
Modelling and Verification of
Robotic Platforms for Simulation

using RoboStar Technology

Ana Cavalcanti1

Department of Computer Science, University of York,
York, YO105GH, UK,

Ana.Cavalcanti@york.ac.uk

The RoboStar framework1 supports model-based engineering of robotic ap-
plications. Modelling is carried out using diagrammatic domain-specific lan-
guages: RoboChart [13] and RoboSim [3]. Verification and generation of artefacts
is justified by a formal semantics given using a state-rich hybrid version of a pro-
cess algebra for refinement [7]. It is inspired by CSP [19] and cast in Hoare and
He’s Unifying Theories of Programming (UTP)[10] formalised in Isabelle [6].

RoboChart is an event-based language for design, while RoboSim is a cycle-
based language for simulation. Tool support is provided by RoboTool, which in-
cludes facilities for graphical modelling, validation, and automatic generation of
CSP (for analysis with the model checker FDR [9]) and PRISM [11] scripts (for
verification of probabilistic controllers), and simulations. RoboChart and Ro-
boSim are based on the use of state machines to specify behaviour, akin to
notations already in widespread use [5, 16, 2, 20], but RoboChart and RoboSim
are enriched with facilities for verification and traceability of artefacts.

Recent work has focussed on enriching RoboSim for physical modelling. Cur-
rent practice in robotics often uses simulation to understand the behaviour of
a robotic controller for a particular robotic platform and environment. A wide
variety of simulators for robotics use different tool-dependent or even propri-
etary programming languages and API [18, 14, 8, 12, 17]. Physical modelling of
the platforms are encoded by programs in customised notations, generated from
graphical tools, or in C++, Java, Python, or C#, for example.

RoboSim, on the other hand, is a tool-independent notation. For physical
modelling, we have defined a notation based on SysML block diagrams [15].
Our profile is inspired by XML-based notations used by robotics simulators2. It
defines a physical model by a diagram that captures the physical components
of a platform as links (rigid bodies), joints, sensors, and actuators. Properties
of these blocks capture their attributes that are relevant for simulation and for
capturing behaviour: movement and use of sensors and actuators.

In contrast with XML-based notations in current use, RoboSim block dia-
grams encourage readability and support modularisation via several mechanisms.
Models can be parametrised by constants that represent, for example, key mea-
sures of physical bodies. The pose of an element is defined always in reference to

1 www.cs.york.ac.uk/robostar/
2 sdformat.org



2 Ana Cavalcanti

the element that contains it. A richer notion of connection captures flexible and
fixed compositions. A library fosters reuse by the possibility of defining parts
and fragments that can be instantiated or simply included to define a complete
model. Finally, well-formedness rules ensure validity of models.

The most distinctive feature of RoboSim block diagrams, however, is the
possibility of defining systems of differential algebraic equations that capture
behaviour of the platform. For sensors, these equations define how inputs (from
the environment) are reflected in sensor outputs for use with the software. For
actuators, the equations define how inputs from the software affect the outputs
of the actuators, and therefore, affect the platform itself (in the case of motors,
for example), or the environment. For joints, the equations define how their
movement induces movement on the links connected to them.

A system view is provided by connecting a RoboSim block diagram that
specifies a physical model for a robotic platform, to a RoboSim module that
specifies a control software. This is achieved by a platform mapping, which spec-
ifies how software elements that abstract services of the platform are defined. In
specifying these services, we can use outputs of sensors and inputs of actuators.

Ongoing work, provides support to translate RoboSim block diagrams to
XML for use in simulation (using Coppelia, formerly, v-rep). For mathemati-
cal modelling, the UTP semantics constructs a hybrid model, with constructs
inspired by those of Circus [4], combining Z [1, 21] and CSP.

Acknowledgements The work mentioned is a collaboration with colleagues at the
RoboStar group, in particular, Alvaro Miyazawa and Sharar Ahmadi. The au-
thor’s work is funded by the Royal Academy of Engineering grant CiET1718/45,
and UK EPSRC grants EP/M025756/1 and EP/R025479/1. No new primary
data was created as part of the study reported here.

References

1. ISO/IEC 13568:2002. Information technology - Z formal specification notation -
syntax, type system and semantics. International Standard.

2. S. G. Brunner, F. Steinmetz, R. Belder, and A. Domel. Rafcon: A graphical tool
for engineering complex, robotic tasks. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 3283–3290, 2016.

3. A. L. C. Cavalcanti, A. C. A. Sampaio, A. Miyazawa, P. Ribeiro, M. Conserva
Filho, A. Didier, W. Li, and J. Timmis. Verified simulation for robotics. Science
of Computer Programming, 174:1–37, 2019.

4. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146–181, 2003.

5. S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi, and M. Ziane. Simulation, Modeling,
and Programming for Autonomous Robots, chapter RobotML, a Domain-Specific
Language to Design, Simulate and Deploy Robotic Applications, pages 149–160.
Springer, 2012.

6. S. Foster, J. Baxter, A. L. C. Cavalcanti, A. Miyazawa, and J. C. P. Woodcock. Au-
tomating Verification of State Machines with Reactive Designs and Isabelle/UTP.



Title Suppressed Due to Excessive Length 3

In K. Bae and P. C. Ölveczky, editors, Formal Aspects of Component Software,
pages 137–155, Cham, 2018. Springer.

7. S. Foster, A. L. C. Cavalcanti, S. Canham, J. C. P. Woodcock, and F. Zeyda. Uni-
fying theories of reactive design contracts. Theoretical Computer Science, 802:105
– 140, 2020.

8. B. Gerkey, R. T. Vaughan, and H. Andrew. The Player/Stage Project: Tools for
Multi-Robot and Distributed Sensor Systems. In 11th International Conference
on Advanced Robotics, pages 317–323, 2003.

9. T. Gibson-Robinson, P. Armstrong, A. Boulgakov, and A. W. Roscoe. FDR3 - A
Modern Refinement Checker for CSP. In Tools and Algorithms for the Construction
and Analysis of Systems, pages 187–201, 2014.

10. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

11. M. Kwiatkowska, G. Norman, and D. Parker. Probabilistic symbolic model check-
ing with PRISM: a hybrid approach. International Journal on Software Tools for
Technology Transfer, 6(2):128–142, 2004.

12. S. Luke, C. Cioffi-Revilla, L. Panait, K. Sullivan, and G. Balan. Mason: A multi-
agent simulation environment. Simulation, 81(7):517–527, 2005.

13. A. Miyazawa, P. Ribeiro, W. Li, A. L. C. Cavalcanti, J. Timmis, and J. C. P.
Woodcock. RoboChart: modelling and verification of the functional behaviour of
robotic applications. Software & Systems Modeling, 18(5):3097–3149, 2019.

14. M. Olivier. WebotsTM: Professional Mobile Robot Simulation. International Jour-
nal of Advanced Robotic Systems, 1(1):39–42, 2004.

15. OMG. OMG Systems Modeling Language (OMG SysML), Version 1.3, 2012.
16. I. Pembeci, H. Nilsson, and G. Hager. Functional reactive robotics: An exercise

in principled integration of domain-specific languages. In 4th ACM SIGPLAN
International Conference on Principles and Practice of Declarative Programming,
pages 168–179. ACM, 2002.

17. C. Pinciroli, V. Trianni, R. O’Grady, G. Pini, A. Brutschy, M. Brambilla, N. Math-
ews, E. Ferrante, G. Di Caro, F. Ducatelle, M. Birattari, L. M. Gambardella, and
M. Dorigo. ARGoS: a modular, parallel, multi-engine simulator for multi-robot
systems. Swarm Intelligence, 6(4):271–295, 2012.

18. E. Rohmer, S. P. N. Singh, and M. Freese. V-rep: A versatile and scalable robot
simulation framework. In IEEE International Conference on Intelligent Robots and
Systems, volume 1, pages 1321–1326. IEEE, 2013.

19. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.
Springer, 2011.

20. M. Wachter, S. Ottenhaus, M. Krohnert, , N. Vahrenkamp, and T. Asfour. The
ArmarX Statechart Concept: Graphical Programing of Robot Behavior. Frontiers
in Robotics and AI, 3:33, 2016.

21. J. C. P. Woodcock and J. Davies. Using Z - Specification, Refinement, and Proof.
Prentice-Hall, 1996.


