
SBMF 2008

Stateflow diagrams in Circus

Ana Cavalcanti1 ,2

Department of Computer Science
University of York

York, UK

Abstract

The Matlab Simulink tool is widely used to construct and analyse control law diagrams. Many have
worked on techniques to enhance analysis facilities, and previously, we have considered the complementary
problem of proving correctness of implementations of diagrams. We use Circus, a refinement language that
combines Z and CSP, and can capture both functional and behavioural aspects of diagrams and programs.
We defined a Circus semantics for an extensive subset of discrete-time diagrams, and now extend it to
cover Stateflow blocks, which are themselves defined by diagrams written in (a variant of) the statechart
notation. We highlight the challenging features of the semantics of a diagram, describe how Circus models
can be constructed, and discuss the formalisation of the Circus semantics as algebraic translation rules.

Keywords: Simulink, semantics, refinement.

1 Introduction

Control law diagrams are very popular among engineers as a design notation for

control systems; in particular, the Simulink tool is widely used in the avionics and

automotive sections [11]. It supports construction of diagrams and analysis based

on simulation. A diagram is composed of blocks connected by wires. The input and

output signals are indicated by special blocks; the wires determine the flow of signals

and blocks embed functionality that determines how the outputs are calculated.

Typically, the mathematical model of a physical system is given by differen-

tial equations that relate the inputs and outputs. Control law diagrams provide

a graphical representation of the calculations specified by the equations. Often,

however, the behaviour of the system changes when certain events occur or condi-

tions are met. To specify the different modes of operation, finite state machines are

convenient. Simulink allows the seamless combination of blocks that embed stan-

dard mathematical calculations, and blocks whose outputs are defined by Stateflow

diagrams: a variant of Harel’s statecharts [9].

1 This work is funded by EPSRC (research grant EP/E025366/1). We are grateful for Jim Woodcock’s
comments on a draft of this paper.
2 Email:Ana.Cavalcanti@cs.york.ac.uk

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:Ana.Cavalcanti@cs.york.ac.uk

Cavalcanti

There are many variants of the statechart notation [10]; that used as part of

Simulink is called Stateflow. In [2], Stateflow models are translated to the SMV

model checker input language, which describes finite-state machines. The models

used in [18] are communicating pushdown automata, which are then translated to

a language called SAL, which specifies transition systems. Translation to Lustre, a

synchronous dataflow language, is discussed informally in [17]. Restrictions on the

use of recursion in Lustre impose restrictions on the kind of diagrams that can be

handled, but the approach includes checking that features of Stateflow that may

lead to undesirable models are avoided. Formal semantics are considered in [7,8].

An operational semantics is provided in [8]; it was used to translate from Stateflow

diagrams to SAL. Later, in [7], the subset of Stateflow covered is extended: a deno-

tational style is adopted, and continuations are used to cope with the challenging

structure of Stateflow diagrams. The denotational semantics defines diagrams as

functions on environments that record the active states and the value of the data.

We are concerned with verification of implementations, rather than analysis, of

discrete-time Simulink diagrams. In [4], we define the semantics of these diagrams

using Circus [5], a language for refinement that combines the Z notation [20] and

CSP [16] to specify state-rich reactive systems, and has a refinement theory and

calculational technique. Using Circus, we have extended an industrial highly auto-

mated Z-based technique for verification of Ada procedures that implement block

functionality [1]. We verify both the Ada procedures and the scheduler [3]. The

technique is based on the controlled application of algebraic laws, and is amenable

to high levels of automation using tactics of refinement [14].

The subset of Simulink that we model using Circus is extensive, including action

and enabled subsystems and merge blocks. Here, we take a first step to extend this

work to tackle Stateflow blocks. We give a Circus semantics to Stateflow diagrams

that can be used as a component of the model of the Simulink diagram that includes

it. We aim at using refinement to verify implementations of Stateflow blocks.

A CSP semantics for the statechart notation as used in UML state diagrams

is provided in [13]. In addition, Circus is used in [15] to give semantics to UML-

RT, a UML profile tailored for concurrent applications. That work covers the state

diagrams, which are again a variant of statecharts, and also part of a more compre-

hensive description of the system including class and structure diagrams. In both

works, refinement is the basis for reasoning, either using the CSP refinement model

checker, or refinement laws for model transformation. The statechart diagrams that

we consider here, however, are rather different from those in UML and UML-RT.

The Stateflow notation is rather complex. A state can have outer transitions

that lead to state change, and inner transitions that model computations carried

out whenever the state is active: a state can itself include flowcharts. Junctions can

be used to break an outer or inner transition in segments. Transitions to junctions

backtrack if they do not eventually lead to a new state, or to a terminal junction.

Each transition has two associated actions: one is executed every time the transition

is tried, and another only if it is not backtracked.

In this paper, we propose a Circus semantics that covers all these features. In

the next section, we give a brief overview of Circus, and Section 3 explains the main

features of Stateflow diagrams. The structure of the Circus models of Stateflow

2

Cavalcanti

diagrams that we propose is discussed in Section 4; formalisation of the semantics

is considered later on in Section 5. In Section 6 we use small examples to illustrate

how we can handle some of the more intricate features of the diagrammatic notation.

Finally, in Section 7, we discuss related and future work.

2 Circus

Various combinations of state-based formalisms with process algebras have been

proposed [6,19]. Circus distinguishes itself as a refinement language. Apart from

the constructs of the well established notations Z and CSP, Circus also includes

imperative commands from Dijkstra’s language of guarded commands, and a re-

finement theory and technique in the style of Morgan’s calculus [12].

Circus programs are sequences of paragraphs like in Z. It is, however, also possible

to declare channels, channel sets, and processes.

A process encapsulates a state and exhibits some behaviour. The state is defined

by schemas, like in Z. The behaviour is defined using a (main) action, which possibly

combines data operations specified in Z, CSP constructs like prefixing, choice, and

parallelism, and imperative commands like assignments and conditionals.

Processes can themselves be combined using CSP operators. The state of the

resulting process contains all components of the combined processes. Its behaviour

is defined by combining their main actions using the CSP operator.

Several examples of Circus processes are presented in Section 4.

3 Stateflow diagrams

Figure 1 shows a Simulink diagram, a variant of which can be found in the Simulink

demonstration files [11]. The application is an automatic transmission controller;

the diagram models the engine, the transmission, and the wheels.

The transmission uses the power generated by the engine to move the wheels.

The block ManeuversGUI defines the inputs Throttle and BrakeTorque; the block

PlotResults defines the outputs EngineRPM and VehicleSpeed. The system takes the

amount of air entering the engine (that is, the throttle) and the force applied on

the brakes, and outputs the speed of the engine and of the vehicle. Its behaviour

is cyclic: it repeatedly samples the inputs and produces the outputs, possibly using

information calculated in the previous cycle.

The blocks of the diagram model the components of the system. A transmission

has two impellers: one interacts with the engine and the other with the wheels.

Roughly, the Engine block calculates the speed of the engine as a function of the

torque of the first impeller and the throttle. The engine speed, the gear, and the

speed of the wheels are used to calculate the torque of the impellers in Transmission.

The block Wheels computes the transmission and vehicle speeds. The speed thresh-

olds for shifting gears up and down are calculated in the block ThresholdCalculation.

All these calculations are governed by differential equations that are captured by

the functionality of these standard Simulink blocks.

The change of gears, however, is based on conditions involving the current speed

and the gear thresholds. To specify that, a Stateflow diagram is used; it defines the

3

Cavalcanti

ImpellerTorque

Transmission

Engine

speed

ThresholdCalculation

ShiftLogic

Wheels

Fig. 1. Simulink diagram: automatic transmission

Fig. 2. Stateflow diagram: ShiftLogic block

behaviour of the block ShiftLogic, and is presented in Figure 2.

In this diagram, the blocks represent states and the lines are transitions. In

our example, we have two (parallel) states gear state and selection state; they are

always active in every cycle. These states have substates, of which just one is active

at a time. In the first cycle, the first state of gear state and the steady state of

selection state are activated, as indicated by the default transitions: those without

a source. In the subsequent cycles, the transitions of each active state are tried, and

followed if possible. A cycle finishes when, for every active state, a valid transition,

if any, is followed; in addition, if any events local to the Stateflow diagram are

generated, they need to be treated in the same cycle.

In the example, if the speed becomes higher or lower than the relevant thresholds,

then there is a transition from steady state to the state upshifting or downshifting.

4

Cavalcanti

In these states, if the the speed is still too high or too low, an event UP or DOWN

local to the Stateflow diagram is generated and handled by the active substate of

gear state; otherwise, the state changes back to steady state.

In every cycle in which selection state is active, the output event CALC TH is

generated to trigger the recalculation of the thresholds by the Simulink model. A

change in a substate of gear state updates the value of gear.

Our example shows how a Simulink and a Stateflow diagram can be combined.

The top level of the diagram contains two AND (parallel) states; this is indicated

by the use of dashed lines to draw their boxes. These states are not really executed

in parallel, but are active in parallel. Each of them is defined by OR (exclusive)

states, which can only be active one at a time. All these substates are basic: they

have no further substates. The events UP and DOWN are broadcast internally; they

are directed to gear state and are treated by whichever one of its substates is active.

In the next section, we discuss the model that we propose for this diagram.

4 Circus models of Stateflow diagrams

The first concern in defining a model for a diagrammatic notation is giving an

account of its abstract syntax in a linear form. We use a slight generalisation of

that adopted in [7], which we specify in the sequel using Z.

4.1 Syntax of diagrams

Given sets SName, JName, Var , and Event contain the valid names of states,

junctions, data variables, and events. A full characterisation of a state is a

Path == seqSName, which lists its superstates in the order determined by the hi-

erarchy of the diagram. In Figure 2, for example, we have states 〈 gear state,first 〉
and 〈 selection state, downshifting 〉. The empty path denotes the stateflow chart.

Just like any state, a chart can have data, events, transitions, and junctions, as

well as states, of course. Data variables can be inputs or outputs of the diagram,

or local to a state. The same comment applies to events.

DataDeclaration == [input , output : PVar ; local : Path 7→ PVar]

EventDeclaration == [input , output : PEvent ; local : Path 7→ PEvent]

A transition is guarded by an event and a condition, but they are both optional.

Guard ::= empty | e〈〈Event〉〉

A condition is a boolean expression on the data variables. We omit the precise def-

inition of the syntax, and assume that there is a direct correspondence between the

elements of a given set Condition and Circus conditions. If a condition is missing, we

define it as true. The transitions between the substates of gear state, for example,

are guarded by events, and those in selection state are guarded by conditions.

As already mentioned, transitions are also associated with actions: condition

actions are executed every time the transition is taken, and transition actions are

executed when it eventually leads to a new state or a terminal junction. Actions are

5

Cavalcanti

sequences of simple assignments that change the data variables or event broadcasts.

The first transition from downshifting to steady state, for example, raises the event

DOWN directed to gear state. The action language of Stateflow is rather restricted.

We use a given set Action to represent the set of all actions, but assume that any

of them can be written in a rather direct way in Circus.

Finally, the destination of a transition can be a state of a junction.

DestComponent ::= p〈〈Path〉〉 | j 〈〈JName〉〉

To summarise, the components of a transition are described below.

Transition

event : Guard ; cond : Condition; condAction, transAction : Action

dest : DestComponent

States can be defined by an OR or an AND composition of other states, but a state

can also be basic, in which case it has no composition.

Composition ::= Or〈〈seq Transition × PPath〉〉 | And〈〈seq Path〉〉 | none

The sequence of transitions in an Or composition are the default transitions that

establish its initial active state. Their destination may be a junction, for exam-

ple, so not necessarily one of the states that are composed. If there are no default

transitions, it is because the initialisation of the state is determined by other tran-

sitions. In addition, the diagram defines the order in which the transitions should

be attempted: either explicitly or based on a graphical convention. The abstract

syntax records the right order. Similarly, AND states are executed in a particular

order that is defined in the syntax of a composition.

States can also have associated actions: entry actions, which are triggered when

the state is entered, during actions, which execute in each cycle when it is active,

and exit actions executed when the state is exited.

StateDefinition

entry , during , exit : Action

comp : Composition

outer , inner : seqTransition

In each cycle, the outer transitions of a state, that is, those that lead to a different

state, are tried before any of its inner transitions.

A junction belongs to a state, and may have transitions. A history junction

records the last active substate of the composite state in which it occurs.

JunctionDefinition

path : Path; transitions : seqTransition

history : BOOL

Finally, a Stateflow diagram or chart contains all of data and event declarations,

6

Cavalcanti

states, and junctions. In summary, a Stateflow can be characterised as follows.

Stateflow

data : DataDeclaration

event : EventDeclaration

state : Path 7→ StateDefinition

junction : JName 7→ JunctionDefinition

We leave the formalisation of well-formedness restrictions as future work. For ex-

ample, the data of a diagram must be local to one of its states, and so on.

4.2 Overall structure of diagram models

In the Circus model of a Simulink diagram [4], the input and output signals, and

all the internal wires are channels. Each block is defined as a process that reads all

the inputs of the block, carries out the necessary calculations, communicates the

outputs, and then waits for the end of the cycle before starting again. The end of a

cycle is signalled by a channel end cycle on which all block processes synchronise.

The diagram is defined by the parallel composition of the block processes, syn-

chronising on their common channels. All the channels corresponding to internal

wires are hidden. The Circus process that defines the model of the diagram in

Figure 1, which is called auto trans, is as follows. We show only the processes for

Engine, ShifLogic, and Transmission, but all block processes are combined in parallel.

process auto trans =̂



Engine {| ImpellerTorque,Throttle,EngineRPM , end cycle |}

||

ShiftLogic {|VehicleSpeed , up th, down th, gear ,CALC TH , end cycle |}

||

Transmission {|EngineRPM , gear , ImpellerTorque, . . . , end cycle |}

|| . . .





\ {| ImpellerTorque, up th, down th, gear ,CALC TH , . . . |}

For each of them, we give the set of channels that it uses. The parallelism re-

quires that the processes synchronise on their common channels. Internal chan-

nels like ImpellerTorque, up th, down th, gear , CALC TH , and so on are hid-

den. In this way, auto trans communicates with its environment using the channels

Throttle, BrakeTorque, EngineRPM , and VehicleSpeed , which model the inputs

and outputs of the diagram, and end cycle. The process Engine interacts with

Transmission on ImpellerTorque, EngineRPM , and end cycle. Similarly, ShiftLogic

and Transmission interact on gear and end cycle.

Our models for Stateflow diagrams are appropriate for use as components of the

models of Simulink diagrams that include the Stateflow block. The model of the

diagram in Figure 2, for instance, is a process ShiftLogic that communicates with

7

Cavalcanti

process ShiftLogic =̂ begin

state SShiftLogic == [vspeed , vup th, vdown th, vgear , vCALC TH : U]

nameset vVar == { vspeed , vup th, vdown th, vgear , vCALC TH }

Input =̂ speed?x → vspeed := x ||| up th?x → vup th := x ||| gear?x → vgear := x

Output =̂ gear !vgear → Skip ||| CALC TH !vCALC TH → Skip

Cycle =̂





vCALC TH := 0 ; Input ;

µY •




ispeed !vspeed → Y 2 iup th!vup th → Y 2 idown th!vdown th → Y

2 igear?x → vgear := x ;Y 2 iCALC TH → vCALC TH := 1 ;Y

2 sleeping → Output ; end cycle → Cycle













Chart =̂ Top Enter

Top Enter =̂












Top gear state Enter

|[{| sleeping ,UP ,DOWN |}]|

Top selection state Enter



 \ {|UP ,DOWN |}





|[{| sleeping , start , stop |}]|

Top




\ {| start , stop |}

Top gear state Enter =̂ start .1 → Top gear state first Enter

Top gear state first Enter =̂(
((gear !1 → stop.1 → sleeping → Skip) ⊳ (UP → Top gear state second Enter)) ;
(end cycle → Top gear state first)

)

Top gear state first =̂(
start .1 → ((stop.1 → sleeping → Skip) ⊳ (UP → Top gear state second Enter)) ;
(end cycle → Top gear state first)

)

. . .

Top selection state Enter =̂ start .2 → Top selection state steady state Enter

Top selection state steady state Enter =̂

stop.2 → sleeping → end cycle → Top selection state steady state

Top selection state steady state =̂ start .2 → Top selection state ;



var vspeed , vup th, vdown th : U •




(ispeed?x → vspeed := x ||| iup th?x → vup th := x ||| . . .) ;
if vspeed > vup th → Top selection state upshifting Enter

[] vspeed < vdown th → Top selection state downshifting Enter

[] else → stop.2 → sleeping → end cycle → Top selection state steady state

fi









Top selection state =̂ iCALC TH → Skip

Top selection state upshifting Enter =̂

stop.2 → sleeping → end cycle → Top selection state upshifting

Top selection state upshifting =̂ start .2 → Top selection state ;




var vspeed , vup th : U •



(ispeed?x → vspeed := x ||| iup th?x → vup th := x) ;
if vspeed ≥ vup th → UP → Top selection state steady state Enter

[] vspeed < vup th → Top selection state steady state Enter

fi









. . .

Top =̂ start .1 → stop.1 → start .2 → stop.2 → sleeping → sleeping → end cycle → Top

• (Chart |[{ } | IChannels | vVar]| Cycle) \ IChannels

end

Fig. 3. Circus model of the ShiftLogic block

its environment on the channels VehicleSpeed , up th, down th, gear , CALC TH ,

and end cycle. It is partially presented in Figure 3.

The input and output channels are declared in the Simulink model, but we need

to declare internal channels that correspond to the local events: in our example,

8

Cavalcanti

these are UP and DOWN . In Circus, there are no local channels: they are all

declared globally, with locality enforced by hiding.

In the diagrams, the hierarchical state structure is used to define the scope of

events and data. The transitions, however, do not respect this organised nesting of

scope; they can direct flow of execution between states at any level of the hierarchy.

For this reason, in our model, we have an action Cycle, which reads and stores all

data, and makes it available for another action Chart , which models the behaviour

of the statechart. In each cycle, the inputs are read, and made available to Chart

through internal channels. Similarly, internal channels are used to read the outputs

from Chart ; they are communicated just before the end of the cycle. There is an

internal channel for each input and output channel; in our example, they are ispeed ,

iup th, idown th, igear , and iCALC TH . The type of these channels is U; it is

not part of standard Z, but a universal type in the dialect of ProofPower-Z, the

theorem prover that we use to mechanise our models and verifications.

In the life-cycle of a diagram, all states are initially inactive; in the first cy-

cle, some states are entered and become active, due to (a combination of) default

transitions and AND compositions. Afterwards, in each cycle, the active states ex-

ecute, that is, process its transitions and any events generated, and then sleep. The

sleeping status is signalled using a channel sleeping , which is used by the action

Cycle to determine the point in which the outputs should be communicated, before

signalling the end of the cycle using end cycle.

As already mentioned, AND states execute in a particular order. Channels start

and stop are used to control that order. If a state with an AND composition can

be exited, then the execution of the AND states has to be finished. In this case an

extra channel finished is used; in our example, the parallel states are always active.

The main action of a Stateflow block process is a parallel composition of the

Chart and Cycle actions, synchronising on the internal channels, which are hidden.

These channels are grouped in the set IChannels, defined as follows for our example.

channelset IChannels =̂ {| ispeed , iup th, idown th, igear , iCALC TH , sleeping |}

The components of the state of a Stateflow process hold the values of the inputs

and outputs, and of any local data variables. The action Cycle updates them.

In a parallelism of actions, we need to associate with each parallel action the

subset of the variables in scope that it can update; these subsets must be disjoint to

avoid racing conditions. In our case, Cycle has control over all state components;

they are grouped in a set called vVar . The action Chart modifies no variables.

The action Input reads all the inputs of the diagram; it is used by Cycle at the

beginning of each cycle. It is an interleaving that reads each input and records it

in the corresponding variable. Strictly speaking, in an interleaving, we also need

to define the name set associated with each action; we omit these in our example,

as they are obvious. Similarly, the Output action communicates the values of the

outputs, and is used by Cycle after the chart sleeps.

In each cycle, the action Cycle initialises the value of the variables that corre-

spond to output events to 0; in our example, Cycle initialises vCALC TH . Event

signals can take the value 0 or 1. If a chart does not raise an event in a cycle, then

9

Cavalcanti

by default its value is 0. For output data we do not have such concern, since the

chart should always define its value explicitly.

Each state S of the diagram is modelled by three actions called S Enter , S ,

and S Exit , as needed. The S Enter action models the behaviour of S when it

is entered, S models its behaviour when it is active, and S Exit when it becomes

inactive. The definitions of these state actions depend on whether S has an OR

composition, an AND composition, or is a basic state.

For a state with an AND composition, the Circus Enter action executes the entry

action of the state, and then executes all Enter actions of the substates in parallel.

In addition, the S action is run in parallel to control their order of execution, using

the channels start and stop. The synchronisation sets are defined by the pattern

of communication between states, which can be determined by the raising and

accepting states of the local events . This is further discussed in Section 5.

In our example, the top state has an AND composition, so the action Top Enter

executes Top gear state Enter and Top selection state Enter in parallel. Since

UP and DOWN are raised in selection state and handled in gear state, they syn-

chronise on these channels, as well as on sleeping .

In the case of an OR composition, the Enter action executes the entry action,

and then tries the default transitions in order; the target of the first transition that

can be successfully followed is entered. In our example, both OR compositions have

a single default transition with no guard or condition. For example, the action

Top gear state Enter just executes Top gear state first Enter , since the state

first is the target of the default transition of gear state.

For basic states, the Enter action executes the entry action and sleeps, that is,

waits for synchronisation on sleeping , since there are no substates to be activated.

Afterwards, the action waits for the end of the cycle and calls the S action in the

next cycle. In Figure 3, selection steady state Enter is a simple example.

The S action of a state with an AND composition controls the order of execution

of the substates. In our example, in each cycle Top uses start .1 to start the execution

of Top gear state, waits for it to become ready to sleep, which is signalled by

stop.1, and then does the same for Top selection state using start .2 and stop.2.

The Enter actions of Top gear state and Top selection state also use start and

stop to determine when they can start and signal when they are ready to sleep.

In general, there may be during actions, and inner and outer transitions, and all

these need to be executed or tried before the parallel states are executed. If S has

an OR composition, all that needs to be done is handling these components.

In our example, the state gear state does not have any of these components,

so that Top gear state is simply Skip, and we omit it. On the other hand,

selection state has a during action, which raises CALC TH. This is modelled in

Top selection state by synchronisation on the internal channel iCALC TH .

Similarly, an action of a basic state handles the during action, the transi-

tions, and then sleeps if no outer transition is taken. An example is the action

Top selection state upshifting . It calls the action for its superstate, then it reads

the variables that it needs to make decisions on the transitions, and then checks

which transition conditions are valid. In this case, the conditions are mutually ex-

clusive and the conditional is quite simple. In the general case, we need to guarantee

10

Cavalcanti

the order of testing; this is further discussed in Section 5.

Since parallel states execute in order, their substates have to wait for a

synchronisation on start before they can execute. As already mentioned, the

Enter actions of the parallel states wait to synchronise on start . The Enter ac-

tion of a basic substate signals that it is ready to sleep using stop; the action

Top selection state upshifting Enter is an example. Since there is no entry action

in this case, it immediately signals stop. The action Top selection state upshifting ,

as a basic substate of a parallel composition, also uses start and stop to control its

points of execution. In fact, in our example, since the chart is composed of parallel

states, every basic state uses the start and stop channels.

The action Top selection state upshifting raises the event UP . The actions

that model the substates of gear state need to handle it; this is achieved using the

interrupt operator. For example, Top gear state first Enter first executes the en-

try action of first; it is an assignment of 1 to gear, which we model by outputting the

value 1 through igear . The Cycle action takes this value and stores it in the variable

that holds the value of gear. Afterwards, Top gear state first Enter signals that

it is ready to sleep, and then sleeps. In this period, however, at any moment it may

be interrupted by the event UP , in which case the state second is entered. After

synchronisation on sleeping , however, the state is not active anymore, and so an

interruption by UP is no longer possible. Similarly, Top gear state first once it

starts, it accepts interruptions up to when it sleeps.

This example shows how we handle AND compositions, OR compositions, basic

states, and event broadcasting. In Section 5, we consider a general strategy for

building models; it formalises the semantics of Stateflow diagrams.

5 Translating Stateflow to Circus

Our semantics of a Stateflow diagram is a function [[st]]n that takes a diagram st ,

that is, an element of the type Stateflow defined in Section 4, and the name n of

the Simulink block defined by this diagram, and produces a Circus specification.

As discussed and exemplified in Section 4, the Circus model starts with a decla-

ration of local events and internal channels.

channel ran st .event.local; iReadWrite(
⋃

ran st .data.local) : U
channel i(st .data.input), i(st .data.output), i(st .event.input), i(st .event.output) : U
channel sleeping ; start , stop,finish : Z

The local events are synchronisation channels, so they do not have a type; we use the

set ran st .event.local of local event names to denote a list of these names. Similarly,

we consider the set
⋃

ran st .data.local of names of local variables, and use it where

a list of the names is expected. The syntactic function iReadWrite prefixes all the

names with an iread to form the names of the internal channels used by the action

Chart to read the values of the local variables, and with an iwrite to name channels

used to update their values. For the input and output data and events we need

only one channel, because they can only be either read or written; the i -prefixed

names are created by the function i. We also need to declare the extra control

channels. The channels start , stop, and finish are not always necessary, and may be

11

Cavalcanti

eliminated if there are no AND compositions. In particular, finish is only needed if

there are outer transitions from a parallel state.

The set of internal channels is given a name.

channelset IChannels =̂

{| i(st .data.input), i(st .data.output), i(st .event.input),

i(st .event.output), iReadWrite(
⋃

ran st .data.local), sleeping |}

The name of the block is used to declare the process that models the diagram.

process n =̂ begin

The state components record the values of the input and output data and events,

and of all local data; the syntactic function v prefixes all their names with a v to

form the names of the corresponding state components.

state S

v(st .data.input), v(st .data.output), v(st .event.input), v(st .event.output) : U
v(
⋃

ran st .data.local) : U
The chart is characterised by the Enter action of the fictional Top state that cor-

responds to the topmost level of the hierarchy of states.

Chart =̂ Top Enter

The function [[st]]SJ defines the actions that model the states and junctions of st ,

and follow the definition of Chart . It is discussed later on in this section.

To define Cycle, we introduce four sets of pairs of names. The first, inputs,

contains the pairs formed by a name of an input data or event, associated with the

corresponding v -prefixed name; similarly, outputs contains the pairs corresponding

to names of outputs. Finally, iinputs and ioutputs contains pairs of matching i -

prefixed and v -prefixed names; iinputs contains the names coming from inputs and

local variables, and ioutputs those from outputs and local variables. In iinputs the

local variables are prefixed with iread , and in ioutputs, with iwrite. Using these

sets, we define the actions below used in the definition of Cycle

Input =̂ |||(inp, vinp) : inputs • inp?x → vinp := x

Output =̂ |||(out, vout) : outputs • out!vout → Skip

IChartOut =̂ 2(iinp, vinp) : iinputs • iinp!vinp → Skip

IChartInp =̂ 2(iout, vout) : ioutputs • iout?x → vout := x

The first of these actions reads the inputs of the chart and stores them in the corre-

sponding state component; the second outputs the value of the state components.

The actions IChartOut and IChartInp define the interface between Cycle and Chart .

The Cycle is always willing to output the value of any of the input data, or read

the value of any of the outputs; local variables can be both read and written by the

12

Cavalcanti

chart. The name sets associated with the interleaved actions are the singletons that

contain the assigned variable, if any; they are omitted above.

Cycle =̂





Input ; vst .event.output := 0 ;


µY •





IChartOut ;Y

2 IChartInp ;Y

2 sleeping → Output ; end cycle → Cycle













In our example in Figure 3, we did not introduce IChartOut and IChartInp, but

included them directly in Cycle. The main action is the same in all models.

• (Chart |[{ } | IChannels | αS]| Cycle) \ IChannels

end

The set αS contains all the names of the components of the state S of the process;

the action Cycle has control to update all of them.

The result of [[st]]SJ is a sequence of paragraphs; for each state or junction p in

the domain of st .state or st .junction, we have a few actions specified by the function

[[p]]Pst . Its definition is by cases, considering whether p is a state or a junction, and

if it is a state, whether it has an OR composition, an AND composition, or is a

basic state, and whether it is a substate of an OR or an AND composition.

We sketch here the definition of [[p]]Pst for a state p that has an OR composition,

that is, p ∈ dom st .state and st .state(p).composition ∈ ranOr , and that is not a

substate of any parallel composition, precisely characterised as follows.

∀ s1 : dom st .state | st .state(s1).composition ∈ ranAnd •
∀ s2 : ranAnd∼ st .state(s1).composition • ¬ s2 prefix p

For a path p, the syntactic function Np defines the action name corresponding to

p. As already explained, the fictitious top state is called Top.

N〈 〉 = Top Np
a〈n〉 = Np n

The function [[p]]Pst introduces three actions: Np Enter , Np, and Np Exit .

The Enter action first of all reads all the inputs and the data in its scope, that

is, the variables that are local to p or to any of its superstates.

local(p) =
⋃
{ s : dom st .data.local | s prefix p • st .data.local(s) }

Local v -prefixed variables in Np Enter hold the value of the inputs and of these

variables. The set iinputsL used below pairs the i -prefixed names corresponding

to inputs and the iread-prefixed names corresponding the local variables with the

13

Cavalcanti

corresponding v -prefixed names.

Np Enter =̂





var v(st .data.input), v(st .event.input), v(local(p)) •




|||(iinp, vinp) : iinputsL • iinp?x → vinp := x) ;

[[st .state(p).entry]]Ast ;

[[(Or∼(st .state(p).composition)).1]]DTS









After reading the necessary data, Np Enter executes the entry action of the state p.

Translation of actions is rather simple, and we omit the definition of the semantic

function [[a]]Ast which takes a Stateflow action a and produces a corresponding

(unnamed) Circus action. In the end Np Enter executes the default transitions.

These are translated as defined by the semantic function [[ts]]DTS . We omit its

definition, but discuss the translation of transitions below.

The action Np is similar to Np Enter , but instead of executing the entry ac-

tion, it executes the during action st .state(s).during , and instead of executing the

default transitions, it executes the outer and inner transitions. In fact, the tran-

sitions can only be handled here if the substates do not have exit actions. Other-

wise, each substate has to handle the transition of this superstate. The function

O [[st .state(s).outer]]TS translates the outer transitions; it takes as an extra pa-

rameter the action to be taken if none of the transitions are available: we give the

argument I [[st .state(s).inner]]TS
Skip, which executes the inner transitions, and

skips if none of these can be executed either. We present the definition of O [[ts]]TS

to illustrate our formalisation of the treatment of transitions.

O [[〈 〉]]TS
p A = A O [[〈t〉 a ts]]TS

p = if O [[〈t〉 a ts]]Tp fi

If there are no transitions, then the argument action A is the result; otherwise we

have a conditional whose guarded commands are given by O [[〈t〉a ts]]T defined as

follows. If there are no transitions left, the result is A, which should be a guarded

command. In our case, it is the result of the translation of the inner transitions.

For a list 〈t〉a ts, we need to consider whether the target t .dest of t is a state or a

junction; we present below the translation when the target is a state. For transitions

targeted at junctions, we need to consider the possibility of backtracking.

O [[〈t〉 a ts]]Tp =̂





v(t.event) = 1 ∧ [[t.cond]]C →




[[t.condAction]]Ast ; [[t.transAction]]Ast ;

(; ss : rev nesting(p ∨ t .dest , p) • Nss Exit) ;

(; ss : nesting(p ∨ t .dest , t .dest) • Nss Enter)





[] O [[ts]]Tp





The translation of conditions is direct, so we omit the definition of [[c]]C . In the

absence of backtracking, both the condition and transition actions are executed.

Finally, if a transition is taken, we need to exit the current state and enter the target

14

Cavalcanti

state t .dest . For that, we need to exit all superstates of p that do not include t .dest

as a substate; this is the state p ∨ t .dest , where ∨ is the least upper bound operator

for the prefix relation. For paths p1 and p2 such that p1 is a prefix (superstate) of

p2, nesting(p1, p2) gives the chain of states from p1 to p2, including p1 and p2. We

reverse the list nesting(p ∨ t .dest , p) to determine the sequence of states from p to

p ∨ t .dest that need to be exited, and use nesting(p ∨ t .dest , t .dest) to determine

the list of states from p ∨ t .dest to p that need to be entered.

The Np Exit action only executes st .state(p).exit . Since these actions are called

by the action for p or for one of its substates, there is no need to read any data.

The complete formalisation of the translation rules is quite extensive. The defi-

nitions that we have presented illustrate the approach. The most interesting feature

that is omitted is the treatment of local events. We need en environment that de-

fines the states that contain the sources and targets of each event. For the diagram

in Figure 3, we have a local event UP, for example. The source of UP is upshifting,

and the targets are first, second, and third. This information is used to define the

structure and synchronisation sets for the parallelisms that model the AND com-

positions. For each event, we need to find the parallel superstates that contain all

its sources and targets. In the case of UP, they are selection state and gear state;

this explains the synchronisation set in Figure 3.

6 Additional features

Many Stateflow features can lead to intricate designs, with negative impact on

understandability and analysis. The work in [17], for example, identifies a subset

of Stateflow that is regarded as safe; in our approach, as in theirs, we aim at giving

semantics and reasoning about arbitrary diagrams.

A first concern of many works is the reliance on positioning of parallel states

and transitions to determine the order in which they are executed. In our work,

this is handled by the parser of Stateflow diagrams; our abstract notation is explicit

about the order. So, this issue is handled in the semantics in a straightforward way,

as already explained and exemplified in the previous sections.

Nontermination

Another issue is related to the possibility of the treatment of a local event raising

that same event again, which leads to nonterminating behaviour. The following

diagram is considered in [17]. It is an OR composition, whose default transition

enters a state A. The entry action of A raises the event E, and it is treated by A.

A
en: E
A
en: E

BE {E}

In the environment that records the source and target of E, we can immediately

identify that E is both raised and received by A. In this case, the use of the interrupt

operator to treat E is not appropriate. Instead we conflate the generation and

treatment of E into a single event. Since the channel E is hidden in the model of

the diagram, the event happens as soon as it becomes available.

15

Cavalcanti

In the example diagram, if the E event were not generated by action condition

action, the model of Top A Enter would be just E → Top B Enter , where E is

raised and treated, with the corresponding outer transition to B taken.

In the above diagram, however, during the outer transition, E is once again

raised. This leads to recursion since the raised event is treated by the execution of

the transitions of A itself. So, Top A Enter is defined as µX • E → X . This is

indeed an infinite loop, but it is also the accurate semantics of the diagram.

Backtracking

Transitions to a new state are final, but transitions to a junction may be back-

tracked if they do not eventually lead to a final state or to a terminal junction,

because they lead to a junction from which no transition can be taken. The follow-

ing diagram, which is presented in [17], gives an example.

AA

B

[true]{a := a + 1}

{a = 0}
B

C[true] {a := a + 1000}

[true] {a := a + 10}

[false] {a := a + 100}

The default transition sets a to 0, and the outer transition from A sets it to 1

and leads to a junction, represented by a circle. Afterwards the upper transition

from the junction is tried and increments the value of a by 10, but then the next

transition available fails, since its condition is false. Consequently, the execution

backtracks and the lower transition from the first junction is tried. It succeeds, but

the assignments to a are not lost. The final value of a is 1011.

To model backtracking, transitions need to be executed in parallel, with channels

ok and backtrack used to signal whether a transition succeeded, and the others

should be abandoned, or whether it failed and the second should take over. For

each pair of transitions, a fresh pair of ok and backtrack channels is needed. Since

the data is managed separately by Cycle, all transitions have access to it.

For the diagram above, the conditions are the constants true and false, so using

laws of Circus, we can simplify the resulting action to another that takes the viable

route directly, and updates the value of a to 1011.

History junctions

If a history junction is included in a state with an OR composition, every time

that state is re-entered, the last active substate becomes active again.

To model such behaviour, a History action is run in parallel with the immediate

superstate of the composite state. It keeps track of the active substates, and is

used by the Enter action to determine the substate to be activated. In addition,

the History action uses the default transitions to determine the state that becomes

active the first time the composite state is entered.

If a history junction is the target of an inner transition, if it is followed, the

current substate is exited and re-entered. So, the Enter action is not affected in

16

Cavalcanti

this case. It is possible to have a History action that determines the next state to

be entered when the inner transaction is taken, or a model that executes the exit

and enter actions directly. The first approach is more general.

We leave the formalisation of the translation strategy that considers all these

special features as future work.

7 Conclusions

We have proposed a semantics for Stateflow diagrams that is appropriate as a basis

for reasoning techniques based on refinement. We have discussed how to construct

models, and how the semantics can be formalised algebraically. Our models can be

used as components of an existing Circus semantics for Simulink.

The work presented in [2] models Stateflow diagrams as finite state machines de-

scribed in SMV. The translation from the Stateflow notation to SMV is automated,

but not formalised. The subset of Stateflow considered does not allow nested event

generation and does not include non-Boolean input signals, junctions with more

than one input transition, transition actions, or output events.

An automaton model is used in [18]; this work suggests a reasoning approach for

hybrid systems based on traditional model checking techniques. The encoding of

Stateflow diagrams as communicating pushdown automata is informally described,

as is its further translation to SAL. The subset of the Stateflow notation covered

does not allow inner transitions or junctions, although the work can be extended.

Like in our approach, the CSP and the Circus semantics of UML (or UML-RT)

state diagrams in [13,15] are also defined by algebraic rules that specify a function

that maps a diagram to a CSP or to a Circus model. In addition, the reasoning

approaches advocated are based on refinement, and, in particular, the work on

UML-RT considers state diagrams as part of a richer design notation.

The diagrams considered in these works, however, are very different from State-

flow diagrams. They exhibit some nondeterminism, but there is no notion of cycle,

no backtrack, and no event broadcast; in the CSP work, data is also not covered.

Our model does present some limitations; we still have to study the impact of

transitions to and from substates of a parallel composition that cross the parallel

state, for example. In addition, further validation of the models is also necessary,

since so far we have considered only small examples, and still have to complete the

definition of the semantic functions. Our next step is the automation of the model

construction, so that large case studies can be conducted. Our long-term goal is to

extend the refinement-based verification technique for implementations of Simulink

diagrams to cover implementations of Stateflow blocks.

References

[1] M. M. Adams and P. B. Clayton. Cost-Effective Formal Verification for Control Systems. In K. Lau
and R. Banach, editors, ICFEM 2005: Formal Methods and Software Engineering, volume 3785 of
Lecture Notes in Computer Science, pages 465 – 479. Springer-Verlag, 2005.

[2] C. Banphawatthanarak, B. H. Krogh, and K. Butts. Symbolic Verification of Executable Control
Specifications. In IEEE International Symposium on Computer Aided Control System Design, pages
581 – 586. IEEE Press, 1999.

17

Cavalcanti

[3] A. L. C. Cavalcanti and P. Clayton. Verification of Control Systems using Circus. In Proceedings of
the 11th IEEE International Conference on Engineering of Complex Computer Systems, pages 269 –
278. IEEE Computer Society, 2006.

[4] A. L. C. Cavalcanti, P. Clayton, and C. O’Halloran. Control Law Diagrams in Circus. In J. Fitzgerald,
I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods, volume 3582 of Lecture Notes in
Computer Science, pages 253 – 268. Springer-Verlag, 2005.

[5] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy for Circus.
Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

[6] C. Fischer. How to Combine Z with a Process Algebra. In J. Bowen, A. Fett, and M. Hinchey, editors,
ZUM’98: The Z Formal Specification Notation. Springer-Verlag, 1998.

[7] G. Hamon. A Denotational Semantics of Stateflow. In International Conference on Embedded Software.
ACM Press, 2005.

[8] G. Hamon and J. Rushby. An operational semantics for Stateflow. International Journal on Sofware,
Tools, and Technology Transfer, pages 447 – 456, 2007.

[9] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Programming,
19:87 – 152, 1992.

[10] D. Harel and A. Naamad. The STATEMATE Semantics of Statecharts. ACM Transactions on Software
Engineering and Methodology, 5(4):293 – 333, 1996.

[11] The MathWorks,Inc. Simulink. http: //www.mathworks.com/products/simulink.

[12] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.

[13] M. Y. Ng and M. Butler. Towards Formalizing UML State Diagrams in CSP. In International
Conference on Software Engineering and Formal Methods, pages 138 – 148. IEEE Computer Society,
2003.

[14] M. V. M. Oliveira and A. L. C. Cavalcanti. ArcAngelC: a Refinement Tactic Language for Circus.
Electronic Notes in Theoretical Computer Science, 214C:203 – 229, 2008.

[15] R. Ramos, A. C. A. Sampaio, and A. C. Mota. A Semantics for UML-RT Active Classea via Mapping
into Circus. In Formal Methods for Open Object-based Distributed Systems, volume 3535 of Lecture
Notes in Computer Science, pages 99 – 114, 2005.

[16] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in Computer Science.
Prentice-Hall, 1998.

[17] N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and Translating a “Safe”
Subset of Simulink/Stafeflow into Lustre. In International Conference on Embedded Software, pages
259 – 268. ACM Press, 2004.

[18] A. Tiwari. Formal Semantics and Analysis Methods for Simulink Stateflow Models. Technical report,
SRI International, 2002. http://www.csl.sri.com/∼tiwari/stateflow.html.

[19] H. Treharne and S. Schneider. Using a process algebra to control B OPERATIONS. In 1st International
Conference on Integrated Formal Methods – IFM’99, pages 437 – 457. Springer-Verlag, 1999.

[20] J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof. Prentice-Hall, 1996.

18

	Introduction
	Circus
	Stateflow diagrams
	Circus models of Stateflow diagrams
	Syntax of diagrams
	Overall structure of diagram models

	Translating Stateflow to Circus
	Additional features
	Conclusions
	References

