
Taking our own medicine: applying the
refinement calculus to state-rich refinement

model checking

Leo Freitas, Ana Cavalcanti, and Jim Woodcock

Department of Computer Science
University of York, UK

{leo,alcc,jim}@cs.york.ac.uk

Abstract. In this paper, we advocate the use of formal specification and
verification in software development for high-integrity and safety-critical
systems, where mechanical proof plays a central role. In particular, we
emphasise the crucial importance of applying verification in the develop-
ment of formal verification tools themselves. We believe this approach is
very useful to increase the levels of confidence and integrity of tools that
are built to find bugs based on formally specified models. This follows
the trend set out by a grand challenge in computer research for verified
software.
In this direction, we present our experiences on a case study on the de-
velopment process of a refinement model checking tool for Circus, a con-
current refinement language that combines Z, CSP, guarded commands,
and the refinement calculus, with the Unifying Theories of Programming
of Hoare and He as the theoretical background.
Keywords: model checking, theorem proving, formal verification.

1 Introduction

Increased complexity in hardware and software systems has created a demand
for precision and reliability, particularly in the high-integrity and safety-critical
domains [2]. One effective way of achieving this goal is through the use of formal
specification and verification. When it comes to the development of formal tools,
which ultimately will perform such verification, we see the use of formalism as
essential. The same principles apply for critical systems.

A well-known programming technique is stepwise development through re-
finement, where correctness is guaranteed by construction. That is, starting from
an abstract specification, the system is formally developed by the application of
refinement laws that transform its representation to an artifact closer to a com-
puter implementation (or program), where the properties of the specification are
preserved, provided that generated proof obligations are discharged.

Specifications, intermediate designs, and concrete implementations are usu-
ally represented as mathematical models, where we are mostly interested in their
data and behavioural aspects. The refinement laws enabling correct transforma-
tions are part of a refinement calculus of sequential programs [1, 15].

2 Leo Freitas, Ana Cavalcanti, Jim Woodcock

The problem with applying a refinement calculus is that it is a laborious task,
and rigorous proof is needed. When the complexity and number of operations
involved is high, the proofs become error prone, painstakingly long, and some
sort of tool support would be very helpful, if not an imperative factor.

In this paper, we present our experience in using a refinement calculus in the
development process of a model checking tool, where we have used the Z/Eves
theorem prover [21] to mechanise the proof obligations. With the mechanised
application of the refinement calculus, we strengthened the claims for correctness
of the model checker.

The most important results obtained by this work are: (i) mechanical dis-
charge of proof obligations; (ii) hints or counterexamples for failed proofs, hence
invaluable suggestions for possible amendments in pre or postconditions, or loop
invariants; (iii) hints about efficient use of Z/Eves that enables great reuse
between different proof obligations, hence gained performance and productiv-
ity; and (iv) an informal strategy to translate Z and specification statements into
JML [4], a modelling language that enables formal verification of Java code. This
was developed while applying an extended version of the Z Refinement Calculus
(ZRC) [5], the Circus refinement calculus [17], to an algorithm for refinement
model checking of Circus [11, Chapter 4], which integrates model checking and
theorem proving, in systems where data and behavioural aspects are combined.

The result of applying formal methods in the development of a model checker,
was rewarding: since the encoding of the calculated algorithm, the code has not
changed. Furthermore, as it is possible to (informally) translate these findings
with some level of confidence to JML, we believe we have narrowed the gap
between the concrete model of guarded commands and a Java implementation.

This sort of bootstrapping, where we have used Circus to specify and refine its
own model checker, allows us to find early design flaws, as well as to ensure the
algorithm is correct by construction. Thus, important properties, such as loop
invariants, are precisely documented. That is, we took our own medicine to for-
mally specify key aspects of the architecture, in order to enhance the consistency
of the whole tool throughout the development process.

Whilst the model checker is still a prototype, various examples have been
analysed and no bugs in the refinement algorithm have been found. We believe
that for a formal verification tool, such an approach is essential for the assurance
and credibility of any flaws they might find. This decision follows the trend set
by a grand challenge in computer science research in verified software [2].

In the literature, there are few examples of such an approach, to the extent of
our knowledge. The Mural theorem prover is one tool we know stepwise refine-
ment was used throughout its development process [12] was used. Nevertheless,
other tools, such as Perfect Developer [7], have applied verification of its own
code after being developed.

In the next section, we present Circus and its refinement calculus by illus-
trating the application of some laws on simple examples. After that, Section 3
presents how we use Z/Eves to encode the proof obligations from the refinement

Automating the ZRC 3

calculus. In Section 4, we present our case study. Finally, Section 5 presents
conclusions and future work.

2 Circus

Circus is a concurrent language built for refinement, which allows the combina-
tion of different language paradigms [23]. It combines Z [22], CSP [9, 20], and
specification statements found in refinement calculi. Other executable commands
are also available, such as assignments, conditionals, and loops. This enables one
to use Circus for both abstract specifications, intermediate designs, and actual
code. Because its semantic model is based on the UTP [10], it is amenable for
extension, and considerable work has already been done in this direction. The
result is a unified programming language that can be used for developing con-
current programs through refinement.

Circus provides a refinement calculus that extends ZRC, hence we can for-
mally specify and derive code not only for abstract data types, but also for
concurrent programs. There is considerable effort in building a set of tools sup-
porting the language. At the time of writing, there is a parser, a typechecker, a
prototype refinement model checker, and the basis of a theorem prover.

One of the greatest challenges in combining different programming paradigms
and notions of refinement is the provision of a suitable semantic model. The UTP
model of Circus embeds all the features of Z and CSP. In this framework, we can
guarantee that we can safely use both ZRC and CSP refinement laws, as well as
new Circus laws.

In terms of data or behaviour dealt separately, one can apply either Z or CSP
refinement laws. In situations where both paradigms cannot (or should not) be
separated, new Circus refinement laws can be applied, and they are given in [17,
App C]. This includes ZRC laws, CSP laws, and new Circus laws. For instance,
using the Circus law (C.141) of interchange between alternation and guarded
external choice, we could transform an alternation into an external choice.

For the implementation of a model checker for Circus, we face many chal-
lenges: (i) how to represent Z schemas without loosing their characteristic ab-
straction; (ii) how to represent predicate calculus finitely in order to allow
model checking; (iii) how to model check behavioural and data aspects of sys-
tems; (iv) how to maximise the levels of automation, while combining model
checking with theorem proving, whenever theorem proving is required; etc.

3 Refinement calculus automation strategy in Z/Eves

Firstly, from a Circus specification we apply the refinement strategy proposed
in [6]. As Circus specifications involve specification statements, guarded com-
mands, and Z and CSP operators, we need to find a way to represent these
structures in a theorem prover in order to enable mechanisation. Luckily, proof
obligations can be described as specification statements mentioning a frame of
variables that can be updated, as well as pre and postconditions with predicate

4 Leo Freitas, Ana Cavalcanti, Jim Woodcock

calculus, hence we can use theorem provers for discharging proof obligations
that would otherwise require to be done by hand. That is, we have used Z/Eves
not to apply refinement laws, but to discharge the proof obligations these laws
generate. A further step, would be the construction of a refinement calculation
tool for Circus, such as Refine [16] for ZRC, where the application of laws and
the transformations they represent could also be done by formal tools.

From the Circus specification of the model checker, we decided to apply the
refinement calculus to the refinement model checking algorithm in order to get to
code. This choice was made because we believe this to be the crucial part of the
whole architecture. By using the refinement calculus to reach the code from the
abstract specification, we ensure that the algorithm is correct by construction,
and important properties such as loop invariants are precisely documented. Fur-
thermore, other parts of the architecture have also been formalised in Z/Eves,
but no refinement calculation was performed.

Firstly, from the Z aspect of the Circus specification, we needed to prove
simulation between the abstract and concrete models, which include the state
and related operations. This was achieved through simulation laws and corre-
sponding applicability and correctness proof obligations. After that, with the
concrete model at hand, we started applying ZRC laws to transform the Z part
of the specification into guarded commands. Moreover, proof obligations com-
ing from the application of CSP and Circus laws can be discharged similarly. In
this process, various properties of interest were discovered and altered, such as
state and loop invariants. As postconditions of concrete specifications tend to
be quite complex, with predicates often involving schema inclusions, predicate
simplifications were also often important. Thus, whenever stepwise refinement
or formal verification was applied and proof obligations were generated, we see
mechanisation via theorem proving as an essential requirement for correctness.

For different problems, one can follow a similar strategy. With an abstract
specification either in Circus, if concurrent aspects are relevant, or pure Z, if only
data is under concern, the same ideas for of applying the refinement calculus
hold. In this way, the strategy can be reused to refine specifications down to
code, and into JML annotation.

Mechanisation with Z/Eves means encoding the proof obligations using the
Z schema calculus. For that, we apply the ZRC law of basic conversion (bC)
backwards from specification statements to schemas, and then syntactically re-
arrange the corresponding schema so that it is amenable for mechanical proof in
Z/Eves. Obviously, during the first iterations of stepwise refinement, where one
starts from schemas and usually goes to specification statements, this is not very
helpful. Nonetheless, later on when specification statements are to be refined to
the most common guarded commands, such as alternations and assignments, this
strategy pays off as it allows proof obligations to be mechanically discharged,
like the ones in our case study in the next section.

For instance, assuming square root is well-defined in Z/Eves with signature
as sqrt ∈ N→ N, where domain checks were discharged. Let us illustrate how we
encode the proof obligation generated by the application of strengthening the

Automating the ZRC 5

postcondition (in the example from [15, p. 5])

y : [0 ≤ x ≤ 9, sqrt y = x]
sPv y : [0 ≤ x ≤ 9, sqrt y = x ∧ y ≥ 0]

provided that ∀ x , y , y ′ : Z • (0 ≤ x ≤ 9) ∧
(sqrt y ′ = x ∧ y ′ ≥ 0) • (sqrt y ′ = x)

which is true based on properties of sqrt defined in Z/Eves as one expected
sqrt to behave, bearing in mind specification/mechanisations issues. Firstly, we
encode the state variables carefully according in the Frame schema. Next, we
encode the pre and post conditions as schemas Pre, Post , and NewPost coming
directly from the specification statement predicates (via bC backwards).

Frame =̂ [x , y , y ′ : Z]
Pre =̂ [Frame | 0 ≤ x ≤ 9]
Post =̂ [Frame | sqrt y ′ = x]
NewPost =̂ Post ∧ [Frame | y ′ ≥ 0]

As the precondition does not mention the after state, we include a read-only
(Ξ) version of Frame in Pre. Finally, we can discharge the proof obligation by
proving the conjecture posP1 as a theorem

theorem posP1
∀Frame | Pre ∧ Post ⇒ NeqPost

The complete set of translation strategies for the various ZRC laws used through-
out the formal derivation of the refinement algorithm code can be found in Sec-
tion 6 of [11, App. A]. In this reference, we also include extensive information on
how to drive Z/Eves, so that one can achieve efficient and acceptable (or higher)
levels of automation.

The use of the schema calculus to represent the ZRC proof obligations makes
the proofs concise, elegant, and easier to follow. For example, in our case study,
due to the sheer number and complexity of predicates involved, it soon became
impossible to handle the proofs reliably, as they would easily spread across two
or more A4 pages of mathematical formulae. In spite of some auxiliary lemmas
needed to improve automation in Z/Eves, the mechanised result was much more
tidy, organised, elegant, and reliable than the alternative by hand.

Some conventions for Z/Eves

For every declaration that might include undefinedness, such as type inconsis-
tencies or partial functions called outside their domain, Z/Eves introduces proof
obligations as Domain Checks. These are sufficient conditions for definedness
one needs to prove, even if the definitions involved are not being used.

For most declared functions that might become involved in future domain
checks or proof obligations, some housekeeping theorems should be included.
Although these housekeeping theorems are usually obvious, quite repetitive, and

6 Leo Freitas, Ana Cavalcanti, Jim Woodcock

straightforward to prove, they do increase the levels of automation to a great
extent. For instance, we can axiomatically define a total function f that nonde-
terministically creates sequences of size n as

f : N→ seq N

∀n : N • #(f n) = n

In this case, Z/Eves introduces a trivial domain check as the proof obligation

f ∈ seqN ∧ n ∈ N ∧ s ∈ seqN⇒ n ∈ dom f ∧ f n ∈ dom #

Discharging this proof obligation is important in order to ensure we have not
given a definition that might introduce inconsistencies in the model whenever f
is used. If f is not used, one ends up proving more than what is necessary.

We also introduce additional facts about the function’s domain, and result
maximal types, to increase automation of other definitions that depend on f .
In Z/Eves syntax, these facts are introduced as named conjectures to be proved
as theorems, where the names are preceded by modifiers used for controlling
automation granularity.

theorem grule gFMaxType
f ∈ P (Z × P (Z × Z))

theorem grule gFRelMaxType
f ∈ Z↔ P (Z × Z))

theorem rule rFResultMaxType
∀n : N • f n ∈ P (Z × Z)

theorem rule rFIsTotal
∀n : N • n ∈ dom f

In Z/Eves, assumptions (grule) rules are used by every tactic that rewrites the
goal, hence it enables coarse-grained automation for commonly needed type con-
sistency checks that often appear in later proofs where f is used. On the other
hand, rewriting (rule) rules are used by only a few specialised tactics, hence they
enable fine-grained automation for more specialised scenarios.

As we use the schema calculus throughout our case study, and in the proof
obligations from the refinement calculus, it is sometimes necessary to inform
Z/Eves about obvious facts regarding the (maximal) types of the schema com-
ponents, depending on which components are used later on. For instance, in a
schema such as

S =̂ [n : N; s : seqN | ∀ i : dom s • s i < n]

Z/Eves includes a domain check about the application of s to i that is easily
discharged, since i ∈ dom s. Depending on how S might appear, perhaps with

Automating the ZRC 7

s being created using f , one needs to include additional information about the
type of s with theorems, such as

theorem frule fSsMaxType
∀S • s ∈ P (Z × Z)

This kind of theorem, among other reasons, is useful to avoid the need to always
expand the schema definitions in order to discharge goals where s is involved.
This “use without expansion” is the most useful tool for higher degrees of au-
tomation and modularity of proofs when complex schema inclusions occur. That
is, because we can surgically guide specific aspects of the goal without the need
to expand (possibly a great amount of) unrelated assumptions from included
schemas. This kind of usage is defined as a forward rule (frule).

More details about Z/Eves are beyond the scope of this paper, and are omit-
ted here for space constraints. An extensive tutorial including detailed informa-
tion on how to precisely drive Z/Eves, with higher levels of automation for a
variety of scenarios, can be found in Section 1.1.1 of [11, App. A].

4 Case study: witness search model checking algorithm

In this section we briefly present the Circus model checker architecture, detail-
ing its refinement checking module. From this module, we include parts of the
abstract model, parts of the sequential algorithm derivation via forward simula-
tion, and the complete refined code of a sequential algorithm from the concrete
model. Moreover, we discuss our findings and present some benchmarks of the
whole project of the model checker tool.

Model checker architecture overview

The architecture of the Circus model checker is inspired by FDR, the refinement
model checker for CSP [8, 18], and it has four components: (i) a parser, (ii) a
typechecker, (iii) a compiler, and (iv) a refinement checker, as shown in Figure 1.
From a Circus specification in LATEX, the parser creates an Abstract Syntax Tree
(AST) that the typechecker annotates with type information (AST+). The com-
piler then transforms the annotated using the operational semantics of Circus into
a labelled transition system with predicates embedded on the arcs (PTS). These
automata are analysed by the witness search algorithm we present here in order
to find possible flaws.

From this architecture, an automaton theory (for PTS), the operational se-
mantics of Circus, and the refinement checker module have been formally defined
as Circus specifications, and mechanical proof of properties and proof obligations
have been carried out using Z/Eves.

The refinement checker module takes two compiled automata representing
the Circus specification and implementation sides of the refinement order, to-
gether with a criterion (or level of detail) to perform the search. The refinement

8 Leo Freitas, Ana Cavalcanti, Jim Woodcock

Fig. 1. Circus model checker architecture

Fig. 2. Circus refinement checker

checker is defined in Circus by the parallel composition of various processes, as
shown in Figure 2. For our case study, we detail the witness search process only.
A full account of each of these processes, as well as the other components of the
whole architecture is given in [11].

Witness search

Witness search establishes whether a specification S is refined by a design or
implementation I , denoted by S v I . If it does, a successful report is generated.
If it does not, we provide sufficient debugging information that can be used to
produce a suitable human-readable account of the failures as a set of witnesses.
It works over PTS automata representing the state-rich aspects of Circus.

Witnesses are characterised as a nonempty joint path of node pairs coming
from both automata, since a witness is the result of a search that found at least
one incompatible node pair.

JointPath == {SNP : iseq NodePair ; SCL : seq N | #SCL = #SNP }
Witness == JointPath \ { (〈〉, 〈〉) }

A joint path is formed by a pair of sequences, where the first element is an
injective sequence of node pairs, and the second element is a sequence of layers

Automating the ZRC 9

of the Breadth First Search performed. It enforces that both sequences must have
the same size, hence both node pairs, and their corresponding search levels, are
accessed at the same index. Injectivity of node pairs is important because it
ensures no pairs are searched twice. Nevertheless, different pairs can searched
at the same level. Search levels are important for memory efficient extraction of
debugging information from witnesses.

Next, we define the conditions for a valid witness: (i) the last element of the
node pair sequence of a witness (sN , iN) must be valid (NodePairInv), but no
information about their compatibility is known, since it is the current pair being
checked; (ii) on the other hand, every node pair in the front of a witness must be
valid (NodePairInv [dn/sN ,n/iN]) and compatible (¬GenVl [dn/sN ,n/iN]); (iii)
there must exist a trace (wtsTrace) from both automata of S (normalised nf)
and I (ip) corresponding to each node pair sequence that is part of a wit-
ness; and (iv) the search level of each node pair recorded strictly increases.

WitnessInv
m : Criterion; nf : NFPTS ; ip : IPTS ; w : Witness; NodePairInv

(sN , iN) = last (w .1)
∀ dn : DNode; n : Node | (dn,n) ∈ ran (front w .1) •

NodePairInv [dn/sN ,n/iN] ∧ ¬GenVl [dn/sN ,n/iN]
∃T : seq Σ • T = wtsTrace (nf , ip,w)
∀ i : 1 . . (#w .2− 1) • w .2 (i) ≤ w .2 (i + 1)

The existence of a trace in S (np) and I (ip) from the node pairs in the current
witness (w) establishes the nodes that are mutually reachable, while searching
for new successor pairs. That means, if one can create a valid non-empty se-
quence of node pairs from the two automata, then it must be possible to retrieve
the unique trace related to such witness. The trace of events is unique because
of the deterministic property of the normalised automaton of S . Finally, it en-
sures that lower level nodes must appear before higher level ones. As we do not
store the whole trace a witness represents, these levels allow memory efficient
representation of flaws. This consistency on the levels information is important
for the debugger to provide accurate information while rebuilding the transition
system from the failed pair up to the root of the search. Many of these properties
were found due to failed proofs while mechanising.

The abstract model. Witness search is responsible for finding whether all the
behaviours of I are allowable by at least one behaviour of S , such that they have
a trace in common. The behaviours of interest depend on the selected criterion
to establish refinement, which in turn has specific violation criterion. Due to
space restrictions, we present only the relevant parts.

The general violation criterion is defined next. Regardless of the criterion be-
ing traces, nondeterminism, or divergences, every node pair from S and I must
be valid (NodePairInv), and checked for traces violation (TrVl). For the traces
criterion (tr), this is enough. Other different criteria, such as nondeterminism

10 Leo Freitas, Ana Cavalcanti, Jim Woodcock

(sfl), can also be checked for stable-failures violation (SFlVl). Finally, the diver-
gence violations (DvVl) are checked only for the failures-divergences criterion
(fldv). The violation of each criterion is defined as a Z schema that establishes
the relationship between node pairs from the automata of S and I .

GenVl
m : Criterion; NodePairInv

TrVl ∨ (¬m = tr ∧ (SFlVl ∨ (m = fldv ∧ DvVl)))

In this way, we separate concerns at the specification level.
The abstract state includes the refinement search parameters (RSParams),

and the set of witnesses found (wts). The invariant of the abstract state (RSState)
guarantees that: (i) the number of witnesses searched (#wts) does not exceed
the amount requested (wr); (ii) the automata involved after the transformations
occurred during normalisation and divergence checking are valid with respect to
the operational semantics (enabled) (see arrows in Figure 2); and (iii) witnesses
that have been found, must satisfy the witness invariant (WitnessInv), and have
the last node pair violating some compatibility criteria (GenVl).

RSState
RSParams; wts : P Witness

wts ∈ F Witness ∧ #wts ≤ wr
∀ sN : DNode; iN : Node; a : P1 Σ | NodePairInv ∧ ¬GenVl ∧

a ∈ enabled (ip.ts, iN) • ¬⋃
(enabled (nf .ts, sN)) ∩ a = { }

∀w : Witness | w ∈ wts • ∃ sN : DNode; iN : Node •
WitnessInv ∧ GenVl

That is, for consistency, if a node pair ((sN , iN)) is valid (NodePairInv), compat-
ible (¬GenVl), and has visible events (a 6= ∅) immediately available (enabled)
in the implementation I (ip), then there must be some event in common with
the normalised specification S (nf). Otherwise, either the operational semantics,
or the model checking compatibility criteria, would have been wrongly specified.
These consistency elucidations are due to mechanical proof.

Next is the signature of refinement search operations. It establishes that the
search parameters that are part of the state do not change (Ξ), and that the
set of witnesses (wts) may increase (to wts ′), but previously found witnesses are
not lost (wts ⊆ wts ′).

RSOps
Ξ RSParams; ∆RSState

wts ⊆ wts ′

In the general violation criterion (GenVl), we factor the searching for witnesses
with respect to each violation criterion. This allows a modular combination of

Automating the ZRC 11

criteria within the different aspects of the compatibility check. Thus, for each
criterion, we define an operation to search for witnesses. The set of witnesses
found (wts ′) must be a subset of the set containing all valid witnesses (w) ac-
cording to the witness invariant (WitnessInv), and related violation criteria for
traces (TrVl) for a pair of nodes coming from the specification (sN) and the
implementation (iN) automata.

TrWtsSearch
RSOps

m = tr ∧ wts ′ ⊆ {w : Witness; sN : DNode; iN : Node |
WitnessInv ∧ TrVl • w }

As we do not need to necessarily find all witnesses, but a specific number re-
quested (wr), the value of wts ′ is a subset of, rather than equal to, the entire
space of witnesses. Similarly, for the other criteria, each violation schema is dis-
joined to form the other sets of witnesses

WitnessInv ∧ (TrVl ∨ SFlVl) for stable-failures
WitnessInv ∧ (TrVl ∨ SFlVl ∨ DvVl) for failures-divergences

Finally, we define a total operation for finding witnesses, regardless of the criteria,
as the disjunction of the witness search operations.

FindWitnesses =̂ (TrWtsSearch ∨ SFlWtsSearch ∨ FlDvWtsSearch)

This modular approach gives room for future extensions in a precise fashion. For
instance, one could encode one of the extended failures models for CSP defined
in [3] as an additional violation schema, with the corresponding criterion flag
and schema characterising the space of witnesses to search for. Moreover, for all
available operations in the abstract model, we have proved applicability theorems
about the operation preconditions.

The concrete model. We applied (a trivial) data refinement over the state of
the abstract model (RSState), so that the concrete model has additional com-
ponents: (i) two injective sequences for pending (pd), and already checked node
pairs (ck); (ii) the node pair (wnp) currently being searched; (iii) a sequence of
working levels used to register at which level of the search each (working) node
pair appeared; and (iv) the abstract refinement search parameters. The sequen-
tial state invariant gathers properties about the variables (pd , ck , lvl , wnp, swts)
used in the algorithm’s code, instead of scattered in postconditions of later speci-
fication statements. This decision was taken in order to minimise and modularise
the complexity of proof obligations generated, as the first s (harder) attempt
to discharge the proof obligations when predicates were scattered showed. The
first predicates are about finiteness of witnesses, and an equivalence for wnp
used for better automation. Next we have the number witness we can search

12 Leo Freitas, Ana Cavalcanti, Jim Woodcock

(#swts ≤ wr). The consistency between progress of node pairs from the imple-
mentation (ip) and the normal form (nf) as defined by the operational semantics
(enabled) comes next, and it is similar to the abstract state (RSState), but men-
tioning the working node pair (wnp). A series of predicates establishing that the
working node pair, and the pending and checking sequences elements are valid
in the product automata (PA), are also included.

SeqRSState
RSParams; swts : P Witness; ck , pd : iseq NodePair ; lvl : seq N
wnp : NodePair ; wsN : DNode; wiN : Node; wl : N

swts ∈ F Witness ∧ wnp = (wsN ,wiN) ∧ #swts ≤ wr
∀ a : Arc | ¬GenVl [wsN /sN ,wiN /iN] ∧ ¬a = { } ∧

a ∈ enabled (ip.ts,wiN) • ¬⋃
(enabled (nf .ts,wsN)) ∩ a = { }

#ck = #lvl ∧ wnp ∈ PA (nf , ip) ∧ NodePairInv [wsN /sN ,wiN /iN]
ck ∈ iseq (PA (nf , ip)) ∧ pd ∈ iseq (PA (nf , ip))
∀ sNck : DNode; iNck : Node | (sNck , iNck) ∈ ran ck •

NodePairInv [sNck/sN , iNck/iN] ∧ ¬GenVl [sNck/sN , iNck/iN]
∀ sNpd : DNode; iNpd : Node | (sNpd , iNpd) ∈ ran pd •

NodePairInv [sNpd/sN , iNpd/iN]
ran pd ∩ ran ck = { }
∀ i : 1 . . (#lvl − 1) • lvl (i) ≤ lvl (i + 1)
∀ j : 1 . . #lvl • lvl (j) ≤ wl
∀w : Witness | w ∈ swts • ran pd ∩ ran w .1 = { }
∀w : Witness | w ∈ swts • WitnessInv [wsN /sN ,wiN /iN] ∧

GenVl [wsN /sN ,wiN /iN]

Next, comes the property that pending and checked pairs are disjoint, hence
the search is closed under the elements of these sequences. This is important to
establish the main loop variant, and hence guarantee that the whole search ter-
minates. Finally, we include a series of properties regarding search levels useful
for debugging, together with information about how witnesses relate to pend-
ing and checked pairs, which are further detailed latter. Many of these were
discovered through formal proof.

This is possible by the application of forward simulation rules with a quite
trivial retrieve relation: the set of witness from the abstract world equals the set
of witnesses used in the concrete world. Thus, we have an operational refinement,
rather than data refinement. At first we have used an injective sequence to
represent swts, and the retrieve schema as wts = ran swts, but it increased the
complexity of the proofs in a great extent, because the Z toolkit does not have
great automation for this data type. Fortunately, this was not a problem for
the proof obligations related to the injective sequence of pending and checked
node pairs. Finally, as Java and JML support sets, this choice did not become
an implementation issue.

At this stage, in order to establish refinement, we needed to prove that, for
every available operations of the abstract model, the corresponding concrete

Automating the ZRC 13

version satisfies the two proof obligations of applicability and correctness gener-
ated [17, Law C.4]. In particular, we have done this for the entire Circus speci-
fication. In here we want to emphasise that the refinement algorithm simulates
the abstract specification.

FindWitnesses ¹ SeqWitnesses

Finally, Like in the abstract model, we calculate the preconditions of all concrete
operations to ensure their applicability as well.

The algorithm. It defines how node pairs are checked for compatibility, as well
as how new pairs are found. To give an overview of the algorithm we provide
the entire derived code in Figure 3, which is written in Circus. This code has
been derived using ZRC, and action refinement laws for Circus [17, Appendix C].
Although our algorithm is similar to the algorithm of FDR presented in [19,
14], the mechanised proof effort precisely exposed loop invariants, and a great
amount of hidden information that is interesting for the understanding of the
witness search problem for refinement model checking in general.

The algorithm is divided into two stages: (i) compatibility check; and (ii) suc-
cessor node pairs search. In the compatibility check, we first assign to the working
node pair (wnp), update the pending pairs (pd), and increment the working level
of the search accordingly. If wnp is incompatible (GenVl), then it must be in-
cluded as a new witness in swts. It is formed by the previous checked pairs,
together with the offending working node pair at the working level. Otherwise,
if wnp is compatible, then the sequence of checked pairs and search level are up-
dated likewise, and the next stage of finding successor pairs starts. The search is
performed while there are pending pairs (pd 6= 〈〉) to be searched, and witness
to be found (#swts < wr).

While searching for successors, the arcs immediately available for communi-
cation in the implementation are retrieved through the enabled function repre-
senting all events immediately available from a given node. For each of those
arcs, one needs to progress appropriately in the automata of S and I , accord-
ing to the loop invariant. In order to exhaust all enabled implementation arcs
(arcS), we choose the specification node successor (sN), and select all available
implementation successor nodes (iN ∈ iNS) on the same arc. If it is a silent or
internal transition, here specified as an empty arc, it represents nondeterminism
(from an internal choice, for instance) being resolved in I . Since after normal-
isation the automaton of S is deterministic and has no silent transitions left,
there is no successor node for S in this case. Otherwise, in the case of visible
communication, the selection of successors follows from the arcStep function.
It determines the set of nodes we can reach through a given arc at a particular
node. These two functions represent the formally specified operational semantics
of Circus [11, Chapter 3].

14 Leo Freitas, Ana Cavalcanti, Jim Woodcock

SeqWitnesses =̂
doL0 (#swts < wr ∧ pd 6= 〈〉) →

wnp, pd ,wl := head pd , tail pd , (wl + 1) ;
if (GenVl [wsN /sN ,wiN /iN]) →

swts := swts ∪ { ((ck a 〈wnp〉), (lvl a 〈wl〉)) }
[] (¬GenVl [wsN /sN ,wiN /iN]) →

ck , lvl := (ck a 〈wnp〉), (lvl a 〈wl〉) ;
|[var arcS : F Arc •

arcS := enabled (ip.ts,wiN) ;
doL1 (arcS 6= ∅) →
|[var arc : Arc; sN : DNode •

arc := elem (arcS) ;
arcS := arcS \ { arc } ;

if (arc 6= ∅) →
sN := arcStep (nf .ts,wsN , arc)

[] (arc = ∅) →
sN := wsN

fi

 ;

|[var iNS : F Node •
iNS := arcStep (ip.ts,wiN , arc) ;
doL2 (iNS 6= ∅) →
|[var iN : Node •

iN := elem (iNS) ;
iNS := iNS \ { iN } ;

if ((sN , iN) ∈ ran pd ∪ ran ck) →
Skip

[] ((sN , iN) /∈ ran pd ∪ ran ck) →
pd := pd a 〈(sN , iN)〉

fi

]|
od

]|
]|

od
]|

fi
od

Fig. 3. Sequential witness search algorithm

Automating the ZRC 15

Interesting properties we have discovered

Although this way of building up the witness from the sequence of checked
pairs comes from FDR’s algorithm, some properties to enable us to derive the
code are not documented, to the extent of our knowledge. In FDR’s algorithm
description [19], it is mentioned that the elements of pd and ck are disjoint.
Because of the mechanisation of proof obligations, these well-known and some
other facts must be formally specified. For instance, we need to precisely include
obvious facts not mentioned in [19], such as: (i) all node pairs in ck and pd are
valid (or are part of) the automaton of S and I ; (ii) all node pairs in ck are
compatible in the chosen model (GenVl); (iii) node pairs from ck and pd can
only come from the product automata of S and I , and not any valid node pair
from other automata; and so on.

There are, however, some not entirely obvious facts as well. They must
be clearly stated, otherwise the proof obligations cannot be mechanically dis-
charged. We see this as a very interesting contribution to the field of refinement
model checking. These facts are mostly related to the normalisation of S that
occurs at the preparation process (see Figure 2), the various relationships be-
tween the witnesses found and the data structures used in the sequential search,
and about loop invariants.

Normalisation properties. During normalisation, the automaton of S is trans-
formed to become deterministic and free of silent transitions. Among other rea-
sons, this is useful because it makes the sequence of node pairs unique, and
hence it enables memory-efficient representation of the search space without
compromising its results. Nonetheless, as witness search and normalisation are
independent Circus processes, we must record that the automata received were
built by the operational semantics. Another example is that, since the normal
form of S is a deterministic automaton, and elements of pd and ck are disjoint,
when the search finishes, the union of elements from pd and ck must be the size
of the product automata of S and I . In this way, we ensure that all node pairs
are checked, hence a precise characterisation of search exhaustiveness is given.

Witness properties related to the sequential state. As pd and ck belong to the
product automata of S and I , and the normalisation guarantees the search paths
to be unique, node pairs from witnesses already found can never appear as
pending. Furthermore, valid node pairs in the product automata that have not
yet being searched (i.e., they are neither pending nor checked), can never be
part of any witnesses that have already been found. These facts are included in
the last predicates of SeqRSState.

Properties of the main loop. Let us explain the invariant, guard, and variant
of each labelled loop from Figure 3. With application of appropriate laws and
further simplifications, the main loop (L0) invariant is reduced to the sequential
state invariant already presented in schema SeqRSState. That is not surprising as
we moved the algorithm main variables to the state on purpose at the beginning,

16 Leo Freitas, Ana Cavalcanti, Jim Woodcock

in order to have the main loop invariant clear from the state invariant itself.
This is crucial for concentrating the proof effort at one hard/difficult point,
whereas the remaining proofs become simpler. The main loop guard defines the
termination condition for the algorithm as

#swts < wr ∧ ¬pd = 〈〉

which means that either enough witnesses have been found, or there are no more
pending pairs to be checked. It has been previously introduced by strengthening
the postcondition right after initialisation of the corresponding variables via
assignment. The main loop variant is defined as

(PS (nf , ip)−#ck) + (wr −#swts)

because only ck or swts will increase at each iteration but not both, as every
valid node pair being searched is either compatible or not. As a loop variant is
an integer expression whose value is strictly decreased by the loop body, we need
to find the boundaries for both ck and swts. The checking sequence is bound
by the product size of both automata (PS (nf , ip) ∈ N1), as we can never check
more than what is available, whereas the set of witnesses is bound by the number
requested on wr . Moreover, pd cannot be used in the variant because it may not
vary at every iteration.

Properties of loop L1. The next loop encodes the search for successor pairs from a
compatible node pair. As each arc from the set of enabled arcs (enabled) is being
explored, we need to establish via the assignment that the following properties
about arcs hold

arcS ⊆ enabled (ip.ts,wiN) ∧
(∀ a : Arc | a ∈ arcS • ¬arcStep (ip.ts,wiN , a) = ∅)

That is, subset containment with respect to the operational semantics (enabled)
guarantees that exploring new arcs (arcS) preserves the amount remaining to be
searched, and valid normal form nodes have no silent transitions. This forms part
of the loop invariant. Moreover, after the assignment on arcS , we also establish
the new properties about a compatible working node pair (wnp)

¬wnp ∈ ran pd ∧ wnp ∈ ran ck ∧
(∀w : Witness | w ∈ swts • ¬wnp ∈ ran w .1)

That is, wnp is not pending, has already been checked, and cannot be part
of any witnesses previously found. This is also important for re-establishing
the main loop invariant, as well as make both loops L0 and L1 work. They are
dischargeable because the normal form is unique, the injective sequences (pd and
ck) are disjoint, and because of the witness properties related to the sequential
state and witness invariant mentioned above. Finally, the invariant of L1 is given
in four parts: (i) the guard from the alternation ensuring the working node pair

Automating the ZRC 17

is compatible (¬GenVl [wsN /sN ,wiN /iN]); (ii) a simplified version of the state
invariant (SeqRSState) with information about well-formed witnesses removed,
as to search for successors it is irrelevant; (iii) the new properties of the working
node pair after the update of ck ; and (iv) the properties of arcS just mentioned.
Also, since we use the cardinality of arcS as the variant, arcS must be finite.
The loop guard is given as (arcS 6= ∅), and the variant is # arcS .

Properties of loop L2. The final part of the algorithm is the possible inclusion of
new successor pairs as pending, whenever they have not been already checked.
We need to iterate over the set of reachable implementation nodes (iNS) to form
new node pairs (sN , iN), where the normal form node (sN) has already been
fixed. Loop L2 has the invariant of L1 conjoined with the property about iNS

iNS ⊆ arcStep (ip.ts,wiN , arc)

which is dischargeable as the nodes in iNS are reaches from arcS enabled by
the operational semantics. Finally, the guard of L2 is (iNS 6= ∅), whereas the
variant is # iNS .

These, and other properties that were found throughout the mechanical for-
malisation process, have proved the whole idea of applying formal methods in the
development of formal tools worthwhile for this case study. Although mechani-
sation can incur some burden and time constraints, in the longer run, we believe
it to be indispensable in discovering information that is crucial for correctness,
and a better understanding of the problem at hand.

Translation into JML

At last, we translate the various predicates representing different properties of
the algorithm into JML notation. They appear as comments in the Java code
that implements the algorithm in Figure 3.

As the proof obligations normally come from specification statements, it is
usually straightforward to translate, because JML allows pre and postconditions
on methods as special predicates directly, as the requires and ensures clauses of
JML annotations, respectively. Similarly, the JML assignable clause is a direct
representation of the specification statement frame.

It is more challenging to translate the loop invariants. At the time when this
case study was performed, the JML documentation and language support for
encoding loop invariants was not as thorough as it is today, where the available
annotations are better documented and supported by the JML tools. Because
of that, we needed to provide an intermediate solution: the predicate’s annota-
tion and the algorithm’s code were scattered into various methods of Java inner
classes, so that the frame, pre and postconditions could be precisely specified at
each different stage. Nonetheless, although this specifies/documents the prob-
lem precisely, it unfortunately complicates the code. Furthermore, the lack of
Z toolkit definitions within the available JML data structures, such as injective
sequences, also limited this translation effort altogether.

18 Leo Freitas, Ana Cavalcanti, Jim Woodcock

Some benchmarks

In total, the whole formalisation effort in the development of the Circus model
checker is summarised in Table 1. It includes: (i) an extended Z toolkit to han-
dle finiteness and injections better; (ii) the automata theory for PTS ; (iii) the
normalisation, divergence checking, refinement search, and debugger Circus spec-
ifications; and (iv) the refinement proofs for the derivation of the sequential
witness search algorithm. The complete process took one person working full-

Formal
item

Ext. Z
toolkit

PTS
theory

Normal
form

Div.
check

Ref.
search

Debugger Total

Abbrev. 2 15 0 0 3 2 22

Given sets 0 2 0 0 0 1 3

Free types 0 2 0 0 4 0 6

Ax. defs. 0 16 6 0 6 1 29

Gen. defs. 10 7 0 0 0 0 17

Schemas 0 8 4 6 108 8 134

Z/Eves rules 81 191 18 5 90 12 397

Lemmas 14 24 0 0 73 0 111

Theorems 11 44 5 1 25 1 87

Proof scripts 103 259 23 6 214 1 606

Domain checks 3 25 7 0 43 0 78

Channels — — 3 3 6 2 14

Actions — — 3 7 25 9 44

Variables — — 0 0 14 1 15

Total 224 593 69 28 611 38 1563

Table 1. Summary of formal declarations for Circus model checker

time for around one whole year. For the algorithm derivation alone, we applied
around 101 refinement laws, which generated 42 proof obligations, including: (i)
14 trivial proofs discharged directly by Z/Eves; (ii) 12 easy proofs with (possibly
lengthy) straightforward manipulations; (iii) 10 hard proofs usually depending
on case analysis and Z/Eves rules; and (iv) 6 difficult proofs that exposed most
of the inconsistencies in the automata theory, and in the formal definitions.

Although the number of Z/Eves automation theorems is high, they are repet-
itive and straightforward to prove. Also, many of the given theorems are in fact
specification statements and proof obligations encoded as schemas by our au-
tomation strategy. To the extent of our knowledge, this code derivation is the
biggest case study in the application of ZRC, and one of the few related to the
development of a formal tool.

Automating the ZRC 19

5 Conclusion

We expect the experiences shown in this case study to motivate the application of
formal specification and verification, both in theory and practice, for tools aimed
at formal verification, as well as computer systems in general. We advocate the
use of mechanical proof throughout formal specification and verification.

We believe that formalisation plays a crucial role in increasing the integrity
levels of the model checker through a combination of techniques. Together with
the refinement algorithm and the architecture, the operational semantics and the
underlying automata theory are also formally defined. Throughout the develop-
ment process, Z/Eves was used to discharge proof obligations from the algorithm
derivation, animate the operational semantics, prove properties of the theory of
automata, and so on. In this process we presented a recipe showing how to use
a theorem prover to discharge proof obligations generated by the application of
the Circus refinement calculus.

This sort of bootstrapping, where we have used Circus to specify and refine its
own model checker, allows us to find early design flaws, as well as to ensure the
algorithm is correct by construction. For instance, the various properties about
witnesses, pending, and checking sequences, enabled us to properly understand
why some witnesses could not be properly interpreted by the debugger process
due to lack of information. Moreover, to bridge the gap between formal speci-
fication and actual code, we use JML annotations to document our findings at
the level of the Java code. Thus, important properties, such as loop invariants,
are precisely documented and amenable to further verification. This exercise of
taking our own medicine shows how one can go from an abstract formal specifi-
cation to code mechanically, hence gathering the knowledge to step forward on
the roadmap for building formal verification tools formally. In this process, we
found not only bugs, but also unkonwn/undocumented important properties.

Foreseeable extensions to the work are a formal derivation from the abstract
specification of witness search to a parallel refinement model checking algorithm.
Apart from concurrency complexity, there is a further burden while integrating
theorem proving and model checking in a parallel setting, such as dependencies
between their results. Another interesting work is to extend the JML type system
to include most of the Z toolkit, hence enabling more Z specifications to be
translated and analysed by JML tools. At this point, an automated translation
tool could be created, in the spirit of another tool that already partially converts
B to JML [13].

References

[1] Ralph-Johan Back and Joakim von Wright. Refinement Calculus: A Systematic
Introduction. Graduate Text in Computer Science. Springer-Verlag, 1998.

[2] J. C. Bicarregui, C. A. R. Hoare, and J. C. P. Woodcock. The Verified Software
Repository: a Step Towards the Verifying Compiler. UK Grand Challenge for
Computer Research, Steering Committee, 2004.

20 Leo Freitas, Ana Cavalcanti, Jim Woodcock

[3] Christie Bolton and Gavin Lowe. A Hierachy of Failures-Based Models: Theory
and Application. Theoretical Computer Science Journal, June 2004.

[4] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry,
Gary T. Leavens, K. Rustan M. Leino, and Erik Poll. An Overview of JML Tools
and Applications. In Eighth International Workshop on Formal Methods for Indus-
trial Critical Systems (FMICS), Electronic Notes in Theoretical Computer Science,
pages 73–89. University of Nijmegen, Elsevier, March 2003.

[5] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z.
Formal Aspects of Computing Journal, 10(3):267–289, 1999.

[6] A. L. C. Cavalcanti and A. C. A. Sampaio and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing Journal, 15(2-3):267–289, 2003.

[7] Escher Technologies. Perferct Developer User’s Guide, v.3.0, 2004. Available on-
line at www.eschertech.com/product_documentation/UserGuide.htm

[8] Michael Goldsmith. FDR2 User’s Manual version 2.82. Formal Systems (Europe)
Ltd., June 2005.

[9] C. A. R. Hoare. Communicating Sequential Process. International Series in Com-
puter Science. Prentice-Hall, 1985.

[10] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. International
Series in Computer Science. Prentice-Hall, 1998.

[11] Leonardo Freitas. Model Checking Circus. PhD thesis, Univeristy of York, October
2005.

[12] C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. Mural: a Formal Develop-
ment Support System. Springer-Verlang, 1991. ISBN: 3-540-19651-X.

[13] Petra Malik and Mark Utting. CZT: A Framework for Z Tools. In Helen Tre-
harne, Steve King, Martin Henson, and Steve Schneider, editors, ZB 2005: Formal
Specification and Development in Z and B: 4th International Conference of B and
Z Users, Guildford, UK, pages 13–15. Springer-Verlag, April 2005.

[14] Jeremy M. R. Martin and Yvonne Huddart. Parallel Algorithms for Deadlock and
Livelock Analysis of Concurrent Systems. Communicating Process Architectures,
2000.

[15] Carroll Morgan. Programming from Specifications. Prentice-Hall, 1994.
[16] M. V.M. Oliveira and M. A. Xavier and A. L. C. Cavalcanti. Refine and Gabriel:

Support for Refinement and Tactics. In J. R. Cuellar and Z. Liu editors, 2nd IEEE
International Conference on Software Engineering and Formal Methods, pages 310–
319. IEEE Computer Society Press, 2004.

[17] Marcel Oliveira. Formal Derivation of State-Rich Reactive Programs using Circus.
PhD thesis, University of York, 2006.

[18] Peter Ryan, Steve Schneider, Bill Roscoe, Michael Goldsmith, and Gave Lowe.
Modelling and Analysis of Security Protocols. Addison Wesley, 2001.

[19] A. W. Roscoe. Model Checking CSP in A Classical Mind: Essays in Honour of
C. A. R. Hoare. International Series in Computer Science. Prentice-Hall, 1994.
Chapter 21, pages 353–378.

[20] A. W. Roscoe. The Theory and Practice of Concurrency. International Series in
Computer Science. Prentice-Hall, 1997.

[21] Mark Saaltink. Z/Eves 2.0 User’s Guide. ORA Canada, 1999.
[22] Jim Woodcock and Jim Davies. Using Z: Specification, Refinement, and Proof.

International Series in Computer Science. Prentice-Hall, 1996.
[23] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert

and J. P. Bowen and M. C. Henson and K. Robinson, editors, ZB 2002: Formal
Specification and Development in Z and B, number 2272 in Lecture Notes in Com-
puter Science, pages 184–203, Springer-Verlag, 2002.

