
Modelling and verifying a priority scheduler
for an SCJ runtime environment

Leo Freitas1, James Baxter2, Ana Cavalcanti2, and Andy Wellings2

1 Newcastle University, UK
2 University of York, UK

Abstract. Safety-Critical Java (SCJ) is a version of Java suitable for
programming real-time safety-critical systems; it is the result of an inter-
national standardisation effort to define a subset of the Real-Time Spec-
ification for Java (RTSJ). SCJ programs require the use of specialised
virtual machines. We present here the result of our verification of the
scheduler of the only SCJ virtual machine up to date with the stan-
dard and publicly available, the icecap HVM. We describe our approach
for analysis of (SCJ) virtual machines, and illustrate it using the icecap
HVM scheduler. Our work is based on a state-rich process algebra that
combines Z and CSP, and we take advantage of well established tools.

Keywords: Java, SCJ, Circus, process algebra, FDR

1 Introduction

There has been an international effort to make Java and its Runtime Envi-
ronment (RTE) suitable for safety-critical systems. All proposed extensions to
Java have an associated Java Specification Request (JSR), a Reference Imple-
mentation (RI) and a Technology Compatibility Kit (TCK). The Safety-Critical
Java (SCJ) specification (JSR 302) is an Open Group Standard [20], based on a
subset of the Real-Time Specification for Java (RTSJ) [35]. It defines Java ser-
vices designed for applications requiring certification. It replaces Java’s memory
model with support for memory regions [34], and its execution model is based
on missions and event handlers with a predictable scheduler.

The goal of an RI is to demonstrate the feasibility of implementing a proposed
JSR and to illustrate its impact on the standard Java RTE. The RI for JSR 302
consists of the addition of the javax.safetycritical package and a modified
JVM. Together these make up the SCJ RTE.

The TCK is a suite of test programs that check that an implementation
conforms to a JSR. The SCJ TCK, when available, will provide a degree of
confidence in the correctness of an SCJ RTE. It is unlikely, however, that this will
be adequate for systems with the highest certification level. For SCJ to become
a viable technology, certified runtime environments must become available.

The constraints embedded in the SCJ design makes programs amenable to
formal analysis. Schedulability analysis techniques [3] can be used to provide

evidence that programs meet their deadlines. Ongoing effort to support devel-
opment, validation, and verification of SCJ programs has already produced re-
sults [6, 7, 16, 24, 33]. The work presented here uses formal methods to increase
confidence and provide evidence that an SCJ RTE satisfies its requirements.

SCJ programs cannot run on a standard JVM; they require specialised sup-
port for memory regions and preemptive priority-based scheduling. The SCJ
RI is under development and will be based on JamaicaVM [18]. To our knowl-
edge, there are currently five SCJVM (virtual machines that support SCJ): Fiji
VM [28], icecap HVM (Hardware near Virtual Machine) [32], Ovm (Open Virtual
Machine) [1], HVMTP [21] and PERC Pico [2, 29]. Of these, Fiji VM and Ovm
are not specific for SCJ, PERC Pico does not conform to the current version of
SCJ, and HVMTP is based on the icecap HVM.

As far as we know, the only SCJVM that is up to date with the SCJ standard
and publicly available is the icecap HVM. Here, we consider the verification of its
single-processor scheduler, a core component of an SCJVM. We present a formal
model, and establish some of its properties by model checking and theorem
proving. This is part of a larger effort to produce a completely verified SCJ RTE.
We also present the general approach to construct and analyse formal models of
an SCJVM that we use in the verification of the icecap HVM scheduler.

An identification of requirements for an SCJVM and an associated formal
model are presented in [4]. The modelling uses Circus [26], a state-rich process
algebra that combines Z and CSP. Circus is a notation for refinement and can
be used to compare the requirements in [4] with models of implementation.

In our work, we use Circus processes to specify components of the icecap tools
and their integration. Circus has an extension to deal with object-orientation [5];
it is helpful here, since the icecap tools are implemented in Java. We pursue a
close match to the implementation structure to provide accurate low-level Circus
models. In our approach, the Circus processes define the boundaries of each
component of an SCJVM implementation, and their dependencies. Due to the
compositionality of refinement, we can analyse these components in isolation.
We tackle here a central component of an SCJVM, the scheduler, and identify
the assumptions it makes about management of SCJ processes.

In summary, our contributions in this paper are a modelling and analysis
technique tailored for an SCJVM, and its application to the scheduler of the
only up to date SCJVM publicly available. The discussion of the technique sum-
marises the lessons we have learned in carrying out this case study. In addition,
the Circus model itself is of interest for documentation of the icecap tools and for
fostering reuse of the icecap scheduler in the implementation of other SCJVMs.

Next, we present background material for our work: SCJ and the icecap tools,
and Circus. Section 3 describes our modelling approach. Sections 4 and 5 present
our scheduler model and its analysis. We consider related work in Section 6, and
conclude in Section 7 considering also future work.

Start HaltMission
Cleanup

Mission
Execution

Select
Mission Initialization

Mission

MissionSequencer

Fig. 1. A diagram showing the phases of mission execution

2 Preliminaries

We present SCJ and the icecap tools in Section 2.1, and Circus in Section 2.2.

2.1 SCJ and the icecap tools

SCJ places restrictions on the features of Java that can be used, and defines
different scheduling and memory models. SCJ has three compliance levels of
increasing complexity; the icecap tools support all levels.

An SCJ program is structured as a series of missions, executed sequentially
in an order determined by a program-supplied mission sequencer. Each mission
manages various schedulable objects: asynchronous event handlers (at levels 0
and 1), and real-time threads and nested mission sequencers (at level 2). A
mission execution goes through several phases shown in Figure 1. First, each of
the schedulable objects and any data that may be required for the duration of the
mission are initialised. Afterwards, the mission runs until requested to terminate,
and then each of the schedulable objects are terminated, any required cleanup
is performed, and the mission sequencer runs the next mission.

Asynchronous event handlers can be released periodically at set intervals or
aperiodically in response to software requests. Schedulable objects are managed
by a priority-based preemptive scheduler. Priority ceiling emulation, whereby a
thread has its priority elevated upon taking a lock, prevents problems arising
from priority inversion in locking [35]. Support for multiprocessor systems allows
schedulable objects to be associated with allocation domains that define the
processors in which they are allowed to run.

The icecap tools target embedded systems and precompiles Java bytecode
to C, in addition to supplying a lightweight bytecode interpreter. The running
of SCJ programs is supported by an implementation of the SCJ API, tightly
coupled to the SCJVM. The API implementation and the code that supports it
are written in Java, with only the most low-level components written in C and
assembly. In the scheduler, only the task of process switching is written in C and
assembly, with the code to determine which process should run written in Java.

The structure of the scheduler implementation is shown in Figure 2. The
scheduler is triggered by the clock interrupt handler, a singleton instance of
ClockInterruptHandler, which implements the interfaces InterruptHandler

and Runnable. A process executing the run() method of the ClockInterrupt-

Handler instance is created when the clock interrupt handler is initialised. Upon

Fig. 2. UML class diagram showing the classes that make up the icecap HVM scheduler

receiving a clock interrupt, the icecap HVM calls the clock interrupt handler’s
handle() method, which switches to the clock interrupt handler’s process. The
clock interrupt handler then calls the scheduler’s getNextProcess() method.

The scheduler itself is an instance of PrioritySchedulerImpl, which calls
the move() method of PriorityScheduler to choose the next process. The
move() method wakes any sleeping processes that have passed their wake-up
time and pops the next process from a priority queue of processes that are ready
to run. The work of switching to the new process is then performed via a native
method call to the low-level virtual machine (written in C, rather than Java).

In Section 4, we present a model of this scheduler: a network of Circus pro-
cesses interacting with the SCJ API implementation and the operating system.

2.2 Circus

Circus [26] is a formal notation that combines the style for data modelling of the
Z [36] notation with that for process specification of CSP [17, 30]. Like a CSP
model, a Circus specification defines processes that communicate over channels,
but that, unlike CSP processes, may contain internal state defined in Z. The
internal state is encapsulated so that it can only be updated and accessed via
communication on the channels of the process.

A Circus process is defined as a series of Z paragraphs and Circus actions,
which are written using a combination of CSP constructs and Z operations. The
process definition ends with a main action that defines the behaviour of the
process using the actions defined previously in the process. Most CSP operators
can be used in Circus actions, including external and internal choice, parallel
composition, sequential composition, and the interrupt operator. Additionally,
Circus includes assignment, if statements, loops, and variable declarations, as well

Table 1. A summary of the Circus notation used in this paper

Operator Circus Symbol

Prefixing of signal on channel c to action A c −→A
Prefixing of input on c of value x to A c?x −→A
Prefixing of output on c of value of expression e to A c!e −→A
Guarding of A with predicate g g N A
Termination Skip
External choice of actions A and B A @ B
Sequential composition of A and B A ; B

Interrupt of A by B A4 B
Parallel composition A and B synchronising on
the intersection of channel sets cs1 and cs2 A cs1||cs2 B
Parallel interleaving of A and B A 9 B

Hiding of channel set cs in A A \ cs

as permitting the use of Z schema data operations in Circus actions. Processes
can also be combined using CSP operators: parallelism, hiding, and so on.

Circus has several extension, to cater for time, mobility, synchronicity and so
on. Here, we use classes, included the object-oriented extension OhCircus [5].

A detailed account of Circus can be found in [26]. Examples are presented in
Section 4. Table 1 summarises the action notation that we use here.

3 Verification approach

In this section, we present our approach to verification of an SCJVM. This
arises from previous experiences on modelling and verification of large existing
systems [9–11]. It is, however, tailored for the needs of a VM and of an SCJVM, in
particular. In this respect, this is our distillation of the lessons learned in applying
Circus to reason about the icecap HVM and its scheduler. The application of the
approach presented here to the scheduler is the subject of the next section.

Our technique, first of all, creates a model for a piece of code implementing
a VM or a component of a VM, like a scheduler, written in any imperative or
object-oriented language. Having identified the modules or classes that imple-
ment the component, our approach to modelling is in three phases: (a) data,
(b) control-flow, and (c) integration modelling. These are described below.

a. Define a Z data model.i In this phase, we formalise the data types used in the
program, via the four steps below. The data types may be in the program in one
of three forms: types available in the programming language, types available via
a library, like the collection API of Java, or just as pieces of data not necessarily
identified as a data type in the program. For the latter, identification of data
types in the model is a matter of convenience for verification.
1. Define the state to capture the variables used in the program, creating appro-

priate datatypes where necessary.

2. Capture invariants that are expected. These are properties of the data model
we expect the program to satisfy, even if not explicitly checked (but see b.4).

3. Define the procedures (methods, functions, and so on) of the program that
manipulate the data types defined above.

4. Identify their error cases and totalise the data operations. We use theorem
proving to reveal the preconditions of the operations, and extend the model
to totalise those whose precondition are not just true.
By modelling errors to totalise the operations, we achieve a better under-
standing of the data types of the program. Its precise behaviour, which may
not include checking error conditions, is captured in the next phase.

The model may be seen as a suggestion for improving the code structure (like
error checking). Information from the environment of the component may also
need to be identified as a type whose values are communicated in channels.

b. Capture the control flows through the VM. Using the Z model, we construct
a Circus model following the steps below. Roughly, each module (that is, a class,
in the case of a Java program) is modelled by a Circus process or class, and its
procedures by actions and methods in Circus.
1. Define channels corresponding to the services of the component. For each

provided or internal service, we define a pair of channels to model calls and
returns of invocations. For each required external service, we have a single
channel, because we do not model its behaviour.

2. Use processes and classes to capture the modular structure of the program. A
Java class should be modelled by an OhCircus class, if it includes only passive
methods, that is, methods that can be modelled using only data operations
without the use of channel communications, and by a process, otherwise.

3. Define the actions for the services corresponding to the channels above. In this
step, we use the data operations defined in the previous phase, and capture
the control flows in the definition of each action.

4. Eliminate the error cases in the Z data operations that are not handled in the
code, transforming the remaining cases to guards in order to enable identifi-
cation of mistakes in use of data operations via deadlock checks. In this way,
we ensure that the model is not more robust than the code, and any invalid
assumptions about the use of the data can be revealed by analysis.

5. Define in the main action how the services are to be provided. In principle,
all actions could be combined in an external choice, so that their services are
available for use one at a time. A call graph, however, may identify services
that are needed in parallel because they are part of different lines of execution.

c. Generate a Circus model of the component. We use the processes defined in
phase (b) to produce a model of the component as a network of processes.
1. Introduce processes to reflect the parallel design (if any) of the code.
2. Combine the various processes to define the component.

In this phase, we need to make the case that the model is closely related to the
program. The argument should explain how the program modules are reflected
in the structure of the Z data model and of processes in the network of phase (b).

We need to explain how the model can be refined back to the code, and that
needs to be relatively simple. For Java programs, a strong argument includes a
class diagram and a mapping from the Circus processes to that diagram.

A truly faithful model defines the modelled procedures of the program as
actions in Circus using programming constructs (assignments, loops, and so on)
just like in the code. For reasoning, however, it is convenient to use a predicative
specification of the procedures in Z. This is the reason for the abstraction in
phase (a), followed by the argument constructed here. As a consequence, we
catch integration problems via formal analysis, but not necessarily programming
errors. The modelling effort, however, may well reveal programming errors in
phases (a) and (b.4-5). In our case study, we found missing error checks.

With a model produced as described above, we open the possibility of the use
of a multitude of analysis techniques. We distinguish the following possibilities
as particularly useful in the case of SCJVM analysis.
1. Prove that the Circus model is deadlock free
2. Use refinement to prove more general properties.
For the icecap case study, we carry out proof of properties of the Z data model
using Z/Eves [25], and translate the Circus model to CSP to use the FDR3
model checker [14]. In the translation, we lose the expressiveness of Z, but gain
the ability to use automatic analysis of the process network.

More details about our approach to modelling and analysis are in [12].

4 Formal model overview

We next give an overview of our model of the icecap HVM scheduler. The com-
plete model can be found in [12, Ch. 5]; its components are shown in Figure 3.
There is a Circus process for each Java class in Figure 2. The environment in-
cludes the low-level virtual machine written in C, the operating system, and other
components of the SCJVM, including the SCJ API. These components communi-
cate with the scheduler to initialise it and to obtain information. PrioScheduler ,
corresponding to the PriorityScheduler class, receives requests to move and
stop SCJVM processes from PrioSchedulerImpl . It also communicates with the
ClockInterruptHandler to enable and disable interrupts, and to register and start
the clock handler. ClockInterruptHandler communicates with PrioSchedulerImpl
to obtain the next SCJVM process to run. PrioSchedulerImpl is a bridge between
ClockInterruptHandler and PrioScheduler , using services of PrioScheduler to de-
termine the next process. ClockInterruptHandler also sends requests to transfer
between processes to the low-level virtual machine.

Next, we describe how our model is obtained using the approach in the previ-
ous section. In phase (a), we define a Z data model. The most interesting types
come from the class PriorityScheduler. Its state (a.1) has four parts: i) the
current time, the identifier of a ClockInterruptHandler, and a reference to an
unique instance of PriorityScheduler itself; ii) the references to the processes
managed by the scheduler; iii) the scheduling queues containing the processes
that are ready, sleeping/blocked, locked/waiting, and so on; and iv) the SCJ

Fig. 3. SCJ VM components

event handlers managed by the scheduler. The managed processes are identified
by unique elements of a set PID of identifiers used by the operating system.

The managed event handlers are modelled by the schema HandlerSet . It con-
tains PID sets representing the different categories of handlers: periodic (peh),
aperiodic (aeh), and one shot (oseh), as well as sets of allocated (meh) and
free (freeHS) handlers. It also includes a dummy identifier idle, used to avoid
management of empty queues: it is queued, when the ready queue is emptied.

HandlerSet
peh, aeh, oseh,meh, freeHS : P PID
idle : PID

idle ∈ peh ∧ 〈peh, aeh, oseh〉 partition meh
〈meh, freeHS 〉 partition PID

The state invariant (a.2) establishes that the idle process is a periodic event
handler, and that the allocated managed event handlers partition the different
categories. Similarly, all values in PID correspond to managed processes: the
allocated (meh) and free (freeHS) identifiers partition PID .

The methods corresponding to HandlerSet operations are captured as Z oper-
ations (a.3). They are simple and involve adding and removing various handlers
from the corresponding sets, for example. Proving that the state invariant is pre-
served by these operations shows whether or not they are feasible. This is part
of the totalisation process (a.4) that identifies error conditions to be dealt with.
For example, there are operations in the scheduler that take a handler as input.
There is, however, no check in the code that the input is a handler managed by
the scheduler. This is an example of where we have uncovered possible issues, or
hidden assumptions, of the code through modelling and proof.

In phase (b), the SCJVM-specific control-flow is captured using Circus pro-
cesses. We cater for the scheduling-specific features. For illustration, we describe
below the Circus basic process representing the PriorityScheduler class.

To identify the services (b.1), we perform a call-graph analysis of the non-
private methods and create corresponding channels. As shown in Figure 3, the
scheduler interacts with the SCJ API and the operating system. A path in the call
graph involving the public method transfer is as follows. Although transfer is
a method of Process, because we model Process as a data type, conceptually,
we regard transfer as a method of ClockInterruptHandler.

ClockInterruptHandler.run, PrioritySchedulerImpl.getNextProcess,
ClockInterruptHandler.disable, PriorityScheduler.move,
PriorityScheduler.stop, ClockInterruptHandler.transfer

The path above is part of a line of execution (and is public). So, we have a
channel transfer corresponding to uses of this service. The types of the channels
depend on the associated method’s parameter and return types.

We follow a naming convention to identify what method call and return we are
capturing. For instance, the channel KPSreleaseCall represents the package (K)
method of the PriorityScheduler class (PS) named release that is being called.
Public methods follow a similar naming, and private methods are represented
with subsidiary actions, so there are no channels associated with them.

As already mentioned, for each class of the scheduler, we define a pro-
cess (b.2). In defining actions (b.3), we also take advantage of the call graph.
As an example, we present below the action for the release method.

Release =̂ KPSreleaseCall?apeh−→
PCIHdisableCall −→ PCIHdisableRet−→
(pre ReleaseHandler N ReleaseHandler);
PCIHenableCall −→ PCIHenableRet−→

KPSreleaseRet −→ Skip

It is triggered by a call via KPSreleaseCall , and concludes with a synchronisa-
tion on KPSreleaseRet . Its body contains a call to disable followed by a data
operation ReleaseHandler of HandlerSet and by a call to enable. The precondi-
tion pre ReleaseHandler of ReleaseHandler is used as a guard (b.4); the input
apeh is used in ReleaseHandler and its guard pre ReleaseHandler .

Another example is the action SCJStop corresponding to the method Stop.
It takes an input curr , with the guard curr 6= nullpid , which corresponds to the
precondition of the method.

SCJStop =̂ KPSstopCall?curr : (curr 6= nullpid)−→
PVMtransfer !curr !mainProcess−→

KPSstopRet −→ Skip

The input curr is passed on, along with the state component mainProcess corre-
sponding to an inherited field of the class PriorityScheduler, to the lower-level
virtual machine using a channel PVMtransfer .

To conclude phase (b), we identify the services of the API that are provided in
choice and in interleaving (b.5). Following the structured indicated in Figure 3,
we define that the PriorityScheduler API has three separate groups, which we
name SCJApi , SCJRTE , and CIHApi , containing services provided to the SCJ
infrastructure, the runtime environment and the ClockInterruptHandler. The
three groups of services are combined in interleaving, with each of its constituent
services in external choice. Thje choice is external, since it provides to the en-
vironment of the PriorityScheduler (see Figure 3) the choice of which service to
execute. The interleaving defines an action Run.

CIHApi =̂ Move @ SCJStop
SCJRTE =̂ Start @ Release @ AddOuterMostSeq · · ·
SCJApi =̂ GetHWPrio @ GetPrio
Run =̂ SCJApi 9 SCJRTE 9 CIHApi

In the main action of PriorityScheduler , which is distinguished below by a pre-
ceding • symbol, after an initialisation using an action Init , another action
Execute uses Run to provide the services of the scheduler.

Catch =̂ PCIHcatchError?e −→ Skip
Execute =̂ Run4 Catch

• Init ; Execute

Low-level (VM) exceptions might interrupt the control flow. These exceptions
may occur as a result of user-code runtime exceptions, VM-generated exceptions
from environmental assumption violations (like out of memory), or residual de-
sign errors. They are indicated via a channel PCIHcatchError as defined in the
action Catch, used in Execute to define the possible interruption of Run.

Finally, in phase (c) we define the Circus processes network linking together
all processes representing classes from Figure 2; it is as follows.

process IcecapVM =̂



ClockInterruptHandler CihPsInterface
‖
PrioScheduler PSIInterface
‖
PrioSchedulerImpl ScjPInterface
‖
ScjProcess ScjInterface


\ csSCJRTE

Channel sets CihPsInterface, PSIInterface, ScjPInterface, and ScjInterface are
defined to include all channels used in each process. A final set containing the
internal channels identified in (b.1) is used in a hiding: csSCJRTE above.

5 Evaluation

The icecap classes PrioScheduler and ClockInterruptHandler are modelled as
processes. For other infrastructure classes, like PriorityFrame, for example, only

Table 2. Summary of all Circus declarations.

Z Declarations Total Circus Declarations Total

Unboxed items 84 Channel declarations 51

Axiomatic definitions 28 Channel set declarations 13

Generic axiomatic definitions 2 Process declarations 12

Schemas 77 Actions 83

Generic schemas 1

Theorems 202

Proofs 202

a data model is provided, because their provided services are support operations
over such data, rather than active lines of execution or SCJ provided services.

The icecap Java code associated with the component in Figures 2 and 3
amounts to about 1600 lines of code. Following the modelling technique in Sec-
tion 3, and illustrated in Section 4, we obtain a Circus model presented in its
entirety in [12]. There, we also find Z/Eves proofs of the totalisation of various
Z schema operations, as well as a CSP version of the Circus model used for re-
finement and deadlock freedom checks. Table 2 provides a summary of numbers
of definitions and proofs, to provide an overall total of 755. The nature of the
actual proofs using Z/Eves and FDR3 is discussed in the sequel.

5.1 Z/Eves proofs

We have used the CZT tools [23]3 to develop the Circus model. These tools in-
clude Circus as an extension of Z within its Eclipse interface. CZT also integrates
the Z/Eves theorem prover [31] and its proof language as an extension.

Within CZT, we have typeset (in LATEX), typechecked and proved well-
formedness conditions of the whole model. This involves theorems about func-
tions being applied within their domain, axiomatic definitions soundness, type
non-emptiness, and so on. These proofs ensure that the model is consistent.

The CZT tools also have a verification-condition generator for Z and Circus.
These include well-formedness checks (for instance, functions are called within
their domains), and other consistency checks like feasibility of Z schema opera-
tions and race-freedom of Circus parallel actions. We have performed mechanised
proofs in Z/Eves of each of these generated verification conditions.

Of greater interest are the (21) precondition proofs: they are directly related
to the totalisation of operations as described by our approach (a.4). It is useful
to discover the various conditions to feature in the Circus model as guards for
communications. As explained, this introduces deadlocks whenever they are not
satisfied. Other proofs are for well-formedness (12) and various lemmas (169)
about involved types to make the precondition proofs viable.

3 See also http://czt.sourceforge.net

5.2 FDR refinement checks

The Circus model is translated to CSP for automatic analysis using FDR3 [14]: a
powerful refinement checker for CSP enabling automatic checking for deadlock
and livelock freedom, as well as other properties of interest.

The translation strategy from Circus to CSP is beyond the scope of this
paper; details about it can be found in [27]. It involves representing the Z data
model within FDR’s rich functional language, whereas the Circus CSP constructs
are almost in one-to-one correspondence with those of CSP-M. Access to process
state is done via channel communication and appropriate parallelism with its
corresponding process main action representation in CSP.

Details about this translation for the icecap HVM scheduler model can be
found in [12]. Key decisions about data abstraction and simplification of type
domains are necessary to avoid state explosion. Even so, FDR can handle quite
complex processes and enabled us to perform important consistency checks.

We have checked for deadlock and livelock freedom the processes related to
components in Figures 2 and 3. As expected, deadlock counterexamples occur
on either events external to the components, for example, required services from
the operating system, or failed precondition proofs modelled as CSP guards. The
required services are for handling exceptions thrown by design or at runtime. The
guards highlight hidden assumptions the icecap HVM scheduler code makes. For
instance, the priority scheduler implicitly expects all processes to be known to
the scheduler, and yet we can call the scheduler with “rogue” processes.

The CSP model has 540 lines excluding comments, and contains 4 top-level
processes with a total of around 100 implicitly declared processes through let

expressions. We use such expressions to encode Circus actions as well as state. We
are still working on the process network to deal with complex state invariants,
and prove more specific properties of a scheduler and of SCJ.

6 Related work

There are other works on verification of real-time schedulers. Ferreira et al. [8]
have worked on formal verification of the FreeRTOS scheduler using Hip/Sleek.
They use separation logic to verify memory safety as the FreeRTOS scheduler
uses a lot of pointers, which make the use of more traditional formal verification
techniques difficult. In our work, memory safety is partially guaranteed by Java’s
memory model and our challenges arise instead from the complex control flow
of the icecap HVM scheduler. On the other hand, it has to be shown that icecap
tools generate C code that is memory safe. This is a separate problem of compiler
correctness, which is part of our agenda for future work.

A comprehensive verification of the seL4 microkernel is reported in [19]. This
includes verification of the scheduler and other areas of the kernel, and a proof
that the binary code of the kernel correctly implements the C source code. The
verification of the functional properties of the system is machine-checked using
a C semantics in Isabelle/HOL. While we focus on the icecap HVM scheduler,
we expect that the icecap tools can be completely verified in the future.

For larger kernels, a major challenge in verification is the complex interdepen-
dency between the scheduler and the rest of the kernel. Gotsman and Yang [15]
have developed an approach for verifying such kernels modularly using separation
logic. It is also relevant to embedded systems where size and speed constraints
necessitate tight coupling between operating system components. Indeed, Klein
et al. [19] note that the call graph of seL4 shows high levels of interdependency
between components. Gotsman and Yang demonstrate their approach by verify-
ing a scheduler based on the Linux 2.6.11 scheduler.

We face similar challenges as the icecap tools also target embedded systems,
leading to tight coupling between components, but, as said before, our challenges
concern the communication between components rather than sharing of pointers.
We tackle our challenges by identifying the components and specifying their
interfaces. We define them as Circus processes and specify their interaction via
parallel networks. Compositional reasoning and refinement can then be used.

The work of Ludwich and Fröhlich [22] verifies a system-level model of a
scheduler by annotating its functions with preconditions and postconditions.
These annotations constitute a formal specification that the scheduler must fulfil,
which is checked using the C/C++ model checker CMBC. This work is perhaps
most similar to ours due to its use of preconditions and postconditions, but
our approach involves constructing a formal model from the code rather than
presenting the requirements as annotations to the code.

Finally, the great value of applying formal methods in the area of scheduling
is shown in [13], which reports a verification of the GCC scheduler using a model
in Isabelle/HOL. This effort has uncovered a bug in the GCC Itanium scheduler
that caused programs to be compiled incorrectly.

7 Conclusion

For SCJ to become a viable technology for use in safety-critical systems, certified
runtime environments are essential. The most advanced implementation of an
SCJ RTE is provided by the icecap tools. The implementation is complex. A
formal model is a major step in the development of a verified RTE for SCJ.

Developing a formal model of existing software is a major challenge. This is
made more difficult with the SCJ RTE as we have to model both high and low-
level abstractions. We have presented an approach that produces a Circus model
for Java and C source code. Automatic construction of models is not possible,
but support can be made available for encoding Java types in Z, calculation of
preconditions of data operations, and extraction of call graphs, for instance.

Our experience with the icecap tools implementation has been largely posi-
tive. Although the code can be hard to fathom in places, we have found just a
few bugs, mainly as the result of studying the code in sufficient depth to produce
the model. There are also places where there appears to be unreachable code
and where more defensive programming techniques can be employed to catch
errors that can be introduced during development and maintenance.

Our experience with Circus has also been largely positive. The lack of process
inheritance in Circus, however, has hindered some of our efforts. For example,
for the ScjProcess class representing the abstraction for a low-level vm.Process
within the SCJ paradigm, we need the gotoNextState method, which is rede-
fined in subclasses of ScjProcess that represent periodic and aperiodic han-
dlers and so on. Since we do not have process inheritance in Circus, in our
model we have a single process ScjProcess, in which the action corresponding to
gotoNextState uses a conditional to model the dynamic binding.

Our future work includes: (1) more analysis of the scheduler, for example,
to show it always dispatches the highest priority SCJ event handler; (2) im-
provement to the code to take into account our results; (3) the analysis of other
components of the icecap tools RTE, in particular the memory management
module; and (4) extensions of Circus with process inheritance.

Acknowledgements The authors gratefully acknowledge useful feedback from
anonymous referees, and Stephan Erbs Korsholm and Shuai Zhao for their help
in understanding the icecap HVM and its rationale. This work is supported by
EPSRC Grant EP/H017461/1. No new primary data were created in this study.

References

1. Armbruster, A. et al: A real-time Java virtual machine with applications in
avionics. ACM TECS 7(1), 5:1–5:49 (2007)

2. Atego: Atego PERC Pico - Products - Atego. www.atego.com/products/

atego-perc-pico/ (2015)
3. Audsley, N., Burns, A., Richardson, M., Tindell, K., Wellings, A.J.: Applying

new scheduling theory to static priority pre-emptive scheduling. Software Eng.
J. 8(5), 284–292 (1993)

4. Baxter, J.: Requirements for Safety-Critical Java Virtual Machines.
Tech. rep., University of York (2015), http://www.cs.york.ac.uk/circus/

publications/techreports/reports/scjvm-requirements.pdf

5. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: Unifying Classes and
Processes. SoSyM. 4(3), 277–296 (2005)

6. Cavalcanti, A.L.C., Zeyda, F., Wellings, A., Woodcock, J.C.P., Wei, K.: Safety-
critical Java programs from Circus models. RTS 49(5), 614–667 (2013)

7. Dalsgaard, A.E., Hansen, R.R., Schoeberl, M.: Private memory allocation anal-
ysis for Safety-Critical Java. In: JTRES. pp. 9–17. ACM (2012)

8. Ferreira., J. et al, W.: Automated verification of the FreeRTOS scheduler in
Hip/Sleek. STTT 16(4), 381–397 (2014),

9. Freitas, L., McDermott, J.P.: Formal methods for security in the Xenon hyper-
visor. STTT 13(5), 463 – 489 (2011)

10. Freitas, L., Woodcock, J.C.P.: Mechanising mondex with Z/Eves. FACJ. 20(1),
117–139 (2008)

11. Freitas, L., Woodcock, J.C.P., Fu, Z.: POSIX file store in Z/Eves: An experi-
ment in the verified software repository. SCP. 74(4), 238–257 (2009)

12. Freitas, L., Cavalcanti, A., Wellings, A.: Formal specification of SCJ icecap-
implementation. Tech. rep., Newcastle University, https://www.cs.york.ac.
uk/circus/publications/techreports/reports/hvm.pdf (2015)

13. Gesellensetter, L., Glesner, S., Salecker, E.: Formal verification with Is-
abelle/HOL in practice: Finding a bug in the GCC scheduler. In FMICS, LNCS,
vol. 4916, pp. 85–100. Springer Berlin Heidelberg (2008)

14. Gibson-Robinson, T. et al: FDR3 — A Modern Refinement Checker for CSP.
In TACAS. LNCS, vol. 8413, pp. 187–201 (2014)

15. Gotsman, A., Yang, H.: Modular verification of preemptive OS kernels. JFP.
23, 452–514 (2013),

16. Haddad, G., Hussain, F., Leavens, G.T.: The Design of SafeJML, A Specifi-
cation Language for SCJ with Support for WCET Specification. In: JTRES.
ACM (2010)

17. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
18. aicas realtime: JamaicaVM User Manual. www.aicas.com/cms/en/

reference-material (2014)
19. Klein, G. et al: Comprehensive formal verification of an OS microkernel. ACM

TCS 32(1), 2:1–2:70 (Feb 2014)
20. Locke, D., Andersen, B.S., Brosgol, B., Fulton, M., Henties, T., Hunt, J.J.,

Nielsen, J.O., Nilsen, K., Schoeberl, M., Tokar, J., Vitek, J., Wellings, A.:
Safety Critical Java Specification. The Open Group, UK (2010)

21. Luckowe, K.S., Thomsen, B., Korsholm, S.E.: HVMTP: A time predictable
and portable Java virtual machine for hard real-time embedded systems. In:
JTRES. pp. 107:107–107:116. ACM (2014)

22. Ludwich, M.K., Frohlich, A.A.: System-level verification of embedded operat-
ing systems components. In SBESC on. pp. 161–165 (Nov 2012)

23. Malik, P., Utting, M.: CZT: A framework for Z tools. In ZB. LNCS, vol. 3455,
pp. 65–84. Springer (2005)

24. Marriott, C., Cavalcanti, A.L.C.: SCJ: Memory-safety checking without anno-
tations. In: FM. LNCS, vol. 8442, pp. 465–480. Springer (2014)

25. Meisels, I.: Software Manual for Windows Z/EVES Version 2.1. ORA Canada
(2000), tR-97-5505-04g

26. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for
Circus. FACJ. 21(1-2), 3–32 (2009)

27. Oliveira, M., Sampaio, A.: Compositional analysis and design
of CML models. Tech. Rep. D24.1, COMPASS, www.compass-
research.eu/Project/Deliverables/D241.pdf (March 2013)

28. Pizlo, F., Ziarek, L., Vitek, J.: Real time Java on resource-constrained plat-
forms with Fiji VM. In: JTRES. pp. 110–119. ACM (2009)

29. Richard-Foy, M. et al: Use of PERC Pico for safety critical Java. In: ERTS
(2010)

30. Roscoe, A.W.: Understanding Concurrent Systems. Texts in Computer Science,
Springer (2011)

31. Saaltink, M.: Z/Eves 2.0 user’s guide. Tech. Rep. TR-99-5493-06a, ORA
Canada (1999)

32. Søndergaard, H., Korsholm, S.E., Ravn, A.P.: Safety-critical Java for low-end
embedded platforms. In: JTRES. pp. 44–53. ACM (2012)

33. Tang, D., Plsek, A., Vitek, J.: Static Checking of Safety Critical Java Annota-
tions. In: JTRES. ACM (2010)

34. Tofte, M., Talpin, J.P.: Region-based memory management. Information and
Computation 132(2), 109–176 (1997)

35. Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley (2004)
36. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.

Prentice-Hall (1996)

