
Automating Verification of State Machines
with Reactive Designs and Isabelle/UTP

Simon FosterORCiD, James Baxter, Ana Cavalcanti,
Alvaro Miyazawa, and Jim Woodcock

University of York

Abstract. State-machine based notations are ubiquitous in the descrip-
tion of component systems, particularly in the robotic domain. To ensure
these systems are safe and predictable, formal verification techniques are
important, and can be cost-effective if they are both automated and scal-
able. In this paper, we present a verification approach for a diagrammatic
state machine language that utilises theorem proving and a denotational
semantics based on Unifying Theories of Programming (UTP). We pro-
vide the necessary theory to underpin state machines (including induc-
tion theorems for iterative processes), mechanise an action language for
states and transitions, and use these to formalise the semantics. We then
describe the verification approach, which supports infinite state systems,
and exemplify it with a fully automated deadlock-freedom check. The
work has been mechanised in our proof tool, Isabelle/UTP, and so also
illustrates the use of UTP to build practical verification tools.

1 Introduction

The recent drive for adoption of autonomous robots into situations where they
interact closely with humans means that such systems have become safety crit-
ical. To ensure that they are both predictable and safe within their applied
context, it is important to adequately prototype them in a variety of scenarios.
Whilst physical prototyping is valuable, there is a limit to the breadth of sce-
narios that can be considered. Thus, techniques that allow virtual prototyping,
based on mathematically principled models, can greatly enhance the engineer-
ing process. In particular, formal verification techniques like model checking and
theorem proving can enable exhaustive coverage of the state space.

Diagrammatic notations are widely applied in component modelling, and par-
ticularly the modelling of robotic controllers via state machines. Standards like
UML1 and SysML2 provide languages for description of component interfaces,
the system architecture, and the behaviour of individual components. These no-
tations have proved popular due to a combination of accessibility and precise
modelling techniques. In order to leverage formal verification in this context,
there is a need for formal semantics and automated tools. Since UML is highly
1 Unified Modelling Language. http://www.uml.org/
2 Systems Modelling Language. http://www.omgsysml.org/

ar
X

iv
:1

80
7.

08
58

8v
2

 [
cs

.L
O

]
 2

4
A

ug
 2

01
8

https://orcid.org/0000-0002-9889-9514
http://www.uml.org/
http://www.omgsysml.org/

2 Simon Foster et al.

extensible, a specific challenge is to provide scalable semantic models that sup-
port extensions like real-time, hybrid computation, and probability.

RoboChart [1, 2] is a diagrammatic language for the description of robotic
controllers with a formal semantics based on Hoare and He’s Unifying Theories
of Programming [3] (UTP). The core of RoboChart is a formalised state machine
notation that can be considered a subset of UML/SysML state machine diagrams
enriched with time and probability constructs. Each state machine has a well
defined interface describing the events that are externally visible. The behaviour
of states and transitions is described using a formal action language that corre-
sponds to a subset of the Circus modelling language [4]. The notation supports
real-time constraints, through delays, timeouts and deadlines, and also proba-
bilistic choices, to express uncertainty. The use of UTP, crucially, enables us to
provide various semantic models for state machines that account for different
computational paradigms, and yet are linked through a common foundation.

In previous work [1], model checking facilities for RoboChart have been devel-
oped and applied in verification. This provides a valuable automated technique
for model development, which allows detection of problems during the early de-
velopment stages. However, explicit state model checking is limited to checking
finite state models. In practice this means that data types must be abstracted
with a small number of elements. In order to exhaustively check the potentially
very large or infinite state space of many robotic applications, symbolic tech-
niques, like theorem proving, are required. For theorem proving to be practically
applicable, like model checking, automation is highly desirable.

In this paper we present an automated verification technique for a subset of
RoboChart state machines in Isabelle/HOL [5]. With it, state machines can be
verified against properties formalised in a refinement statement, such as dead-
lock freedom. We mechanise the state machine meta-model, including its data
types, well-formedness constraints, and validation support. We use a UTP theory
of reactive designs [6, 7] to provide a dynamic semantics, based guarded itera-
tion [8]. We also engineer automated proof support in our UTP implementation,
Isabelle/UTP [9]. The semantics can, therefore, be used to perform verification
of infinite-state systems by theorem proving, with the help of a verified induction
theorem, and Isabelle/HOL’s automated proof facilities [10]. Our denotational
approach, like UML, is extensible, and further mechanised UTP theories can
account for real-time [11], probability [12], and other paradigms [13]. Our work
also serves as a template for building verification tools with Isabelle/UTP.

In §2 we outline background material for our work. In §3 we begin our con-
tributions by extending reactive designs with guarded iteration and an induc-
tion theorem for proving invariants. In §4 we mechanise reactive programs in
Isabelle/UTP, based on the reactive-design theory, and provide symbolic eval-
uation theorems. In §5 we mechanise a static semantics of state machines. In
§6 we provide the dynamic semantics, utilising the result from §3, and prove a
specialised induction law. In §7 we outline our verification technique, show how
to automatically prove deadlock freedom for an example state machine. Finally,
in §8 we conclude and highlight related work.

Automating Verification of State Machines 3

2 Preliminaries

2.1 RoboChart

RoboChart [1] describes robotic systems in terms of a number of controllers that
communicate using shared channels. Each controller has a well defined interface,
and its behaviour is described by one or more state machines. A machine has
local state variables and constants, and consists of nodes and transitions, with
behaviour specified using a formal action language [4]. Advanced features such as
hierarchy, shared variables, real-time constraints, and probability are supported.

A machine, GasAnalysis, is shown in Figure 1; we use it as a running example.
It models a component of a chemical detector robot [14] that searches for dan-
gerous chemicals using its spectrometer device, and drops flags at such locations.
GasAnalysis is the component that decides how to respond to a sensor reading. If
gas is detected, then an analysis is performed to see whether the gas is above or
below a given threshold. If it is below, then the robot attempts to triangulate a
position for the source location and turns toward it, and if it is above, it stops.

Fig. 1. GasAnalysis state machine in RoboChart

The interface consists of four events. The event gas is used to receive sensor
readings, and turn is used to communicate a change of direction. The remaining
events, resume and stop carry no data, and are used to communicate that the
robot should resume its searching activities, or stop. The state machine uses
four state variables: sts to store the gas analysis status, gs to store the present
reading, ins to store the reading intensity, and anl to store the angle the robot
is pointing. It also has a constant thr for the gas intensity threshold. RoboChart

4 Simon Foster et al.

provides basic types for variables and constants, including integers, real numbers,
sets, and sequences (Seq(t)). The user can also define additional types, that can
be records, enumerations, or entirely abstract. For example, the type Status is
an enumerated type with constructors gasD and noGas.

The behaviour is described by 6 nodes, including an initial node (i); a final
node (F); and four states: NoGas, Analysis, GasDetected, and Reading. The tran-
sitions are decorated with expressions of the form trigger [condition]/statement.
When the event trigger happens and the guard condition is true, then statement
is executed, before transitioning to the next state. All three parts can option-
ally be omitted. RoboChart also permits states to have entry, during, and exit
actions. In our example, both Analysis and GasDetected have entry actions.

The syntax of actions is given below, which assumes a context where event
and state variable identifiers have been specified using the nonterminal ID.

Definition 2.1 (Action Language Syntax).

Action := Event | skip | ID := Expr | Action ; Action |
if Expr then Action else Action end

Event := ID | ID ? ID | ID !Expr

An action is either an event, a skip, an assignment, a sequential composition,
or a conditional. An event is either a simple synchronisation on some identified
event e, an input communication (e?x) that populates a variable x , or an output
event (e!v). We omit actions related to time and operations for now.

Modelling with RoboChart is supported by the Eclipse-based RoboTool3,
from which Figure 1 was captured. RoboTool automates verification via model
checking using FDR4, and its extension to incorporate the verification approach
presented here is ongoing work.

2.2 Unifying Theories of Programming

UTP [3, 15] is a framework for the formalisation of computational semantic do-
mains that are used to give denotational semantics to a variety of programming
and modelling languages. It employs alphabetised binary relations to model pro-
grams as predicates relating the initial values of variables (x) to their later values
(x ′). UTP divides variables into two classes: (1) program variables, that model
data, and (2) observational variables, that encode additional semantic structure.
For example, clock : N is a variable to record the passage of time. Unlike a pro-
gram variable, it makes no sense to assign values to clock , as this would model
arbitrary time travel. Therefore, observational variables are constrained using
healthiness conditions, which are encoded as idempotent functions on predi-
cates. For example, application of HT (P) , (P ∧ clock ≤ clock ′) results in a
healthy predicate that specifies there is no reverse time travel.

The observational variables and healthiness conditions give rise to a subset
of the alphabetised relations called a UTP theory, which can be used to justify
3 https://www.cs.york.ac.uk/circus/RoboCalc/robotool/

https://www.cs.york.ac.uk/circus/RoboCalc/robotool/

Automating Verification of State Machines 5

the fundamental theorems of a computational paradigm. A UTP theory is the
set of fixed points of the healthiness condition: JHK , {P | H(P) = P}. A set
of signature operators can then be defined, under which the theory’s healthiness
conditions are closed, and are thus guaranteed to construct programs that satisfy
these theorems. UTP theories allow us to model a variety of paradigms beyond
simple imperative programs, such as concurrency [3, 4], real-time [11], object
orientation [16], hybrid [13,17], and probabilistic systems [12].

The use of relational calculus means that the UTP lends itself to automated
program verification using refinement S v P : program P satisfies specification
S . Since both S and P are specified in formal logic, and refinement equates to
reverse implication, we can utilise interactive and automated theorem proving
technology for verification. This allows application of tools like Isabelle/HOL to
program verification, which is the goal of our tool, Isabelle/UTP [9].

2.3 Isabelle/HOL and Isabelle/UTP

Isabelle/HOL [5] consists of the Pure meta-logic, and the HOL object logic. Pure
provides a term language, polymorphic type system, syntax translation frame-
work for extensible parsing and pretty printing, and an inference engine. The
jEdit-based IDE allows LATEX-like term rendering using Unicode. An Isabelle
theory consists of type declarations, definitions, and theorems, which are usu-
ally proved by composition of existing theorems. Theorems have the form of
JP1; · · · ; PnK =⇒ Q , where Pi is an assumption, and Q is the conclusion. The
simplifier tactic, simp, rewrites terms using theorems of the form f (x1 · · · xn) ≡ y .

HOL implements an ML-like functional programming language founded on
an axiomatic set theory similar to ZFC. HOL is purely definitional: mathematical
libraries are constructed purely by application of the foundational axioms, which
provides a highly principled framework. HOL provides inductive datatypes, re-
cursive functions, and records. Several basic types are provided, including sets,
functions, numbers, and lists. Parametric types are written by precomposing the
type name, τ , with the type variables [a1, · · · , an]τ , for example [nat]list4.

Isabelle/UTP [9, 18] is a semantic embedding of UTP into HOL, including
a formalisation of the relational calculus, fundamental laws, proof tactics, and
facilities for UTP theory engineering. The relational calculus is constructed such
that properties can be recast as HOL predicates, and then automated tactics,
such as auto, and sledgehammer [10], can be applied. This strategy is employed by
our workhorse tactic, rel-auto, which automates proof of relational conjectures.

Proof automation is facilitated by encoding variables as lenses [9]. A lens
x :: τ =⇒ α characterises a τ -shaped region of the type α using two functions:
getx :: α→ τ and putx :: α→ τ → α, that query and update the region, respec-
tively. Intuitively, x is a variable of type τ within the alphabet type α. Alphabet
types can be encoded using the alphabet r = f1 :: τ1 · · · fn :: τn command, that
constructs a new record type r with n fields, and a lens for each field. Lenses

4 The square brackets are not used in Isabelle; we add them for readability.

6 Simon Foster et al.

can be independent, meaning they cover disjoint regions, written x ./ y , or con-
tained within another, written x � y . These allow us to express meta-logical
style properties without actually needing a meta-logic [9].

The core UTP types include predicates [α]upred, and (homogeneous) rela-
tions [α]hrel. Operators are denoted using lenses and lifted HOL functions. An
important operator is substitution, σ †P , which applies a state update function
σ :: α → α to an expression, and replaces variables in a similar way to syn-
tactic substitution. Substitutions can be built using lens updates σ(x 7→ v), for
x :: τ =⇒ α and v :: [τ, α]uexpr , and we use the notation Lx1 7→ v1, · · · , xn 7→ vnM
for a substitution in n variables. Substitution theorems can be applied with the
simplifier to perform symbolic evaluation of an expression.

All the theorems and results that we present in this paper have been mechan-
ically validated in Isabelle/UTP, and the proofs can be found in our repository5.

2.4 Stateful-Failure Reactive Designs

RoboChart is a reactive language, where controllers exchange events with one
another and the robotic platform or the environment. Reactive programs can
make decisions both internally, based on the evaluation of their own state, and
externally, by offering several events. Consequently, they pause at particular
quiescent points during execution, when awaiting a communication. Unlike se-
quential programs, they need not terminate but may run indefinitely.

The UTP theory of stateful-failure reactive designs [7, 19] exists to give de-
notational semantics to reactive programming languages, such as CSP [3], Cir-
cus [4], and rCOS [20]. It is a relational version of the stable failures-divergences
semantic model, as originally defined in the UTP book [3,15] using event traces
and refusal sets, but extended with state variables. Its healthiness condition,
NCSP, which we previously mechanised [7], characterises relations that extend
the trace, update variables, and refuse certain events in quiescent phases. The
signature includes unbounded nondeterministic choice (

d
i∈I P(i)), conditional

(P 2 b 3 Q), and sequential composition (P # Q). JNCSPK forms a complete
lattice under v, with top element miracle and bottom chaos, and also a Kleene
algebra [7], which allows reasoning about iterative reactive programs.

The signature also contains several specialised operators. Event action, do(e),
describes the execution of an event expression e, that ranges over state variables.
When activated, it waits for e to occur, and then it terminates. Generalised
assignment (〈σ〉a) uses a substitution σ to update the state, following Back [21].
Basic assignment can be defined as (x := v) , 〈Lx 7→ vM〉a , and a unit as
skip , 〈id〉a . External choice, 2 i ∈ A • P(i) indexed by set A, as in CSP,
permits one of the branches to resolve either by an event, or by termination. A
binary choice P 2 Q is denoted by2X ∈ {P ,Q} • X . A guard, b & P , executes
P when b is true, and is otherwise equivalent to stop, the deadlocked action.
These operators obey several algebraic laws [7]; a small selection is below.

5 https://github.com/isabelle-utp/utp-main/tree/master/robochart/untimed

https://github.com/isabelle-utp/utp-main/tree/master/robochart/untimed

Automating Verification of State Machines 7

Theorem 2.2. If P is NCSP-healthy, then the following identities hold:

miracle # P =miracle (1)
〈σ〉a # P =σ †P (2)

(do(a)2do(b)) #P =do(a) #P 2 do(b) #P (3)

(1) states that miracle is a left annihilator for sequential composition. (2) allows
us to push an assignment into a successor program by inserting a substitution.
(3) allows us to left distribute through an external choice of events.

Our theory supports specifications using reactive contracts: [P −| Q |R]. It con-
sists of three relations over the state variables, trace variable (tt), and refusal
set variable (ref). P characterises assumptions of the initial state and trace, Q
characterises quiescent behaviours, and R characterises terminating behaviours.
Our previous result [7] shows that any reactive program can be denoted using
a reactive contract, which can be calculated by equational laws. This enables a
verification strategy that checks refinements between a specification and imple-
mentation contract, and has been implemented in a tactic called rdes-refine [6],
that can be used to check for deadlock [7], and which we employ in this paper.

3 Foundations for State Diagrams

In this section we extend the theory of reactive designs with constructs necessary
to denote state machines, and prove several theorems, notably an induction
law for iterative programs. Although these programming constructs are rather
standard, we consider their semantics in the reactive programming paradigm,
rather than in the standard sequential programming setting. It is a pleasing
aspect of our approach that standard laws hold in this much richer context.

State machines describe how to transition from one node to another. The
main construct we use to denote them is a reactive version of Dijkstra’s guarded
iteration statement [8] do i ∈ I • b(i) _ P(i) od , which repeatedly selects an
indexed statement P(i), based on whether its respective guard b(i) is true. I
is an index set, which when finite gives rise to the more programmatic form of
do b1 _ P1 | · · · | bn _ Pn od . We begin by defining Dijkstra’s alternation
construct, if i ∈I • b(i) _ P(i)fi [8], which underlies iteration.

Definition 3.1 (Guarded Commands, Assumptions, and Alternation).

b _ P , P 2 b 3miracle

[b] , b _ skip

if i ∈I • b(i) _ P(i)fi ,
(d

i∈I b(i) _ P(i)
)
u
((
¬
∨

i∈I b(i)
)

_ chaos
)

b _ P is a “naked” guarded command [22]. Its behaviour is P when b is true,
and miraculous otherwise, meaning it is impossible to execute. By Theorem 2.2,
miracle is a left annihilator for sequential composition, and so any following
behaviour is excluded when b is false. An assumption [b] guards skip with b,

8 Simon Foster et al.

and thus holds all variables constant when b is true, and is otherwise miraculous.
JNCSPK is closed under both these operators since they are defined only in terms
of healthy elements 2 ·3, miracle, and skip.

Alternation is a nondeterministic choice of guarded commands. When b(i) is
true for i ∈ I , P(i) can be executed. Any command which has b(i) false evaluates
tomiracle and thus is eliminated. If no b(i) is true, then its behaviour is chaos. If
multiple b(i) are true then one of the corresponding P(i) is nondeterministically
selected. JNCSPK is closed under alternation since it comprises only healthy
elements. From this definition we can prove a number of characteristic laws.
Theorem 3.2. If, ∀ i • P(i) is NCSP, then the following identities hold:

if i ∈ ∅ • b(i) _ P(i)fi = chaos (1)

if i ∈ {k} • b(i) _ P(i)fi =P(k)2 b(k)3 chaos (2)[∨
i∈I b(i)

]
if i ∈ I • b(i) _ P(i)fi =

(d
i∈I b(i) _ P(i)

)
(3)

In words, (1) shows that alternation over an empty set presents no options, and
so is equivalent to chaos; (2) shows that a singleton alternation can be rewritten
as a binary conditional; (3) shows that, if we assume that one of its branches is
true, then an alternation degenerates to a nondeterministic choice.

We now define guarded iteration as the iteration of the corresponding alter-
nation whilst at least one of the guards remains true.
Definition 3.3 (Guarded Iteration).

do i ∈I • b(i) _ P(i) od ,
(∨

i∈I b(i)
)
~ (if i ∈I • b(i) _ P(i)fi)

We use the reactive while loop (b ~ P) to encode the operator, and can thus
utilise our previous results [7] to reason about it. In keeping with the reactive
programming paradigm, this while loop can pause during execution to await
interaction, and it also need not terminate. However, in order to ensure that the
underlying fixed point can be calculated, we assume that for all i ∈ I , P(i) is
productive [17]: that is, it produces at least one event whenever it terminates.
This ensures that divergence caused by an infinite loop is avoided. Iteration is
closed under JNCSPK, since the while loop and alternation both are.

We can now prove the following fundamental refinement law for iteration.
Theorem 3.4 (Iteration Induction). If, ∀ i • P(i) is NCSP, then:

∀ i ∈ A • P(i) is Productive S v I # [
∧

i∈A (¬b(i))]

∀ i ∈ A • S v I # [b(i)] # P(i) ∀ i ∈ A • S v S # [b(i)] # P(i)

S v I # do i ∈ A • b(i) _ P(i) od

The law states the provisos under which an iteration, with initialiser I , preserves
invariant S . These are: (1) every branch is productive; (2) if I causes the iteration
to exit immediately then S is satisfied; (3) for any i ∈ A if I holds initially, b(i)
is true, and P(i) executes, then S is satisfied (base case); and (4) for any i ∈ A
if b(i) is true, and P(i) executes, then S is satisfied (inductive case). This law
forms the basis for our verification strategy.

Automating Verification of State Machines 9

4 Mechanised Reactive Programs

In this section we turn our reactive design theory into an Isabelle/HOL type,
so that we can use the type system to ensure well-formedness of reactive pro-
grams, which supports our verification strategy. The type allows efficient proof
and use of the simplifier to perform rewriting and also symbolic evaluation so
that assignments can be pushed forward and substitutions applied. We use it
to encode both state machine actions in §5, and the dynamic semantics in §6.
We first describe a general result for mechanising programs, apply it to reactive
programs, and also introduce a novel operator to express frame extension.

In UTP, all programs are unified by encoding them in the alphabetised rela-
tional calculus. Programs in different languages of various paradigms therefore
have a common mathematical form, and can be both compared and semantically
integrated. This idea is retained in Isabelle/UTP by having all programs occupy
the type [α]hrel, with a suitably specialised alphabet type α [18].

In Isabelle/UTP, we characterise a theory by (1) an alphabet type T , which
may be parametric; and (2) a healthiness function, H :: [T]hrel→ [T]hrel. The
theory signature consists of operators with the form fi :: ([T]hrel)k → [T]hrel,
each of which is accompanied by a proven closure theorem

f-H-closed : JP1 is H; · · · ; Pk is HK =⇒ f (P1, · · · ,Pk) is H

which ensures that the operator constructs healthy elements, provided its pa-
rameters are all healthy. For example, the reactive design theory has a theorem
JP is NCSP; Q is NCSPK =⇒ (P # Q) is NCSP, which demonstrates that se-
quential composition is in the signature. Theories also typically have algebraic
laws, like those in Theorem 2.2, which can be applied to reasoning about pro-
grams and thence to produce verification tools [6, 7].

This approach has several advantages for theory engineering [3,15]. There is a
unified notion of refinement that can be applied across semantic domains. Oper-
ators like nondeterminsitic choice (u) and sequential composition (#) can occupy
several theories, which facilitates generality and semantic integration. General
algebraic laws can be proved, and then directly reused in more specialised UTP
theories. The UTP approach means that theories can be both combined and
extended for a wide variety of computational paradigms and languages.

However, there is a practical downside, which is that the programming the-
orems, such as those in Theorem 2.2, require healthiness of the constituent pa-
rameters, and therefore it is necessary to first invoke the closure theorems. In
the context of verification, constantly proving closure can be very inefficient,
particularly for larger programs. This is because Isabelle’s simplifier works best
when invoked with pure equations f (x1, · · · , xn) ≡ y with minimal provisos.

Our solution uses the Isabelle type system to shoulder the burden of closure
proof. We use the typedef mechanism, which creates a new type T from a
non-empty subset A :: P(U) of existing type U . For a UTP theory, we create
a type with A = JHK, which is a subset of the UTP relations. This then allows
optimised proof for a particular UTP theory, but at the cost of generality and
semantic extensibility which are more suited to the UTP relational domain.

10 Simon Foster et al.

In order to obtain the signature for the new type, we utilise the lifting pack-
age [23], whose objective is to define operators on T in terms of operators on
U , provided that A is closed under each operator. Specifically, if f is a signature
operator in k arguments, then we can create a lifted operator f̂ :: T k → T
using Isabelle’s lift-definition command [23]. This raises a proof obligation that
f ∈ JHKk → JHK, which can be discharged by the corresponding closure theorem.
Programs constructed from the lifted operators are well-formed by construction.

Finally, to lift the algebraic theorems for each lifted operator f̂ , we use
the transfer tactic [23]. It allows us to prove theorems like f̂ (P1, · · · ,Pk) =
ĝ(P1, · · · ,Pk), where Pi :: T is a free variable, by converting it to a theorem
of the form JQ1 is H; · · · ; Qk is HK =⇒ f (Q1, · · · ,Qk) = g(Q1, · · · ,Qk). This
means the closure properties of each parameter Qi can be utilised in disharging
provisos of the corresponding UTP theorems, but the lifted theorems do not
require them. We will now use this technique for our reactive program type.

The reactive designs alphabet is [s, e]st-csp, for state space s and event type e.
NCSP [7], of type [[s, e]st-csp]hrel→ [[s, e]st-csp]hrel, characterises the theory.
We use it to define the reactive program type, [s, e]Action and lift each theory
operator from §2 and §3. For example, guard is a function (b&P) :: [s, e]Action,
for b :: [s]upred and P :: [s, e]Action. For the action language, we define basic
events e , do(e), send e!v , do(e.v), and receive e?x , 2 v • do(e.v) # x :=
v . From these lifted definitions, and using the transfer tactic, all the laws in
Theorems 2.2 and 3.4 can be recast for the new operators, but without closure
conditions. We then prove substitution laws for σ †P , where σ :: s → s and
P :: [s, e]Action, which can be used for symbolic evaluation.
Theorem 4.1 (Symbolic Evaluation Laws).

σ †[b] = [σ † b] # 〈σ〉a
σ †(P # Q) = (σ †P) # Q

σ †〈ρ〉a = 〈ρ ◦ σ〉a

σ †(P 2 Q) = (σ †P) 2 (σ †Q)

σ †(b & P) = (σ † b) & (σ †P)

σ † e!v = e!(σ † v) # 〈σ〉a
These laws show how substitution applies and distributes through the operators.
In combination with the assignment law of Theorem 2.2(2), they can be used to
apply state updates. For example, one can automatically prove that

(x := 2 # y := (3 ∗ x) # e!(x + y)) = (e!8 # 〈x 7→ 2, y 7→ 6〉a)

since we can combine the assignments and push them through the send event.
To denote state machines, we need a special variable (actv) to record the cur-

rently active node. This is semantic machinery, and no action is permitted access
to it. We impose this constraint via frame extension: a :[P]+ :: [s1, e]Action, for
a :: s2 =⇒ s1 and P :: [s2, e]Action, that extends the alphabet of P . It is similar
to a frame in refinement calculus [22], which prevents modification of variables,
but also uses the type system to statically prevent access to them. Lens a iden-
tifies a subregion α of the larger alphabet β, that P acts upon. Intuitively, α is
the set of state machine variables, and β this set extended with actv . P can only
modify variables within α, and others are held constant. We prove laws for this
operator, which are also be used in calculating the semantics.

Automating Verification of State Machines 11

Theorem 4.2 (Frame Extension Laws).

a :[P #Q]+ = a :[P]+ #a :[Q]+ a :[e?x]+ = e?(a:x) a :[x := v]+ = a:x := v

Frame extension distributes through sequential composition. For operators like
event receive and assignment, the variable is extended by the lens a, which is like
a namespace operator (a:x). Specifically, it manipulates the region characterised
by x within the region of a. This completes the mechanised reactive language.

5 Static Semantics

In this section we formalise a state machine meta-model in Isabelle/HOL, which
describes the variables, transitions, and nodes. The meta-model, presented be-
low, is based on the untimed subset of RoboChart, but note that our use
of UTP ensures that our work is extensible to more advanced semantic do-
mains [11, 12, 17]. For now we omit constructs concerned with interfaces, op-
erations, shared variables, during actions, and hierarchy, and focus on basic
machines.

Definition 5.1 (State Machine Meta-Model).
StMach := statemachine ID

vars NameDecl* events NameDecl* states NodeDecl*
initial ID finals ID* transitions TransDecl*

NameDecl := ID [: Type]
NodeDecl := ID entry Action exit Action
TransDecl := ID from ID to ID trigger Event condition Expr action Action

A state machine is composed of an identifier, variable declarations, event decla-
rations, state declarations, an initial state identifier, final state identifiers, and
transition declarations. Each variable and event consists of a name and a type. A
state declaration consists of an identifier, entry action, and exit action. A transi-
tion declaration consists of an identifier, two state identifiers for the source and
target nodes, a trigger event, a condition, and a body action. Whilst we do not
directly consider hierarchy, this can be treated by flattening out substates.

We implement the meta-model syntax using Isabelle’s parser, and implement
record types [s, e]Node and [s, e]Transition, that correspond to the NodeDecl and
TransDecl syntactic categories. They are both parametric over the state-space
s and event types e. Node has fields nname :: string, nentry :: [s, e]Action, and
nexit :: [s, e]Action, that contain the name, entry action, and exit action. Tran-
sition has fields src :: string, tgt :: string, trig :: [s, e]Action, cond :: [s]upred, and
act :: [s, e]Action, that contain the source and target, the trigger, the condition,
and the body. We then create a record type to represent the state machine.

Definition 5.2 (State Machine Record Type).

record [s, e]StMach =
init :: ID finals :: [ID]list

nodes :: [[s, e]Node]list transs :: [[s, e]Transition]list

12 Simon Foster et al.

It declares four fields for the initial state identifier (init), final states identifiers
(finals), nodes definitions (nodes), and transition definitions (transs), and con-
stitutes the static semantics. Since this corresponds to the meta-model, and to
ensure a direct correspondence with the parser, we do not directly use sets and
maps, but only lists in our structure. We will later derive views onto the data
structure above, that build on well-formedness constraints.

Below, we show how syntactic machines are translated to Isabelle definitions.
Definition 5.3 (Static Semantics Translation).

statemachine s

vars x1 : τv1 · · · xi : τ
v
i

events e1 : τe1 · · · ej : τej

states s1 · · · sk initial ini

finals f1 · · · fm
transitions t1 · · · tn

=⇒

alphabet s-alpha = x1 : τv1 · · · xi : τ
v
i

datatype s-ev = ε | e1 te1 | · · · | ej tej

definitionmachine :: [s-alpha, s-ev]StMach

wheremachine =

Linit = ini ,
finals = [f1 · · · fm],
states = [s1 · · · sk],
transs = [t1 · · · tn]M

definition semantics = JmachineKM

For each machine, a new alphabet is created, which gives rise to a HOL record
type s-alpha, and lenses for each field of the form tvi =⇒ s-alph. For the events,
an algebraic datatype s-ev is created with constructors corresponding to each
of them. We create a distinguished event ε that will be used in transitions with
explicit trigger and ensures productivity. The overall machine static semantics is
then contained in machine. We also define semantics that contains the dynamic
semantics in terms of the semantic function J·KM that we describe in §6.

Elements of the meta-model are potentially not well-formed, for example
specifying an initial state without a corresponding state declaration, and there-
fore it is necessary to formalise well-formedness. RoboTool enforces a number of
well-formedness constraints [2], and we here formalise the subset needed to en-
sure the dynamic semantics given in §6 can be generated. We need some derived
functions for this, and so we define nnames , set(map nname (nodes)), which
calculates the set of node names, and fnames, which calculates the set of final
node names. We can now specify our well-formedness constraints.
Definition 5.4. A state machine is well-formed if it satisfies these constraints:
1. Each node identifier is distinct: distinct(map nname (nodes))
2. The initial identifier is defined: init ∈ nnames
3. The initial identifier is not final: init /∈ fnames
4. Every transition’s source node is defined and non-final:
∀ t ∈ transs • src(t) ∈ nnames \ fnames

5. Every transition’s target node is defined: ∀ t ∈ transs • tgt(t) ∈ nnames

We have implemented them in Isabelle/HOL, along with a proof tactic called
check-machine that discharges them automatically when a generated static se-
mantics is well-formed, and ensure that crucial theorems are available to the dy-
namic semantics. In practice, any machine accepted by RoboTool is well-formed,
and so this tactic simply provides a proof of that fact to Isabelle/HOL.

Automating Verification of State Machines 13

Fig. 2. State machine notation in Isabelle/UTP

In a well-formed machine every node has a unique identifier. Therefore, using
Definition 5.4, we construct two finite partial functions, nmap :: ID 7 7→ [s, e]Node
and tmap :: ID 7 7→ [s, e]Transition list , that obtain the node definition and list
of transitions associated with a particular node identifier, respectively, whose
domains are both equal to nnames. We also define ninit , nmap init, to be the
definition of the initial node, and inters to be the set of nodes that are not final.
Using well-formedness we can then prove the following theorems.

Theorem 5.5 (Well-formedness Properties).

1. All nodes are identified: ∀n ∈ set(nodes) • nmap (nname(n)) = n
2. The initial node is defined: ninit ∈ set(nodes)
3. The name of the initial node is correct: nname(ninit) = init

These theorems allow us to extract the unique node for each identifier, and in
particular for the initial node. Thus, Isabelle/HOL can parse a state machine
definition, construct a static semantics for it, and ensure that this semantics is
both well-typed and well-formed. The resulting Isabelle command is illustrated
in Figure 2 that encodes the GasAnalysis state machine of Figure 1.

6 Dynamic Semantics

In this section we describe the behaviour of a state machine using the reactive
program domain we mechanised in §4. The RoboChart reference semantics [2]
represents a state machine as a parallel composition of CSP processes that repre-
sent the individual variables and states. Variable access and state orchestration
are modelled by communications between them. Here, we capture a simpler se-
quentialised semantics using guarded iteration, which eases verification. In par-
ticular, state variables have a direct semantics, and require no communication.
The relation between these two semantics can be formalised by an automated
refinement strategy that reduces parallel to sequential composition [4].

We first define alphabet type [s]rcst , parametrised by the state space type
s, and consisting of lenses actv :: ID =⇒ [s]rcst and r :: s =⇒ [s]rcst . The

14 Simon Foster et al.

former lens records the currently active state, and the latter projects the state
machine variable space. No action is permitted to refer to actv , a constraint that
we impose through the frame extension r :[P]+.

We describe the dynamic semantics of a state diagram using three functions.

Definition 6.1 (Dynamic Semantics).

JM KM ,

(
actv := initM #
doN ∈set(intersM) • actv = nname(N) _ M |= JN KN od

)
M |= JN KN , r :[nentry(N)]+ #

(
2 t ∈ tmapM (nname(N)) • M ,N |= JtKT

)
M ,N |= JtKT , r :[cond(t) & trig(t) # nexit(N) # action(t)]+ # actv := tgt(t)

The function J·KM :: [s, e]StMach → [[s]rcst , e]Action calculates the overall be-
havioural semantics. It first sets actv to the initial node identifier, and then
enters a do iteration indexed by all non-final nodes. If a final node is selected,
then the iteration terminates. In each iteration, the node N that is named by
actv is selected, and the semantics for it is calculated using M |= JN KN.

When in a node, the entry action is first executed using nentry, and then
an external choice is presented over all transitions associated with N , which
are calculated using tmap. The entry and exit actions do not have actv in their
alphabet, and therefore we apply frame extensions to them. The semantics of a
transition, M ,N |= JtKT, is guarded by the transition condition, and awaits the
trigger event. Once this occurs, the exit action of N is executed, followed by the
transition action, and finally actv is updated with the target node identifier.

The output of the semantics is an iterative program with one branch for every
non-final state. To illustrate, we below generate the denotational semantics for
the GasAnalysis state machine given in Figure 1.

Example 6.2 (GasAnalysis Dynamic Semantics).
actv := InitState #
do

actv = InitState → ε # r:gs := 〈〉 # r:anl := 0 # actv := NoGas

| actv = NoGas → gas?r:gs # actv := Analysis

| actv = Analysis →

r:sts := analysis(r:gs) #
(
r:sts = noGas & ε # resume # actv := NoGas
2 r:sts = gasD & ε # actv := GasDetected

)
| actv = GasDetected → r:ins := intensity(r:gs) # goreq(ins, thr) & ε # stop # actv := FinalState

2 (¬goreq(ins, thr)) & ε # r:anl := location(r:gs) #
turn!(r:anl) # actv := Reading

| actv = Reading → gas?r:gs # actv := Analysis

od

In order to yield a more concise definition, we have also applied the action
simplification laws given in §4. In particular, the frame extensions have all been
expanded so that the state variables are explicitly qualified by lens r .

Automating Verification of State Machines 15

In order to verify such state machines, we need a specialised refinement intro-
duction law. Using our well-formedness theorem, we can specialise Theorem 3.4.

Theorem 6.3. The semantics of a state machine M refines a reactive invariant
specification S , that is S v JM KM, provided that the following conditions hold:

1. M is well-formed according to Definition 5.4;
2. the initial node establishes the invariant — S v M |= JninitM KN;
3. every non-final node preserves S — ∀N ∈ intersM • S v S # (M |= JN KN).

Proof. By application of Theorem 3.4, and utilising trigger productivity. ut

We now have all the infrastructure needed for verification of state machines, and
in the next section we describe our verification strategy and tool.

7 Verification Approach

In this section we use the collected results presented in the previous sections to
define a verification strategy for state machines, and exemplify its use in veri-
fying deadlock freedom. Our approach utilises Theorem 6.3 and our contractual
refinement tactic, rdes-refine, to prove that every state of a state machine satisfies
a given invariant, which is specified as a reactive contract. The overall workflow
for description and verification of a state machine is given by the following steps:

1. parse, type check, and compile the state machine definition;
2. check well-formedness (Definition 5.4) using the check-machine tactic;
3. calculate denotational semantics, resulting in a reactive program;
4. perform algebraic simplification and symbolic evaluation (Thms 2.2, 4.1);
5. apply Theorem 6.3 to produce sequential refinement proof obligations;
6. apply rdes-refine to each goal, which may result in residual proof obligations;
7. attempt to discharge each remaining proof obligation using sledgehammer [10].

Diagrammatic editors, like RoboTool, can be integrated with this by imple-
menting a serialiser for the underlying meta-model. The workflow can be com-
pletely automated since there is no need to enter manual proofs, and the final
proof obligations are discharged by automated theorem provers. If proof fails,
Isabelle/HOL has the nitpick [10] counterexample generator that can be used for
debugging. This means that the workflow can be hidden behind a graphical tool.

We can use the verification procedure to check deadlock freedom of a state
machine using the reactive contract dlockf , [true −| ∃ e • e /∈ ref | true], an
invariant specification which states that in all quiescent observations, there is
always an event that is not being refused. In other words, at least one event is
always enabled; this is the meaning of deadlock freedom. We can use this con-
tract to check the GasAnalysis state machine. For a sequential machine, deadlock
freedom means that it is not possible to enter a state and then make no further
progress. Such a situation can occur if the outgoing transitions can all be disabled
simultaneously if, for example, their guards do not cover all possibilities.

16 Simon Foster et al.

Fig. 3. Selection of deadlock freedom proof obligations in Isabelle/UTP

The result of applying the verification procedure up to step 5 is shown in
Figure 3. At this stage, the semantics for each node has been generated, and
deadlock freedom refinement conjectures need to be proved. Isabelle generates
6 subgoals, 3 of which are shown, since it is necessary to demonstrate that the
invariant is satisfied by the initial state and each non-final state. The first goal
corresponds to the initial state, where no event occurs and the variables gs
and anl , along with actv , are all assigned. The second goal corresponds to the
Analysis state. The state body has been further simplified from the form shown
in Figure 6.2, since symbolic evaluation has pushed the entry action through the
transition external choice, and into the two guards. This is also the case for the
third goal, which corresponds to the more complex GasDetected state.

The penultimate step applies the rdes-refine tactic to each of the 6 goals. This
produces 3 subgoals for each goal, a total of 18 first-order proof obligations, and
invokes the relational calculus tactic rel-auto on each of them. The majority are
discharged automatically, but in this case three HOL predicate subgoals remain.
One of them relates to the Analysis state, and requires that the constructors
noGas and gasD of Status are the only cases for sts. If there was a third case,
there would be a deadlock as the outgoing transition guards don’t cover this.

Finally, we execute sledgehammer on each of the three goals, which provides
proofs and so completes the deadlock freedom check. Thus, we have engineered
a fully automated deadlock freedom prover for state machines.

8 Conclusions and Related Work

In this paper we have presented a verification strategy for state machines in
Isabelle/UTP by utilising the theory of stateful-failure reactive designs, and
automated proof facilities. We have extended our UTP theory with the guarded
iteration construct, which is the foundation of sequential state machines, proved
a crucial induction law, and adapted it to an efficient implementation of reactive
programs. We have created a static semantics of state machines in Isabelle/HOL,
including well-formedness checks, and a dynamic semantics that generates a
reactive program. Finally, we used this to describe a verification approach that
utilises reactive contract refinement and iterative induction.

Automating Verification of State Machines 17

In future work, we will expand our semantics to handle additional features
of RoboChart. Hierarchy, can be handled by having the actv variable hold a
list of nodes, and during actions by implementing a reactive interruption opera-
tor [24]. Moreover, we are developing reasoning facilities for parallel composition
and hiding to allow expression of concurrent state machines, which extends our
existing work [6,7]. This will greatly increase verification capabilities for robotic
and component-based systems, allow us to handle asynchronous communication
and shared variables, and also to mechanise the CSP reference semantics [2].

A challenge that remains is handling assumptions and guarantees between
parallel components, but we believe that abstraction of state machines to in-
variants, using our results, can make this tractable. We will also explore other
reasoning approaches, such as use of the simplifier to algebraically transform
state machines to equivalent forms. Going further, we emphasise that our UTP
theory hierarchy supports more advanced semantic paradigms. We will there-
fore develop a mechanised theory of timed reactive designs, based on existing
work [11, 17], and use this to denote the timing constructs of RoboChart state
machines. We are developing a UTP theory of probability [12], and will use
it to handle probabilistic junctions. We also have a theory of hybrid reactive
designs [13,17], which we believe can be used to support hybrid state machines.

In related work, while a number of state machine notations exist, such as
UML and Stateflow, to the best of our knowledge, they provide limited support
for formal verification by theorem proving. While formalisations have been pro-
posed [25, 26], they typically address a subset of the target notation or focus
on model checking. Other approaches such as [27], similarly restrict themselves
to model checking or other forms of automatic verification, which have limita-
tions on both the types of systems that can be analysed (mostly finite) and the
kinds of properties that can be checked (schedulability, temporal logic, etc). We
differ in that our approach is extensible, fully automated, and can handle infi-
nite state systems with non-trivial types. Also, our verification laws have been
mechanically validated with respect only to the axioms of Isabelle/HOL.
Acknowledgements. This work is funded by the EPSRC projects RoboCalc6

(Grant EP/M025756/1) and CyPhyAssure7 (Grant EP/S001190/1), and the
Royal Academy of Engineering.

References

1. Miyazawa, A., Ribieiro, P., Li, W., Cavalcanti, A., Timmis, J.: Automatic property
checking of robotic applications. In: Intl. Conf. on Intelligent Robots and Systems
(IROS), IEEE (2017) 3869–3876

2. Miyazawa, M., Cavalcanti, A., Ribeiro, P., Li, W., Woodcock, J., Timmis, J.:
Robochart reference manual. Technical report, University of York (June 2018)
https://cs.york.ac.uk/circus/RoboCalc/assets/robochart-reference.pdf.

3. Hoare, T., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
6 RoboCalc Project: https://www.cs.york.ac.uk/circus/RoboCalc/
7 CyPhyAssure Project: https://www.cs.york.ac.uk/circus/CyPhyAssure/

https://cs.york.ac.uk/circus/RoboCalc/assets/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/RoboCalc/
https://www.cs.york.ac.uk/circus/CyPhyAssure/

18 Simon Foster et al.

4. Oliveira, M., Cavalcanti, A., Woodcock, J.: A UTP semantics for Circus. Formal
Aspects of Computing 21 (2009) 3–32

5. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer (2002)

6. Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F.: Unifying theories
of reactive design contracts. Submitted to Theoretical Computer Science (Dec
2017) Preprint: https://arxiv.org/abs/1712.10233.

7. Foster, S., Ye, K., Cavalcanti, A., Woodcock, J.: Calculational verification of re-
active programs with reactive relations and Kleene algebra. In: Proc. 17th Intl.
Conf. on Relational and Algebraic Methods in Computer Science (RAMICS)

8. Dijkstra, E.W.: Guarded commands, nondeterminacy and formal derivation of
programs. Communications of the ACM 18(8) (1975) 453–457

9. Foster, S., Zeyda, F., Woodcock, J.: Unifying heterogeneous state-spaces with
lenses. In: ICTAC. LNCS 9965, Springer (2016) 295–314

10. Blanchette, J.C., Bulwahn, L., Nipkow, T.: Automatic proof and disproof in Is-
abelle/HOL. In: FroCoS. Volume 6989 of LNCS., Springer (2011) 12–27

11. Sherif, A., Cavalcanti, A., He, J., Sampaio, A.: A process algebraic framework for
specification and validation of real-time systems. Formal Aspects of Computing
22(2) (2010) 153–191

12. Bresciani, R., Butterfield, A.: A UTP semantics of pGCL as a homogeneous rela-
tion. In: IFM. LNCS 7321, Springer (2012) 191–205

13. Foster, S., Thiele, B., Cavalcanti, A., Woodcock, J.: Towards a UTP semantics for
Modelica. In: UTP. LNCS 10134, Springer (2016) 44–64

14. Hilder, J., Owens, N., Neal, M., Hickey, P., Cairns, S., Kilgour, D., Timmis, J.,
Tyrrell, A.: Chemical detection using the receptor density algorithm. IEEE Trans-
actions on Systems, Man, and Cybernetics 42(6) (2012) 1730–1741

15. Cavalcanti, A., Woodcock, J.: A tutorial introduction to CSP in unifying theories
of programming. In: PSSE. Volume 3167 of LNCS. Springer (2006) 220–268

16. Santos, T., Cavalcanti, A., Sampaio, A.: Object-Orientation in the UTP. In: UTP
2006. Volume 4010 of LNCS., Springer (2006) 20–38

17. Foster, S., Cavalcanti, A., Woodcock, J., Zeyda, F.: Unifying theories of time with
generalised reactive processes. Information Processing Letters 135 (2018) 47–52

18. Feliachi, A., Gaudel, M.C., Wolff, B.: Unifying theories in Isabelle/HOL. In: UTP
2010. Volume 6445 of LNCS., Springer (2010) 188–206

19. Foster, S., et al.: Stateful-failure reactive designs in Isabelle/UTP. Technical
report, University of York (2018) http://eprints.whiterose.ac.uk/129768/.

20. Zhan, N., Kang, E.Y., Liu, Z.: Component publications and compositions. In:
UTP. Volume 5713 of LNCS., Springer (2008) 238–257

21. Back, R.J., Wright, J.: Refinement calculus: a systematic introduction. Springer
(1998)

22. Morgan, C., Vickers, T.: On the Refinement Calculus. Springer (1992)
23. Huffman, B., Kunčar, O.: Lifting and transfer: A modular design for quotients in

Isabelle/HOL. In: CPP. Volume 8307 of LNCS., Springer (2013) 131–146
24. McEwan, A.: Concurrent Program Development in Circus. PhD thesis, Oxford

University (2006)
25. Schäfer, T., Knapp, A., Merz, S.: Model checking UML state machines and col-

laborations. ENCTS 55(3) (2001) 357 – 369
26. Miyazawa, A., Cavalcanti, A.: Refinement-oriented models of stateflow charts.

Science of Computer Programming 77(10-11) (2012)
27. Foughali, M., et al.: Model checking real-time properties on the functional layer of

autonomous robots. In: ICFEM. Volume 10009 of LNCS., Springer (2016)

https://arxiv.org/abs/1712.10233
http://eprints.whiterose.ac.uk/129768/

	Automating Verification of State Machines with Reactive Designs and Isabelle/UTP
	1 Introduction
	2 Preliminaries
	2.1 RoboChart
	2.2 Unifying Theories of Programming
	2.3 Isabelle/HOL and Isabelle/UTP
	2.4 Stateful-Failure Reactive Designs

	3 Foundations for State Diagrams
	4 Mechanised Reactive Programs
	5 Static Semantics
	6 Dynamic Semantics
	7 Verification Approach
	8 Conclusions and Related Work

