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Abstract. In this paper we describe an algebraic approach to construct provably correct compilers for object-oriented
languages; this is illustrated for programs written in a language similar to a sequential subset of Java. It includes re-
cursive classes, inheritance, dynamic binding, recursion, type casts and test, assignment, and class-based visibility, but
a copy semantics. In our approach, we tackle the problem of compiler correctness by reducing the task of compilation
to that of program refinement. Compilation is identified with the reduction of a source program to a normal form that
models the execution of object code. The normal form is generated by a series of correctness-preserving transfor-
mations that are proved sound from the basic laws of the language; therefore it is correct by construction. The main
advantages of our approach are the characterisation of compilation within a uniform framework, where comparisons
and translations between semantics are avoided, and the modularity and extensibility of the resulting compiler.
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1. Introduction

Ensuring the correct translation of source into executable code has been a significant research challenge. Correctness
proofs performed on programs written in high-level languages cannot ensure correctness of an application. There are
various issues involved, and, in particular, a point that needs to be addressed is the correctness of the compiler. Several
approaches based on a variety of semantic styles have been proposed. For procedural languages, the design of correct
compilers is well understood; examples of successful strategies are [Wat03, Wil02, Sam97, MO97, Pol81, TWW81,
MP67]. Provably correct compilation of object-oriented features, however, is still a challenge. There are results based
on a formalisation of Java and the JVM, most of them using ASM models [NO98, SSB01, KN06].

The compilation process involves several stages. Even for languages with an elaborate syntax or typing system,
including object-oriented languages, there are well understood theories and techniques to handle syntax and type
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Fig. 1. Compilation approach

checking. In our work, we deal with a language whose syntax, typing system, and well-formedness is completely
formalised [CN00]. Therefore, we address the problem of correct code generation of well formed programs only.

Our approach is calculational; it is inspired on that first described in [HHS93], and further developed for imperative
programs in [Sam97]. Its main advantage, which accounts for much of its simplicity, is that all the reasoning is carried
out within a single framework of an object-oriented language with an algebraic semantics. More precisely, instead of
having a semantic model for the source language, a different model for the target language, and a mapping between
them to justify the translation, we have just one mathematical theory that is used to model both the source and the
target languages, and an accompanying correctness relation that justifies the translation.

In more detail, we tackle compiler correctness by characterising compilation as program refinement into a normal
form. The product of the compilation is a normalised program in the source language itself. The normal form is an
interpreter-like program that emulates the behaviour of the target machine and the compiled program in the target
language. It is a model for a virtual machine inspired on a sequential Java Virtual Machine (JVM) [LY97]. From this
interpreter we can capture the sequence of generated instructions.

What we have is a constructive approach in that compilation is carried by the systematic application of rules that
are based on basic algebraic laws of the language. Therefore, the correctness of the compiler follows directly from the
soundness of the rules. Figure 1 illustrates the correctness process based on program refinement.

Refinement is formalised as an ordering relation on programs: P1 v P2 means that P2 meets every purpose and
satisfies every specification satisfied by P1, that is, P2 is at least as good as P1. The relation v is a partial ordering
weaker than equality; the set of algebraic laws that holds for equality is a strict subset of that which holds for v, and
therefore refinement is often easier to be established than equality.

Our source language is a subset of sequential Java enriched with specification constructs; it is called ROOL (an
acronym for Refinement Object-oriented Language). Although pointers are ubiquitous in practice, ROOL adopts a
copy semantics, and so we do not model references or sharing. This does simplify the semantics of the language, but
ROOL is sufficiently similar to Java to be used in meaningful case studies and to capture many of the central difficulties
that arise on the formalisation of compilation. The laws of ROOL related to object-oriented features are not restricted
to the copy semantics; it has been shown in [SSL08] that they also hold in the presence of pointers. This makes ROOL
useful for exploring a comprehensive set of laws for applications of program transformation. Refactoring rules justified
by the basic algebraic rules of ROOL has already been considered in [Cor04].

In Figure 2 we present a simple program in ROOL to illustrate our compilation approach. This program contains
two class declarations and a main command. The class A declares the protected attribute i (whose scope includes A
and its subclass B ) and the method inc whose body is an assignment that increments i by 2. A reference to an attribute
uses self to make it explicit that it is an access to an attribute of the current object; so we write self.i rather than just i .

The class B extends (inherits from) A, declaring the private attribute j (whose scope is just B ) and the methods
inc and out . The method inc declared in B is a redefinition of the method of the same name declared in its superclass;
it uses the call super.inc to invoke the superclass method (to increment i ), and then it increments j . The method out
has a result parameter l that records the sum of the attributes i and j .

In the main command, a variable x of type A is declared and initialised with an object of type B . Afterwards, there
is a call to inc and a call to out with a parameter result ; this is a global variable, and we use it to represent the output.

There are five phases of compilation. The first phase (Class Pre-compilation) consists of changing the visibility of
the attributes i and j to public, and moving the redeclared method inc upwards in the class hierarchy. The resulting
program is in Figure 3. The method inc is declared only once, within the class A. The body of this new method inc
is a conditional that checks the type of the object associated with the call (self) to determine which of the bodies of
the original versions of inc is to be executed. Uses of super calls are eliminated and all expressions are cast to record
their types; this is especially important in the case of self, because it is context sensitive. For instance, the assignment
self.j := self.j +1 in the body of method inc in class B is cast as (B self).j := (B self).j +1.

In the next compilation phase, Redirection of Method Calls, we introduce a special class L; Figure 4 shows the
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class A
prot i : int;
meth inc ∧= ( • self.i := self.i + 2)

end
class B extends A

pri j : int;
meth inc ∧= ( • super.inc; self.j := self.j + 1)
meth out ∧= (res l : int • l := self.j + self.i)

end
• var x : A •

x := newB ;
x .inc;
x .out(result)

end

Fig. 2. Simple example to illustrate our compilation approach

class A
pub i : int;
meth inc ∧= ( •

if (self is A) → (A self).i := (A self).i + 2
2 ¬(self is A) → (A self).i := (A self).i + 2; (B self).j := (B self).j + 1
fi)

end
class B extends A

pub j : int;
meth out ∧= (res l : int • l := (B self).j + (B self).i)

end
• var x : A •

x := newB ;
x .inc;
x .out(result)

end

Fig. 3. Class Pre-compilation

result for our example. For each method m declared in A and B , there is an associated method lm in L. For instance,
the method out declared in B has its counterpart in L declared as lout . A method lm in L has the same behaviour
of m , but it is through an operand stack that lm obtains its arguments, its target object, and returns the results of its
execution. The idea is to simulate the way method invocation is defined in our stack based target machine.

Since ROOL does not include value-result parameters, each method of L has two parameters: Sin is a value
parameter, a stack used to hold the arguments of the original method, and Sout is a result parameter, used to return
the results of the original method. The target of a call to the original method is represented as a local variable o. A
method in L simulates the behaviour of the original method, because its body contains the parametrised command that
defines the original method, with all occurrences of self replaced with the local variable o. In addition, in the case
of the method lout , for instance, the argument r is passed by result to the parametrised command copied from out ,
imitating the same behavior of a method call whose target is o and whose result argument is r .

In the main program, calls to inc and out are replaced with calls to linc and lout . For each call a variable block
is introduced to declare the operand Stack S and a variable V of class L. It is necessary to introduce the variable V
because static methods are not allowed in ROOL. New objects are created to initialise S and V , and x , the target of
the calls, is pushed onto S . Then, we have the call to the method in L. In the case of out , which has a result parameter,
after calling the lout method, the value of the result argument is popped from S and assigned to the global variable
result . For both calls the resulting target object is popped from the stack and assigned to x .
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class A
pub i : int;

end
class B extends A

pub j : int;
end
class L

meth linc ∧= (val Sin : Stack ; res Sout : Stack •
var o : object• Pop(Sin ,o);

if (o is A) → (A o).i := (A o).i + 2
2 ¬(o is A) → (A o).i := (A o).i + 2; (B o).j := (B o).j + 1
fi
Push(Sin , o); Sout ; = Sin

end)
meth lout ∧= (val Sin : Stack ; res Sout : Stack •

var o : object; r : int • Pop(Sin ,o);
(res l : int • l := (B o).j + (B o).i)(r);
Push(Sin , r); Push(Sin , o); Sout ; = Sin

end)
end
• var x : A •

x := newB ;
var S : Stack ; V : L • S := new Stack ; V := new L;

Push(S ,x ); V .linc; Pop(S ,x );
end
var S : Stack ; V : L • S := new Stack ; V := new L;

Push(S ,x ); V .lout(S ,S ); Pop(S ,x ); Popi(S ,result)
end

end

Fig. 4. Redirection of Method Calls

The redirection of method calls allows the elimination of all methods declared in A and B . The introduction of L
is necessary to set the scene to transform all calls in the program to a uniform pattern that uses an operand stack.

In Figure 5, we present the general control structure of our example after the next phase of compilation: Control
Elimination. The main command and each method body is placed in a code segment. Each segment corresponds to
guarded commands in the body of a loop, with the guards indicating the location of the instructions. In our example,
the segment corresponding to linc starts at address k1, whereas that associated to lout starts at address k2; finally, k3
denotes the address where begins the segment corresponding to the main command. At this point the main command
of the compiled program is in the same format of the normal form main command.

The set of class declarations cdsRVM describes the RVM components. We use cdsAB to stand for the declarations
of the classes A and B of our example. In the main command, local variables PC , S , and F represent the program
counter, an operand stack and a frame stack. The stacks are initialised with fresh objects of the class Stack , and PC is
initialised with the address s of the first instruction of the target code. The body of the loop is a conditional involving
a set of guarded commands in the style of Dijkstra’s language [Dij76].

Figure 6 presents the guarded commands corresponding to the main command. The first command pushes a new
object of type B onto the operand stack. The second pops a copy of this object and stores it in the variable x . These
two commands assign a new object of type B to the variable x . Then, the value in x is pushed onto the operand stack
because x is the target object of the call to linc. The guard PC = k3 + 06 holds the command to deviate the control
flow to k1, the initial address of the segment corresponding to the method linc. After that, the resulting object is stored
in x . The interval from PC = k3 +10 to PC = k3 +16 corresponds to the call to lout . First the target object is pushed
onto the operand stack, then the control flow branches to k2, after that the resulting target object is stored in x , and
finally, the result parameter is popped and stored in the global variable result.

The last phase of compilation, Data Refinement, replaces references to variables with explicit accesses to their
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cdsRVM cdsAB • var PC : int; S ,F : Stack , x1,x2 : Boolean; r : int; o1,o2 : Object ; x : A •
S := new Stack ;
F := new Stack ;
PC := s;
while PC ≥ s ∧ PC < f →

if PC = s → PC := k5
2 PC = k1 → linc
...
2 PC = k2 → lout
...
2 PC = k3 → Main Command

fi
end

end

Fig. 5. General structure of our example after the Control Elimination phase

...
2 PC = k3 → LoadCE (newB)
2 PC = k3 +02 → StoreCE ((A x ))
2 PC = k3 +04 → LoadCE ((A x ))
2 PC = k3 +06 → invoke(k1)
2 PC = k3 +08 → StoreCE ((A x ))
2 PC = k3 +10 → LoadCE ((A x ))
2 PC = k3 +12 → invoke(k2)
2 PC = k3 +14 → StoreCE ((A x ))
2 PC = k3 +16 → iStoreCE (result)

Fig. 6. Sequence of guarded commands corresponding to the main command

positions in the memory. Figure 7 presents the set of guarded commands associated to the main command, obtained
in the end of the compilation process. The guarded commands preserve the same structure shown in Figure 7, but due
to the chance of data representation, the abstract space of the source program is replaced with the concrete state of the
target machine. The term Ψx indicates the location in the storage where the object in x is stored.

In [DCS02], we detail some of the compilation rules for the imperative subset of ROOL, based on the approach
of [HHS93, Sam97]. In [DCS03] we consider the compilation of the object-oriented features of ROOL; we present
a systematic strategy, but do not provide the algebraic rules that support a constructive proof of correctness of the
compilation process. The current paper builds on these preliminary results to consolidate a complete characterisa-

...
2 PC = k3 → load(Ψx )
2 PC = k3 +02 → store(Ψx ))
2 PC = k3 +04 → load(Ψx )
2 PC = k3 +06 → invoke(k1)
2 PC = k3 +08 → store(Ψx )
2 PC = k3 +10 → Load(Ψx )
2 PC = k3 +12 → invoke(k2)
2 PC = k3 +14 → store(Ψx )
2 PC = k3 +16 → store(Ψresult)

Fig. 7. Sequence of guarded commands corresponding to the main command after the Data Refinement
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tion of our approach to provably correct compilation of object-oriented languages. Particularly, based on the laws of
ROOL [BSCC04], the presentation here is purely algebraic. Our strategy is justified by 36 novel rules; we discuss them
and their soundness argument here. The complete list of rules and their proofs can be found in [Dur05]. We illustrate
the entire compilation through a more elaborate example than the one considered in the introduction.

The remainder of this paper is structured as follows. In the next section we give an overview of ROOL and its laws.
In Section 3 we describe the target machine, and in Section 4 we present the compilation process. Finally, in Section 5
we report on related work, summarize our results and consider topics for further research.

2. The language and its algebraic laws

In this section we present an informal description of ROOL. Essentially, it is an object-oriented language in the style of
Java [GJSB00]. In [BSCC04] we have provided an algebraic semantics for ROOL which is sound with respect to the
weakest precondition semantics of [CN00]. We have also formalised a comprehensive set of refactorings as program
transformations justified by the algebraic laws [CCS02, Cor04].

ROOL includes programming and specification constructs, in the style of Morgan’s refinement calculus [Mor94].
It was designed to support reasoning about object-oriented programming. Similarly to Java, ROOL includes classes,
inheritance, dynamic binding, recursion, assignment, type casts and tests, class-based visibility, and many other im-
perative features. As already discussed, however, it has a copy semantics.

A program in ROOL consists of a sequence of class declarations (cds), followed by a main command (c), which
may contain objects of classes declared in cds . A class declaration has the following form.

class N1 extends N2
{pri x1 : T1; }∗ //private attributes
{prot x2 : T2; }∗ //protected attributes
{pub x3 : T3; }∗ //public attributes
{meth m ∧= (pds • c)}∗ //public methods
{new ∧= c end; }∗ //Initialisers

end

Classes can be recursive: attributes and method parameters of a class N , for example, can have type N . Subclassing is
defined through the clause extends; it determines the immediate superclass of the declared class. Whenever the clause
extends is omitted, the built-in class object is regarded as the superclass.

Attributes are declared with visibility modifiers similar to those of Java: pri, prot, and pub are used for private,
protected, and public attributes. The clause meth declares a method. For simplicity, all methods are considered to be
public. The list of parameters of a method is separated from its body by the symbol ‘•’.

The new clause declares initialisers: a syntactic sugar for methods that are called after creating objects. Differently
from Java, they have no parameters. Since our methods are parametrised, however, it is easy to extend our work to
cater for parametrised constructors. The compilation process is already sorted out to cover such cases.

Types T are those of attributes, parameters, local variables, and expressions. They are either primitive (like boolean
or integer) or class names. To refer to variable identifiers, we use x , whereas f stands for a literal or built-in function;
we also use b to stand for boolean expressions, and X for a recursive block identifier.

ROOL expressions are those typically found in object-oriented languages; Table 1 defines the syntax. An update
expression (e1; x : e2) denotes a fresh object copied from e1, but with attribute x mapped to a copy of e2. The self and
super expressions are similar to this and super of Java. The use of self is not optional when accessing an attribute a
of the current class; we write self.a . The type test expression is corresponds to instanceof in Java and does not require
exact type matching. A type cast is written (N )e; its value is the object denoted e , if it belongs to class N . Whenever
a value of e is not of the dynamic type N , (N )e is an error. The expression null is the default value of a non-initialised
object variable. Attribute selection e.x can be a run-time error if the value of e is null. Expressions such as null.x and
(null; x : e) cannot be successfully evaluated; they yield error, a special value that can only be used in predicates
and lead the commands in which they appear to abort. The left expressions are those that can appear as targets of
assignments and method calls, and as result arguments. In Table 2, they are the subset Le of Exp.

The imperative constructs of ROOL are based on the language of Morgan’s refinement calculus, which extends
Dijkstra’s language of guarded commands [Dij76]. The body of methods and constructors are commands similar to
those described in [Mor94]; Table 3 describes their syntax. Following the approach adopted in [Sam97], we also have
constructors for dynamic declaration (dvar and dend) explained in the sequel.
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e ∈ Exp ::= (e; x : e) update expression
| self the current object that the method operates on
| super reference to the superclass
| null null value
| error error value
| new N object creation
| x variable
| f (e) built-in application
| e is N type test
| (N )e type cast
| e.x attribute selection

Table 1. Grammar for expressions

le ∈ Le ::= le1 | self.le1 | ((N )le).le1
le1 ∈ Le1 ::= x | le1.x

Table 2. Grammar for left expressions

For convenience, we use x , le , e , and T to represent lists of identifiers, left expressions, expressions and types, as
well as individual elements of these syntactic categories. An assignment has the form le := e . The specification state-
ment x : [pre, post ] describes a program that, when executed in a state that satisfies the precondition pre, terminates
in a state that satisfies the postcondition post , modifying only variables in the frame x .

The usual sequential composition of commands c1 and c2 is written c1; c2. The conditional is composed by a
collection of guarded commands bi→ci separated by [], as in Dijkstra’s language [Dij76].

For reasoning purposes, it is useful to have independent constructors to introduce a variable and to end its scope,
especially in the Data Refinement phase. The construct dvar introduces x with a dynamic scope. Operationally, an
unbounded stack is associated with each variable, so that rather than creating a new variable, dvarx has the effect of
pushing the current value of x onto the stack, assigning to x an arbitrary value. The dynamic scope of x extends up
to the end of the static scope of x or the execution of the command dend x . The effect of dendx is to pop the stack,
assigning the popped value to x . When the stack is empty, this value is arbitrary.

Methods are parametrised commands pc in the style of Back; they can be applied to arguments to yield a command.
Since self is not optional in our language, a call to a method m on the current object is written self.m . Furthermore,
we can call the method m declared by the superclass by writing super.m .

A parametrised command can have the form val x : T • c or res x : T • c, corresponding to the traditional
conventions of parameter passing known as call-by-value and call-by-result. Table 4 describes the syntax. It is possible
to combine an arbitrary number value and result parameter declarations.

The block rec X • c end introduces a recursive command named X with body c; occurrences of X in c are
recursive calls. A while command can be defined in the standard way in terms of recursion.

Definition 1. (While definition)

while b → c end def
= rec X • if b → c; X [] ¬b → skip fi end

3

As a reasoning language, ROOL yields a framework where both programming and specification operators have
the same status: they are both modelled as predicate transformers. Specifications are abstract programs; they are

c ∈Com ::= le := e assignment
| x : [pre, post ] specification statement
| c1; c2 sequential composition
| if []i • bi → ci fi alternation
| var x : T • c end local variable block
| avar x : T • c end angelic variable block
| dvar x : T introduces x with dynamic scope
| dend x ends dynamic scope of x
| pc(e) parametrised command
| rec X • c end recursion
| X recursive call

Table 3. Grammar for commands
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pc ∈ PCom ::= pds • c parametrisation
| le.m | m method calls

pds ∈ Pds ::= ∅ | pd | pd ; pds parameter declarations
pd ∈ Pd ::= val x : T | res x : T

Table 4. Grammar for parametrised commands

class Step
pri dir , len : int;
meth getLength ∧= (res l : int; • l := self.len)

end
class Path extends Step

pri previous : Path;
meth addStep ∧= (val d , l : int •

self.previous := self; self.dir := d ; self.len := l )
meth getLength ∧= (res l : int •

var aux : int •
if (self.previous = null) → aux := 0
[] (self.previous <> null) → self.previous.getLength(aux )

fi;
super.getLength(l); l := l + aux ;

end)
end
• var p : Path • p := new Path;

p.addStep(north, l1); p.addStep(east , l2); p.addStep(south, l3); p.addStep(west , l4);
p.getLength(out);

end

Fig. 8. ROOL program for keeping track of a robot’s path

not executable, but they aid in reasoning. We can start from an abstract specification of a program’s behaviour and
gradually refine it, obtaining a mix of code and specifications, until we get a program with executable constructs only.

Since some constructs are not implementable, the compilation is restricted to the executable subset of ROOL.
More specifically, the following constructs are used only for reasoning purposes: multiple assignments, specification
statements, angelic variable block, and the dynamic scope constructs. They are not covered by our compilation strategy.

In Figure 8, we give an example of an executable program in ROOL that we use to illustrate our compilation
strategy. It keeps track of a robot’s path. The robot starts in the position (0,0). Every time it moves, a step of length l
is taken towards north , south , east , or west . The outcome is the total length of the route described by the robot.

Two classes are declared in Figure 8, Step and Path . The class Step has two integer attributes: dir and len ,
corresponding to the direction and length of a step of the robot. The length of a step can be retrieved using the method
getLength . The class Path extends Step, introducing the attribute previous to hold the preceding steps that outline
the robot’s path; Path is a recursive class. The method addStep introduces a step in the path; it first assigns the current
path (self) to previous , and then assigns the direction and length to the attributes dir and len to record the current
step. The length of a path is calculated by getLength , a recursive redefinition of the method with the same name in
Step. Each recursive call to getLength visits a step in the path; it traverses the list of steps. The sequence of nested
invocations ends when the first step is reached: the value of previous is null. To get the length of the current step, we
use a method call super.getLength to guarantee that the method in Step, which is Path’s superclass, is invoked.

In the main command, the free variables l1 to l4 represent the length of each robot’s step, the free variables north ,
south , east and west denote the direction of each robot’s step, and out represents the output of the program. The main
command is a variable block in which an object of type Path is created and several steps are added to this path. The
last method call retrieves the total length of the path. Input and output are represented by free variables.

For simplicity of reasoning, we assume that names of attributes, methods, variables and so on, are not reused. It is
simple to check or enforce this restriction by a syntactic preprocessing of the program.

Basic programming laws of ROOL, for both commands and classes, are presented in [BSC03, BSCC04]. Class
laws are expressed as equations cds1 =cds,c cds2 to state that the sequences of class declarations cds1 and cds2 are
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Law 1. (move redefined method to superclass)

class B extends A
ads
meth m ∧= (pds • b)
ops

end
class C extends B

ads ′

meth m ∧= (pds • b ′)
ops ′

end

=cds,c

class B extends A
ads
meth m ∧= (pds •

if ¬(self is C ) → b
[] self is C → b ′

fi)
ops

end
class C extends B

ads ′
ops ′

end

provided

(↔) (1) super and private attributes do not appear in b ′; (2) super.m does not appear in ops ′;
(→) b ′ does not contain uncast occurrences of self;
(←) m is not declared in ops ′.

Fig. 9. Example of an algebraic law related to object-oriented features

equivalent in the context of the class declarations in cds , and the main command c. Thus, both (cds cds1) and (cds cds2)
are valid sequences of class declarations; juxtaposition of class declarations represents their concatenation. The above
equation is just an abbreviation for cds1 cds • c = cds2 cds • c.

In order to make explicit which conditions must be satisfied for the application of a law, we adopt the following
notation: ‘(→)’ indicates conditions that are necessary when applying the law from left to right; ‘(←)’ indicates
conditions that are necessary when applying the law from right to left; and, finally, ‘(↔)’ indicates conditions that are
necessary for applications in both directions. As an example, Figure 9 presents a law that establishes that a method
declaration and its redefinition can be merged into a single declaration in the superclass. The appropriate behaviour is
determined by type tests in the resulting method. This law is used later on as part of our compilation strategy.

The provisos about super are necessary when moving m from a subclass to a superclass, or vice-versa, since this
can potentially change the meaning of super.m . The other provisos concern the validity of the programs involved.
The body of m can only be moved up when it does not refer to private elements of the class and all uses of self are
cast, so that any references to particular attributes or methods of the superclass remain valid. Finally, part of a method
definition can only be moved down if the subclass does not declare a method of the same name already.

We present in Figure 10 a law of command. Due to dynamic binding, the use of the copy rule is complex since
replacing the call by a method body depends on the type of the target object. We would have to inspect the type of the
object to determine the correct class from which we can obtain the body of the method. Instead, we use Law 1 (move
redefined method to superclass) to handle dynamic binding separately. Surprisingly, maybe, in doing so, we need just
the simple law in Figure 10, which is like the copy rule, to characterise method call elimination.

Extra notation is used in Figure 10. Hereafter, we write cds, N B e : C to indicate that in the class N de-
clared in cds , the expression e has static type C . To indicate that the typing holds inside the main command we use
cds, main B e : C . We also write cds, N B c = d to denote that the equation c = d holds inside the class named N ,
in a context defined by the set of class declaration cds . The notation pc[le/self] represents the parametrised command
pc where every occurrence of self is replaced with le . We need an assumption {le 6= null ∧ le 6= error} on the right
hand side of Law 2 because, in case le is null or error, a method call le.m(e) aborts. If the condition in the assumption
holds it behaves like skip, otherwise as abort. Formally, {b} =̂ if b → skip [] ¬b → abort fi.

The semantics of ROOL is defined in [CN00] using weakest preconditions. All its laws, including those that we
use here, have been proved sound with respect to this model [CN00]. Work reported in [Cor04, Dur05] and Appendix
A provide an extensive set of laws. Relative completeness for the laws of ROOL has been addressed in [BSCC04].
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Law 2. (method call elimination)
Consider that the following class declaration

class C extends D
ads
meth m ∧= pc
ops

end
is included in cds , and cds, A B le : C . Then
cds,A B le.m(e) = {le 6= null ∧ le 6= error}; pc[le/self](e)

provided

(↔) (1) m is not redefined in cds and pc does not contain references to super; (2) all attributes which appear in the
body pc of m are public.

Fig. 10. Example of a law of command

cdsRVM • var PC : int; S ,F : Stack •
S := new Stack ; F := new Stack ;
PC := s;
while PC ≥ s ∧ PC < f → if GCS fi end

end

Fig. 11. The ROOL Interpreter (cdsRVM • I )

3. Target machine

Here, we define a ROOL Virtual Machine (RVM) based on the Java Virtual Machine (JVM) [LY97]. Our definition is
an interpreter-like ROOL program; it models a cyclic mechanism executing one instruction at a time (Figure 11).

As a valid program, the RVM consists of a sequence of class declarations cdsRVM followed by a main command
I . The class declarations describe the RVM components. In every cycle, if the value of the program counter PC is still
within the range of addresses from s to f where the program is stored, the bytecode instruction indicated by the value
of PC is executed; it is a sequence of ROOL commands that simulates the effect of the instruction on the internal data
structure. An example was presented in Section 1 and the general structure is described in Figure 11.

The abbreviation GCS depicts the stored program as a set of guarded commands (PC = k) → q , where q is a
bytecode instruction that is executed when PC takes the value k . The initial value of PC is the address s of the first
instruction to be executed; the final address is f . The while is executed until PC reaches a value out of the interval
determined by s and f . The body of the while uses the value of PC to select the instruction to be executed. All
instructions modify PC . The set of guarded commands is an abstract representation of the target code.

The machine components are represented by the variables: PC (program counter), S (operand stack), M (store
for variables), F (frame stack), Cls (data structure that records the hierarchy of classes), and CP (constant pool). The
execution of an instruction changes (some of) these variables. The memory of the machine is implicitly represented
by S , F , Cls , CP , and by the association of addresses in the range from s to f to the bytecodes.

Although most machines use relative branching to implement control flow, for simplicity we do not consider this
issue here. The possibility of using relative addresses has been already discussed in [Sam97] and involves additional
proof obligations. Clearly, our model of target machine could be more complex, nevertheless we would rather con-
centrate on the central contribution of our approach: the overall strategy to reduce the problem of designing a correct
compiler for an object-oriented language to one of program refinement. Besides, when dealing with more realistic
compilers, incremental extensions can be made to deal with additional features, since reuse of design and proofs arises
as a consequence of abstraction and modularity, which are distinguishing characteristics of our reasoning framework.

The components Cls , M and CP are represented as global variables. Cls holds the essential information about
class declarations in the source program. This variable has class type CdsHierarchy . Basically, it has one attribute: a
sequence of objects of the class ClassInfo. Each of these objects has the following attributes: cl, which codifies the
class name, and subcls, the sequence of immediate subclasses. The method Instanceof declared in CdsHierarchy is
used to check whether an object in a given position in the sequence has a certain type.

The observable data space of our interpreter is a store for variables M : the concrete counterpart of the variables
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of the source program. It is a map from the addresses of the variables to their values. The symbol table Ψ maps the
variables declared in the source program to addresses in the store M , so that M [Ψx ] holds the value of x . In the RVM,
M is a free variable; it is a sequence of objects of type Data , a class that we describe later on.

The constant pool CP is a heterogeneous list of objects of three different types. An entry containing an integer is
an object of type DataInt ; boolean values are encapsulated in instances of DataBool ; an entry containing an object
of type objData holds the RVM representation of a fresh object of a given class. The symbol table Φ maps elements
declared in the source program to addresses in the constant pool CP , such that CP [ΦC ] holds an object of class C .

All values stored in the RVM are instances of the class Data . This class has two immediate subclasses: PriData
and ObjData . The class PriData specialises into subclasses whose instances hold primitive values. For instance, an
integer value is stored in an instance of DataInt , whose immediate superclass is PriData . The class ObjData is used
to represent objects. In this representation, the object attributes are either instances of PriData or ObjData .

For simplicity, the current instruction set has support only for two primitive types: Integer and Boolean. To consider
other primitive types, we have to expand the set of immediate subclasses of PriData , and extend the instruction set
with the associated instructions that manipulate the corresponding primitive types.

Instruction set. The computation in the virtual machine is based on the operand stack, hence the majority of the
bytecode instructions involves the operand stack S . Because the virtual machine has no registers for storing arbitrary
values, everything must be pushed onto the stack before it can be used in a calculation. Since each compilation rule
preserves semantics, we guarantee that the operands on the stack will be of the correct type for the operation.

Below, we give some examples of how the instructions of our virtual machine are defined. We assume that n stands
for an address in M , k for an address in the sequence of bytecodes, and j for an index to an entry in CP .

Definition 2. (Instruction set - Miscellaneous)

nop
def
= PC := PC +1

cmpeq
def
= S .s := 〈(newDataBool ; Info : (head(S .s) = head(tail(S .s))))〉a tail(tail(S .s));

PC := PC +1

ldc(j )
def
= S .s := 〈CP [j ]〉aS .s; PC := PC +2

load(n)
def
= S .s := 〈M [n]〉aS .s; PC := PC +2

store(n)
def
= M [n] := head(S .s); S .s := tail(S .s); PC := PC +2

aconstnull
def
= S .s := 〈null〉aS .s; PC := PC +1

3

The instruction with opcode nop (no operation) has no effect, except for the program counter (PC ) increment. The
definition of cmpeq uses an update expression to change the field Info. Two values are popped from the operand stack
and compared for equality. If they are equal, then true is pushed onto the stack, otherwise false is pushed. The head
and tail operators are standard, except that, when applied to the empty sequence, they give an arbitrary result.

The instruction with opcode ldc (load constant) has one argument (j ) and pushes an integer constant onto the
operand stack (S ). Its argument j immediately follows the instruction with opcode ldc in the bytecode stream and
represents a constant pool index to the location where the corresponding constant is stored.

Pushing a local variable onto the operand stack is done by the instruction with opcode load , and involves moving
a value from the local variables list to the operand stack. Analogously, to pop a value of any type from the top of the
stack to a local variable, the virtual machine uses the instruction with opcode store . The argument n is an index to a
local variable. The instruction with opcode aconstnull pushes a null value onto the operand stack.

The PC increment depends on the number of operands of the instruction. The more operands are needed, the more
bytecodes are necessary to codify the instruction. For instance, when the instruction needs no operand, as in nop, the
PC is incremented by 1 because one bytecode is enough to codify the opcode, whereas in the case of load(n), an
additional bytecode is necessary to represent the operand n , thus the PC is incremented by 2.

To deal with operators, we group them so that uop and bop stand for arbitrary unary and binary operators, respec-
tively. They abstract arithmetic and relational operators. All of them use as operands objects of type DataInt stored at
the top of the operand stack S , but their outcome is expressed differently: when an arithmetic operation is performed,
an object of type DataInt is pushed onto the operand stack S , whereas in the case of relational operators, the pushed
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object has type DataBool . The definition for arithmetic operators is given below.

Definition 3. (Binary and Unary Operators)

bop
def
= S .s := 〈(new DataInt ; Info : (DataInt head(S .s)).Info bop

(DataInt head(tail(S .s))).Info)〉a tail(tail(S .s)); PC := PC +1

uop
def
= S .s := 〈(new DataInt ; Info : uop (DataInt head(S .s)).Info)〉a tail(S .s); PC := PC +1

3

Here, bop is an abbreviation for a sequence of ROOL commands that removes two values from the operand stack S ,
operates on them according to the corresponding binary operand bop, and places the result at the top of S . Since bop
has no parameter, the PC is incremented by one. An instance of a binary operator is add , which is used in Figure 23.

Similarly to the bop abbreviation, uop pops one value from the operand stack S and applies the unary operand
uop on it, pushing the resulting value on the top of S . Also, the PC is incremented by one.

A goto instruction always branches. It causes execution to jump to the next instruction determined by the parameter
k . The cgoto is a conditional goto. If the value stored at the top of the operand stack is the boolean true , execution
passes to the next instruction, otherwise execution continues at the specified instruction.

Definition 4. (Branch Instructions)

goto(k)
def
= PC := k

cgoto(k)
def
= var x : Boolean •

x := (DataBool head(S .s)).Info; S .s := tail(S .s);
if (x ) → PC := PC +2 []¬(x ) → PC := k fi

end

3

For creation and manipulation of objects, there are three instructions.

Definition 5. (Object creation and manipulation)

new(j )
def
= S .s := 〈CP [j ]〉aS .s; PC := PC +2

putfield(j )
def
= S .s := 〈((ObjData head(S .s)); att [j ] : head(tail(S .s)))〉 a tail(tail(S .s));

PC := PC +2

getfield(j )
def
= S .s := 〈(ObjData head(S .s)).att [j ]〉 a tail(S .s); PC := PC +2

3

The instruction new(j ) creates a new class instance. In the RVM, instead of traversing the representation of the
source program class hierarchy, determining and recording the attributes present in the class indicated by j , our new
instruction simply gets a copy of an object in the constant pool. This object is an instance of Data and holds the RVM
representation of the intended object whose type is indicated by the argument j . This argument is an index to a class
entry in the constant pool holding an object that belongs to the concrete data space of the target machine. Once this
object is obtained, it is pushed onto the operand stack. Since ROOL has a copy semantics, the object operations involve
possible copying of complex structures. We further discuss how the issue of pointers can be handled in Section 5.

The instruction putfield(j ) selects and modifies the value of the attribute indicated by the entry of the constant pool
indexed by j . When it is executed, two values are popped from the operand stack; the first is the object whose attribute
is to be set, and the second is the value to be assigned. A copy of the modified object is pushed onto the operand
stack. The execution of getfield(j ) pops from the operand stack the object whose attribute value is to be obtained. The
argument j is an index into the constant pool that identifies the attribute. The instruction getfield(j ) gets the value of
the attribute in the RVM representation of the object, and pushes it on the stack.

The instruction instanceof tests if an object belongs to a type. The argument j is an integer given by the function
Φ that identifies a class. The global variable Cls holds an image of the class hierarchy. From it, we can determine if
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the object belongs to a class C or any subclass of C using the method instanceof of the class CdsHierarchy .

Definition 6. (Type testing)

instanceof (j )
def
= var obj : objData,r : DataBool •

obj := head(S .s); S .s := tail(S .s);
Cls.Instanceof (Obj , j ,r);
S .s := 〈r〉aS .s; PC := PC +2

end
3

Finally, we have four instructions to handle method calls. The instruction save(o) pushes an object onto the frame
stack F , whereas restore(o) pops an object from F and assigns it to o. The instruction invoke pushes the returning
value of PC onto the frame stack F ; afterwards a new value is assigned to PC , making the execution flow deviate to
a position where the method body begins. When return is executed, the value of PC is popped from the frame stack
F . The execution flow returns to the next instruction after the invocation that originated the method call.

Definition 7. (Method invocation)

save(o)
def
= F .s := 〈o〉aF .s

restore(o)
def
= o := head(F .s); F .s := tail(F .s)

invoke(m)
def
= PC := PC +2; F .s := 〈(new DataInt ; Info : PC )〉aF .s; PC := m

return
def
= PC := (DataInt head(F .s)).Info; F .s := tail(F .s)

3

The RVM definition characterises the normal form adopted as the target of compilation: program is in normal form if
it in the form shown in Figure 11. In the next section, we describe our strategy to reduce programs to normal form.

4. Compilation Process

In our approach, the design of a compiler is a constructive proof that an arbitrary program can be refined by a program
in normal form. To carry out the compilation, we use provably correct reduction theorems as rewrite rules.

As already said, the compilation process is divided into five phases: Class Pre-compilation, Redirection of Method
Calls, Simplification of Expressions, Control Elimination, and Data Refinement. The compilation follows this se-
quence; a change in this order is disallowed by side conditions on the reduction theorems of each phase. For each
phase, a theorem establishes the expected outcome, and the main compilation theorem links the intermediate steps.

The reduction theorems are proved correct from the basic algebraic laws of ROOL and the compilation rules
introduced in this section. We make a distinction between laws and rules. The basic laws assert general properties of
the language constructors, whereas rules serve the special purpose of compilation. The correctness of the compiler
follows from the correctness of each compilation rule (which relies on the soundness of the laws used in their proofs).

In Sections 4.1 to 4.5 we introduce the reduction theorem for a compilation phase and its associated rules. In the
last section we present the proof of the main theorem. The proofs of all the compilation rules are in [Dur05]; the ROOL
program introduced in Figure 8 is used as a running example to illustrate the compilation process.

4.1. Class Pre-Compilation

The outcome of this phase is summarised by the theorem below, proved in [Dur05]. It establishes that the basic laws
applied in this phase are sufficient to end up with a program where method redefinitions are eliminated, all attributes
are public, some attributes are moved up in the class hierarchy to allow elimination of method redefinitions, and every
possible cast is introduced in each method body and in the main command.

Theorem 1. (Class Pre-compilation) Let cds • c be a program containing only executable constructs, as defined in
Section 2, correct with respect to syntax and its static typing of expressions and statements. Then, there is a program
cdspc • cpc such that cds • c v cdspc • cpc where (1) the main command cpc differs from c only by the intro-
duction of casts in all expressions; (2) the class declarations cdspc are obtained from cds by changing the visibility of
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all attributes to public, and by eliminating all method redefinitions; and (3) all targets of calls and attribute accesses
are cast with their static types. 3

This compilation phase comprises three steps. The first one changes the visibility of the attributes, and the second in-
troduces trivial casts. Both steps are necessary to avoid syntactic errors that could be originated later, when performing
the next compilation phases. Finally, in the last step, if there is a redefined method in cds , laws of classes are applied
to eliminate redefinitions; as a consequence, dynamic binding of methods and references to super are eliminated.

This is not the approach typically used in implementing dynamic binding. The advantage of this approach is
that dynamic binding is handled in a purely algebraic way; this is an original contribution of our work. It allows us to
separate concerns since we have separate laws to capture dynamic binding, calls via super, and method call elimination.
Our proofs using the laws have given evidence that this is extremely convenient for reasoning.

4.1.1. Changing visibility of attributes

We need to guarantee that the body of a method in cds does not contain references to private or protected attributes,
since otherwise an error can arise when we move the method declaration upwards in the class hierarchy. Therefore,
we change the declarations of the attributes to make them all public. This is not a good practice from a software engi-
neering point of view, but this does not change the behaviour of a complete program, and our aim is compilation rather
than, for instance, refactoring [Opd92, Fow99, Cor04]. To perform these transformations, we use Laws 4 (change
visibility: from protected to public) and 5 (change visibility: from private to public). These and all the other laws
referenced here are listed in Appendix A and proved in [Cor04]. We discuss and exemplify the proofs in Section 4.4.

In order to illustrate the compilation process, we reduce the example program in Figure 8 to normal form, showing
step by step which transformations are imposed by each compilation phase. Applying Laws 4 (change visibility: from
protected to public) and 5 (change visibility: from private to public), we change the declarations of the attributes dir
and len in the class Step, and of the attribute previous in Path to make them public (see Figure 12).

4.1.2. Introducing trivial casts

Applying Law 9 (cast introduction in expressions), we introduce type casts to produce a uniform program text in which
all targets of calls and attribute accesses are cast with their static types. Introducing casts has no effect. During the
elimination of method redefinitions, however, casts play a fundamental role because, in the presence of self, when we
move methods upwards, the behaviour of the program can be modified, if self is not properly cast.

In Figure 12, we present the intermediate program obtained from the source program, after the application of the
transformations to change the visibility of the attributes and introduce trivial casts. In our example, observe that the
occurrence of super in getLength as defined in Path is cast to Step.

4.1.3. Elimination of method redefinition

ROOL supports method redefinition but, as opposed to Java, not overloading. This is exploited in Law 1 (move re-
defined method to superclass), which states that we can merge a method declaration and its redefinition into a single
declaration in the superclass. In order to choose the appropriate behaviour, the resulting method uses type tests. Before
moving a method up in the class hierarchy in this way, we have to eliminate references to super, otherwise we could
end up referencing nonexistent methods. The elimination of super relies on Law 6 (introduce method redefinition),
which is basically a version of the copy rule for ordinary procedures.

As an example, consider the method getLength (Figure 12), which is first declared in the class Step and redeclared
in the class Path . Applying Law 6 (introduce method redefinition), we obtain the class Path described in Figure 13;
in the definition of getLength the super call is replaced by the body of this method in Step.

To merge a redefined method into a single declaration in the superclass, we apply Law 1 (move redefined method
to superclass). Law 7 (move original method to superclass) allows us to move up in the class hierarchy a method
declaration that is not a redefinition. Hence, we can transform the classes Path and Step, moving the methods in Path
to the class Step, as shown in Figure 14. Now, we have a single declaration for getLength .

4.2. Redirection of Method Calls

In this phase, we introduce a class L, which includes elements that later allow the elimination of the source method
declarations. The introduction of L allows arguments of method calls to be passed using the operand stack S , adapting
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class Step
pub dir , len : int;
meth setDirection ∧= (val d : int; • (Step self).dir := d )
meth setLength ∧= (val l : int; • (Step self).len := l )
meth getLength ∧= (res l : int; • l := (Step self).len )

end
class Path extends Step

pub previous : Path;
meth addStep ∧= (val d , l : int •

(Path self).previous := (Path self); (Path self).setDirection(d); (Path self).setLength(l))
meth getLength ∧= (res l : int •

var aux : int •
if ((Path self).previous <> null) → (Path self).previous.getLength(aux )
[] ((Path self).previous = null) → aux := 0

fi; (Step super).getLength(l); l := l + aux ;
end)

end
• var p : Path •p := new Path;

p.addStep(north, l1); p.addStep(east , l2); p.addStep(south, l3); p.addStep(west , l4);
p.getLength(out);

end

Fig. 12. Program obtained after changing the visibility of the attributes and introducing trivial casts

class Path extends Step
pub previous : Path; meth addStep ∧= (val d , l : int •

(Path self).previous := (Path self); (Path self).dir := d ; (Path self).len := l )
meth getLength ∧= (res l : int •

var aux : int •
if ((Path self).previous = null) → aux := 0
[] (Path self).previous <> null) → (Path self).previous.getLength(aux )

fi; (res l : int; • l := (Step self).len )(l); l := l + aux
end)

end

Fig. 13. Class Path without references to super

the invocation of methods to work in the way it is defined in the RVM. As explained in Section 3, our RVM is a
stack-based machine; instructions receive values and yield results using an operand stack.

Each method lm declared in L plays the role of a method m declared in cds; the body of lm contains a copy of the
body of m . At this stage, redefinitions have already been eliminated. When a method lm is created in L, it contains the
parametrised command pc that defines the method m , declared in cds . Therefore, before we apply the rules to redirect
the method calls, the body of a method lm might have calls to methods declared in cds , including recursive calls. For
instance, in Figure 17 observe that there is a call to the method getLength within the body of the method lgetLength ,
declared in L. After introducing the class L, all method calls are redirected to the corresponding methods declared in
class L, so that the method declarations in cds become useless and can, therefore, be eliminated.

In this step, we also introduce the class declarations cdsRVM . They not referenced by the source program, but some
commands that are introduced in L and in the main command c reference methods, attributes, and classes defined in
cdsRVM . For this reason, when we introduce the class L, the need to introduce cdsRVM arises.

The outcome of this phase is summarised by Theorem 2. It establishes that the compilation rules applied in this
phase are sufficient to end up with a program where all calls are to methods in L. The proof can be found in [Dur05].

Theorem 2. (Redirection of method calls) Let cdspc • cpc be a program where all attributes in cdspc are public, every
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class Step
pub dir , len : int;
meth getLength ∧= (res l : int; •

if (self is Path) → l := (Step self).len
var aux : int •

if ((Path self).previous <> null) → (Path self).previous.getLength(aux )
[] ((Path self).previous = null) → aux := 0

fi; (res l : int; • l := (Step self).len )(l); l := l + aux
end

[] ¬(self is Path) → l := (Step self).len
fi)

end
class Path extends Step

pub previous : Path;
meth addStep ∧= (val d , l : int •

(Path self).previous := (Path self); (Path self).dir := d ; (Path self).len := l )
end

Fig. 14. Method getLength as a method without redefinitions

meth lm ∧= (val Sin : Stack ; res Sout : Stack •
var o : Object ; v : T •

Pop(Sin ,o); Pop(Sin ,v); pc[o/self](v); Push(Sin ,o); Sout := Sin

end)

Fig. 15. The pattern of a method with value parameters in the class L

possible casts are present, and no methods have redefinitions, then there is a program cdsRVM cdsrmc L• crmc , such
that cdspc • cpc v cdsRVM cdsrmc L • crmc , where cdsrmc contains only the attribute declarations of cds , and the
calls in cpc to methods in cds are replaced in crmc with calls to the corresponding methods in L. 3

The previous compilation phase establishes the conditions that allow the definition of L. The way the class L is
organised is explained in Section 4.2.1. In Section 4.2.2, we introduce rules for the Redirection of Method Calls.
These rules rely on the type of parameter passing used. We modify method calls so that their arguments are pushed
onto and popped from the operand stack. When a redirected method is invoked, a copy of its target object is also
pushed onto the stack. When the execution is completed, the results are reflected in the operand stack, including a
copy of the target object, possibly modified as a result of the execution of the method body.

4.2.1. The class L

The introduction of the class L is justified by Law 3 (class elimination). In principle, any class that is not referenced
in the program can be introduced. For each method m declared in cds , there is a corresponding method lm in L that
simulates the behaviour of m . Every method in L whose parameters are passed by value shares a common pattern,
which is described in Figure 15, whereas those methods whose parameters are passed by result share the pattern
depicted in Figure 16. Methods with a combination of value and result parameters can be handled in a similar way.

In the patterns, the formal parameters are the operand stacks Sin and Sout ; o is the target of the method call; v
represents the list of value arguments, whereas r denotes the list of result arguments. Since ROOL does not include
value-result parameters (nor sharing), two stacks are needed: Sin to receive the arguments, and Sout to return the
results. In Figure 15, the argument v is passed by value to the parametrised command pc, simulating the expected
behaviour of a call to a method having o as the target object and v as the value argument. In the case of Figure 16, the
argument r is passed by result to pc, imitating the behaviour of a call with a result argument r .

For methods that are not redefined, the parametrised command in lm is the same we find in the definition of m ,
except for the replacement of self by the variable o. This does not introduce any syntactic errors because, as a result
of the previous phase of compilation, the occurrences of self are guaranteed to be cast.
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meth lm ∧= (val Sin : Stack ; res Sout : Stack •
var o : Object ; r : T •

Pop(Sin ,o); pc[o/self](r); Push(Sin ,r); Push(Sin ,o); Sout := Sin

end)

Fig. 16. The pattern of a method with result parameters in the class L

meth lgetLength ∧= (val Sin : Stack ; res Sout : Stack •
var o : Object ; l : int • Pop(Sin ,o);

(res l : int; •
if (o is Path) →

var aux : int •
if ((Path o).previous = null) → aux := 0

[] ((Path o).previous <> null)→ (Path o).previous.getLength(aux )
fi;
(res l : int; • l := (Step o).len )(l); l := l + aux ;

end
[] ¬(o is Path) → l := (Step o).len
fi) (l);
Pushi(Sin , l); Push(Sin ,o); Sout := Sin

end)

Fig. 17. Method lgetLength declared in L

As an example, we consider getLength . In the first compilation phase, the attributes became public, all possible
casts were introduced, and its redefinition was eliminated. Following the pattern in Figure 15, there is a method
lgetLength in L; its body is described in Figure 17. In a similar way, for each method in cds , there is a corresponding
method in L; in summary, there is a one-to-one correspondence between all methods in cds and the methods in L.

In the definition of lgetLength in Figure 17, there is a call to the method getLength . We could have used a
recursive call to lgetLength instead. Having method definitions in L with precisely the same parametrised commands
as the original methods, however, is convenient when proving that the method in L preserves the behaviour of the
corresponding method in cds . Later, we deal with method call elimination in general, and then with the elimination of
method declarations; therefore, eliminating the calls to the methods of cds in L causes no extra overhead. In the next
section, we show how we redirect method calls in order to make all method declarations in cds useless.

4.2.2. Rules

The next two rules define the transformations related to the Redirection of Method Calls to methods in L: there is a
rule for each parameter passing mechanism. Multiple parametrisation is handled by combining their effects. In order
to make the rules clearer and concise, we introduce abbreviations for sequences of commands over the operand stack.

Definition 8. (Abbreviations – non-primitive variables through the operand stack)

Push(S ,o)
def
= S .s := 〈o〉aS .s

Pop(S ,o)
def
= o := head(S .s); S .s := tail(S .s)

Bop(S )
def
= S .s := 〈head(S .s)bop head(tail(S .s))〉a tail(tail(S .s))

Uop(S )
def
= S .s := 〈uophead(S .s)〉a tail(S .s)

Putfd(S ,C .t)
def
= S .s := 〈((C )head(S .s); t : head(tail(S .s)))〉 a tail(tail(S .s))

Getfd(S ,C .t)
def
= S .s := 〈(C )head(S .s).t〉 a tail(S .s)

3

In Bop(S ) and Uop(S ), bop and uop stand for arbitrary binary and unary operators. The abbreviation Putfd(S ,C .t)
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removes two elements from the operand stack S . The first is the object of class C whose attribute t is to be set; the
second is the value to be assigned. A copy of the modified object is pushed onto the operand stack.

The abbreviation Getfd(S ,C .t) pops from the operand stack the object whose attribute value is to be obtained.
This attribute is named t and its value is pushed onto the operand stack.

Definition 9. (Abbreviations — integer variables through the operand stack)

Pushi(S ,x )
def
= S .s := 〈(new DataInt ; Info : x )〉aS .s

Popi(S ,x )
def
= x := (DataInt head(S .s)).Info; S .s := tail(S .s)

Bopi(S )
def
= S .s := 〈(DataInt head(S .s)).Info bop(DataInt head(tail(S .s))).Info〉a tail(tail(S .s))

Uopi(S )
def
= S .s := 〈uop (DataInt head(S .s)).Info〉a tail(S .s)

3

Definition 10. (Abbreviations — boolean variables through the operand stack)

Pushb(S ,x )
def
= S .s := 〈(new DataInt ; Info : x )〉aS .s

Popb(S ,x )
def
= x := (DataBool head(S .s)).Info; S .s := tail(S .s)

Bopb(S )
def
= S .s := 〈(DataBool head(S .s)).Info bop

(DataBool head(tail(S .s))).Info〉a tail(tail(S .s))

Uopb(S )
def
= S .s := 〈uop (DataBool head(S .s)).Info〉a tail(S .s)

Is(S ,C )
def
= S .s := 〈(DataBool ; info : (head(S .s) is C ))〉aTail(S .s)

3

There are other versions of these abbreviations for each primitive type. In Definitions 9 and 10, we present those for
the integer and boolean types. When manipulating primitive values through the operand stack we encapsulate them
into instances of classes declared in cdsRVM . For instance, integer values are encapsulated in instances of DataInt .
The abbreviation Is(S ,C ) removes an element from the top of the operand stack S and tests if it has type C . The
result of this test is encapsulated into an instance of DataBool and pushed onto S .

For conciseness, in the rules presented from here on, we consider mainly the non-primitive types, since versions
of the rules for primitive types are similar. Rule 1 deals with method calls ((C )le).m(x ) with result parameter x .

Rule 1. (Redirecting a call with result parameter)
Consider that the declaration class C extends D ads meth m ∧= pc ops end is included in cds , and cds,A B le : C ,
and the following method declaration corresponding to m is in the class L.
cdsRVM cds,L B meth lm ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; r : T •
Pop(Sin ,o); pc[o/self](r);
Push(Sin ,r); Push(Sin ,o); Sout := Sin

end)
Then
cdsRVM cds L, N B

((C )le).m(x ) v {le 6= null ∧ le 6= error}
var S : Stack ; V : L •

S := new Stack ; V := new L;
Push(S , le); V .lm(S ,S );
Pop(S , le); Pop(S ,x );

end
provided

(→) (1) m is declared in cds and has a result parameter; (2) S and V are fresh names; (3) all attributes referenced by
lm are public and declared in cds; (4) N is either main or L. 3

On the left-hand side of the refinement, as already explained we use cdsRVM cds to stand for the union of the class
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declarations that describes the RVM and those in cds . On the right-hand side, the assertion requires le to be different
from null and error, since the call on the right-hand side aborts in such cases. A variable block declares the operand
stack S and a variable V of class L. The introduction of V is necessary because ROOL does not allow static methods.
New objects are created to initialise S and V , and then le is pushed onto S . After calling lm , the value of the result
argument is popped from S and assigned to x ; the resulting object is popped from the stack and assigned to le .

The next rule deals with the simplification of a method call with a value parameter.

Rule 2. (Redirecting a call with value parameter)
Consider that the declaration class C extends D ads meth m ∧= pc ops end is included in cds , and cds,A B le : C ,
and the following method declaration corresponding to m is in the class L.
cdsRVM cds,L B meth lm ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; v : T •
Pop(Sin ,o); Pop(Sin ,v); pc[o/self](v);
Push(Sin ,o); Sout := Sin

end)
Then
cdsRVM cds L, N B

((C )le).m(x ) v {le 6= null ∧ le 6= error}
var S : Stack ; V : L •

S := new Stack ; V := new L;
Push(S ,x ); Push(S , le); V .lm(S ,S );
V .lm(S ,S ); Pop(S , le)

end
provided

(→) (1) m is declared in cds and has a value parameter; (2) S and V are fresh names; (3) all attributes referenced by
lm are public and declared in cds; (4) N is either main or L.

3

The above rule is similar to Rule 1, except for the role of the argument x . It is a value argument, hence it is pushed
onto the operand stack before lm is called. As a desired effect of applying Rules 1 and 2 to redirect calls, the method
declarations in cds become useless. Based on Law 8 (method elimination), they can then be eliminated.

In our example, calls to the method getLength have a parameter passed by result. When the call p.getLength(out)
in the main command is redirected using Rule 1, the following variable block is obtained.

var S : Stack ; V : L • S := new Stack ; V := new L;
Push(S ,p); V .lgetLength(S ,S ); Pop(S ,p); Popi(S ,out)

end

The method bodies in L might have calls to methods declared in cds , as the call to getLength that appears in
lgetLenght , in Figure 17. It occurs because each method lm in L contains a copy of the body of the method m in
cds , hence m might have recursive calls or calls to other methods in cds .

As a result of applying Rules 1 and 2, for each method call in the main command and in the class L, a similar
variable block is introduced; they are further transformed in the next phase of compilation to expand their scope.
When we expand the scope of the variable blocks, unnecessary assignments to initialise the variables S and V become
evident. Additional transformation is needed to eliminate them; this simplification is also the objective of the next
phase of compilation. In this phase only method calls in L and in the main command are affected.

The method getLength uses recursion to find the length of a path. The redirection of a recursive method call does
not incur any overhead. Any recursion is embedded in calls to the associated method lm in L. As an example, we
consider the call (Path o.previous).getLength(aux ) in Figure 17; when we rewrite it, we obtain the following.

var S : Stack ; V : L • S := new Stack ; V := new L;
Push(S ,o.previous); V .lgetLength(S ,S ); Pop(S ,o.previous); Popi(S ,aux )

end

The resulting Class L obtained in this compilation phase appears in Figure 18.
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class L
meth laddStep ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; x ,y : int • Pop(Sin ,o); Popi(Sin ,x ); Popi(Sin ,y);
(val d , l : int • (Path o).previous := (Path o);

(Path o).dir := d ; (Path o).len := l
end)(x ,y); Push(Sin ,o); Sout := Sin

end)
meth lgetLength ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; x : int • Pop(Sin ,o); (res l : int; •
if (o is Path) →

var aux : int •
if ((Path o).previous = null) → aux := 0
[] ((Path o).previous <> null) →

var S : Stack ; V : L • S := newStack ;
V := newL; Push(S ,o.previous);
V .lgetLength(S ,S ); Pop(S ,o.previous); Popi(S ,aux )

end
fi; (res l : int; • l := (Step o).len )(l); l := l + aux

end
[] ¬(o is Path) → l := (Step o).len
fi) (x ); Pushi(Sin ,x ); Push(Sin ,o); Sout := Sin

end)
end

Fig. 18. Class L generated in the phase of Redirection of Method Calls

4.3. Simplification of Expressions

The main objective of this phase is to eliminate nested expressions in assignments and guards. We also eliminate
parametrised commands, and transform conditionals with arbitrary guards into an if-then-else form. The expected
outcome is stated by Theorem 3, whose proof can be found in [Dur05].

Theorem 3. (Simplification of Expressions)
Let cdsRVM cdsrmc L • crmc be a program, then there is a program cdsRVM cdsrmc Ls • cs such that

cdsRVM cdsrmc L • crmc v cdsRVM cdsrmc Ls • cs

where cs has the form var v : T • q end and methods declared in Ls have the following form

meth lm ∧= (val Sin : Stack ; res Sout • var wm : T • pm end)

Furthermore, cs and Ls are such that: (i) pm and q have no local declarations; (ii) each assignment operates through
the operand stack; (iii) each boolean expression is a variable or its negation; (iv) there is no parametrised command;
and (v) every conditional is in if-then-else form. 3

The objective is to format the commands into patterns closely related to the ones used to define the instructions. This
theorem imposes no restriction on cdsrmc or L because it is only concerned with expressions.

Basically, the task of eliminating nested expressions involves rewriting assignments and boolean expressions in
the class L and in the main command c. Since new variables are introduced, we apply basic laws to expand the
scope of variable blocks. Besides rewriting assignments and simplifying expressions, we eliminate parametrised com-
mands, simplify guards and conditionals, and eliminate unnecessary sequences of Push and Pop. The elimination of
parametrised commands is the first step. When a parametrised command is eliminated, a variable block is introduced.

4.3.1. Eliminating parametrised commands and parametrised recursion

In order to eliminate parametrised commands, such as those appearing in each method declared in L, we rely on
Laws 25 (Pcom elimination-res) and 24 (Pcom elimination-val).



An Algebraic Approach to the Design of Compilers for Object-oriented Languages 21

class L
meth laddStep ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; x ,y : int • Pop(Sin ,o); Popi(Sin ,x ); Popi(Sin ,y);
(Path o).previous := (Path o);
(Path o).dir := x ; (Path o).len := y

end)
meth lgetLength ∧= (val Sin : Stack ; res Sout : Stack •

var o : Object ; x : int • Pop(Sin ,o);
if (o is Path) →

var aux : int •
if ((Path o).previous = null) → aux := 0
[] ((Path o).previous <> null) →

var S : Stack ; V : L • S := new Stack ; V := new L;
Push(S ,o.previous); V .lgetLength(S ,S );
Pop(S ,o.previous); Popi(S ,aux )

end
fi; x := (Step o).len; x := x + aux

end
[] ¬(o is Path) → x := (Step o).len

fi; Pushi(Sin ,x ); Push(Sin ,o); Sout := Sin

end)
end

Fig. 19. Class L after the elimination of parametrised commands

Further manipulation is needed to simplify the resulting command. To do so, we use Laws 23 (; := substitution),
12 (var-; right dist), 14 (var - := final value), and 11 (var elim). Law 23 (; := substitution) states that if the value of
a variable is known, we can replace the occurrences of this variable in an expression with that value. Law 12 (var-;
right dist) establishes that if the right argument of a sequential composition declares the variable x , then the scope can
be extended to the left component, provided that it does not interfere with the other variables with the same name.
Law 14 (var - := final value) says that an assignment to a variable just before the end of its scope is irrelevant. Finally,
Law 11 (var elim) allows us to eliminate a declared variable that is never used.

Parametrised recursive calls are eliminated using a strategy similar to that presented in [Sam97]. A recursive
method lm is defined with the use of the command rec X • c end. We now explain how we perform this transformation.

The intuitive interpretation of the recursive command is that of recursive unfoldings [BvW98]. In the execution
of c, whenever X is encountered, it is equivalent to the whole command rec X • c end. Consider a parametrised
recursive method lm declared in L, having in its body a code fragment with a recursive call, as follows.

meth lm ∧= (val Sin : Stack ; res Sout : Stack • . . . o.lm(S ,S ) . . .)

Then, the method body is replaced with a recursive command, and each parametrised recursive call, such as the above
o.lm(S ,S ), is replaced by the code fragment with a parameterless recursive call to X , as stated next.

meth lm ∧= rec X • (val Sin : Stack ; res Sout : Stack •
. . .
dvar Sin ,Sout : Stack ; Sin := S ; X ; S := Sout ; dend Sin ,Sout

. . .)

A non-recursive call gives the initial values of Sin and Sout . After that, when a parameterless recursive call is executed,
the initial value of Sin , which is the value parameter, is given by S . Similarly, when returning from a call, the value
of Sout , which is the result parameter, is copied to S . To achieve the same behaviour for every recursive call, the
use of dynamic declarations is essential. They simulate an abstract stack that handles parameters in the way they are
implemented in practice. For each recursive call, the value of the arguments are stored in an activation record [ASU85]
in a run time stack; this stack is also used to store local variables.

Our target machine has a run time stack F . The following rule allows us to introduce F , replacing the implicit use
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meth lgetLength ∧= (val Sin : Stack ; res Sout : Stack •
var F : Stack •

F := new Stack ;
rec X •

var x ,aux : int; o : Object ; x1,x2 : Boolean; S : Stack ; V : L •
Pop(Sin ,o); S := new Stack ; V := new L;
Push(S ,o); Is(S ,Path); Popb(S ,x1);
Push(S ,o) Getfd(S ,Path.previous); Push(S ,null);
cmpeq(S ); Popb(S ,x2)
if x1 →

if x2 → Push(S ,0); Pop(S ,aux )
Push(S ,o); Getfd(S ,Path.previous);

[] ¬(x2) → Push(S ,0); Pop(S ,aux )
Push(S ,o); Getfd(S ,Path.previous);
Push(F ,Sin); Push(F ,Sout);
Sin := S ; X ; Sout := S ;
Push(F ,Sout); Push(F ,Sin);
Push(S ,o); Putfd(S ,Path.previous);
Pop(S ,o); Popi(S ,aux )

fi;
Push(S ,o); Getfd(S ,Step.len); Pop(S ,x );
Push(S ,x ); Push(S ,aux ); Add(S ); Pop(S ,x )

[] ¬(x1) → Push(S ,o); Getfd(S ,Step.len); Pop(S ,x )
fi;

end;
Pushi(Sin ,x ); Push(Sin ,o); Sout := Sin

end
end)

end

Fig. 20. Method lgetLength after the third compilation phase

of a stack with explicit calls to the stack methods Push and Pop.

Rule 3. (Stack implementation — Parameters of recursion)

rec X • (val x : T ; res y : T •p)
v

val x : T ; res y : T • (var F : Stack • rec X • p[(dpar x ,y : T • X )/X ] end)

where
(dpar x ,y : T • X )(s, t)

def
= Push(F ,x ); Push(F ,y); x := s; X ; t := y ; Pop(F ,y); Pop(F ,x ) 3

Here, we use an explicit stack to represent the way parameters of a recursive command are implemented in practice.
In our example, the only method that requires the elimination of parametrised recursion is lgetLength . In Figure 20,

we present the transformed version of this method. At this point, in the body of lgetLength , there are no calls of the
form o.lgetLength(S ,S ). The same effect is obtained with the recursive command. Whenever the recursive variable
X is encountered, the recursive unfolding simulates the recursive call. The parametrised recursion in the method
lgetLength is eliminated with the introduction of the recursive command rec X • c end, as presented in Figure 20.

4.3.2. Simplifying Guards

The boolean expressions appearing as conditions in while and if commands may be arbitrarily nested. They need to
be simplified to match the patterns used to reduce these commands to normal form in the Control Elimination phase.



An Algebraic Approach to the Design of Compilers for Object-oriented Languages 23

The next compilation rule shows how the conditions of an if command can be simplified.

Rule 4. (Conditions of if)
If xi does not occur in bi nor in pi , for 1≤ i ≤ n , then

if []〈1≤ i ≤ n〉 bi → pi fi v var x1, . . . ,xn : boolean •
x1 := b1; . . . ; xn := bn ;
if []〈1≤ i ≤ n〉 xi → pi ; fi;

end
3

The conditions in an if are reduced to single variables xi whose values are given by assignments. The simplification of
the expressions bi are performed using the rules related to assignment, presented in Section 4.3.4. In our example, the
boolean expression (o is Step) is assigned to a boolean variable x2; then x2 replaces the expression in the conditional.
For an iteration, the approach to simplification is similar, but in this case we have just one guard.

4.3.3. Transforming Conditionals

In the next compilation phase, that is, Control Elimination, when reducing a conditional we need to calculate the
location of each guarded command in the bytecode stream. A conditional in an if-then-else style always has two
guarded commands, and hence it is simpler to deal with this form than with conditionals with an arbitrary number of
guarded commands. Besides, an if-then-else conditional always requests a fixed number of branch instructions when
it is rewritten in a bytecode style in our normal form. Therefore, the application of Law 19 (if - Conditional in the
if-then-else style) and Law 20 (if - Conditional without guarded commands) reduces conditionals to an if-then-else
form, and therefore allows us to have simpler compilation rules to deal with conditionals.

4.3.4. Rewriting Assignments

Considering that the RVM is a stack-based machine, the assignments must be rewritten in order to operate exclu-
sively on the operand stack. The following compilation rule defines how an assignment is rewritten. In our strategy,
assignments to RVM variables, such as S and V , are not affected by these rules.

Rule 5. (Assignment to a variable)
If S does not occur in e or f

(x := e) = var S : Stack ; • S := new Stack ; Push(S ,e); Pop(S ,x ) end

3

In the above rule, for each assignment, a block declaring S is introduced, S is initialised, e is pushed onto the operand
stack, and then the value is popped from the top of the stack and assigned to x . The expression e may be arbitrarily
nested; we need to simplify it further to achieve a form in which e consists of a variable, an attribute selection, or a
constant. The next rule handles Push(S ,e), when e is a binary expression.

Rule 6. (Binary operator)

Push(S ,e bop f ) v Push(S ,e); Push(S , f ); Bop(S )

where Bop(S ) represents the application of an arbitrary binary operator to the two topmost elements of the operand
stack; see Definition 8. 3

The nested expression in the method call Push(S ,e bop f ) is replaced with a sequence of method calls which first
loads the subexpression e , then loads the subexpression f , and finally performs the bop operation. Similarly, the
following rule deals with a call Push(S ,e), whose argument is an application of a unary operator.

Rule 7. (Unary operator)

Push(S ,uop e) v Push(S ,e); Uop(S )

where Uop(S ) represents the application of an arbitrary unary operator to the element at the top of the operand stack;
see Definition 8. 3
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The following two rules define how an attribute selection is rewritten.

Rule 8. (Pushing an attribute)
If cdsRVM cds, N B le : C

Push(S , le.t) v Push(S , le); Getfd(S ,C .t)

3

The expression le above may be arbitrarily nested; it can be simplified by applying this rule again to Push(S , le). The
abbreviation Getfd(S ,C .t) is described in Definition 8 (see Section 4.2.2).

Rule 9. (Popping to an attribute)
If cdsRVM cds, N B le : C

Pop(S ,(C le).t) v Push(S , le); Putfd(S ,C .t); Pop(S , le)

3

We use Push(S , le) and Pop(S , le) because le may be arbitrarily nested, and may need further simplification; in
Definition 8 we describe Putfd(S ,C .t). Object creation is just another instance of assignment.

Rule 10. (Object Creation - Simplification)

(x := newC ) = var S : Stack ; • S := new Stack ; Push(S ,new C ); Pop(S ,x ) end

3

In this case, we use Push(S ,new C ) to push the object onto the operand stack.
When the guards are simplified (Section 4.3.2), a type test is rewritten to an expression that is assigned to a boolean

variable. Therefore, the rule for a type test is just a specific case of the rule for an assignment in which the boolean
type of the target of the assignment must be considered.

Rule 11. (Type test - Simplification)

(x := (o isC )) = var S : Stack ; • S := new Stack ; Push(S ,o); Is(S ,C ); Popb(S ,x ) end

3

The object o in Push(S ,o) may actually be an arbitrarily complex object-valued expression and, therefore, it may
need to be submitted to further simplifications. The abbreviation Is(S ,C ) pops the element at the top of S and tests if
it has type C . The result is encapsulated into an instance of DataBool and pushed onto S . This instance of DataBool
has one attribute named Info, which has a boolean type, and holds the result of this type test. For this reason, we need
to use the version of Pop for boolean variables (Popb(S ,x )) to assign the result of the type test to x .

4.3.5. Irrelevant sequences of Push and Pop

In our approach, the code is generated in a bottom up way. When combining the small pieces of code into larger
chunks, there is opportunity for some optimisations. In particular, during this phase of compilation, several variable
blocks are introduced containing sequences of Push and Pop involving the operand stack S . By expanding the scope
of the variable blocks, we can apply laws to eliminate unnecessary assignments to initialise the variables S and V , as
well as sequences of Push and Pop. In this section, we explain how this can be achieved.

The lemmas in this section play a role similar to that of the algebraic laws; their proofs can be found in [Dur05].
They express general properties that arise from the combination of some operators, whereas the rules have the special
purpose of reducing programs to normal form. The next lemma asserts that an assignment does not affect the stack.

Lemma 1. (Assignment does not affect the resulting stack)

({S = X }; Push(S ,e); Pop(S ,x )) = ({S = X }; Push(S ,e); Pop(S ,x ); {S = X })

3

The initialiser declared in the class Stack (presented in Figure 5) assigns an empty sequence to its attribute just after
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creation of an object. Therefore, we have the following lemma. It states that after a new object of class Stack is
assigned to S , we can always introduce an assumption whose condition is the emptiness of S .

Lemma 2. (Initial empty stack)

S := new Stack = (S := new Stack ; {empty(S )})

where empty(S )
def
= S .s = 〈〉 3

This means that in the variable block introduced by Rule 5 we can introduce the assumption {empty(S )} just before
the end of its scope. This is useful to eliminate irrelevant assignments whenever we expand the scope of the variable
blocks introduced during the compilation process.

The next rule states that Push(S ,o) composed in sequence with Pop(S ,o) has no effect whatsoever. During
compilation, such an irrelevant pair of Push and Pop can be eliminated using this rule.

Rule 12. (Push; Pop effect)

Push(S ,x ); Pop(S ,x ) = skip

3

When we have Pop(S ,x ) followed by Push(S ,x ), the effect is that of assigning the top of S to x .

Lemma 3. (Pop; Push effect)

Pop(S ,x ); Push(S ,x ) = x := head(S .s)

3

More optimisations can be used to improve the code, but our focus is on the overall compilation process.

4.4. Control Elimination

In this section, we present the Control Elimination compilation phase; it aims at reducing the nested control structure
of the program to a single flat iteration. The outcome of this phase is a program whose control structure is that of our
normal form. The next theorem summarises this result; its proof is in [Dur05].

Theorem 4. (Control Elimination)
Consider a program cdsRVM cdsrmc Ls • cs where cdsrmc has only declarations of public attributes. Methods declared
in Ls have the form

meth lm ∧= (val Sin : Stack ; res Sout • var w : T • p end)

and cs has the form var v : T • q end. The commands p and q also satisfy the following conditions: (1) there
are no local declarations, (2) all assignments are through the operand stack, (3) all boolean conditions are boolean
variables or a negation of a boolean variable, (4) all conditionals are written in an if-then-else form, and (5) there are
no parametrised commands. Then, there is a command cCE such that

cdsRVM cdsrmc Ls • cs v cdsRVM cdsrmc • cCE

The main command cCE has the same control structure as I in the normal form cdsRVM • I , but cCE still operates on
the abstract state space of the source program variables. 3

To accomplish the goal established by this theorem, we apply the compilation rules presented in the next two sections.

4.4.1. Introducing the Program Counter

Our normal form is equipped with the program counter PC used for scheduling the selection and sequencing of
bytecode instructions. More precisely, PC is the pointer which indicates the location of the next bytecode instruction
to be executed. In this compilation phase, we introduce the program counter PC .

We represent the RVM instructions as abbreviations of sequences of ROOL commands, as described in Section 3.
Moreover, for convenience, we define an abbreviation for a command that is similar to the main command of our
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interpreter, but declares just one of the RVM components: PC ; we call it a PC frame.

Definition 11. (Abbreviation for the PC frame)

PC : [s,GCS , f ]
def
= var PC : int; •

PC := s;
while PC ≥ s ∧ PC < f → if GCS fi end;
{PC = f }

end

The following patterns are introduced in this phase. They are similar to the RVM instructions previously defined, but
they still operate on the (abstract) state space of the source program.

Definition 12. (Abbreviations for Control Elimination)

nop
def
= PC := PC +1

LoadCE (e)
def
= Push(S ,e); PC := PC +2

StoreCE (x )
def
= Pop(S ,x ); PC := PC +2

aconstnull
def
= Push(S ,null); PC := PC +1

IsOfCE (C )
def
= Is(S ,C ); PC := PC +2

PutfieldCE (C .t)
def
= Putfd(S ,C .t); PC := PC +2

GetfieldCE (C .t)
def
= Getfd(S ,C .t); PC := PC +2

The abbreviation LoadCE (e) pushes an expression onto the operand stack. To pop a value and assign it to a variable,
we use StoreCE (x ). We use the abbreviation aconstnull to push the constant null onto the operand stack. A type test
is performed by IsOfCE (C ). Finally, PutfieldCE (C .t) and GetfieldCE (C .t) are used for attribute selection purposes.
Similarly, below we introduce abbreviations for patterns of program that deal with integer and boolean expressions.

Definition 13. (Abbreviations for Control Elimination – integer and boolean values)

iLoadCE (e)
def
= Pushi(S ,e); PC := PC +2

iStoreCE (x )
def
= Popi(S ,x ); PC := PC +2

bLoadCE (e)
def
= Pushb(S ,e); PC := PC +2

bStoreCE (x )
def
= Popb(S ,x ); PC := PC +2

The abbreviation iLoadCE pushes an integer value onto the operand stack, whereas bLoadCE pushes a boolean value.
Similarly, iStoreCE pops an integer and assigns it to a variable; in the same way, bStoreCE deals with booleans.

Using the following rules, abbreviations such as Push(S ,x ) can be reduced to the form given in Definition 11.
Here we assume that S and x are different from PC and, for this reason, we omit these side conditions.

The next lemma shows that any command can be written in normal form. This is particularly useful in the reduction
of method calls and assignments, as well as in the proof related to recursion elimination.

Lemma 4. (Commands in normal form) If w and PC are not free in p then

p v PC : [s,(PC = s → p; PC := f ), f ]

3

The proof of this lemma is similar to that of Lemma 4.1 (Primitive commands) presented in [Sam97]. The following
normal form representations (from Rules 13 to 24) are instantiations of the above lemma.

The reduction of skip states that its only effect is the PC increment.

Rule 13. (Skip)

skip v PC : [s,(PC = s → nop),s +1]

3

As shown in Definition 12, the only effect of nop is the PC increment.
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During the code generation process, abort may arise; it is handled by the rule below.

Rule 14. (Abort)

skip v PC : [s,(PC = s → abort),s]

3

The reduction of abort does not increment the PC . When executing the target code, once PC reaches the address s ,
the program presents the most undefined behaviour: it may fail to terminate or it may terminate with any result.

The next few rules deal with the elements of abbreviations introduced in the previous phases. The first such rule
presented below considers the pattern LoadCE (x ) to load a variable.

Rule 15. (Push variable)

Push(S ,x ) v PC : [s,(PC = s → LoadCE (x )),s +2]

3

As previously defined, LoadCE (x ) is an abbreviation of a sequence of commands that push the value of x onto the
operand stack S , and increments the PC by two. Now we show the reduction of a pattern that stores an integer variable.

Rule 16. (Pop variable)

Pop(S ,x ) v PC : [s,(PC = s → StoreCE (x )),s +2]

3

Like the Load instruction, the Store instruction also requires two bytecodes. It pops a value from S and stores it in x .
The abbreviation LoadCE (new C ) pushes a fresh object onto the operand stack. Its reduction is handled by the

Rule 17 below. As an example, we present its proof of soundness.

Rule 17. (Object Creation)

Push(S ,new C ) v PC : [s,(PC = s → LoadCE (new C )),s +2]

Proof

PC : [s,(PC = s → LoadCE (new C )),s +2]
= var PC : int •

PC := s;
while PC ≥ s ∧ PC < s +2 →

if PC = s → S .s := 〈new C 〉aS .s; PC := PC +2 fi
end; {PC = s +2}

end

[Definitions 11 (Abbr. for the PC frame) and 12 (Abbr. for Control Elimination)]

= var PC : int •
PC := s; [PC = s];
if PC = s → S .s := 〈new C 〉aS .s; PC := PC +2 fi
while PC ≥ s ∧ PC < s +2 →

if PC = s → S .s := 〈new C 〉aS .s; PC := PC +2 fi
end; {PC = s +2};

end

[Laws 22 (; := void assertion) and 16 (while unfold)]

w var PC : int •
PC := s; [PC = s];
S .s := 〈new C 〉aS .s; PC := PC +2; [PC = s +2];
while PC ≥ s ∧ PC < s +2 →

if PC = s → S .s := 〈new C 〉aS .s; PC := PC +2 fi
end; {PC = s +2}

end

[Laws 18 (if selection) and 22 (; := void assertion)]
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= var PC : int •
PC := s; [PC = s];
S .s := 〈new C 〉aS .s; PC := PC +2;
[PC = s +2]; {PC = s +2}

end

[Law 17 (while elimination)]

= var PC : int •
PC := s; [PC = s];
S .s := 〈new C 〉aS .s; PC := PC +2

end

[Law 13 (; [b]; {b} simulation)]

= var PC : int •
PC := s; [PC = s];

end;
S .s := 〈new C 〉aS .s

[Laws 14 (var- := final value) and 15 (var-; left dist)]

= var PC : int • end;
S .s := 〈new C 〉aS .s

[Laws 22 (; := void assertion) and 14 (var- := final value)]

w S .s := 〈new C 〉aS .s [Law 11 (var elim)]

= Push(S ,new C ) [Definition 8 (Abbreviations — operand stack)]

3

For a type test, we have the following rule.

Rule 18. (Type Test)

Is(S ,C ) v PC : [s,(PC = s → IsOfCE (C )),s +2]

3

The next rule deals with the sequence of commands that sets a new value to an attribute of an object.

Rule 19. (Set an attribute)

Putfd(S ,C .t) v PC : [s,(PC = s → PutfieldCE (C .t)),s +2]

3

The following rule addresses the sequence of commands GetfieldCE (C .t) that pops an object from the operand stack,
gets the value of its attribute t , and pushes it onto the operand stack.

Rule 20. (Set an attribute)

Getfd(S ,C .t) v PC : [s,(PC = s → GetfieldCE (C .t)),s +2]

3

To reduce the call associated with a binary or unary operator, we use the following rules.

Rule 21. (Binary Operator)

Bop(S ) v PC : [s,(PC = s → bop),s +1]

3

The bop (and uop) introduced in this phase is exactly the same given in the RVM instruction set (see Definition 3).

Rule 22. (Unary Operator)

Uop(S ) v PC : [s,(PC = s → uop),s +1]

3

The reduction of a method call follows from Lemma 4. The rule is very simple: it preserves the call by rewriting it
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into normal form. The actual translation into bytecode instructions is discussed in Section 4.4.2.

Rule 23. (Method Call)

le.lm(x ,x ) v PC : [s,(PC = s → le.lm(x ,x ); PC := PC +2),s +2]

3

Similarly, the rule to reduce assignments is as follows.

Rule 24. (Assignment)

x := e v PC : [s,(PC = s → x := e; PC := PC +1),s +1]

3

The reduction of a sequential composition requires that both arguments are in normal form and the final address (j ) of
the guarded command set (GCS1) of the left argument is the initial address of the set (GCS2) of the right argument.

Rule 25. (Sequential composition)

PC : [s,GCS1, j ]; PC : [j ,GCS2, f ] v PC : [s,(GCS1[]GCS2), f ]

3

The resulting normal form has the initial position of the left argument and the final position of the right argument.
The following rule shows how a conditional can be transformed to the reduced form when its branches have already

been reduced, which can be assumed by structural induction.

Rule 26. (Conditional)
If the address intervals [s1, f0] and [s2, f ] are disjoint, then( if (x ) → PC : [s1,GCS1, f0]

[] ¬(x ) → PC : [s2,GCS2, f ]
fi

)
v PC : [s,R, f ]

where R =

 PC = s → (if (x ) → PC := s1 []¬(x ) → PC := s2 fi)
[] GCS1
[] (PC = f0) → (PC := f )
[] GCS2


3

The first guarded command to be executed in the reduced command determines which of the original initial instructions
should be activated. To reduce an iteration, we assume that its body is already reduced.

Rule 27. (Iteration)

while x →
PC : [(s +1),GCS , f0]

end
v PC : [s,R,(f0 +1)]

where R =

( PC = s → (if x → PC := PC +1 [] ¬(x ) → PC := f0 +1 fi)
[] GCS
[] PC = f0 → (PC := s)

)
3

In the loop, s and f0 + 1 are the start and finish addresses for the while compiled code. In R the first command to be
executed is that with guard (PC = s). It tests if the condition of the iteration holds; in this case, the next instruction to
be executed is the first one in the body of the iteration, and so the PC is incremented by 1. If, on the other hand, the
condition does not hold, the PC is set so that we jump to the end of the loop.

The exhaustive application of the rules in this section yields a program of the form below.

var F ,S : Stack ; v : T •PC : [sc ,GCSc , fc ] end

Applying Law 10 (var association), we can join the variable blocks obtaining a program that is similar to the normal
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CdsRVM , cds,
class L
{meth lmi

∧= (val Sin : Stack res Sout : Stack •
rec X • wm : [sm ,GCSm , fm ] end)}∗

end
• wc : [sc ,GCSc , fc ] end

Fig. 21. Intermediate program obtained before the elimination of L

form command, but still operates on the abstract data space. This program is described by Definition 14 below.

Definition 14. (Abbreviation for the flat iteration)

w : [s,GCS , f ]
def
= var PC : int; F ,S : Stack ; v : T •

F := new Stack ; S := newStack ; PC := s;
while PC ≥ s ∧ PC < f →

if GCS fi
end;
{PC = f }

end

where w represents a list of variables comprising the RVM components PC , S , F , and the list of local variables v
declared in the main command or in a method body. 3

We observe that F and S represent the frame stack and the operand stack. The operand stack S is introduced by the
rules of redirection of method calls, and assignment simplifications, whereas the frame stack F is introduced by the
rules that deal with the elimination of recursive commands and parametrised recursive calls.

Eventually, after applying the above rules, a command of the form wm : [sm ,GCSm , fm ] becomes the body of each
method m declared in L, and a command wc : [sc ,GCSc , fc ] becomes the main command. Figure 21 presents the form
of the resulting program at this stage. There might exist several method declarations in L, each one operating on an
assumed disjoint interval established by the pair of values (sm , fm ). The main command also operates on an interval,
defined by the pair (sc , fc), also assumed to be disjoint from the other intervals.

In order to reduce the program depicted in Figure 21 to normal form, it is necessary to eliminate the class L. This
is the objective of the next step. The major obstacle resides in the calls to methods in L that may exist in GCSm and
in GCSc . Recursive parametrised calls have eliminated as explained in Section 4.3.1. Nevertheless, recursive methods
might exist, implemented using the recursive command rec X • p end. To eliminate the class L, we handle recursion
and method calls separately, so that the overall task becomes modular.

4.4.2. Nested Normal Form

To eliminate calls one approach would be to replace them with the corresponding method body. The use of the copy
rule to eliminate methods, however, is not acceptable because it may substantially increase the size of the target code.
The method bodies and the main command have been compiled into separate segments of code. The replication of
code is avoided by keeping just one copy of each segment, in such a way that control passes back and forth between
these segments, simulating the same behaviour provided by the copy rule. We omit the details of this step here because
it is similar to the imperative case [Sam97]; further details can also be found in [Dur05].

In Figure 22, we present the general control structure of our program example after the Control Elimination phase.
The main command and each method body is placed in a code segment. Each segment is formed of a sequence of
guarded commands whose guards indicate its location in the bytecode stream. For our example, the segment associated
to lgetLength (see Figure 20), for instance, is presented in Figure 23.

In practice, a compiler implementation based on, for instance, a term rewriting system, would need to ensure that
the addresses of the target code are disjoint and contiguous. This can be achieved by annotating the source program
with natural numbers representing the addresses of memory instructions. These addresses determine, for example, the
values of k1, k2 abd k3 in Figure 22. More details can be found in [Sam97].



An Algebraic Approach to the Design of Compilers for Object-oriented Languages 31

cdsRVM cds • var PC : int; S ,F : Stack ,w : T •
S := new Stack ; F := new STack ;
PC := s;
while PC ≥ s ∧ PC < f →

if PC = s → PC := k3
[] PC = k1 → laddStep
...
[] PC = k2 → lgetlength
...
[] PC = k3 → Main Command

fi
end

end

Fig. 22. General structure of our example after the Control Elimination phase

...
[] PC = k2 +40 → Pushi(F ,aux )
[] PC = k2 +42 → Pushi(F ,x )
[] PC = k2 +44 → Pushi(F ,x2)
[] PC = k2 +46 → Pushi(F ,x1)
[] PC = k2 +48 → Push(F ,o4)
[] PC = k2 +50 → invoke(k2)
[] PC = k2 +52 → Pop(F ,o4)
[] PC = k2 +54 → Popi(F ,x1)
[] PC = k2 +56 → Popi(F ,x2)
[] PC = k2 +58 → Popi(F ,x )
[] PC = k2 +60 → Popi(F ,aux )
[] PC = k2 +62 → PutfieldCE (Path.previous)
[] PC = k2 +64 → StoreCE (o4)
[] PC = k2 +66 → iStoreCE (aux )
[] PC = k2 +68 → LoadCE (o4)
[] PC = k2 +70 → GetfieldCE (Path.previous)
[] PC = k2 +70 → iStoreCE (x )
[] PC = k2 +74 → iLoadCE (x )
[] PC = k2 +76 → iLoadCE (x )
[] PC = k2 +78 → add
[] PC = k2 +79 → iStoreCE (x )
[] PC = k2 +81 → goto(k2 +87)
[] PC = k2 +83 → LoadCE (o4)
[] PC = k2 +85 → GetfieldCE (Step.len)
[] PC = k2 +87 → iLoadCE (x )
[] PC = k2 +89 → LoadCE (o4)
[] PC = k2 +91 → Pop(F ,PC ) %{Return}

Fig. 23. Sequence of guarded commands corresponding to a fragment of lgetLength after the Control Elimination phase
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4.5. Data Refinement

The Data Refinement phase replaces the (abstract) data space of the source program with the concrete state of the
target machine. This means that all references to variables, attributes, and classes declared in the source program are
replaced with references to the components the data space of the target machine model.

The following theorem, proved in [Dur05], summarises the outcome of this phase of compilation.

Theorem 5. (Data Refinement)
Consider a program cdsRVM cdsrmc L • cCE , where cds contains only public attributes, and cCE has the form of
Definition 14. Then there is a Ψ and an I such that

∧
Ψw (cdsRVM cdsrmc L • cCE ) v cdsRVM • I

and I is in normal form. 3

After the Data Refinement phase is performed, there are no references to classes declared in the source program. The
replacement of the abstract space by the concrete space involves references to specific variables that are part of the
data structure of the target machine. A mapping

∧
Ψw is required to link the data model of the RVM with the object

model of the source program. To do so, symbol tables are necessary to relate the concrete and the abstract data spaces.
To carry out the change of data representation, we use the distributivity properties of

∧
Ψ presented later in this

section. It is a polymorphic simulation function (built from the symbol tables) that applies to programs and com-
mands, and distributes over the commands in the main command. The function

∧
Ψ reclassifies [DDDCG02, Ser99] the

objects stored in the variables referenced by the main command. Reclassification enables an object to have its class
membership changed, preserving its identity, by creating a concrete representation of its attribute values.

In Figure 24 we present the concrete representation of an object in a variable x . When the change of data repre-
sentation is performed, the object in x is reclassified and stored in the memory storage M , in the location indicated
by Ψx . M is a sequence of Data objects; as explained in Section 3, the class Data has two subclasses: PriData
and ObjData . Objects are stored in ObjData instances, whereas primitive values are instances of PriData . The class
PriData has several subclasses, one for each primitive type. In this example, DataInt is the subclass of PriData
whose instances encapsulate the values of the integer attributes of x .

In the concrete space, the source class declarations cds do not exist, so a concrete instance must have an extra
attribute to keep the type information of the object it represents in the abstract space. In the class ObjData , the
attribute cl codifies the type of the abstract instance. The attribute att is a sequence of Data , where each element is
the concrete representation of an attribute of the class type indicated by cl . We use Φ as the symbol table mapping
each attribute of a class in the abstract space to an address in the sequence of attributes (att) in the concrete space. The
term ΦC .x gives the location in the sequence att in which the value of the abstract non-primitive attribute x is stored.
So M [ψo ].att [ΦC .i ] is the concrete storage of the attribute i of an object of class C , stored in the variable o.

Differently from [DDDCG02] and [Ser99], where an object may have many types according to trees of class
hierarchies, the object reclassification that we present has the following characteristics: all objects in the concrete
space are instances of the class Data or of its subclasses, and abstract instances do not coexist with concrete instances,
except during the moment in which data refinement is performed.

To allow objects to change their class membership when the data refinement is performed, two methods (encode
and decode) are introduced in each class declared in the source program. An object with encode and decode methods
knows how to copy itself from the abstract state to the concrete state and vice-versa, maintaining the corresponding
representation of the original attributes and initialising the extra attributes. These methods are introduced and elimi-
nated in this phase; we introduce them merely to simplify the description of our Data Refinement phase.

To illustrate how these methods are structured, we consider the class declarations in Figure 25. Each class has its
specific encode method to build an abstract instance from a concrete instance. Every encode method has an object of
class ObjData as a value parameter D . Based on its att and cl attributes, the encode method retrieves the values of
each attribute of an object in the abstract space of the source program.

In Figure 25 we give as examples the methods encode and decode for two classes A and B . Class B declares
two attributes, whereas class A declares just one. The attribute z has a class type, whereas the attributes l and k have
integer types. The methods encode and decode are introduced, in the beginning of this phase, using Law 8 (method
elimination), from right to left, so that we introduce, rather than eliminate these methods.

Since some attributes can be inherited from a superclass, if the immediate superclass is not object, the encode
method begins with a call (super.encode(D)) to invoke the encode method declared in its immediate superclass. In
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Fig. 24. An object in the concrete space

class A extends object
pub k : int
meth encode ∧= (val D : objData • self.k := (DataInt D .att [ΦA.k ]).info)
meth decode ∧= (res D : objData • D := new objData; D .cl := A′;

D .att [ΦA.k ] := (new DataInt ; info : self.k))
end
class B extends A

pub z : A
pub l : int
meth encode ∧= (val D : objData •

super.encode(D);
if D .att [ΦB .z ] = null → self.z := null
[] ¬(D .att [ΦB .z ] = null) →

if (D .att [ΦB .z ].cl = ′A′) → self.z := new A [] (D .att [ΦB .z ].cl = ′B ′) → self.z := new B fi;
self.z .encode(D .att [ΦB .z ])

fi;
self.l := (DataInt D .att [ΦB .l ]).info)

meth decode ∧= (res D : objData •
D := new objData; D .cl := ′B ′;
if self.z = null → D .att [ΦB .z ] := null [] ¬(self.z = null) → self.z .decode(D .att [ΦB .z ]) fi;
D .att [ΦB .l ] := (new DataInt ; info : self.l);
var Ds : objData • super.decode(Ds); D .att := D .att aDs .att end)

end

Fig. 25. An example of encode and decode methods
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the example of Figure 25, the value of the attribute k declared in the class A is retrieved by calling the encode method
declared in class A, using super. The term D .att [ΦB .l ] holds the value of the attribute l , declared in class B . In the
case of this primitive attribute, its value is encapsulated in an instance of DataInt .

Since z is a non-primitive attribute of type A, there are two possible (run time) types for z : A and B . Furthermore,
we distinguish the case when it is null or not. If D .att [ΦB .z ] is null, then, the attribute z is null; otherwise, testing
the attribute cl , it is possible do initialise z with the proper type, A or B . Once D .att [ΦB .z ] is different from null, the
call self.z .encode(D .att [ΦB .z ]) initialises the attributes of the new object assigned to the attribute z .

Similarly, the decode method creates the corresponding concrete instance of an object. The decode methods de-
scribed in Figure 25 have a result parameter D , which is an instance of ObjData . The attribute cl is assigned according
to the type of the target object of the decode call. The value of each non-primitive abstract attribute is encapsulated
in the corresponding concrete instance, and is stored in a specific position in the sequence D .att . For example, the
attribute l is encapsulated in an instance of DataInt , and stored in D .att [ΦB .l ]. For the attribute z , which has a class
type, it is necessary to check its value; if z is null, then null is assigned to D .att [ΦC .z ], otherwise, the decode method
associated with the type of this attribute is invoked to obtain the value of the concrete instance. The attributes inher-
ited from a superclass are copied to the concrete instance by calling the decode method declared in the immediate
superclass. When this call completes, the resulting sequence (Ds .att) is concatenated with D .att .

The next lemma establishes the outcome of the sequential composition of calls to encode and decode methods.
It is used in the proofs of the rules applied in this phase; recall that M represents the memory storage of our virtual
machine, whereas Ψx is the location where the concrete instance of x is stored in M .

Lemma 5. (Encode; Decode)

(1) o.encode(M [Ψo ]); o.decode(M [Ψo ]) = o.encode(M [Ψo ])
(2) o.decode(M [Ψo ]); o.encode(M [Ψo ]) = o.decode(M [Ψo ])

provided o is not null. 3

On the left-hand side of (1), an abstract instance for o is constructed, through encode, in the concrete space M [Ψo ].
Then decode is used to recover the concrete state from the abstract space. Clearly, this results in M [Ψo ] itself and,
therefore, the decode has no effect. The intuition for (2) is similar.

Since we have explained the encode and decode methods, now we can discuss the encoding and decoding blocks.
The encoding block introduces the abstract state and ends the scope of the concrete state, while the decoding block
introduces the concrete state and ends the scope of the abstract state. The approach is based on that in [Bac80, BvW90].

In our approach to Data Refinement, the commands dvar and dend play an essential role in defining the encoding
and decoding blocks. For conciseness, consider an abstract space with only two variables: o and i . The variable o has
a class type C , whereas i has the integer primitive type. From that we define the following encoding block.

Definition 15. (Encoding block
∧
Ψo,i )

[M [Ψo ].cl = ΦC ]
dvar o : C ; i : int;

if M [Ψo ] = null → o := null []¬(M [Ψo ] = null) → o := new C ; o.encode(M [Ψo ]) fi;
i := (DataInt M [Ψi ]).Info;

dend M

3

It maps the concrete space to the abstract space. By calling the corresponding encode method of each non-primitive
source variable, and encapsulating the primitive source variables according to their types, the data state of the target
program stored in the memory storage M is copied to the data state of the source program. Once the abstract state is
initialised, the concrete state is no longer needed and therefore its scope is terminated. The assertion [M [Ψo ].cl = ΦC ]
avoids the need for conditionals to test the type of the variable o.

The decoding block below retrieves the concrete space of the target machine model. Once it is properly initialised,



An Algebraic Approach to the Design of Compilers for Object-oriented Languages 35

the abstract data space of the source program is terminated.

Definition 16. (Decoding Block
∧
Ψ
−1

o,i )

dvar M : seq Data;
if o = null → M [Ψo ] := null []¬(o = null) → o.decode(M [Ψo ]) fi;
M [Ψi ] := (new DataInt ; Info : i);

dend o, i

3

The encoding block retrieves the abstract space from the concrete state, assigning to each source variable the value
stored in the corresponding location in the memory storage M . In case of a class type variable, the corresponding
encode method is called, according to its type, to retrieve its attributes. On the other hand, the decoding block does
exactly the opposite, obtaining the concrete representation of each source variable. Similarly, to convert a class type
variable, the corresponding decode method is called to build its concrete instance.

There is an asymmetry between the definitions of the encode and decode methods; encode deals only with the
attributes, whereas decode also deals with the object creation. This is a consequence of the way we have modelled
these methods, associating them with the class declared in the source program.

The next lemma formalises the relationship between
∧
Ψ and

∧
Ψ−1 ; they form a simulation. We take the list of

variables of the source program to be w . The proof is in [Dur05].

Lemma 6. ((
∧
Ψ,

∧
Ψ−1 ) simulation)

∧
Ψw ;

∧
Ψ
−1

w v skip v
∧
Ψ
−1

w ;
∧
Ψw

3

We use the first component of a simulation as a function.

Definition 17. (Simulation Function)
Let (

∧
Ψw ,

∧
Ψ
−1

w ) be a simulation. We use
∧
Ψ itself as a function defined by

∧
Ψw (c) =

∧
Ψw ; c;

∧
Ψ
−1

w

We use the overloaded version of
∧
Ψi ,o to deal with expressions. When applied to an expression,

∧
Ψi ,o replaces free

occurrences of non-primitive variables o in e with the corresponding concrete M [Ψo ], whereas the primitive variable
i is replaced with M [Ψi ].Info, and the object identified by o with M [Ψo ].

Definition 18. (Simulation as substitution)
∧
Ψi ,o (e) = e[M [Ψi ].Info/i ] [M [Ψo ]/o]

3

The function
∧
Ψw does not affect the classes and components of our interpreter nor commands that have no references

to variables or classes affected by
∧
Ψw . Similarly, any command that has no reference to any class or variable declared

in the source program is not affected. The following rule addresses the distribution of
∧
Ψ over an assignment.

Rule 28. (Assignment-
∧
Ψx ,w - Data Refinement)

∧
Ψx ,w (x := e) v M [Ψx ] :=

∧
Ψ (e)

3

Above x is replaced with the corresponding machine location M [Ψx ]. When applied to constructors that deal with
control, like conditional,

∧
Ψ distributes over their components. The simple rules are omitted. The next rules deal with
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abbreviations introduced in the previous compilation phase; the following rule gives the effect of
∧
Ψ over LoadCE (x ).

Rule 29. (Load variable - Data Refinement)
∧
Ψw (LoadCE (x )) v Load(Ψx )

3

While the LoadCE (x ) pushes an abstract instance onto S , Load(Ψx ) pushes the concrete counterpart. A similar rule
holds for StoreCE (x ). When

∧
Ψ is applied to a constant a , it is placed in the entry of the constant pool Φa .

Rule 30. (Load Constant - Data Refinement)
∧
Ψw (LoadCE (a)) v Ldc(Φa)

3

After the simplification phase, each object creation is refined to an abbreviation like Load(new C ). It has as pa-
rameter an expression that retains a reference to C , a class declared in the source program. In the control elimina-
tion phase Load(new C ) is transformed to LoadCE (new C ). The function

∧
Ψ eliminates this reference, replacing

LoadCE (new C ) with the abbreviation new(ΦC ) whose parameter is an index to an entry in the constant pool CP ,
where the concrete instance of a fresh object of type C is stored.

Rule 31. (Object Creation - Data Refinement)
∧
Ψw (LoadCE (new C )) v new(ΦC )

3

The instruction Instanceof (ΦC ) pops an object from the operand stack. If this object is an instance of C or of a
subclass of C , the value true is pushed onto the stack; otherwise, the value false is pushed onto the stack. If the object
at the top of the stack is null, the result is always false . This instruction relies on the context of classes declared in the
source program. In the following we present its definition as a sequence of commands.

var D : objData; r : boolean •
D := head(S .s); S .s := Tail(S .s); Cls.Instanceof (D ,ΦC ,r);
S .s := 〈(new DataBool ; Info : r)〉aS .s

end

where the method Instanceof traverses the class hierarchy to establish whether the object at the top of the operand
stack belongs to a class type C or to any of its subclasses. The term ΦC indicates the object (ClsData) that represents
C in Cls . The method Instanceof is defined in [Dur05]. The next rule applies the function

∧
Ψ to eliminate the reference

to a class C present in a type test, and originally declared in cds .

Rule 32. (Instanceof - Data Refinement)
∧
Ψw (IsOf (C )) v Instanceof (ΦC )

3

The following rule deals with getting a value of an object attribute.

Rule 33. (Getfield - Data Refinement)
∧
Ψw (Getfield(C .t)) v Getfield(ΦC .t)

3

The index ΦC .t indicates the location of the attribute t in a sequence of attributes in a concrete instance of an object
whose static type is C in the abstract space. This concrete instance is popped from the operand stack; Getfield(ΦC .t)
gets the value corresponding to t and pushes it onto the top of the operand stack S . Similarly, the abbreviation
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...
[] PC = k2 +40 → save(Ψaux )
[] PC = k2 +42 → save(Ψx )
[] PC = k2 +44 → save(Ψx2)
[] PC = k2 +46 → save(Ψx1)
[] PC = k2 +48 → save(Ψo4)
[] PC = k2 +50 → invoke(k2)
[] PC = k2 +52 → restore(Ψo4)
[] PC = k2 +54 → restore(Ψx1)
[] PC = k2 +56 → restore(Ψx2)
[] PC = k2 +58 → restore(Ψx )
[] PC = k2 +60 → restore(Ψaux )
[]PC = k2 +62 → putfield(ΦPath.previous)
[] PC = k2 +64 → store(Ψo4)
[] PC = k2 +66 → store(Ψaux )
[] PC = k2 +68 → load(Ψo4)
[] PC = k2 +70 → getfield(ΦPath.previous)
[] PC = k2 +70 → store(Ψx )
[] PC = k2 +74 → load(Ψx )
[] PC = k2 +76 → load(Psix )
[] PC = k2 +78 → add
[] PC = k2 +79 → store(Ψx )
[] PC = k2 +81 → goto(88)
[] PC = k2 +83 → load(Ψo4)
[] PC = k2 +85 → getfield(ΦStep.len)
[] PC = k2 +87 → load(Ψx )
[] PC = k2 +89 → load(Ψo4)
[] PC = k2 +91 → return

Fig. 26. Sequence of instructions corresponding to a fragment of lgetLength after the Data Refinement phase

Putfield(ΦC .t) sets the value of the attribute identified by t in the object stored at the top of the operand stack.

Rule 34. (Putfield - Data Refinement)

∧
Ψw (Putfield(C .t)) v Putfield(ΦC .t)

3

As illustration, Figure 26 presents the resulting segment of guarded commands that represents the sequence of bytecode
instructions of the method lgetLength . The resulting program has the same structure of that presented in Figure 22. The
classes and variables declared in the source program are eliminated. The program operates exclusively on the concrete
space. From this program we can capture the sequence of generated instructions for the target machine (RVM).

4.6. The overall compilation process

The overall compilation process asserts that, for any program cds • c we can transform
∧
Ψ (cds • c) into a normalised

program cdsRVM • I . This is captured by a theorem that links the intermediate steps and establishes the correctness
of the entire compilation process, as presented below.

Theorem 6. (Compilation Process) For every executable program cds • c composed by class declarations and a main
command c, there are symbol tables Ψ, which maps each variable of cds • c to the address of the memory storage M
allocated to hold its value, and Φ, mapping each constant, attribute, and class name to objects in the virtual machine
such that

∧
Ψ (cds • c) v cdsRVM • I where, as already mentioned, cdsRVM is a set of class declarations that
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describes the RVM components, and I is an abbreviation representing a main command in normal form; it is expressed
in terms of a set of guarded commands GCS of the form (PC = k) → p, where PC is the program counter, k
is a natural number between s and f , representing the address of an instruction in the interval of the intended start
address (s) and the finish address (f ) of the code to be executed, and p is a sequence of ROOL instructions that
simulate the effect of an RVM bytecode instruction. 3

From Theorem 1 (Class Pre-compilation), we can transform cds • c, eliminating method redefinitions, introducing
casts and changing attribute visibility to public. With these transformations, a program cdspc • cpc is obtained.

Theorem 2 (Redirection of method calls) establishes that cdspc • cpc can be refined to cdsRVM cdsrmc L • crmc .
At this point, the class L together with cdsRVM are introduced, all method calls are redirected to corresponding ones
in L and, therefore, all methods declared in cdspc become useless and are eliminated.

After that, we can refer to Theorem 3 (Simplification of Expressions), which guarantees that an intermediate
program cdsRVM cdsrmc Ls • cs can be obtained from the program cdsRVM cdsrmc L • crmc . In the code of the
methods in Ls and cs each assignment operates through the operand stack, each boolean expression is a variable or a
negation of a variable, there are no parametrised commands, and every conditional is written in an if-then-else form.

At this point, based on Theorem 4 (Control elimination), we can transform the nested control structure of the
program cdsRVM cdsrmc Ls • cs into a single flat iteration, obtaining a program cdsRVM cdsrmc • cCE , which has
the same structure of the normal form, but still operates on the abstract data space.

Finally, based on Theorem 5 (Data Refinement), using the distributive properties of the simulation function
∧
Ψ the

necessary changes of data representation are performed. Therefore, cdsrmc becomes useless and is eliminated. The
outcome program operates exclusively over the concrete space. The final program cdsRVM • I is in normal form.

Proof of Theorem 6
∧
Ψ (cds • c)

v
∧
Ψ (cdspc • cpc) [Theorem 1 (Class Pre-compilation)]

v
∧
Ψ (cdsRVM cdsrmc L • crmc) [Theorem 2 (Redirection of method calls)]

v
∧
Ψ (cdsRVM cdsrmc Ls • cs) [Theorem 3 (Simplification of expressions)]

v
∧
Ψ (cdsRVM cdsrmc • cCE ) [Theorem 4 (Control Elimination)]

v cdsRVM • I [Theorem 5 (Data Refinement)]

3

This completely algebraic formalisation of the compilation process for an object-oriented language is the main result
of this work. All definitions and proofs can be found in [Dur05].

5. Conclusions

This work is a contribution to the field of compiler design and correctness, extending the approach in [Sam97] from
the purely imperative to the object-oriented paradigm. Here (and in [DCS02, DCS03, Dur05]) we presented a set of
compilation rules; they are justified in terms of basic laws of an object-oriented language, and laws of data refinement.
These laws are expressed in a language called ROOL, which is similar to a subset of sequential Java [CN00]. It
includes recursive classes, inheritance, access control, dynamic binding, type tests and casts, recursion, assignment,
and many other imperative features. Also, it includes specification constructs, such as the specification statements of
Morgan’s refinement calculus [Mor94]. Both the source and the target (a simplified model of the JVM, called here
RVM) languages adopted here are far more complex than that described in [Sam97].

There are many formalisations of Java and the JVM. In [BS98], using Abstract State Machines (ASM ), a com-
pilation scheme of Java programs to JVM code is presented as a case study on mechanical verification of compiler
correctness proofs. A large sequential sublanguage of Java is described in [NO98]. Its abstract syntax, type system,
well-formedness conditions, and an operational semantics are formalised as ASM s. Based on this formalisation, type
soundness is proved. Using the theorem prover Isabelle/HOL all definitions and proofs are checked.
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In [SSB01], a structured sequence of mathematical models for the static and dynamic behaviour of Java is defined.
The models clarify and explore the official description [GJSB00, LY97]. Java and the JVM are decomposed into
language layers and security modules, dividing the verification tasks into a series of tractable subtasks. This work does
not leave out any relevant language feature. This decomposition is made in such a way that, in the resulting sequence
of machines, each ASM is an extension of its predecessor. They are used to establish when Java programs can be
proved type safe, and successfully verified, and correctly executed when compiled to JVM code.

To address the issue of scaling of the verifications, an ASM -based approach is presented in [BB08]; it shows how
to combine feature-based modular design and proof techniques in order to handle software product lines. Based on
the structured way ASM s are used in [SSB01], the components, and the accompanying statements and proofs of the
theorems verifying the desired compilation correctness, are developed incrementally.

In [KN06] a Java-like sequential programming language with formal semantics is introduced. This provides a
unified model of the source language, the virtual machine, and the compiler. It is a standard operational semantics, and
all correctness proofs for program compilation are machine-checked in Isabelle/HOL.

Another example based on verification comes from the functional language community [Tia06]. In this work, the
correctness of a CPS compiler is formalised using higher-order-abstract syntax. In order to guarantee that the source
program and the CPS-transformed program have the same observable behavior, the CPS translation together with its
correctness proof is implemented and mechanically verified in a logical framework. To prove correctness, it is shown
the correspondence between the high-level language and the low-level abstract machine.

The certifying compiler back-end presented in [BG08a, BG08b] provides the translation of an intermediate lan-
guage into MIPS [PH05] code. In this compiler, the code generation phase is extended by a certificate generator
producing Coq correctness proofs for each compiler run. These are proved correct in Coq yielding the guarantee that
the compiler has worked correctly. As a certifying compiler, these proofs do not make a statement about the compiler
implementation correctness, but only about the relation of two programs. Coq is also used in the development of Com-
pCert [Ler09], a compiler for a subset of C comparable to those currently used by the safety-critical embedded-systems
industry. The target language is that of a processor favoured in the avionics industry. The approach is based on a series
of intermediate languages with a formal operational semantics. Each phase of compilation is proved to preserve the
semantics of the program using Coq; the compiler itself is written in the functional language of Coq.

Closely related to the algebraic style adopted here is the work reported in [LF02], which presents a formal compi-
lation model for real-time programs. As we do here, compilation is characterised as a sequence of refinement transfor-
mations. The source language for this compilation formalism consists of a small, imperative programming language
with special real-time statements, whereas the target language is an intermediate representation language, more ab-
stract than the machine code. The refinement calculus adopted in this work is a hybrid of the standard refinement
calculus and the real-time calculus described by Hayes and Utting [Hay98, HU98].

Wildman [Wil02] presented a case study on compilation verification for imperative programs to assembly code. A
compilation strategy is presented as a data refinement. The compiled code is achieved by calculation.

Another work focusing on using refinement as a compilation tool for imperative languages is presented in [Wat03].
In this work program refinement is extended to the assembler level; compilation is regarded as a phase in the entire
refinement process, from specification to machine code. As the source language, a version of Dijkstra’s Guarded
Command Language is used. The target language is an assembly language based on a fragment of Microsoft’s Common
Interface Language (CIL), which is part of the .NET framework [LT01, Pla01].

A remarkable example that handles parallelism, communication and external choice is in [He93]. The elimination
of these complex structures is carried out at the source level rather than via the direct generation of a normal form.
Once the program obtained by eliminating concurrency is entirely described in terms of the source language, a low-
level implementation is generated by reduction to a normal form. This work complements ours since it addresses
concurrency, but not object-orientation. In the same direction, a more recent work [PW07a, PW07b, PW08] focuses
on the algebraic compilation of Handel-C [Bow98], a hardware language that includes concurrency and time operators.

We are not aware of any other work, based on pure algebraic calculation, which handles compilation of object-
oriented languages.

Our work can be extended in several directions. We are investigating the mechanisation of the compilation strategy.
As our rules have the form of rewrite rules, we can use a term rewrite system both to mechanise their proofs and to
carry out compilation automatically. In this way, a prototype compiler is a by-product of its proof of correctness.

We deal with dynamic binding in a purely algebraic way to support a compilation strategy based on the systematic
application of laws. In practice, however, dynamic binding is not implemented using dynamic tests as we do; instead,
each object refers to a table of the associated method implementations. To deal with this compilation technique, we
need a framework that can handle method implementations (code) as part of data structures (objects). This is certainly
both an interesting and a challenging topic to explore in an algebraic setting.
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In terms of code optimisation, we provide only the rules related to the elimination of irrelevant sequences of push
and pop. Therefore, there is further work to be done, especially when dealing with the creation of temporary variables
for the elimination of nested expressions and the management of memory during method invocation. Another topic to
investigate is the replacement of sequences of bytecode for efficiency.

A further topic of investigation resides in the extension of our source language with more complex structures.
Considering pointers, for example, does not affect the compilation rules themselves, since we already handle mem-
ory addresses. On the other hand, this does impact the proof of soundness of the compilation rules for commands
(particularly, assignment statements) and the rules that justify the data refinement phase.

We deal with sharing separately from inheritance, dynamic binding, and the other object-oriented constructs.
In [HCW08] we address pointers using the relational models of Hoare and He’s unifying theories of program-
ming [HJ98], which can also cater for concurrency. Based on the laws that we use here, we also present in [SCS06] a
copy semantics for object orientation. We are now working on the integration of these theories, to provide a basis for
justifying object-oriented programming laws in a reference semantics. Our long term goal is to provide a compilation
strategy that covers a comprehensive modern concurrent object-oriented language.
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[BG08a] J. O. Blech and B. Grégoire. Certifying code generation with Coq. In Workshop Compiler Optimization meets Compiler Verification

(COCV 2008), ENTCS. Elsevier, 2008.
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A. Laws of ROOL

Here, we present the algebraic laws referenced in the description of our compilation process. The next law establishes
that a method declaration and its redefinition can be merged into a single declaration in the superclass. The appropriate
behaviour is determined by type tests in the resulting method.
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Law 1. (move redefined method to superclass)

class B extends A
ads
meth m ∧= (pds • b)
ops

end
class C extends B

ads ′

meth m ∧= (pds • b ′)
ops ′

end

=cds,c

class B extends A
ads
meth m ∧= (pds •

if ¬(self is C ) → b
[] self is C → b ′

fi)
ops

end
class C extends B

ads ′
ops ′

end

provided

(↔) (1) super and private attributes do not appear in b ′; (2) super.m does not appear in ops ′;
(→) b ′ does not contain uncast occurrences of self;
(←) m is not declared in ops ′. 3

We use Law 1 to handle dynamic binding as a separate issue. In doing so, we surprisingly end up needing simple laws
like copy rule to characterise method call elimination. Since the order in which the methods of a class are declared is
irrelevant, a law like this allows us to transform any method in a class. Another notation is introduced. Hereafter, we
write cds, N B e : C to indicate that in the class N declared in cds , the expression e has static type C .

Law 2. (method call elimination)
Consider that the following class declarations

class C extends D
ads
meth m ∧= pc
ops

end

is included in cds , and cds, A B le : C . Then
cds A B le.m(e) = {le 6= null ∧ le 6= error}; pc[le/self]

provided

(↔) (1) m is not redefined in cds and pc does not contain references to super; (2) all attributes which appear in the
body pc of m are public 3

The notation pc[le/self] represents the parametrised command pc where every occurrence of self is replaced with le .
We need an assumption on the right hand side of this law because in case le is null or error, a method call le.m(e)
aborts. If the condition in the assumption holds it behaves like skip, otherwise as abort.

The following law allows us to introduce or eliminate a class declaration.

Law 3. (class elimination)

cds cd1 • c = cds • c

provided

(→) The class declared in cd1 is not referred to in cds or c;
(←) (1) The name of the class declared in cd1 is distinct from those of all classes declared in cds; (2) the superclass

appearing in cd1 is either object or declared on cds; (3) and the attribute and methods names declared by cd1 are
not declared by its superclasses in cds , except in the case of method redefinitions. 3

The order in which classes are declared does not matter, so we can use this law to introduce or remove a declaration in
any position of the program. The next law addresses the change of visibility of an attribute. From left to right, it states
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that a protected attribute can be made public, from right to left, it establishes that a public can be made protected,
provided it is only directly used in the class in which it is declared and its subclasses.

Law 4. (change visibility: from protected to public)

class C extends D
prot a : T ; ads
ops

end
=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a , for any B ≤ C , appears only in ops and in the subclasses of C in cds . 3

We write prot a : T ; ads to denote the attribute declaration prot a : T and all the declarations in ads , whereas ops
stands for the declarations of methods and constructors. The notation B .a refers to uses of the name a via expressions
whose static type is exactly B , as opposed to any of its subclasses. For example, if we write that B .a does not appear
in ops , we mean that ops does not contain any expression such as e.a , for any e of type B , strictly. Since the order of
the declarations in a class is irrelevant, a law like this allows us to change any declaration in a class.

Law 5. (change visibility: from private to public)

class C extends D
pri a : T ; ads
ops

end
=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a , for any B ≤ C , does not appear in cds , c. 3

When applied from left to right, the above law makes a private attribute public. The proviso is necessary when applying
this law in the other direction to make a private attribute public. In this case, the attribute cannot be used anywhere
outside the class where it is declared. A property of declarations is that the order in which the attributes are declared
is not relevant. We use a sequence, rather than, for instance, a mapping because the program terms obey the syntax.

The following law establishes that we can introduce or remove a trivial method redefinition, which consists only
of a call to the method in the superclass of the same name. We observe again that there is no overloading in ROOL.

Law 6. (introduce method redefinition)

class B extends A
ads
meth m ∧= pc
ops

end
class C extends B

ads ′
ops ′

end

=

class B extends A
ads
meth m ∧= pc
ops

end
class C extends B

ads ′

meth m ∧= super.m
ops ′

end

provided

(→) m is not declared in ops ′. 3

Actually, in ROOL a method declaration is an explicit parametrised command, such that pc has the form (pds • c).
For simplicity we adopt the notation meth ∧= super.m as an abbreviation for meth ∧= (pds • super.m(αpds)),
where αpds represents the list of parameter names declared in pds . This law is independent of its context of class
declarations and main command. So, it is an equality on class declarations.

The following law allows us to move up in the hierarchy a method declaration that is not a redefinition. Our
language supports method redefinition but not overloading. Hence, it is not possible to have different methods in the
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same class, or in a class and a subclass, with the same name, but different parameters. This law also indicates that we
can move a method down, as long as this method is used as if it were defined in the subclass.

Law 7. (move original method to superclass)

class B extends A
ads
ops

end
class C extends B

ads ′

meth m ∧= pc
ops ′

end

=cds,c

class B extends A
ads
meth m ∧= pc
ops

end
class C extends B

ads ′
ops ′

end

provided

(↔) (1) super and private attributes of the class where m is declared do not appear in pc; (2) m is not declared in any
superclass of B in cds;

(→) (1) m is not declared in ops , and can only be declared in a class D , for any D ≤B and D �C , if it has the same
parameters as pc; (2) pc does not contain uncast occurrences of self nor expressions in the form ((C )self).a for
any private attribute a in ads ′.

(←) (1) m is not declared in ops ′; (2) D .m , for any D ≤ B , does not appear in cds , c, ops , or ops ′. 3

The first two provisos are necessary to preserve semantics, whereas the others guarantee that we relate syntactically
valid programs. The second proviso, associated to the application of the law in both directions, precludes superclasses
of B from defining m . This is an important restriction because, when moving m , we could affect the semantics of calls
such as b.m(e), for a b storing an object of B . There are two provisos associated to applications of the Law from left
to right. The first one avoids the occurrence of method overloading, which is not supported by ROOL. The second one
guarantees that we can only move a original method to superclass if it does not refer to elements of the class where it
is declared. Finally, the proviso associated to applications of the law from right to left prevent us from moving down
in the class hierarchy a method declaration that is redefined in the subclass.; moreover, it precludes that method calls
become invalid when moving a method declaration down in the class hierarchy.

To introduce or eliminate a method in a class, we use the next law. It states that a method that is not called can be
eliminated. Conversely, a new method can always be introduced in a class.

Law 8. (method elimination)

class C extends D
ads
meth m ∧= pds • b
ops

end

=cds,c

class C extends D
ads
ops

end

provided

(→) B .m does not appear in cds , c nor in ops , for any B such that B ≤ C ;
(←) m is not declared in ops nor in any superclass or subclass of C in cds . 3

The first proviso precludes the elimination of a method that is in use; if a method call C .m to m appears in ops and
cds , the method m cannot be eliminated. Conversely, if m is a method name that is not declared in a superclass or
subclass of C in cds , the second proviso allows us to introduce m in C .

The following law formalises the fact that any expression can be cast with its declared type.

Law 9. (cast introduction in expressions)

If cds, A B e : C , then cds,A B e = (C )e

3

This also holds for left-expressions, but, like Java, we do not allow casts in targets of assignments and result parameters.
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It does not matter whether variables are declared in one list or singly.

Law 10. (var association)
If x and y have no variables in common, then

var x : Tx • (var y : Ty • c end) end = var x ,y : Tx ,Ty • c end
3

If a declared variable is never used, it can be eliminated.

Law 11. (var elim)
If x is not free in c, then

var x : T • c end = c

3

If the right argument of a sequential composition declares the variable x the scope can be extended to the left compo-
nent, provided that it does not interfere with the other variables with the same name.

Law 12. (var-; right dist)
If x is not free in c1, then

c1; var x : T • c2 end = var x : T • c1; c2 end
3

The next law establishes that the pair ([b]; {b}) is a simulation. Simulations are useful for calculations. [b] is called
the strongest inverse of {b} whereas {b} is the weakest inverse. Whenever a program followed by its inverse appears
as a subterm of a program being transformed, it is possible to replace them with skip.

Law 13. (; [b]; {b} simulation)

({b}; [b]) = {b} v skip v [b] = [b]; {b}
3

An assignment to a variable just before the end of its scope is irrelevant.

Law 14. (var- := final value)

var x : T • c; x := e end v var x : T • c end
3

It is possible to increase the scope of a variable without effect, provided there is no capture of free variables.

Law 15. (var-; left dist)
If x is not free in c2, then

var x : T • c1 end; c2 = var x : T • c1; c2 end
3

If the assertion before the while implies that its condition holds, it behaves like c followed by the whole iteration.

Law 16. (while unfold)
If (b1⇒ b2), then

[b1]; while b2 • c end = [b1]; c; while b2 • c end
3

A while can be eliminated if an assertion before it implies that its condition does not hold initially.

Law 17. (while elimination)
If (b1 ⇒ ¬b2), then

[b1]; while b2 • c end = [b1]

3
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If one of the guards of a conditional is true, the corresponding command is selected for execution.

Law 18. (if selection)
If j ranges over 1..n then

[bj ]; if []〈1≤ i ≤ n〉 bi → ci fi v [bj ]; cj

3

The following allows the transformation of a conditional with at least one guarded command to an if-then-else form.

Law 19. (if - Conditional in the if-then-else style)
If k ≤ n , then

if []〈k≤ i ≤ n〉 bi → pi fi = if bk → pk

[] ¬bk → if []〈k+1≤ i ≤ n〉 bi → pi fi
fi

3

A conditional without guarded commands corresponds to an infinite loop: a concrete implementation of abort. The
following law states that a conditional without guarded commands is equivalent to an infinite loop. This syntactic
transformation allows us to manage this particular case of conditional using recursion compilation rules.

Law 20. (if - Conditional without guarded commands)
If k > n , then

if []〈k≤ i ≤ n〉 bi → pi fi = rec X • X end

3

To follow an assignment by an assumption whose condition reflects the assignment itself has no effect.

Law 21. (; := void assumption)
If x is not free in e , then

x := e; {x = e} = x := e

3

A similar law is valid for assertions.

Law 22. (; := void assertion)
If x is not free in e , then

x := e; [x = e] = x := e

3

If the value of a variable is known, we can replace the occurrences of this variable in an expression with that value.

Law 23. (; := substitution)

(x = e) → (y := f ) = (x = e) → (y := f [e/x ])

3

A parametrised command can be eliminated according to the parameter transmission mechanism adopted. The next
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two laws deal with value (val) and result (res) parameters separately.

Law 24. (Pcom elimination-val)
If the variables of l do not occur free in c, x and vl , then

(val vl : T • c)(x ) = var l : T • l := x ; c[l/vl ]

3

Law 25. (Pcom elimination-res)
If the variables of l do not occur free in c, x and vl , then

(res vl : T • c)(x ) = var l : T • c[l/vl ]; x := l ; end

3

The validity of the two transformations above follows direct from the definition of parametrised command. Laws for
mixed parameter lists can be easily obtained as a generalisation of these laws, and have been omitted for simplicity.


