refutation (or testing); they can
be useful for finding problems, but not for guaranteeing that
such problems will not happen [94].

There are, however, some tools and techniques that work
with refutation by trying to find witnesses of failed property
checks [45,73]. Such tools do not guarantee correctness, but
still they help to find and eliminate flaws at early stages. This
happens because they provide a strong argument in terms
of soundness and correctness. Although completeness is not
a major concern, the required degree of user expertise and
interactivity is usually low.

The main advantages of model checking are its high level
of automation, and the debugging information returned for
reasoning purposes, provided enough resources are avail-
able. Model checking involves an exhaustive enumeration
of behaviours, which are checked to establish whether they
satisfy a given property of interest. If a behaviour that breaks
the property is found, then it is used to provide debugging
information.

Due to the exhaustive enumeration of behaviours, it is
not always possible to model check infinite (or unbounded)
systems due to the state explosion problem that usually oc-
curs when different components of a reactive system inter-
act. Clever (and compact) data structures that can represent
(possibly infinite) behaviours efficiently and techniques to
simplify models have been of primary interest. In any case,
significant machine power in terms of processor, memory,
and disk availability are needed for checking large system
descriptions. Details on the relation between model check-
ing and the techniques mentioned on the graph can be found
in [21, Chap. 1], and [64, Chap. 1].

Deductive systems (or theorem proving) [52,92,96] use
inference rules and axioms of a theory in order to prove cor-
rectness. One of its main advantages is the fact that it can
handle verification of infinite-state systems. It is one of the
most powerful techniques in use in formal verification. Nev-
ertheless, it demands expertise from its user and is normally
a time-consuming task; generally, no accurate limits or dead-
lines can be easily placed.

In this paper we discuss the state of the art in formal veri-
fication techniques. Special attention is given to combination
of methodologies, where model checking plays a central role
due to its importance in achieving correctness with higher
levels of automation, and as few compromises in soundness
and expressiveness as possible. This choice is based on major
recent industry and academic interest.

In the next section, we define model checking, and discuss
its variations and different interpretations. Next, in Sect. 3 we
summarise the main approaches of classical and refinement
model checking with examples of their application in indus-
try. Sect. 4 discusses the state explosion problem. Afterwards,
we present two state-of-the-art solutions for this problem in
Sect. 5, where we focus on state-rich reactive systems that
are modelled using a combination of languages to specify
data and reactive behaviour. Finally, we summarise the dis-
cussions and draw our conclusions in Sect. 6.

2 What is model checking?

Model checking is a verification technique for finite-state
systems (or components of systems), where reachable states
of a program are systematically enumerated. If two of these
systems interact, the final size of the combined state space
can be the product of the original sizes, and this imposes
restrictions on what kind of system can be modelled, what
kind of property can be checked, and what kind of theory
support is necessary [21,64,88].

The major advantages of model checking are its high level
of automation, and the availability of precious debugging
information when a failure is found. Highly automated tools
are well accepted by users because they do not require much
expertise from them in fields outside their own application
domain. The debugging information returned is of high value
in finding bugs, and reasoning about design flaws at early
stages of the design.

The main challenge of model checking is to deal with the
state explosion problem that occurs when components of a
design interact concurrently. Such interactions can push the
state space towards a number that is impossible to handle due
to time and resource constraints. Therefore, in order to apply
model checking, one needs to deal with this problem before-
hand. That means finding a suitable and compact data struc-
ture to represent the model, together with an efficient search
strategy in a setting that allows the highest levels of auto-
mation possible. This involves clever data-structure manipu-
lations without compromising soundness [22,51], complex-
ity analysis of involved search algorithms [63,104], reach-
ability analysis between properties of the data structure with
respect to the search algorithm [62], and so on. One success-
ful approach used recently is the symbolic representation of
the (possibly infinite or unbound) state space in order to repre-
sent richer models, which are frequently present in the design
of software systems [34].

In practice, the model-checking approach for formal ver-
ification is not fully automatic, although it demands few user
interactions when compared with other available approaches
(see Fig. 1). For instance, some interaction from the user may
be necessary in order to interpret the debugging information
as counterexamples, or expertise in the tools themselves in or-
der to properly fine-tune them and hence make checks mean-
ingful (or even feasible). This leads to possible modifications
on the original design. Hopefully, the user is asked to interpret
information in their own application domain. This character-
istic highly motivates users for selecting model checking as
their verification methodology. Another task that often re-
quires user interaction is to find a suitable finite-state repre-
sentation of the system being modelled. Again, the solution
must be given by the user through abstractions of the problem
description (see Sect. 4).

In summary, any formal verification technique demands
interaction from the user. The main advantage of model check-
ing is the fact that the level of interaction is kept as low as



“11334_21” — 2006/2/13 — 15:07 — page 4 — #4

4 L. Freitas et al.

possible. Moreover, the user is asked to interpret, and better
understand the problems of its own design, inside their own
application knowledge domain. This is a task the user is often
more inclined to carry out.

3 Model-checking approaches

In the literature, the term model checking is almost always
related to temporal logic; these works are known as tradi-
tional or classical model checking [20,21,64]. In [87], the
term is interpreted in a different way; it means establishing
an order between two different automata based on contain-
ment with respect to the properties they represent. This tech-
nique is known as refinement model checking. More details
on automata theory can be found in [43]. Both approaches
aim at formally checking properties of a design. What varies
are the design notations and the way to represent and check
desired properties.

In both approaches, the properties and the design are de-
fined in a formal notation. There are three stages: (i) model-
ling, (ii) specification, and (iii) verification.

At the modelling stage, the design (or implementation)
requirements are defined using a formal specification lan-
guage accepted by the model checker. At this point, in order
to deal with the state explosion problem, these requirements
must be represented as a finite-state model, and as compactly
as possible. Infinite-state (or unbound) representations must
be abstracted in order to make their size feasible for model
checking.

The specification stage defines the desired properties of
the design. Once more, formal notation must be used. The
choice of formal notation for both the requirements and prop-
erties, as well as the model-checking technique, sets the scene
for what kind of properties can be checked, how they are
checked, and what one can expect from those checks.

Finally, in the verification stage, the specified properties
are verified against the model in order to guarantee correct-
ness. The verification stage returns a meaningful answer to
the user: either a successful report, or a counterexample. The
former guarantees the claim for correctness. The latter is a
very important debugging device used to reason about the
failure of the property being checked. Many approaches for
performing model checking are available. In what follows,
we explain the most used in general terms.

We give a more detailed account of refinement model
checking, as this approach has fewer references and no pre-
vious survey in the literature, to the extent of our knowledge.

3.1 Temporal logic

In this approach, the design is modelled using a language
that is normally proprietary to the checking tool. The prop-
erties are defined using temporal logic formulae as asser-
tion checks [60,61]. The verification is performed by exhaus-
tively enumerating all the behaviours until a fixed point is

reached [21,64], where variations of the traditional search
algorithms exist [17,101]. In this context, model checking
becomes simply a decision procedure. This led to its inclu-
sion as part of some industrial-strength tools, such as satis-
fiability (SAT) solvers as part of the PVS [Query3] theorem
prover [10,44].

This idea of using temporal properties for formal verifi-
cation is of interest to the hardware design community. Hard-
ware systems are finite-state and less dynamic compared to
software modelling.

Temporal logic combines the usual propositional logic
operators with tense operators, which are used to form state-
ments about how conditions change in time. These operators
can be used to state complex statements about the past, the
present, or the future.

Different ways of interpreting such operators give rise to
different versions of temporal logic. The properties of the
operators are related to pre- and post-conditions of a Hoare
triple [40], as well as a wide variety of temporal properties,
such as responsiveness, safety, divergence, and so on. Each
kind of logic can cover different aspects of desired proper-
ties according to the temporal order relation between different
states in time.

When the temporal order is total, one is using linear time
temporal logic (LTL). This is mainly applied to systems re-
lated to hardware design or security protocols [64, Chap. 1].
This kind of logic is also useful for modelling a next-time
operator for synchronous digital hardware signalling [64,
Chap. 2]. More details on a LTL model checker (called SPIN)
can be found in [42].

If our interest is to model nondeterminism, such as the
possibility of something happening, branching time temporal
logic (CTL) is the appropriate choice. In this kind of tempo-
ral logic, the temporal order relation defines a tree which
branches towards the future [64, Chap. 2]. More details on a
CTL model checker (called NuSMV) can be found in [16].
The model of each different temporal logic is formally de-
fined by a different set of axioms over the tense operators.

Clarke and Emerson coined the concept of model check-
ing in the early 1980s [21]. It was first used for proving the
validity of a property defined by a temporal logic formula
against a finite-state model representing a design described
using a specialised automaton called a Kripke structure. This
allowed the proof procedure to be fully automatic, while
maintaining the elegance of the formal specification. The
model-checking algorithm proposed by Clarke and Emerson
builds an automaton of the design from its formal specifi-
cation in the source description language. The properties of
the design to be checked are specified as temporal logic for-
mulae. The truth of these formulae is established when the
algorithm has successfully carried out an exhaustive search
on the state space. Besides being fast and fully automatic,
this technique produces a state sequence (or trace) when a
formula being checked is f alse.

Since then, many other algorithms have been proposed in
order to deal with the state explosion problem. The most suc-
cessful one is based on the use of ordered binary decision dia-



“11334_21” — 2006/2/13 — 15:07 — page 5 — #5

State-rich model checking 5

grams (OBDDs) as the data structure to represent temporal
logic formulae [12]. The use of OBDDs in a model checker is
known in the literature as symbolic model checking [64]. OB-
DDs allowed industrial-scale checking on hardware design
for the first time.

The symbolic approach is better suited for the validation
of specific kinds of systems like digital hardware circuits and
security protocols. This is because OBDDs are good at repre-
senting Boolean decisions, but not complex data types; they
are tailored for checking very structured systems. In software
modelling, typically, we have to handle asynchronous behav-
iour without a global clock, or complex data structures rep-
resenting the system state. Model-checking software usually
involves a much larger number of states to explore, making
OBDDs lose their efficiency.

Another technique widely used that tries to minimise the
state space is partial order reduction. This method explores
the effect of the interdependence of concurrent events on the
global state. Its application reduces the number of states to
consider by interleaving components. In some cases, how-
ever, the addition of interleaving introduces nondeterminism
and can actually increase the number of states. This technique
itself is difficult to automate and tailored for very specific
kinds of systems. More details can be found in [103], [21,
Chap. 10], and [64, Chap. 9].

Due to the state explosion problem, a new trend is to
use classical model checking itself in order to find suitable
abstractions or approximated models to check properties of
interest [101], and this has opened up a new field, as shown
for example in [65]. We discuss abstraction and symbolic
approaches below.

Examples in industry Bugs found in early stages of hardware
design are a major cause of unexpected delays and mainte-
nance problems. A successful case of using CTL and the
model checker NuSMV to find failures in a circuit design is
given in [13].

Symbolic model-checking algorithms have also been used
to model-check the µ-calculus [49]. This is a logic that can
express a variety of properties of transition systems, such as
language containment, reachable state sets, state equivalence
relations, and so forth. More details on classical model check-
ing of properties described using the µ-calculus can be found
in [64, Chap. 6], and [21, Chap. 7]. Other examples of the
use of classical model checking related to cache coherence
protocols can be found in [84].

Classical model checking is widely used, either with the
support of a particular tool like NuSMV or SPIN, or as proof
tactics or formulae SAT solvers within theorem provers like
PVS. Furthermore, an alternative to BDDs [Query4] for sym-
bolic model checking that uses SAT solvers is given in [11,
47,106].

Further applications can be found. In [3] a CTL model
checker that is based on exploiting modularity is presented.
An example of the use of symmetry and induction to enable
industrial-scale case studies is given in [19]. Hardware cir-
cuits were checked using CTL in [13]. The use of bounded

model checking for refutation and verification is discussed
in [72,73]. Communication protocols and control flow sys-
tems have been checked [29,39]. In [26], symbolic model
checking with CTL is used for verification of VHDL [Query5]
descriptions of the design of a RISC [Query6] microproces-
sor.

In the same direction of industrial scalability, new tech-
niques are trying to use model checking itself to find suit-
able (model-checkable size) abstractions. The use of classical
model checking itself as a way to simplify and abstract the
problem domain can be found in [101]. A combination of data
and behaviour in classical model-checking data structures
to enable better description of software systems is explored
in [17].

3.2 Automata theoretic methods

There is another approach to model checking based on automata
theoretic methods [87]. The idea is to represent both the de-
sign and the properties as automata. In this case, the veri-
fication to be performed is characterised by some relation
between these automata.

For example, this relation can be containment between
the language each automaton represents. In other words, the
automata represent all the system behaviours as sequences
of a language. Therefore, if the specification automaton con-
tains the language of the implementation automaton, then the
implementation satisfies (or refines) the specification. More
details about language containment over automata can be
found in [22]. Related topics in automata theory itself used
in model checking are also important. For instance, compres-
sion techniques useful for the automata theory used by the
CSP model checker failures–divergences refinement (FDR)
[Query7] are detailed in [90,103], while new ideas for auto-
mata theory to handle combination of techniques, such as
theorem proving, and paradigms, such as data and behaviour,
have been investigated in [33,104]. Other properties, such
as nondeterminism and divergence, can also be expressed
similarly via different notions of containment between auto-
mata [88, Chap. 8]. These notions of containment are dis-
cussed below.

This procedure of ordering automata via containment
with respect to specific properties of interest can be per-
formed several times in a stepwise development cycle that
is very attractive for both software and hardware. Depend-
ing on the way one constructs and interprets the automata,
different results can be observed and analysed. Each time,
the design analysed in the previous cycle becomes a spec-
ification for a more concrete model. This follows the idea
of refinement [7,68], where it is possible to systematically
derive more detailed implementations from an early abstract
specification in a stepwise fashion. Each cycle aims at estab-
lishing a refinement ordering during the development pro-
cess. Since the refinement ordering is transitive, the final,
detailed implementation still satisfies the very first abstract
specification. The process should proceed up to a point where



“11334_21” — 2006/2/13 — 15:07 — page 6 — #6

6 L. Freitas et al.

one finds a satisfactory design, close to the final implementa-
tion code or circuit, while still satisfying the original abstract
specification.

The refinement model-checking algorithm is usually a
variation of breadth first search (BFS) that investigates mutually
reachable nodes of a pair of automata, one modelling the
specification and another the design or implementation sys-
tem. A variation frequently used is to provide the specifica-
tion as a property, rather than an abstract version of the design
or implementation [95]. A property to be checked against the
specification is defined as an even more abstract program. For
instance, for an abstract version of a security protocol, a prop-
erty specification could be a system which accepts any event
except those that incur a security flaw, such as wire tampering.
If the abstract specification is proved to be a refinement of this
property, that implies the specification is safe with respect to
the specific flaw; this is different from an implementation that
includes new functionality on the original abstract specifica-
tion. Thus, property-oriented specification allows checks for
specific features, such as deadlock and divergence freedom,
as well as variations on the search algorithms for efficiency
purposes. For instance, the most successful property-oriented
specification checking is deadlock freedom, where a series of
clever manipulations on the traditional checking algorithms
are available in [62].

The BFS starts at the initial nodes of each automata, rep-
resenting the root of the search. The search algorithm looks
for incompatible node pairs that are reachable via a given
trace from each automaton. At each node pair, the properties
under investigation are checked. If a node pair is compati-
ble, the search looks for successor nodes from each element
of the pair, hence leading to the set of mutually reachable
node pairs to be searched next. Otherwise, if an incompati-
ble node pair is found, a witness is generated by building the
automaton backwards from the failed pair to the root of the
search. Moreover, the algorithm could carry on trying to find
witnesses through alternative paths available, if the user so
requires.

Breadth first search (BFS) is used because, if a witness
is found, then it is always the cheapest possible in terms of
necessary time and work effort for performing the search [37,
87]. It also enables efficient parallelisation [63]. More details
on BFS algorithms and their variations for refinement model
checking can be found in [34, Chap. 4].

Counterexamples provided using refinement model check-
ing are more informative than those generated using classical
model checking. Although improvements for classical model
checking have been discussed in [101], these improved wit-
nesses from refinement model checking containing more than
the trace of a failure often enable more detailed investigation
and reasoning about flaws. On the other hand, in order to
judge information from witnesses accurately, it is impera-
tive that either the path for its occurrence is deterministic or
additional information about nondeterminism is stored. The
former allows more compact witnesses but requires one of
the two automata in the refinement relation to be determin-

istic. The latter do not impose restrictions on the automata,
but require more memory to perform the search.

The idea of refinement is very attractive. It enables not
only property checking, but also consistent evolution from
abstract specifications, passing through intermediate design,
and up to the final program code in what is known in formal
software development as correctness by construction [4,38,
107].

In what follows, automata theoretic methods used to estab-
lish refinement through model checking are discussed. All
automata theoretic methods can be viewed as variations of
interpretations over some theory of finite automata, as given
in [43]. The language and the properties each automaton rep-
resents reflects the expressiveness of the formal notation.

CSP The CSP [88] community uses refinement model check-
ing as a verification technique; tools can be found in [32,36,
56,97]. For that, a formal model for the specification and
the implementation is derived as a pair of automata, where
extra information on the nodes and arcs about refusal sets
and divergence is added. This additional information is used
in order to model more than just language containment by
traces.

Language containment is established based on the (deno-
tational) semantic models of CSP represented on the arcs and
nodes of the automata. The CSP automata are built using an
operational semantics. Following the denotational semantics
of CSP, one can establish refinement in three models; that
is, automata containment with respect to three different per-
spectives:

1. The traces model, which deals with safety properties.
2. The stable-failures model, which deals with nondeter-

minism.
3. The failures–divergences model, which deals with both

nondeterminism and divergence.

More details on this can be found in [22,87].
Sometimes it can be a bit awkward to define relatively

simple properties related to predicative formulae in CSP, if
compared with the simplicity of temporal logic formulae, as
pointed out in [95]. Even so, the witness information returned
from a failed check is far more detailed than those avail-
able in temporal logic, as it includes not only traces, but also
additional information from the models chosen to perform
the check, such as refusal sets and divergence information.

A similar approach for refinement is taken by the Cir-
cus community [110]: an integrated refinement language that
combines CSP, Z [102], and the refinement calculus [68].

CCS[Query8] Milner takes a different approach in model-
ling the CCS process algebra [66]. Instead of collecting a
set of sequences of traces like in CSP, processes are com-
pared in CCS by capturing external behaviours using a tree
of observations.

The notion of correctness in CCS is established by an
observational equivalence between a pair of processes. In this



“11334_21” — 2006/2/13 — 15:07 — page 7 — #7

State-rich model checking 7

view, two processes are equivalent if an observer cannot dis-
tinguish between them by any experiment. Another form of
equivalence is defined in order to capture internal actions; it
is called behavioural equivalence. This is important when
one needs to consider internal actions and nondeterminism.
These forms of equivalence can be proved by establishing a
bisimulation relation between the two processes.

Bisimulation equivalences were also studied by Cleave-
land and Hennessy [22]. In fact, the few available descriptions
of the CSP model checker failures–divergences refinement
(FDR) [36] often refer to [22] as a main source of informa-
tion for the construction of its automata theory and search
algorithm. That is because it gives an automata theoretical
account for the data structures used in FDR. Additional ref-
erences to the bisimulation approach used for model checking
can be found in [28,77,85].

Examples in industry A successful industrial-scale example
of refinement model checking is in the area of security pro-
tocol design and verification [95]. In fact, the initial motiva-
tion for the available refinement model-checking tools was
exactly to solve this problem. The experiment was such a
success that it progressed to a set of commercial and aca-
demic tools of great value. Other related tools are also avail-
able, such as a CSP parser [97], Java libraries for CSP [6,35],
translators [71], a refinement checker specialised in deadlock
detection [62], a concurrent programming language [46],
and so on. Currently, there are two main tools: one is the
refinement model checker FDR [36], and the other is the
CSP animator process behaviour explorer (ProBE) [32]. FDR
and ProBE have been used to model-check a wide variety of
industrial-scale systems, such as the example in [89]. Another
refinement model checker for CSP is ARC[Query9]; it is still
a prototype [80]. Benchmark analyses comparing FDR with
ARC and other tools, and a detailed description of ARC’s
algorithm can also be found in [79].

According to [90], on particular kinds of systems FDR
can check 101000 distinct states and beyond. With the aid of a
clever combination of techniques and properties of the CSP
language, such as monotonicity of some operators, this num-
ber could in fact grow to the staggering figure of 7101000

. This
is not the actual number of states checked by FDR, but the
total number of states of the combined system components,
which means that checking a fraction of the state space is as
good as checking the whole of it. By dealing with such a huge
number of states, FDR is able to model not only hardware,
but also quite complex software designs.

In the domain of security protocols, these tools were
used for a variety of property checks, such as secrecy [99],
authentication [55,98], or non-repudiation [95]. The success
of the approach produced yet another tool called: compiler
for the analysis of security protocols (CASPER) [56]. This
tool accepts a formal notation tailored for the description
of security protocols. The tool then compiles the protocol
description into CSP code to be used by FDR for checking
the desired properties.

Since CASPER is a compiler, the problem mentioned ear-
lier of the complexity of simple property descriptions involv-
ing predicates in CSP is completely hidden from the user.
That is, the user only needs to interact with a quite simple
interface, and many requirements and tricks in dealing with
FDR are entirely abstracted via CASPER. This is a good
example of a mature interaction between formal tools.

Many protocols have already been model-checked with
these tools, and a considerable amount of expertise and knowl-
edge is already available in this field. For example, the Cy-
berCash [57], and the TMN[Query10] [58] protocols were
successfully checked with the support of FDR, ProBE, and
CASPER. For some necessary domain abstraction, and infi-
nite property checks, the theorem prover PVS [92] was used.

Another example that involves exploration of the
monotonicity of CSP operators in a field different from secu-
rity protocols is given in [69]. This work presents a formal
model of the Brazilian satellite SACI-1 in CSP-Z [31]. The
author uses FDR to show that there was a flaw in the design
of the communication facilities between the satellite and the
Earth. Unfortunately, the verification was carried out when
the system was already in use, and it was too late: the Brazil-
ian space agency lost communication with the satellite after
a few initial interactions. Other successful examples in the
application of CSP and FDR, its variations, and future direc-
tions can be found in [1].

A prototype model checker for Circus has just been com-
pleted [34]. It enables refinement model checking of systems
that combine behavioural aspects defined in CSP with data
aspects defined using Z and guarded commands.

4 Overcoming the state explosion problem

We have already mentioned the state explosion problem for
model checking; it happens whenever different components
of systems interact, producing a massive number of states to
be analysed. Suggestions for handling this problem are given
by Clarke [21], Roscoe [87], Goldsmith [90], Shankar [101],
Valmari [104], and others [48]. These are not new methods,
but clever manipulations of the model-checking data struc-
tures and algorithms in order to reduce the state space, and
improve the efficiency of the whole model checking task. In
the sequel, we discuss some of these possibilities; they can
be applied to both classical and refinement model checking.

Symmetry reduction minimises the number of possible states
by the identification of replicated behaviour in the compo-
sition of nontrivial components. It allows the simplification
of both the temporal logic formula, and the specification.
Nevertheless, its application often requires replication of the
system components, a fairly observable aspect in hardware,
as well as concurrent and reactive software systems. More
details about this technique for classical model checking can
be found in [64, Chap. 14].

Induction is a technique applicable to families of finite-state
systems. The method finds an invariant process describing the



“11334_21” — 2006/2/13 — 15:07 — page 8 — #8

8 L. Freitas et al.

behaviour of the entire family of processes, which allows one
to check the whole family at once. The main disadvantage lies
in the fact that finding families of processes is normally an
undecidable procedure, and is hence harder to automate. An
interesting discussion of the use of symmetry and induction
techniques for classical model checking is given in [19]. More
details about induction can also be found in [64, Chap. 7],
and [21, Chap. 15].

Modular structure exploration allows the refinement model
checking of larger systems by exploring the properties of the
operators of the language under consideration. For instance,
the CSP parallel operator is monotonic with respect to
refinement for deadlock freedom. Therefore, if we prove that
a process P1 is refined by another process P ′

1, and similarly
for P2 and P ′

2, then we can conclude that the parallel com-
position of P1 and P2 is refined by the parallel composition
of P ′

1 and P ′
2. For instance, take the example of the Brazilian

satellite SACI-1; it uses the monotonicity of a restricted CSP
parallel operator with respect to deadlock freedom in order
to reduce the number of states from 201, 168 to 3426, and
the number of transitions from 1, 705, 581 to 13, 680 on the
checked automata structures. This is a very important result
because it allows the direct checking of systems with a huge
number of states and transitions, which would otherwise be
very costly, if possible at all.

Assumption containment is another technique that is similar
to modular structure exploration. The main difference is the
presence of assumptions when mutual dependencies between
components of the specification arise. In this approach, when
verifying a property of a component, one makes assumptions
about the behaviour of other components. These assumptions
are expected to be discharged at some convenient point dur-
ing the development process. More details on this technique
can be found in [82,67].

Abstract interpretation is a very important industry-oriented
technique for tackling the state explosion problem by mini-
mising the state space, which is used by both the classical and
the refinement model-checking approaches. It simplifies the
state space and yet guarantees that the original properties are
preserved. The major advantage of the technique is to enable
the possibility of model-checking infinite systems, as well as
making the verification process simpler by means of domain
reduction. Nevertheless, it is normally necessary for the user
to provide an accurate abstraction.

Finding such abstraction is a difficult task that often re-
quires theorem proving in order not to compromise the de-
sired properties being checked by an oversimplification of
the original system. It is necessary to find a balance between
the benefits of abstraction, and the major effort that it takes
to be proved consistent. An algorithm to find an abstrac-
tion for a combination of Z with CSP is given in [70]. A
similar approach is also available for data-independent CSP
processes [51]. In [101], the same idea is used for CTL in
classical model checking. More details regarding abstract

interpretation techniques for model checking and theorem
proving can be found in [30,23].

Finally, under particular circumstances, it is possible to
make compressions over the representation of models with-
out semantic loss [90]. By compression we mean manipu-
lation at the level of the automata representing the systems
being analysed, such as subset construction [43, Chap. 2],
bisimulation [22], and other methods [48,103]. In fact, it is
recommended that the user try to describe models by having
such possibilities in mind. An interesting discussion on this
topic related to algorithm complexity is given in [104].

5 Iterated integrated analysis

The answer to overcoming the state explosion problem for
more complex software systems lies in combining effec-
tive and expressive verification techniques, with the highest
degree of automation and the lowest compromise in sound-
ness possible. The user expects something useful, powerful,
effective, and expressive enough with the smallest amount
of effort possible. The technique that makes the best balance
of these issues is model checking. Nevertheless, under some
circumstances where expressive abstractions, or reasonably
sized system specifications are not easily available, theorem
proving is the choice that remains for achieving correctness.

In this section we present how techniques are being com-
bined to overcome the state explosion problem. These com-
binations have increased the interest in formal verification
from both academia and industry because of their greater
expressive power, and yet considerably high level of auto-
mation. These are focused mainly on the combination of
model checking and theorem proving. The former due to its
high level of automation and the ability not only to present
counterexamples for failures, but also to reason mechanically
about those failures; the latter due to its expressiveness, and
ability to handle infinite or unbounded models (see Fig. 2,
which is similar to an approach in [93]). When blended, those
techniques push the edge of mechanisation towards a more
expressive and less interactive direction, which is very attrac-
tive to users.

Thus, the combination of model checking and theorem
proving have become the state of the art in terms of prac-
tical and theoretical development for formal verification
techniques. For instance, the Spark Ada toolset combines
automatic static checking with automated theorem proving
for a subset of Ada tailored for high-integrity and safety-crit-
ical systems [9]. In [34], one can find recent developments on
a symbolic refinement model checker for Circus, a state-rich
refinement language [110].

Whenever possible, model checking is preferable due
to its higher level of automation. Nevertheless, due to the
state explosion problem mentioned earlier, theorem proving
is needed in order to perform formal verification over infinite
or unbounded systems. In this combined approach, theory
and tools must provide a balance between interaction effort
and reward. There are two main issues: (i) the decidability of



“11334_21” — 2006/2/13 — 15:07 — page 9 — #9

State-rich model checking 9

Fig. 2 Combining model checking with theorem proving

the theories being used, and (ii) the ability to use automatic
proof tactics and efficient decision procedures. When inter-
action is unavoidable, it ought to be as close as possible to
the user’s domain of expertise.

5.1 Finding abstractions

Figure 3, which is based on [100,21], depicts an iterative cy-
cle to combine model-checking and theorem-proving tech-
niques in order to: (i) find abstractions to enable model check-
ing; and (ii) interpret debugging information from model
checking mechanically. Basically, we have an interactive step-
wise method in which theorem proving is used to prove the
correctness of an abstraction that enables model checking.
The user takes advantage of three effective formal meth-
ods: model checking, theorem proving, and abstract inter-
pretation.

Firstly, it is usually the responsibility of the user to pro-
pose a suitable abstraction. This makes the technique a bit
expensive, as a considerable amount of theoretical and tech-
nical skills in different subjects might be needed.

After that, in order to maintain correctness, theorem prov-
ing is used to guarantee that the chosen abstraction fulfills the
original requirements. Unfortunately, finding such approxi-
mations and proving their correctness using a theorem prover
can be hard. Under particular circumstances, however, these
tasks of finding an abstraction and proving its correctness are
possible to automate.

Once the simplified domain is available, one is able to
use model checking to validate the desired property claims
using the approximated model. The debugging information
of model checking can then be further analysed by the the-

orem prover in order to draw the final conclusions, possibly
automatically [91].

Finally, the idea of the iterated approach is to repeat this
cycle by strengthening (or weakening) the invariant of the
abstraction until, eventually, a property-preserving abstrac-
tion is found that allows one to verify aspects of the concrete
design as required. Nevertheless, this use of under- and o-
verapproximation of abstractions can generate “dubious wit-
nesses or spurious counterexamples” [101]. This technique
has been encoded as decision procedures in PVS.

Another approach uses simplified debugging information
and an expressive translation from ANSI-C (including point-
ers, bit vectors, unions, etc.) to propositional logic, where the
compromise made for higher automation is soundness; that
is, false positives (or dubious witnesses) can be generated.
This approach is used by Microsoft’s SLAM toolset for for-
mal verification of Windows device drivers [24,50]. It allows
both a wide variety of systems to be analysed, as well as a
higher degree of automation to be achieved, with as little
user interaction as possible. On the other hand, the approach
is limited in the scope of properties it can check.

As pointed out in [91], enumerating the behaviour of the
abstracted version of the system is a better debugging method
than exploring some of the behaviours of the original one,
as it simplifies the irrelevant details for the property being
checked. When one proves a given abstraction to be faithful
with respect to the original domain, any property claim on
the abstracted system should be valid on the original one as
well.

Proposing abstractions For example, in [100], an abstrac-
tion for basic integer arithmetic is proposed: the integers (Z)
are represented by the smaller set {0,+1, −1,�}, and the
following interpretation is chosen:

[[0]] = {0}, [[+1]] = [0, ∞),

[[−1]] = (−∞, 0], [[�]] = Z

With these new abstracted definitions, operations like “+”
and “−” can then be lifted to “+̂” and “−̂”, as shown in
Table 2. In this way, we have a finite representation for the
original infinite-state space. The next step is to prove that,
with such simplifications, the new design preserves the origi-
nal properties (soundness). This is done by establishing a Ga-
lois connection between the concrete and the abstract domains
[25]. This is the task that normally requires a theorem prover.

Once the new design is proved correct, one can feed it to
the model checker in order to perform the desired property
checks. The returned results can then be used either as a final
answer to the user, or as input for the definition (and proof)
of a new abstraction, if the one provided is not yet sufficient
because it might still be inadequate for model checking. For
instance, this might happen if the abstracted domain is still too
large, and hence further reduction is needed. This approach
is quite similar to Z data refinement [108, Chap. 16], another
well-known technique used in formal verification.

This sort of guessing is prone to be unsound at first choice
in a complex scenario, and that is why the use of theorem



“11334_21” — 2006/2/13 — 15:07 — page 10 — #10

10 L. Freitas et al.

Fig. 3 Iterated integrated analysis

Table 2 Integer arithmetic operations abstraction example

+̂ 0 ++1 −1 �
0 0 +1 −1 �
+1 +1 +1 � �
−1 −1 � −1 �
� � � � �
-̂ 0 +1 −1 �
0 0 −1 +1 �
+1 +1 � +1 �
−1 −1 −1 � �
� � � � �

proving for correctness is needed. In any case, even if the
abstraction is not yet correct, bugs found in the approximated
model are likely to indicate problems in the original system.
The current trend is to compromise soundness for higher lev-
els of automation whenever possible [14,101], or lower (yet
acceptable) automation and expressiveness for high assur-
ance and correctness by construction [4,107]. The choice
depends on the problem domain. For instance, formal verifi-
cation is being used to prove the SmartCard APIs [Query11]
in JML [83], where high levels of automation are of greater
priority. On the other hand, for high-integrity or safety-crit-
ical systems, such as flight control or banking systems [38],
one cannot afford this form of compromise and other tech-
niques are used.

Systems with more-complex state spaces have created
the demand for new techniques. The most successful in this

direction is the use of symbols while encoding the formal
model to perform a check. Being applicable to both clas-
sical and refinement-based model checking, the symbolic
approach enables the encoding of certain types of infinite (or
unbounded) systems. This is possible through the representa-
tion by symbols of their characteristic features in some suit-
able logic, rather than by enumeration of all possible states.
That is, representing distinct characteristics (classes or prop-
erties) of states, rather than each individual state.

For instance, a counter based on the infinite set of natu-
ral numbers (N) can be represented by the proposition x ≥ 0
or the set { v : Z|v ≥ 0 } with one single state, rather than
one state for each individual positive number. That is, what
matters is the fact that we do not consider negative numbers.

Classical model-checking example Classical model check-
ing explores the idea of finding abstractions automatically.
Although the user is forced to give the initial approximated
abstraction, it can be either very coarse or very strict. Tools
are used to make sure that the approximated abstraction is
neither too weak nor too strong. A weak (or under-) approx-
imation needs to be strengthened in order to avoid missing
possible flaws; it is related to completeness. On the other
hand, a strong (or over-) approximation needs to be weak-
ened in order to avoid catching problems not present in the
concrete domain originally; it is related to soundness [101].

The approach taken is to use model checking itself together
with predicate abstraction [8], in order to find an effective
approximation. The difference is that it uses symbolic



“11334_21” — 2006/2/13 — 15:07 — page 11 — #11

State-rich model checking 11

characterisations of the problem domain, such as the exam-
ple given earlier of the natural number counter, rather than
explicit state enumeration. A nice side-effect of the use of
symbols is that the returned witnesses now carry more infor-
mation than just the usual traces. This information is the
symbols characterising the approximations taken during the
abstraction process.

This approach is available, for instance, in the SAL [Query12]
framework embedded into the PVS theorem prover [10,74].
Another example of the use of model checking for finding
suitable abstractions is the work in [65]. The user does not
need to provide an initial abstraction. It is calculated directly
from the given concrete domain [24]. It starts from an empty
abstraction (or under approximation) that is completed as the
check goes along.

Refinement model-checking example As already mentioned,
an algorithm to find domain abstractions for data-indepen-
dent CSP-Z processes is given in [70], with further exten-
sions and optimisations provided in [30]. In this approach,
the abstraction does not need to be given by the user. Instead,
the algorithm starts from an empty domain and the search
looks for necessary strengthening predicates; this is similar
to [24]. The search terminates when both automata from the
refinement relation are exhaustively searched.

As the automaton contains a specific encoding of the Z
part of the CSP-Z specification using a functional language
similar to Haskell, some verification conditions pop up to the
user to prove as theorems. This means that the user needs to
guide the algorithm by choosing which parts of the search
to prune according to his answers to the presented verification
conditions.

Other related efforts towards finding and proving domain
abstractions automatically for CSP are given in [105].

5.2 Symbolic refinement model checking

A completely different instantiation of the iterative combi-
nation of techniques for formal verification has been devel-
oped recently [34]. It combines refinement model checking
and theorem proving in a way that allows not only property
checks and stepwise development, but also automated calcu-
lation of abstractions via data refinement.

The symbolic refinement model-checker prototype works
for a subset of Circus, whose semantic background is based
on Hoare and He’s unifying theories of programming (UTP)
[41].

The objective of the design of Circus was to enable the
specification of both data and behavioural aspects of con-
current and reactive systems, as well as to support correct-
by-construction stepwise development through refinement. It
provides a method of program development that is based on
refinement laws, and is calculational in style [75].

The motivation for a new tool arises from existing research
in the specification of systems using Circus [5,109]. Due to
the lack of adequate tools, adaptations and simplifications
have been carried out in order to make the descriptions suit-

able for analysis using FDR. This motivated the work on the-
ory and tools for model checking Circus, such as the model
checker and the basis of a theorem prover for the UTP [76].

The Circus model checker can be used similarly to the
way in which FDR is used for CSP. Nevertheless, due to
the possible complexity introduced through the use of Z and
guarded commands, some user interaction might be required
in the form of interactive theorem proving. The main goal is
to have a sound tool that exhaustively checks for refinement
with the highest level of automation possible, and which gives
accessible (human-readable) counterexamples in the case of
failure. In practice, the way one is expected to use the tool is
depicted by the cyclic process presented in Fig. 4.

Firstly, a Circus specification in LATEX is given to the
compiler, which implements an operational semantics that
generates finite automata representing Circus specifications
on-the-fly, as the checking progresses through the witness
search algorithm. Finiteness is achieved with the use of sym-
bolic representation of characteristic sets of states.

On-the-fly model checking is a well-known technique [81].
The direct benefit is that, since model checking often finds
problems early in the design, there is no need to calculate the
whole automaton up front. Due to the state explosion prob-
lem that often arises, keeping track of the entire automata is
not efficient, and hence avoided.

In [33], a suitable theory of automata that encodes pred-
icate logic through set comprehension on automata arcs is
presented. It is called the predicate transition system (PTS),
and is the output of the Circus compiler. A thorough account
of possible variations, as well as what one can gain from theo-
retical exploration of algorithm complexity and automata the-
ory for the benefit of the symbolic model checking approach,
can be found in [104].

The refinement search is carried out by the refinement
engine. It receives the partially compiled transition system
and performs the main activities involved in witness search:
(i) the validation of the refinement search criteria for a cur-
rent node pair; (ii) the identification of new successor nodes
to check; and (iii) the generation of counterexamples, if nec-
essary.

Refinement criteria validation and search for successor
nodes demands evaluation of predicates and expressions, which
in turn might require automated theorem proving. While
searching for new nodes, the refinement algorithm turns back
to the compiler for further compilation, now of different pro-
grams corresponding to the available nodes after the refine-
ment criteria check. If a counterexample is found during the
search, the debugger comes into play to properly cast the
refinement search information into a human-readable format,
which is presented as textual output.

The predicates and expressions generated are verifica-
tion conditions for another component to evaluate. The user
does not need to provide any suitable (and correct) formulae
or abstraction, as soundness is guaranteed by construction,
but the discharge of proof obligations may be needed. Obvi-
ously, the more complex the system description, the harder
the proof.



“11334_21” — 2006/2/13 — 15:07 — page 12 — #12

12 L. Freitas et al.

Fig. 4 Using the Circus model checker

An interesting aspect of this method still being explored
is that the verification conditions can be used to suggest an
abstraction to the user. This is a sort of semi-automatic data
refinement or abstract interpretation.

Finally, the oracle component is responsible for discharg-
ing proofs that the previous stages could not handle automati-
cally. They are passed either to the user, or to general-purpose
theorem provers, which can be plugged into the prototype.
In the current implementation, a Z animator (ZLive) [59],
the Z-Eves theorem prover [96], and a simple user interface
for direct questioning are integrated. As the prototype is in
conformance with the Z standard [111], any theorem prover
that supports Z, such as ProofPowerZ, can also be used [52].

This way of integrating iterative analysis, with the use
of different tools in a pipeline, handling different levels of
complexity, from automatic term rewriting to interactive the-
orem proving or indeed user intervention, has been used in
other tools, such as ESC[Query13]/Java2 [27] for JML, and
correctness by construction with the Spark Ada toolset [9].

A subtle point for future research is the analysis of possi-
ble dependencies between generated verification conditions
and the model-checking search algorithm, in order to enable
the use of parallel algorithms. Furthermore, if stand-alone
parallelisation of model-checking algorithms is not enough,

there is the possibility to try using grid technology in order
to enhance the development of parallel algorithms through
distribution of search data via a grid network [78]; this is a
topic that is yet to be explored.

To the extent of our knowledge, there is only one other
technique that aims at symbolic refinement model checking
and combination with other technologies, such as theorem
proving. It is based on a tool called ProB, which combines
the different paradigms of behaviour and data from CSP with
the B method [2]. Although ProB [15] has already combined
CSP and B, support for refinement checking is still limited,
as shown in its manual (version 1.1.4) [54].

6 Summary and discussion

Model checking is well accepted in industry, mainly because
of its degree of expressiveness with respect to high-value bugs
found, and the lower amount of effort required when com-
pared with other techniques. The evaluation of all possible
behaviours, even for approximate models, often reveals early
flaws; that is, bugs that would have cost more if detected later
(or gone otherwise unnoticed) during the development pro-
cess. This turns out to be a better approach than performing



“11334_21” — 2006/2/13 — 15:07 — page 13 — #13

State-rich model checking 13

ad hoc testing or simulation on the final product, since these
do not guarantee correctness.

Provided the specification of the system and its proper-
ties meet the informal requirements to the user’s satisfaction,
and provided the verification technology used is sound, if a
bug is found, it is certain that the system is flawed. Moreover,
provided the technology used is also complete, if no bug is
found, the system is correct (and hence flawless) with respect
to the properties being checked.

Another important factor for the acceptance of model
checking is its ability not only to find problems, but also
to enable reasoning about them. In model checking, bugs are
reported with tractable counterexamples that can be used (of-
ten automatically) to draw a test case or simulation scenario.
In other words, the returned counterexample can be used by
other formal analysis tools for further reasoning.

There are two mainstream approaches to model check-
ing. The first, classical model checking, uses more natu-
ral or succinct property specifications, whereas the second
refinement-based approach, supports not only property check-
ing, but also correctness by construction via stepwise devel-
opment. Nevertheless, specification of properties involving
predicates in the refinement model-checking approach for
CSP is not as straightforward as in classical model checking.
For a refinement-based model checker that combines CSP
with Z, however, this problem no longer exists, as the user
can easily (and elegantly) describe predicates using Z [34].

In classical model checking, the use of OBDDs increases
the number of states that can be handled, and it is known in
the literature as symbolic (classical) model checking. Nev-
ertheless, OBDDs are not always suitable because classical
model checking cannot deal with the huge number of states
that normally occur in reactive software systems.

Symbolic (classical) model checking can be considered as
a new algorithm for theorem proving—a proof tactic [100].
Properties of OBDDs often determine the kind of system
structures that can be efficiently analysed using this approach.
For instance, OBDDs are suitable for hardware designs, which
are usually less dynamic, rather than complex (state-rich)
software systems. The use of symbols has also been ex-
plored for finding optimal abstractions of the original con-
crete domain to cut down the problem to a model-checkable
size [101].

In refinement model checking, the use of clever automata
manipulation, compression techniques, and modular struc-
ture exploration enables an enormous number of states to be
checked. Furthermore, whenever state-rich designs are mod-
elled, the compromise is that theorem proving may be needed.

In both approaches, the main properties under consid-
eration are often related to control, instead of data. This is
due to the necessity to downscale the number of states to
a manageable number. Reduction can be achieved through
further formal techniques, such as modular structure explo-
ration, symmetry, partial order reduction, compression, or
abstract interpretation. The degree of automation with respect
to the state explosion problem and tool support are usually
the main issues for an appropriate choice of technique. For

state-rich designs, such as those described in Circus, it seems
to be impossible to use OBDDs or classical (symbolic) model
checking, since it is not possible to simplify the complexity
of the state representation and operations to simple Boolean
formulae as required [21,64].

In [53], it is mentioned that LTL formulae can be trans-
lated to FDR, which enables the integrations of the different
model-checking approaches. This topic of interchangeability
between approaches is also mentioned by Clarke [21].

In the context of combined techniques the direction is
clear: to provide theory and tools aimed at shedding light
on and providing guidance in bridging this gap between cur-
rent demands, and actual tool support, with the highest levels
of automation possible. There is clear demand not only for
integrated methodologies, such as model checking, theorem
proving, and abstract interpretation, but also integrated pro-
gramming paradigms. In this direction, we have discussed the
importance of addressing the challenge of integrating refine-
ment model checking with theorem-proving support, as well
as support for different language paradigms, such as data and
behaviour, through the Circus and ProB model checkers.

The main idea is to take advantage of the various (formal)
verification techniques available, by extracting the best out
of the most successful ones, that is, model checking, theorem
proving, and abstract interpretation: high automation levels
with as few compromises on expressiveness and soundness
as possible.

References

1. Abdallah AE, Jones CB, Sanders JW (eds) (2004) Communicat-
ing sequential process: the first 25 years, no. 3525, in Lecture
Notes in Computer Science, symposion on the occasion of 25
years of CSP, Springer, London UK, July 2004

2. Abrial J-R (1996) The B book—assigning programs to meanings.
Cambridge University Press, Cambridge

3. Alur R (2002) Mocha: Modularity in model checking [Query14]
4. Amey P (2005) Correctness by construction: better can also be

cheaper. Crosstalk J Def Softw Eng Dec: 5–8
5. Atiya D, King S, Woodcock JCP (2003) Ravenscar protected ob-

jects: a Circus semantics. Technical Report 356, Department of
Computer Science, University of York, York

6. Austin PD, Welch PH (2000) Java communicating sequential pro-
cess—JCSP. PowerPoint slides, August 2000 [Query15]

7. Back R-J, von Wright J (1998) Refinement calculus: A systematic
introduction. Graduate text in computer science. Springer, Berlin
Heidelberg New York

8. Ball T, Cook B, Das S, Rajamani SK (2004) Refining approxi-
mations in software predicate abstraction. In: Proceedings of 10th
international conference on tools and algorithms for the construc-
tion and analysis of systems – TACAS’04, pp. 388–403

9. Barnes J (2003) High integrity software: the spark approach to
safety and security, 2nd edn. Addison–Wesley, Reading

10. Bensalem S, Ganesh V, Lakhnech Y, Munoz C, Owre S, Rueß H,
Rushby J, Rusu V, Saïdi H, Shankar N, Singerman E, Tiwari A
(2000) An overview of SAL. In: Holloway CM (ed.) LFM 2000:
5th NASA Langley formal methods workshop. NASA Langley
Research Center, Hampton, VA, pp. 187–196

11. Biere A, Cimatti A, Clarke EM, Fujita M, Zhu Y (1999) Symbolic
model checking using SAT procedures instead of BDDs. In: DAC
’99: Proceedings of the 36th ACM/IEEE conference on design
automation, ACM, New York, pp. 317–320



“11334_21” — 2006/2/13 — 15:07 — page 14 — #14

14 L. Freitas et al.

12. Bryant RE (1986) Graph-based algorithms for boolean function
manipulation. IEEE Trans Comput 35(8):677–691

13. Burch I (1994) Symbolic Model Checking for Sequential Cir-
cuit Verification. IEEE Trans Comput Aided Des Integr Circ Syst
13:401–424

14. Burdy L, Cheon Y, Cok DR, Ernst MD, Kiniry JR, Leavens GT,
Rustan K, Leino M, Poll5 E (2003) An overview of JML tools and
applications. In: Eighth international workshop on formal meth-
ods for industrial critical systems (FMICS), Electronic Notes in
Theoretical Computer Science. University of Nijmegen, Elsevier,
pp. 73–89

15. Butler M, Leuschel M (2005) Combining CSP and B for specifica-
tion and property verification. In: Fitzgerald J, Hayes IJ, Tarlecki
A (eds.) FM 2005: Formal methods, no. 3582, Lecture Notes
in Computer Science, Springer, Berlin Heidelberg New York,
pp. 221–236

16. Cavada R, Cimatti A, Olivetti E, Pistore M, Roveri M (2005)
NuSMV 2.2 user’s manual. Carneige Mellon University, Trento,
Italy, nusmv.irst.itc.it

17. Chaki S, Clarke EM, Ouaknine J, Sharygina N, Sinha N (2004)
State/event-based software model checking. In: Boiten EA,
Derrick J, Smith G (eds.) In: Proceedings of the 4th international
conference in integrated formal methods, no. 2999, Lecture Notes
in Computer Science, pp. 128–147

18. Clarke EM, Kurskan RP (eds.) (1990) In: Proceedings of 2nd
international conference in computer-aided verification. No. 531,
Lecture Notes in Computer Science, Springer, Berlin Heidelberg
New York

19. Clarke EM, Jha S (1993) Symmetry and induction in model check-
ing. Technical report, Carnegie Mellon University, Pittsburgh

20. Clarke EM, Wing JM (1996) Formal methods—state of the art
and future directions. ACM Comput Surv 28(4):626–643

21. Clarke EM, Grumberg O, Peled D (2000) Model checking. MIT
Press, Cambridge

22. Cleaveland R, Hennessy M (1993) Testing equivalence as a bi-
simulation equivalence. Formal Aspects Comput J 5(1):1–20

23. Cleaveland R, Iyer P, Yankelevich D (1993) Optimality in abstrac-
tions of model checking. Technical report, North Carolina State
University, US and University of Buenos Aires, Argentina

24. Cook B, Podelski A, Rybalchenko A (2005) Abstraction refine-
ment for termination. In: Proceedings of international static anal-
ysis symposium – SAS’05, London

25. Cousot P, Cousot R (1992) Abstract interpretation framworks. J
Logic Comput 2(4):511–547

26. Deharbe D, Shankar S, Clarke EM Jr (1998) Model checking
VHDL with CV. In: Formal methods in circuit automation design
(FMCAD’98), Lecture Notes in Computer Science, vol. 1522.
Springer, Berlin Heidelberg New York, pp. 508–513

27. Detlefs D, Rustan K, Leino M, Nelson G, Saxe JB (1998) Ex-
tended static checking. Technical Report 159, COMPAQ Systems
Research Center (SRC), www.research.digital.com/SRC/

28. Dovier A, Piazza C, Policriti A (2000) A fast bisimulation algo-
rithm. Technical report, University di Verona and University
Udine, November 2000, UDM/14/00/RR

29. Elseaidy W (ed.) (1994) Modeling and verifying active structural
control systems. Sci Comput Program 29(1–2):99–122

30. Farias AC (2003) Efficient and mechanised analysis of infinite
CSP-Z processes. Master’s thesis, Universidade Federal de Per-
nambuco, Pernambuco

31. Fischer C (2000) Combination and implementation of process and
data: From CSP-OZ to Java. PhD thesis, University of Oldenburg,
Oldenburg

32. Formal Systems (Europe) Ltd. (2000) ProBE user’s manual ver-
sion 1.28

33. Freitas L (2004) Predicate transition system—automata theory.
Appendix A.3 in [34] (CD-ROM)

34. Freitas L (2005) Model checking Circus. PhD thesis, Univeristy
of York, York

35. Freitas L, Cavalcanti A, Sampaio A (2002) JACK—a framework
for process algebra implementation in Java. In: Proceedings of
XVIII Simposio Brasileiro de Engenharia de Software in Gram-
ado, October 2002, pp. 98–113

36. Goldsmith M (2000) FDR2 user’s manual version 2.67. Formal
Systems (Europe) Ltd, Oxford

37. Goldsmith M (2001) Overview of FDR in [95], chap. 4. Addi-
son–Wesley, Reading, pp. 125–140

38. Hall A, Chapman R (2002) Correctness by construction:
developing a commercial secure system. IEEE Softw J
19(1):18–25

39. Har’el Z, Kurshan RP (1990) Software for analytical development
of communications protocols. AT&T Tech J 69(1):45–59

40. Hoare CAR (1969) An axiomatic basis for computer program-
ming. Commun ACM 12(10):576–583

41. Hoare CAR, Jifeng H (1998) Unifying Theories of Programming.
International series in computer science. Prentice-Hall, Engle-
wood Cliffs

42. Holzmann GJ (1997) The Model-Checker SPIN. IEEE Trans
Softw Eng 23(5):1–17

43. Hopcroft J, Motwani R, Ullman JD (2001) Introduction to auto-
mata theory, languages, and computation, 2nd edn. Addison–Wes-
ley, Reading

44. The ICS Group (2005) ICS Manual (Version 2.0). SRI Interna-
tional, Computer Science Laboratory, SRI International 333 Rav-
enswood Avenue, Menlo Park, CA 94025, USA

45. Jackson D, Schechter I, Shlyakhter I (2000) Alcoa: the alloy con-
straint analyzer. In: Proceedings of the 22nd international confer-
ence on software engineering, June 2000, pp. 730–733

46. Jones G, Goldsmith M (1998) Programming in occam 2. Interna-
tional series in computer science, 2nd edn. Prentice-Hall, Engle-
wood Cliffs

47. Kang H-J, Park I-C (2003) SAT-based unbounded symbolic model
checking. In: Proceedings of the 40th design automation confer-
ence (DAC’03), IEEE, pp. 840–843

48. Kokkarinen I (1998) A veridication-oriented theory of data in
labelled transition systems. PhD thesis, Tampere University, Fin-
land

49. Kozen D (1998) Results on the propositional µ-calculus. Theor
Comput Sci 27:333–354

50. Lahriri SK, Ball T, Cook B (2005) Predicate abstraction via sym-
bolic decision procedures. Technical Report MSR-TR-2005-53,
Microsoft Research

51. Lazić RS (1999) A semantic study of data independence with
applications to model checking. PhD thesis, Programming Re-
search Group, Oxford University, Oxford

52. Lemma-One (2003) ProofPower Tutorial
53. Leuschel MA, Massart T, Currie A (2001) How to make FDR

spin: LTL model checking of CSP by refinement. In: Oliveira JN,
Zave P (eds.) Formal methods Europe 2001, vol. 2021. Springer,
Berlin Heidelberg New York, pp. 99–118

54. Leuschel LA, Butler M, Lo Presti S (2005) ProB User Manual
version 1.1.4. Declarative systems and software engineering, Uni-
versity of Southampton, and Softwaretechnik und Programmiers-
prachen, University of Düusseldorf, Germany

55. Lowe G (1996) A hierarchy of authentication specifications. Tech-
nical report, University of Leicester, Leicester

56. Lowe G (1997) CASPER user manual. Oxford University, Oxford
57. Lowe G (2002) Simplifying transformations—the CyberCash

security protocol in [95], chap. 8. Addison Wesley, Reading,
pp. 201–220

58. Lowe G, Roscoe B (1997) Using CSP to detect errors in the TMN
protocol. Technical report, Oxford University, Oxford

59. Malik P, Utting M (2005) CZT: A framework for Z tools. In:
Treharne H, King S, Henson M, Schneider S (eds.) ZB 2005: For-
mal specification and development in Z and B: 4th international
conference of B and Z users, Guildford, UK, Springer, Berlin
Heidelberg New York, pp. 13–15

60. Manna Z, Pnueli A (1992) The temporal logic of reactive and
concurrent systems—specification, vol. 1. Springer, Berlin Hei-
delberg New York

61. Manna Z, Pnueli A (1995) The temporal logic of reactive and
concurrent systems—safety, vol. 2. Springer, Berlin Heidelberg
New York



“11334_21” — 2006/2/13 — 15:07 — page 15 — #15

State-rich model checking 15

62. Martin JMR (1996) The design and construction of deadlock-
free concurrent systems. PhD thesis, University of Buckingham,
Buckingham

63. Martin JMR, Huddart Y (2000) Parallel algorithms for deadlock
and livelock analysis of concurrent systems. Communicating Pro-
cess Architectures [Query16]

64. McMillan KL (1993) Symbolic model checking. Kluwer, Dordr-
echt

65. Microsoft Research (2004) SLAM: A static driver verifier.
research.microsoft.com/slam/

66. Milner R (1990) Communication and concurrency. International
series in Computer lence. Prentice-Hall, Englewood Cliffs

67. Misra J, Chandy KM (1990) Proofs of networks of processes.
IEEE Trans Softw Eng SE 7(4):417–426

68. Morgan C (1994) Programming from specifications. Prentice-
Hall, Englewood Cliffs

69. Mota A (1997) Formalization and analysis of the SACI-1 micro
satellite in CSP-Z. Master’s thesis, Universidade Federal de Per-
nambuco, Pernambuco (in Portuguese)

70. Mota A (2001) Model cecking CSP-Z: Techniques to overcome
state explosion. PhD thesis, Universidade Federal de Pernambuco,
Pernambuco

71. Mota A, Sampaio A (2001) Model checking CSP-Z. Science of
computer programming, vol. 4. Elsevier, Amsterdam

72. de Moura L, Rueß H, Sorea M (2002) Lazy theorem proving for
bounded model checking over infinite domains. In: Proceedings
of the 18th conference on automated deduction (CADE), Lecture
Notes in Computer Science, Copenhagen, Denmark, 27–30 July,
Springer, Berlin Heidelberg New York

73. de Moura L, Rueß H, Sorea M (2003) Bounded model checking
and induction: From refutation to verification. In: Voronkov A
(ed.) Computer-aided verification, CAV 2003, Lecture Notes in
Computer Science, vol. 2725. Springer, Berlin Heidelberg New
York pp. 14–26

74. de Moura L, Owre S, Rueß H, Rushby J, Shankar N, Sorea M,
Tiwari A (2004) SAL 2. In: Proceedings of the 16th international
conference on computer aided verification (CAV), Lecture Notes
in Computer Science, Boston, July 2004, Springer, Berlin Hei-
delberg New York

75. Oliveira M (2006) Formal derivation of state-rich reactive pro-
grams using Circus. PhD thesis, University of York, York

76. Oliveira M, Cavalcanti A, Woodcock J (2005) Unifying theories
in ProofPowerZ Draft, Univeristy of York, York

77. Paige R, Tarjan R (1987) Three partition refinement algorithms.
SIAM J Comput 16(6):973–989

78. Paranhos D, Cirne W, Brasileiro F (2003) Trading cycles for infor-
mation: Using replication to schedule bag-of-tasks applications
on computational grids. In: Proceedings of the Euro-Par 2003:
International conference on parallel and distributed computing,
August 2003, pp. 169–180

79. Parashkevov AN, Yantchev J (1996) ARC—A tool for efficient
refinement and equivalence checking for CSP. In: IEEE 2nd inter-
national conference on algorithms and architectures for parallel
processing ICA3PP, pp. 68–75

80. Parashkevov AN, Yantchev J (1996) ARC—A verification tool
for concurrent systems. In: Proceedings of the 3rd Australasian
parallel and real-time conference. Brisbane, Australia

81. Peled D (1994) Combining partial order reductions with on-the-
fly model checking. In: CAV ’94: Proceedings of the 6th interna-
tional conference on computer aided verification. London, UK,
Springer, Berlin Heidelberg New York

82. Pnueli A (1984) In transition for global to modular temporal rea-
soning about programs. In: Apt KR (ed.) Logics and models of
concurrent systems, NATO ASI. Springer, Berlin Heidelberg New
York

83. Poll E, van den Berg J, Jacobs B (2000) Specification of the Java-
Card API in JML, chap. 3. pp 135–154. Kluwer, Dordrecht. Also
Department of Computer Science, University of Nijmegen. CSI
report CSI-R0005

84. Pong F, Dubois M (1997) Verification techniques for cache coher-
ence protocols. ACM Comput Surv 29(1) 82–126

85. Rajasekaran S, Lee I (1998) Parallel algorithms for relational
coarsest partition problems. In: Proceedings of the IEEE trans-
actions on parallel and distributed systems, vol 9(7). IEEE CS,
pp. 687–699[Query17]

86. Roscoe AW (ed.) (1994) A classical mind: Essays in honour of C.
A. R. Hoare. International series in computer science. Prentice-
Hall, Englewood Cliffs

87. Roscoe AW (1994) Model checking CSP in [86], chap. 21.
Prentice-Hall, Englewood Cliffs, pp. 353–378

88. Roscoe AW (1997) The theory and practice of concurrency. Inter-
national series in computer science. Prentice-Hall, Englewood
Cliffs

89. Roscoe AW, MacCarthy H (1994) Verifying a replicated database:
A case study in model checking CSP. Technical report, Oxford
University, Oxford

90. Roscoe AW, Gardiner PHB, Goldsmith MH, Hulance JR, Jackson
DM, Scattergood JB (1995) Hierarchical compression for model
checking CSP or how to check 1020 dining philosophers for dead-
lock. First TACAS in Lecture Notes in Computer Science, vol.
1019(1)

91. Rushby J (1995) Model checking and other ways of automating
formal methods. Model checking for concurrent programs soft-
ware, quality week—San Francisco, Position Paper—-SRI Inter-
national

92. Rushby J (1997) Specification, proof checking, and model check-
ing for protocols and distributed systems with PVS. Formal
description techniques and protocol specification, testing and
verification (FORTE/PSTV)—Osaka, Japan; SRI international—
paper and tutorial slides, pp. 9–12

93. Rushby J (1999) Mechanised formal methods: Where next? In:
The World congress on formal methods—Toulouse France, no.
1708, Lecture Notes in Computer Science, Springer, Berlin Hei-
delberg New York. pp. 48–51, invited paper; SRI international—
paper and tutorial slides

94. Rushby J (2000) From refutation to verification. Formal descrip-
tion techniques and protocol specification, testing and verification
(FORTE XIII/PSTV XX)—Pisa, Italy, pp. 369–374

95. Ryan P, Schneider S, Roscoe B, Goldsmith M, Lowe G (2001)
Modelling and analysis of security protocols. Addison-Wesley,
Reading

96. Saaltink M (1992) Z/Eves 2.0 user’s guide. ORA Canada TR-99-
5493-06a

97. Scattergood JB (1992) A parser for CSP. Technical report, Oxford
University, Oxford

98. Schneider S (1997) Verifying authentication protocols with CSP.
Technical report, Royal Holloway, University of London, London

99. Schneider S (1998) Security properties and CSP. Technical report,
Royal Holloway, University of London, London

100. Shankar N (2002) Mechanised verification methodologies. In:
Summer school in specification, verification, and refinement,
Turku, Finland

101. Shankar N, Sorea M (2004) Counterexample-driven model check-
ing. CSL technical report SRI-CSL-03-04, SRI International

102. Spivey JM (1998) The Z notation: a reference manual. Prentice-
Hall, Englewood Cliffs

103. Valmari A (1990) A stubborn attack on state explosion in [18],
chap. 2. No. 531, Lecture Notes in Computer Science. Springer,
Berlin Heidelberg New York, pp. 156–165

104. Valmari A (2005) What does theory say about the possibilities of
improving efficiency. UK Model Checking Days, University of
York, York, www.cs.york.ac.uk/˜luettgen/ukmcdays

105. Wehrheim H (2000) Data abstraction techniques in the validation
of csp-oz specifications. Formal Aspects Comput J 12(3):147–164

106. Williams PF, Biere A, Clarke EM, Gupta A (2000) Combin-
ing decision diagrams and SAT procedures for efficient symbolic
model checking. In: CAV ’00: Proceedings of the 12th interna-
tional conference on computer aided verification, London, UK,
Springer, Berlin Heidelberg New York, pp. 124–138

107. Woodcock J (2003) UK grand challenge in computer science:
dependable systems evolution. www.nesc.ac.uk



“11334_21” — 2006/2/13 — 15:07 — page 16 — #16

16 L. Freitas et al.

108. Woodcock J, Davies J (1996) Using Z: Specification, refinement,
and proof. International series in computer science. Prentice-Hall,
Englewood Cliffs

109. Woodcock JCP, Cavalcanti ALC (2001) The steam boiler in a
unified theory of Z and CSP. In: Proceedings of 8th Asia–Pacific
software engineering conference (APSEC01), IEEE Computer
Society, pp. 291–298

110. Woodcock J, Cavalcanti A (2002) Circus —a concurrent lan-
guage for refinement. Technical report, University of Kent, Can-
terbury

111. Z Standard (2000) Formal specification, Z notation, syntax,
type and semantics—consensus working draft 2.6. Techni-
cal Report JTC1.22.45, BSI panel IST/5/-/19/2 (Z notation)
and ISO panel JTC1/SC22/WG19 (Rapporteur Group for Z),
www.cs.york.ac.uk/˜ian/zstan/



“11334_21” — 2006/2/13 — 15:07 — page 17 — #17

State-rich model checking 17

Queries

1. [Query1]– Please define abbreviation JML on first use
2. [Query2]– Please define abbreviation SLAM on first use
3. [Query3]– Please define abbreviation PVS on first use
4. [Query4]– Please check: should this read OBDDs? Other-
wise please define new abbreviation used here
5. [Query5]– Please define abbreviation VHDL on first use
6. [Query6]– Please define abbreviation RISC on first use
7. [Query7]– Please confirm abbreviation definition added
for FDR on first use
8. [Query8]– Please define abbreviation CCS on first use
9. [Query9]– Please define abbreviation ARC on first use
10. [Query10]– Please define abbreviation TMN on first use
11. [Query11]– Please define abbreviation API on first use
12. [Query12]– Please define abbreviation SAL on first use
13. [Query13]– Please define abbreviation ESC on first use
14. [Query14]– Please complete reference
15. [Query15]– Please provide further information if possible
16. [Query16]– Please confirm publisher and location
17. [Query17]– Please confirm publisher location
18. The references Clarke and Kurskan (1990) and Roscoe
(1994) are not cited in the text. So please provide citations for
those references or remove the references from the reference
list.
19. Please update the following references:
ú Alur R (2002) Mocha: modularity in model checking (Ref-
erence [3]),
ú Martin JMR, Huddart Y (2000) Parallel algorithms for
deadlock and
livelock analysis of concurrent systems (Reference [63]).


