An approach for managing semantic heterogeneity
in Systems of Systems Engineering

Simon Foster, Alvaro Miyazawa,
Jim Woodcock, Ana Cavalcanti
University of York, UK
firstname.lastname @york.ac.uk

Abstract—Semantic heterogeneity is a significant challenge to
integration in Systems of Systems Engineering (SoSE) due the
large variety of languages, domains and tools which are used
in their construction. In this paper we envision a strategy for
managing this heterogeneity by decomposing domain specific
languages into their ‘building block” theories which can be
independently analysed, and used as a basis for linking with
similar notations. This provides a systematic approach to building
a tool-chain which integrates the different theories, methods
and tools used in SoSE. Our approach has been piloted on
the development of theories enabling machine-supported analysis
of SysML models of SoSs. We conclude that the approach has
further potential and identify lines of future research, notably in
techniques for handling mixed discrete and continuous behaviour,
timebands, mobility and model integration in SoSE.

Keywords — systems of systems, modelling, integration, unify-
ing theories, tool-chain, theorem proving.

I. INTRODUCTION

Systems of Systems Engineering (SoSE) is a collection of
techniques that support the development and maintenance of
a potentially complex aggregate of independently owned and
managed systems that are relied upon to provide an emergent
service. The nature of the systems that form this aggregate vary
in terms of the domain of application, level of independence,
ownership, manageability, etc. This variance potentially leads
to a plethora of seemingly incompatible models, methods and
techniques, and the effective engineering of SoSs depends on
their coordinated use.

These issues are observed at different levels of abstraction.
For instance at a lower level, we observe different theories
in play: integer and rational arithmetic, real and complex
differential calculus, sequential and distributed computation,
etc. On a different level, we observe different combinations of
such theories being used to model systems. For instance, pure
software systems are usually modelled by a combination of
sequential and parallel computations, whilst the physical parts
of cyber-physical systems are modelled in terms of systems of
differential equations and more traditional computations.

At an even higher level, we observe variations in domain-
specific languages (DSLs) used to represent both the theo-
ries and combinations of theories. For instance, programming
languages such as C and Java have different syntaxes, and
diagrammatic notations such as MATLAB Stateflow [1] and
UML State Machines have some different elements and vari-
ations in their semantics. These variations at all levels of

John Fitzgerald
Newcastle University, UK
john.fitzgerald@ncl.ac.uk

Peter Gorm Larsen
Aarhus University, Denmark
pgl@eng.au.dk

abstraction need to be managed in order to fully support the
formal development of SoSs.

Moreover SoS engineering in large projects is complicated
by the use of different tools for engineering the different
constituents. The different DSLs are supported by a collection
of tools that variously enable an engineer to describe, refine
and analyse a system model at different stages of development.
This makes it difficult to co-ordinate the tools to provide
evidence that an SoS deployment fulfils its requirements.
Although we might seek to enforce the use of a single tool
in a large SoS consortium, experience tells us that this is
not possible as different tools have unique contributions, and
individual members will be have experience in a particular
tool-set that cannot be abandoned without significant cost.

It is therefore necessary to face the challenge of semantic
heterogeneity. We present a vision for an integrated semantic
framework for SoS engineering that we believe will enable
semantically heterogeneous notations and tools to be unified
and co-ordinated. Our approach is to look at the individual
notations involved and perform a semantic decomposition,
which involves separating out the individual theoretical ideas in
an effort to see how a notation fits with other similar notations.
We achieve this using Hoare and He’s Unifying Theories of
Programming [2] semantic framework (UTP), which allows
different theoretical aspects of a modelling language to be
formally isolated, modelled and contrasted. By extension this
means that SoS features, such as time, concurrency and mo-
bility, can be considered as independent aspects that can then
be composed to give a mathematical meaning to a system.
Moreover, our semantic framework is mechanised meaning
that we can reason mechanically about a DSL to prove both
soundness properties and model correctness properties.

In the remainder we present our contributions. In Section II
we explain how an integrated tool-chain can used to solve the
problem of heterogeneity. In Section III we expand on this
by introducing theory engineering, by which the constituent
aspects of a DSL can be studied. In Section IV we exemplify
our vision by analysing OMG’s system modelling language
SysML in terms of its constituent theories. In Section V we
give some future directions for research, particularly in the area
of cyber-physical systems. Finally in Section VI we conclude.

II. ToOOL INTEGRATION

In this section we introduce the idea of tool-chain integra-
tion through application of the UTP semantic framework, and

Symphony tool suite b ‘
Model I . Refinement Theorem
Checker SInUE oy Calculator Prover
Dynamic Static
Semantics Semantics

| CML Meta-Model + Denotational Semantics |
| Concurrency |Communication| Discrete Time |

| Contracts
| Unifying Theories of Programming |

Fig. 1: The CML semantic stack

discuss the study of different DSLs through theory decompo-
sition. In essence we seek to factor out common aspects of a
DSL in an effort to relate it to other, similar DSLs.

Creation of an integrated tool-chain for SoSE requires that
we give a unified semantic account of the artifacts and results
from the various tools. This is the essence of integration:
that the tools can be co-ordinated to produce coherent and
dependable analysis results and evidence. Achieving this re-
quires that the underlying DSLs of the different tools can be
unified by providing them with unambiguous and compatible
mathematical meaning. Different analysis tools are based on
different notations, for example, a model simulator may work
at the level of a transition relation described using structural
operational semantics (SOS) rules, whilst a program verifier
may use an axiomatic Hoare calculus. Though distinguishable,
these formalisms are related in that they provide a particular
abstract view of the modelling world. If we are to co-ordinate
the tools, we also need to formally link the different semantic
models to likewise ensure their compatibility.

The approach taken by UTP is to define denotational
models for the different languages, taking input from stan-
dard meta-models. A denotational model allows us to give
a language a semantics by assigning to each language con-
struct a mathematical object. For example, the operators of
an imperative programming language can be described using
relational calculus. This then allows the application of the laws
and proof procedures of the relational calculus to program
verification. Denotational semantics for modelling languages
are often much more complicated, combining a wide variety of
theoretical notions. Once a suitably expressive model has been
fixed, it can be used as a means to prove correspondence be-
tween the semantic models so that the associated tool evidence
can be properly composed. This idea is illustrated in Figure 1
for a tool-chain consisting of a model checker and simulator,
which are both based on operational semantics (dynamic),
and a refinement calculator and program verifier, which are
both based on axiomatic semantics (static). Though these four
components are independent, their basis in a unified semantics
means they can be co-ordinated during system development.

Within the context of the COMPASS project [3] this
approach has been successfully applied to the development
of the Symphony tool platform [4]'. The Symphony tool
provides syntax and type checking, interpretation/debugging,
proof obligation generation, theorem proving, model check-
ing, test automation and a connection to the Artisan Studio
SysML tool where static fault analysis additionally is supplied.
Symphony is based on an SoS modelling language called

I'See http:/symphonytool.org/ for more information.

CML (The COMPASS Modelling Language), which combines
a number of aspects required in SoS modelling such as discrete
time, concurrency, processes, state and contracts [5]. A CML
model consists of the following principle elements:

e fypes: such as numeric types, lists, sets, records, union
types, and possible invariants;

e functions: map input types to output types, with possible
pre- and post-conditions;

e channels: over which constituent systems can communi-
cate messages;

e processes: model constituents, and in turn consist of:

o state variables: private mutable state;

o operations: acting on the state variables;

o actions: specify reactive behaviour (operations calls,
message passing, timeout...).

The semantics of CML is being formally constructed in its
denotational, operational and axiomatic flavours [3], and these
various bases have been used to implement independently
the simulator, model checker and theorem prover. Moreover,
we have mechanised semantic models for CML in the Is-
abelle/HOL [6] interactive theorem prover. Isabelle/HOL is
a proof assistant for Higher-Order Logic, a kind of func-
tional programming language in which one can also state
and (dis)prove logical properties. Isabelle brings together a
wide variety of automated proof tools [7], such as first-order
automated theorem proving in the sledgehammer tool, and
counter-example generation in the nitpick tool. It therefore pro-
vides an excellent basis for proving theorems about individual
models, for example discharging consistency proof obligations
for CML. Perhaps more importantly though it also allows us to
formalise soundness proofs about the underlying meta-models
themselves, which is the subject of the next Section.

III. THEORY ENGINEERING

Core to UTP is the idea of a theory: an isolated interesting
problem domain that deserves independent study. A UTP
theory consists of an alphabet describing observations that
can be made, a signature consisting of constructors for theory
objects, and healthiness conditions that define the conditions of
theory membership. For example, consider a theory of reactive
processes where behaviour is represented by event traces. The
trace observations can be recorded by a variable ¢r : Event*
whose values are lists of events. If we consider the trace
before and after an action has executed, we need two such
variables: ¢r and tr’. Then an obvious healthiness condition
is that traces can only get longer, which can be formulated as
tr < tr’. Additional healthiness conditions can then be used to
formulate other aspects of concurrency, like time, as required
by a denotational model. The signature of this theory consists
of the usual operators for building concurrent processes, such
as parallel composition and message passing. From a UTP
theory we can derive laws of programming and concurrency
which then act as the basis for various semantic models.

A variety of theoretical aspects have been formalised in
UTP, including concurrency, discrete time, object-orientation,
pointers and contracts. This is the theory layer of the semantic
stack in Figure 1 which gives us the basis for performing
semantic decomposition. When considering a particular lan-
guage, we can link it to other languages by looking for

Identify language 3

aspects theories

Engineer UTP 3 Produce denotational 3 Derive static and 3 Build
meta-model dynamic semantics

tool-chain

Fig. 2: Systematic approach to engineering semantic meta-models

common factors. In Figure 3 we consider the theoretical
aspects present in nine languages, in terms of seven theories.
Though incomplete, it nevertheless shows that there is both
commonality and differences between them. If these are con-
sidered in terms of UTP theories, we are given a well-founded
way to account for semantic heterogeneity.

Distinct UTP theories can also be formally linked, for
example through Galois connections [2]. A Galois connection
consists of a pair of functions which together formalise the
best approximations of an object of one theory in another. This
allows parts of a model in one language to be approximated
and reproduced in another language, thus providing points of
linkage. In CML, for example, a Galois connection is used to
link processes that model time to those that do not (untimed
processes), enabling composition of processes that are hetero-
geneous with respect to time. Therefore conquering semantic
heterogeneity reduces to theory engineering: construction and
analysis of constituent theories, formation of links between
them, and their application to solve practical problems, such
as SoSE. The overall approach is illustrated in Figure 2.

To mechanically support theory engineering we have cre-
ated our own semantic embedding of UTP in Isabelle called
Isabelle/UTP [8]. We have used this to mechanise a number
of key theories underlying CML processes, such as imperative
programs with total correctness, and concurrency in reactive
processes. We have then combined these theories to form a
mechanised denotational model for CML, which is in turn
used as the basis for the theorem prover component of
Symphony. This mechanisation increases confidence in the
semantic model’s soundness, in a similar way to how a pocket
calculator can be used to verify a complicated calculation.
Since we have a formal link between the different tools
and underlying semantics we have an unbroken chain from
engineering methodology to the underlying mathematics.

Moreover, from an practical standpoint, Isabelle provides
a number of helpful features to aid in theory engineering.
Isabelle is backed up by a large theory library, both bundled
and in the associated Archive of Formal Proofs®, to which the-
oreticians regularly contribute their mechanisation work. This
gives the basis for importing existing theory mechanised by
others into more expressive denotational models. For example,

Zhttp://afp.sourceforge.net/

Modelica Stateflow Simulink

Continuous Discrete
" N Contracts
Time Time

1 1
1 1
1 1
1 1
1 Theories
! / Aspects !
1 1
1 1
1 1
[} 1

SysML

Concurrency Object-Orientation

ordinary differential equations have been mechanised [9], and
this can provide the basis for building a theory of continuous
time for reasoning about hybrid and cyber-physical systems.
This along with its powerful reasoning facilities and our
implementation of UTP makes it an ideal environment in which
to study semantic heterogeneity.

IV. THEORETICAL DECOMPOSITION OF SYSML

SysML is a graphical notation aimed at modelling sys-
tems and as such has been adopted as a base notation for
the COMPASS project along with CML. SysML provides a
number of diagrams that help construct a model in a manner
akin to the weaving process found in the aspect-oriented
programming paradigm. Four of these are structural diagrams:
block definition, internal block, package and parametric dia-
grams [10]. Block diagrams support the definition of the blocks
that form the model as well as their components and relations,
internal block diagrams support the description of the internal
structure of composite blocks, package diagrams represent the
interdependencies between sets of elements of the model, and
parametric diagrams allow the statement of constraints over
the properties of the model.

SysML also provides four behavioural diagrams: use case,
sequence, activity and state machine diagrams. These support
the description of the behaviours of the system, often at
different levels of abstraction. For instance, use-case diagrams
are often used to model high-level interactions with the system,
whilst state-machine diagrams model at a lower level of ab-
straction how the individual components of the system behave.

State-machine diagrams describe the system in terms of
its configurations (states), and activity diagrams provide the
means of describing workflows and an alternative perspective
in the specification of the behaviours of systems. Sequence
diagrams support the specification of scenarios, which describe
particular ways in which the elements of the system can
interact by means of message exchanges. Finally, requirement
diagrams provide support for structuring requirements in terms
of decomposition and derivation as well as traceability.

Whilst CML has a formal foundation based on the already
mentioned UTP, SysML lacks a formal account beyond syntac-
tic and basic consistency properties. This limitation has been
tackled by an integration of SysML in the formal setting of

Symphony Z/Eves FDR3

Scala CML VDM Z CsP

Functional Imperative

Fig. 3: Vision for links between tools, languages and theories

std [State Maching] Buffer [Buffer]
° add[size{b]=MAX-1]/b=bA[x]

add/b:=bAlx]

addsize(b)<MAX-1]/b=bA[x]

rem[size(b)>0]/let x=hd b in
b=t b; return x

rem/let x=hd b in b=t b; return x
rem[size(b)=1]/let x=hd b in b:=tl b; return x

Fig. 4: State machine specifying the behaviour of a buffer.

COMPASS based on the informal semantics described in [11]
and [12]. We first identified the elements of the notation for
which formal support in the form of UTP theories already
existed. For instance, state machines describe a subset of
reactive processes that involve communication, parallelism
and data operations in very specific patterns. Flow ports and
parametric diagrams, on the other hand, potentially require the
availability of a continuous-time theory as they can specify
physical aspects of the system that are often modelled by
systems of differential equations. Table 5 summarises some
of the differences between CML and SysML that are further
discussed in this section.

In the particular case of COMPASS, it has been observed
that the subset of SysML that can be formalised within the
currently available theories is the subset that can be specified in
CML if we add extra abstractions. For instance, basic SysML
constructs (such as transitions) often specify behaviours that
are not available as primitives, but can be specified using CML.
For this reason, the semantics of SysML has been defined in
terms of CML, which then provides the link to the more basic
theories of discrete time, concurrent state, object orientation,
designs and refinement.

As an example, the semantics of the state-machine dia-
gram shown in Figure 4 is a CML process whose behaviour
is described by a number of parallel actions: one for the
state machine, and one for each state and transition. There
are eight parallel actions: stm_Buffer, s_empty, s_mid,
s_full, t_empty_mid, t_mid_empty, t_mid_full
and t_full _mid. The CML model of the state machine in
Figure 4 is then used to model the behaviour of the block
Buffer that contains that state machine, which in turn is
used to specify the model of the overall system.

A particularly interesting point is related to the communi-
cation patterns in SysML and CML. Whilst in CML commu-
nication is strictly synchronous, in SysML it is predominantly
asynchronous. As a consequence, the semantics of SysML
must provide an account for asynchronous communication in
terms of synchronous communications. This is achieved by the
introduction of two CML communications for each SysML
communication — one for sending a value and another for
receiving a value — as well as a buffer that allows values sent
through a communication channel to be queued.

Another aspect in which SysML and CML differ in spite
of similar terminologies is the use of operations. In CML, a
class operation only modifies data, while in SysML, a block
operation may also contain reactive behaviour (e.g., sending
an event). The consequence of this mismatch is that SysML
operations are modelled as CML actions of a process (that

CML

SysML

Formal

Synchronous communication
Single notation

Textual

Complete static semantics
Complete dynamic semantics
No support for views
Academic

Semi-Formal

Asynchronous communication
Multiple notation
Diagrammatic

Partial static semantics

No dynamic semantics
Support for views

Industrial

Fig. 5: Differences between CML and SysML.

models a block). However, the actions of a process in CML are
encapsulated and therefore cannot be called by other processes.
This differs from the semantics of operations in SysML, and
for this reason the actions that model the SysML operations
must be made accessible by the only means a CML process
has for interaction with other process: communication.

Now, if we consider a scenario where the design of a SoS
involves multiple notations, provided these notations have a
common foundation and are compatible, we should be able to
analyse the collective behaviour of the SoS. This is, however,
rarely the case. An an example, we consider a model where the
most abstract specification of the SoS is described in CML, and
its design is specified in such a way that some of the constituent
systems are modelled in SysML and others are modelled in
MATLAB’s Simulink/Stateflow>. Since [13] and [14] provide
an account for a subset of discrete time Simulink/Stateflow in
Circus [15], which is a state-rich process algebra that shares
a similar semantic foundation as CML, it would be desirable
to have these models integrated and analysed. For this to be
possible, the different models need to be made compatible,
that is, an operation call in SysML must be translated into
an interaction that a Stateflow diagram or a CML process
can understand. If such compatibility can be achieved, the
models can be integrated (provided they are all based on
discrete time) and their interactions analysed. In particular, it
should be possible to compare the abstract specification of the
SoS in CML and the actual design modelled in the different
formalisms by means of a theory of refinement.

V. FUTURE DIRECTIONS

In this Section we sketch out some future directions for
research to address semantic heterogeneity in SoS Engineering,
including: mixed discrete and continuous behaviour, time-
bands, mobility and model integration.

Continuous Time. One of the most challenging areas for
semantic heterogeneity in SoSE is the link between continuous
time models of environmental and controlled phenomena, and
the discrete time models of digital systems that interact with
them. There are many possible SoSs in which one would wish
to verify the presence or absence of an emergent behaviour
that requires both cyber and physical models. For example, the
integrator of a smart grid SoS may need to verify that feature
interaction between existing independent power distribution
systems will not lead to overloading of physical storage media
such as batteries, or “brown outs” in the network. This requires

3Simulink/Stateflow is graphical notation that supports the specification
of cyber-physical systems in terms of both discrete and continuous time
constructs.

temperature airflow

airflow

[1 Fan Controller

>

ambient temperature
Temperature Model []
{1

temperature

Constraint

ton - € <temp <t,,,

+ &

Fig. 6: A hybrid model of a warehouse cooling system

modelling of both the (discrete) computing systems providing
control, as well as the physics of electrical storage and distri-
bution. The integrated computing elements of cyber-physical
systems are likely to be complex, given the need to handle
faults originating in the independent constituent systems.

In order to illustrate the research questions posed by
the need to handle discrete and continuous models, and the
extent to which our theory decomposition and UTP-based
approach can help, we consider an admittedly very simple
control example inspired by a Simulink model [1]. In the
scenario that we consider, the owner of a warehouse storing
a temperature-sensitive product wishes to install a cooling
system that ensures the warehouse never exceeds a particular
temperature, but is also cost effective. We model this by the
hybrid system shown in Figure 6. The physical temperature
of the warehouse is modelled by a continuous time model,
with two parameters: the ambient temperature and airflow from
the fan. The fan controller is a discrete component, which is
connected to a temperature model via the port temperature.
The controller starts in an off state, but when the ambient
temperature reported exceeds tmqy, the fan is activated to
ensure the temperature does not exceed ¢;qx + €. This in turn
contributes to an increase in airflow that lowers the temperature
according to the continuous-time model. Once the temperature
reaches t,,,;,, the fan is turned off. From the design perspective
we would like to understand two main variables of this system:
(1) the minimal € we can have and (2) the lowest sampling rate
needed to respond sufficiently quickly. Both of these questions
are important to the modelling and implementation of a correct
discrete controller.

Co-modelling. Modelling such systems requires that we con-
sider both the discrete and continuous models. This task falls in
the domain of co-modelling, where both aspects are considered
in the engineering of the model [16]. Co-modelling includes
techniques such as co-simulation, where a discrete and a
continuous model are simulated in parallel, and hardware in
the loop simulation (HiL), where the continuous model is
swapped for a real hardware component. These techniques
though informative, only provide one part of the engineering
toolbox. As in formal methods we would like access to other
tools, such as model checking and theorem proving, which
together can provide greater assurance of correctness.

By formally constructing these models and applying such
tools we may be able to verify that for a particular ¢ and
sampling rate, the temperature bounds are respected. Whilst
there are specialised tools that target hybrid systems, the
majority of existing research into analysis tools focuses on the
discrete domain. If we are to apply methods from the discrete
domain to hybrid systems, we need to understand the theories

behind both domains and formalise how they are linked. One
step towards this is the development of continuous-time models
within the context of the UTP, and linking them to existing
models of discrete-time such as Circus Time [17] and CML.

There are a number of interesting research directions in
this area. In particular the timebands frameworks [18] could
be applied to specify and analyse hybrid systems through
considering time at different levels of granularity. A timeband
is an abstraction of the real-time continuum to a particular time
unit, which defines the minimal interval at which events can be
distinguished. Within a particular timeband events are instan-
taneous, whilst in a finer band an event can be associated to
an activity which may have duration. For example, the minute
timeband can be used to distinguish the occurrence of events
separated by minutes, whilst the second timeband can further
distinguish events occurring in the same minute. Furthermore,
an event in the minute timeband can be associated with an
activity in the second timeband, which is itself decomposed
into individual events. This can be applied to compare different
levels of abstraction of the time domain, and can therefore be
used to link discretisations of a continuous model.

For instance we could start from a continuous time model
that corresponds to the constraint in Figure 6. Next we
would specify and verify a set of timebands that model a
controller guaranteeing the constraint using a high sampling
rate. In subsequent steps we can refine these timebands to use
lower and lower sampling rates without violating the required
temperature bounds. This would ensure that the final discrete
controller implementation guarantees the initial property.

Formalisation in the UTP can be given by two theories for
discrete and continuous time. One possibility for a discrete
time UTP theory, based on timebands, is to model the time
continuum as a function cont : N — Event and a variable
quant : R to represent the time unit. A particular value of
quant then corresponds to a particular timeband. A theory
of continuous time in contrast can have rcont : R — Event
and behaviours can be modelled via a system of ordinary
differential equations. We can then formalise Galois connec-
tions between different granularities of time in a discrete time
theory within the continuous domain. This in turn allows
us to transfer results proved in the continuous domain to
a discretisation. Moreover, the two theories could provide
models for related calculi, such as the duration calculus, which
allow the formulation of temporal properties over a continuum.

Mobility. Aside from hybrid and cyber-physical models, a
number of other aspects are important to SoSE. When con-
sidering evolution and reconfiguration of an SoS, we need to
consider the modelling of mobility. Mobility, broadly speaking,

allows the representation of systems whose topology and archi-
tecture can change dynamically at runtime. For instance, in an
emergency response system the communication system needs
to reconfigure to take advantage of the best medium available.
This may involve switching from radio, to cellular network,
to satellite communication, depending on the circumstances.
There are two main approaches to mobility, process mobility
where individual processes can change location (e.g. Ambient
Calculus [19]), and channel mobility where the processes are
fixed, but the communicating topology can change (e.g. 7-
calculus [20]). Both models can be incorporated into the UTP
possibly involving suitable higher-order models [21]. When
used in conjunction with timebands, we may also be able to
specify situations in which the loss of service due to hardware
swapping has no significant impact on the availability of
services. This kind of combination again can be supported by
UTP theory composition.

Integration. We can then go one step further and consider the
question of integration of existing models. If we already have
access to a pre-existing temperature model in a diagrammatic
notation such as Modelica [22] and wish to specify the
controller in Stateflow, instead of translating the Modelica
model into a compatible Simulink model we may wish to
integrate them directly. Two possible solutions to this problem
exist. Firstly, we can formalise the primitive notions in the
languages as UTP theories, and construct semantic models
for Modelica and Stateflow linked by their common factors.
Secondly, we can specify the semantics independently and then
provide formal adaptors that mediate the interaction between
the two models. These adaptors can be modelled in the UTP
by Galois connections. In this case we would like to access the
airflow port interface in the Modelica temperature model, and
the temperature port in the Stateflow controller model, both of
which must be approximated in the adjacent model.

VI. CONCLUSION

The need to deal with diversity is one of the distinguishing
characteristics of SoS Engineering [23]. In our work, we focus
on the need to address the semantic diversity of models that
make up a SoS description. Our systematic approach exploits
the UTP to provide “building block” theories that can be
composed via Galois connections to provide reasoning systems
able to compose results from previously separate models.

This is still at the level of a vision. However, first steps
have been realised in CML and the benefits are to be seen
in the integrated tool-chain that is now emerging from this
work. We have demonstrated how the approach plays out in
the integration of SysML with CML. The practical costs of
providing a semantic integration are yet to be evaluated, but it
is important to emphasise that they are “one-off”” costs in the
sense that, once a UTP-based integration has been achieved,
it serves for any use of the constituent model types.

Our experience in applying theory engineering in COM-
PASS suggests that there is potential in this approach for
providing a sound basis for reasoning about global emergent
SoS behaviours from heterogeneous component models, and
so we have identified promising next steps in research. The
approach works at the foundations of constituent theories, but
has a direct bearing on the feasibility of sound automated tool

support that is able more fully to realise the value of model-
based SoS Engineering.

ACKNOWLEDGMENT

This work is supported by EU FP7 Integrated Project
“Comprehensive Modelling for Advanced Systems of Sys-
tems” (COMPASS, Grant Agreement 287829). For more in-
formation see http://www.compass-research.eu.

REFERENCES

[1] Stateflow and Stateflow Coder 7 User’s Guide, The MathWorks,Inc.,
www.mathworks.com/products.

[2] T. Hoare and J. He, Unifying Theories of Programming. Prentice Hall,
1998.

[3] J. Fitzgerald, P. Larsen, and J. Woodcock, “Foundations for Model-
based Engineering of Systems of Systems,” in Complex Systems Design
and Management, M. A. et al., Ed. Springer, January 2014, pp. 1-19.

[4] J. W. Coleman, A. K. Malmos, P. G. Larsen, J. Peleska, R. Hains,
Z. Andrews, R. Payne, S. Foster, A. Miyazawa, C. Bertolini, and A. Di-
dier, “COMPASS Tool Vision for a System of Systems Collaborative
Development Environment,” in JEEE SoSE, July 2012, pp. 451-456.

[5] J. Woodcock, A. Cavalcanti, J. Fitzgerald, P. Larsen, A. Miyazawa, and
S. Perry, “Features of CML: a Formal Modelling Language for Systems
of Systems,” in /IEEE SoSE, 2012.

[6] T. Nipkow, M. Wenzel, and L. Paulson, Isabelle/HOL: A Proof Assistant
for Higher-Order Logic, ser. LNCS. Springer, 2002, vol. 2283.

[7]1 J. C. Blanchette, L. Bulwahn, and T. Nipkow, “Automatic proof and
disproof in Isabelle/HOL,” in FroCoS, ser. LNCS, vol. 6989. Springer,
2011, pp. 12-27.

[8] S. Foster, F. Zeyda, and J. Woodcock, “Isabelle/UTP: A mechanised
theory engineering framework,” in 5th Intl. Symposium on Unifying
Theories of Programming, 2014.

[9] E Immler and J. Holzl, “Numerical analysis of ordinary differential
equations in Isabelle/HOL,” in ITP, ser. LNCS, vol. 7406. Springer,
2012, pp. 377-392.

[10] S. Friedenthal, A. Moore, and R. Steiner, A Practical Guide to SysML.
Morgan Kaufman OMG Press, 2008.

[11] “OMG Unified Modeling Language (OMG UML), superstructure, ver-
sion 2.4.1,” OMG, Tech. Rep., 2011.

[12] “OMG Systems Modeling Language (OMG SysMLTM)* SysML Mod-
elling team, Tech. Rep. Version 1.2, June 2010.

[13] A. Cavalcanti, P. Clayton, and C. O’Halloran, “Control Law Diagrams
in Circus,” in FM, ser. LNCS, vol. 3582. Springer, 2005, pp. 253-268.

[14] A. Miyazawa and A. Cavalcanti, “Refinement-oriented models of state-
flow charts,” Sci. Comp. Prog., vol. 77, no. 10-11, pp. 1151-1177, 2012.

[15] A. Cavalcanti, A. Sampaio, and J. Woodcock, “A Refinement Strategy
for Circus,” Formal Aspects of Computing, vol. 15, no. 2-3, pp. 146—
181, 2003.

[16] J. Fitzgerald, P. Larsen, and M. Verhoef, Eds., Collaborative Design
for Embedded Systems — Co-modelling and Co-simulation. Springer,
2014.

[17] A. Sherif, A. Cavalcanti, J. He, and A. Sampaio, “A process algebraic
framework for specification and validation of real-time systems,” Formal
Aspects of Computing, vol. 22, no. 2, pp. 153-191, 2010.

[18] A. Burns and I. J. Hayes, “A Timeband Framework for Modelling Real-
Time Systems,” Real-Time Systems, vol. 45, no. 1-2, pp. 106-142, 2010.

[19] L. Cardelli and A. Gordon, “Mobile ambients,” Theoretical Computer
Science, vol. 240, no. 1, pp. 177-213, 2000.

[20] R. Milner, Communicating and Mobile Systems: The 7-Calculus. Cam-
bridge University Press, 1999.

[21] F Zeyda and A. Cavalcanti, “Higher-order UTP for a theory of
methods,” in UTP, ser. LNCS, vol. 7681. Springer, 2012, pp. 204-223.

[22] P. Fritzson, Principles of object-oriented modeling and simulation with
Modelica 2.1. Wiley-Blackwell, 2010.

[23] J. Boardman and B. Sauser, “System of Systems — the meaning of “of”,”
in IEEE SoSE, 2006, pp. 118-123.

