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The RoboStar framework1 supports model-based engineering of robotic ap-
plications. Modelling is carried out using diagrammatic domain-specific lan-
guages: RoboChart [13] and RoboSim [3]. Verification and generation of artefacts
is justified by a formal semantics given using a state-rich hybrid version of a pro-
cess algebra for refinement [7]. It is inspired by CSP [19] and cast in Hoare and
He’s Unifying Theories of Programming (UTP)[10] formalised in Isabelle [6].

RoboChart is an event-based language for design, while RoboSim is a cycle-
based language for simulation. Tool support is provided by RoboTool, which in-
cludes facilities for graphical modelling, validation, and automatic generation of
CSP (for analysis with the model checker FDR [9]) and PRISM [11] scripts (for
verification of probabilistic controllers), and simulations. RoboChart and Ro-
boSim are based on the use of state machines to specify behaviour, akin to
notations already in widespread use [5, 16, 2, 20], but RoboChart and RoboSim
are enriched with facilities for verification and traceability of artefacts.

Recent work has focussed on enriching RoboSim for physical modelling. Cur-
rent practice in robotics often uses simulation to understand the behaviour of
a robotic controller for a particular robotic platform and environment. A wide
variety of simulators for robotics use different tool-dependent or even propri-
etary programming languages and API [18, 14, 8, 12, 17]. Physical modelling of
the platforms are encoded by programs in customised notations, generated from
graphical tools, or in C++, Java, Python, or C#, for example.

RoboSim, on the other hand, is a tool-independent notation. For physical
modelling, we have defined a notation based on SysML block diagrams [15].
Our profile is inspired by XML-based notations used by robotics simulators2. It
defines a physical model by a diagram that captures the physical components
of a platform as links (rigid bodies), joints, sensors, and actuators. Properties
of these blocks capture their attributes that are relevant for simulation and for
capturing behaviour: movement and use of sensors and actuators.

In contrast with XML-based notations in current use, RoboSim block dia-
grams encourage readability and support modularisation via several mechanisms.
Models can be parametrised by constants that represent, for example, key mea-
sures of physical bodies. The pose of an element is defined always in reference to

1 www.cs.york.ac.uk/robostar/
2 sdformat.org
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the element that contains it. A richer notion of connection captures flexible and
fixed compositions. A library fosters reuse by the possibility of defining parts
and fragments that can be instantiated or simply included to define a complete
model. Finally, well-formedness rules ensure validity of models.

The most distinctive feature of RoboSim block diagrams, however, is the
possibility of defining systems of differential algebraic equations that capture
behaviour of the platform. For sensors, these equations define how inputs (from
the environment) are reflected in sensor outputs for use with the software. For
actuators, the equations define how inputs from the software affect the outputs
of the actuators, and therefore, affect the platform itself (in the case of motors,
for example), or the environment. For joints, the equations define how their
movement induces movement on the links connected to them.

A system view is provided by connecting a RoboSim block diagram that
specifies a physical model for a robotic platform, to a RoboSim module that
specifies a control software. This is achieved by a platform mapping, which spec-
ifies how software elements that abstract services of the platform are defined. In
specifying these services, we can use outputs of sensors and inputs of actuators.

Ongoing work, provides support to translate RoboSim block diagrams to
XML for use in simulation (using Coppelia, formerly, v-rep). For mathemati-
cal modelling, the UTP semantics constructs a hybrid model, with constructs
inspired by those of Circus [4], combining Z [1, 21] and CSP.
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