
Noname manuscript No.
(will be inserted by the editor)

Safety-Critical Java Programs from Circus Models

Ana Cavalcanti · Frank Zeyda ·
Andy Wellings · Jim Woodcock ·
Kun Wei

the date of receipt and acceptance should be inserted later

Abstract Safety-Critical Java (SCJ) is a novel version of Java that addresses
issues related to real-time programming and certification of safety-critical ap-
plications. In this paper, we propose a technique that reveals the issues involved
in the formal verification of an SCJ program, and provides guidelines for tack-
ling them in a refinement-based approach. It is based on Circus, a combination
of well established notations: Z, CSP, Timed CSP, and object orientation. We
cater for the specification of timing requirements and their decomposition to-
wards the structure of missions and event handlers of SCJ. We also consider
the integrated refinement of value-based specifications into class-based designs
using SCJ scoped memory areas. We present a refinement strategy, a Circus
variant that captures the essence of the SCJ paradigm, and a substantial ex-
ample based approach on a concurrent version of a case study that has been
used as a benchmark by the SCJ community: an aircraft collision detector.

Keywords SCJ; Circus; RTSJ; real-time systems; refinement; verification

1 Introduction

An international effort has recently produced an Open Group standard for a
high-integrity real-time version of Java: Safety-Critical Java (SCJ) [21]. It is a
subset of Java augmented by the Real-Time Specification for Java (RTSJ) [38],
which supplements Java’s garbage-collected heap memory model with support
for memory regions [36] called memory areas.

The execution model of an SCJ program is based on missions and event
handlers. Additionally, SCJ restricts the RTSJ memory model to prohibit use
of the heap and defines a policy for the use of memory areas. The SCJ design
facilitates certification. It is organised in Levels (0, 1, and 2), with a decreasing

Department of Computer Science, University of York, York, YO10 5GH, UK

2 Ana Cavalcanti et al.

amount of restrictions to the execution model. Our work is on SCJ Level 1,
which corresponds roughly to the Ravenscar profile for Ada [4].

The standardisation work includes the production of a reference imple-
mentation, but no particular application-design technique. We address this
using the Circus family of languages for refinement [8]. They are based on a
flexible combination of elements from Z [41] for data modelling, CSP [32] for
behavioural specification, and standard imperative commands from Morgan’s
calculus [26]. Variants and extensions of Circus include Circus Time [34], which
provides facilities for time modelling from Timed CSP [31], and OhCircus [9],
which is based on the Java model of object-orientation.

Circus has been used for modelling and verification of control systems spec-
ified in Simulink [7,24]. It is currently being used to verify aerospace appli-
cations, including virtualisation software by the US Naval Research Labora-
tory [14]. The semantics of the Circus family of languages is based on the
Unifying Theories of Programming (UTP) [18]. This is a framework that sup-
ports refinement-based reasoning in the context of a variety of programming
paradigms. It supports the independent treatment of programming theories,
with associated techniques for their combination in a tractable way. In ad-
dition, it caters for the axiomatic, denotational, and operational styles of se-
mantic definitions. This makes it possible for us to consider a rich language
for refinement that supports the use of object-oriented and SCJ constructs as
well as the modelling and verification of time properties.

The UTP has been used to define the semantics of object-oriented [33] and
time [34] constructs. We have also presented a Circus-based formalisation of the
SCJ execution model [42] and a UTP theory for the SCJ memory model [10].
What we present here is a refinement strategy for deriving SCJ programs from
Circus specifications that builds on these results. We also rely on previous
results on Circus variants and UTP theories for references [39,16,9].

We propose an approach for stepwise development of SCJ programs based
on specification models that do not consider the details of either the SCJ
mission or memory models. Four Circus specifications characterise the major
development steps: we call them anchors, as they identify the (intermediate)
targets for refinement and the design aspects treated in each step.

Each anchor is written using a different combination of the Circus family
of notations. The first anchor is the abstract specification model. The last
is so close to an SCJ program as to enable automatic code generation. It is
written in SCJ-Circus, a new version of Circus extended with constructs that
correspond to the components of the SCJ programming paradigm. They are
syntactic abbreviations for definitions introduced in [42] to characterise the
SCJ infrastructure and applications; they use a combination of the variants of
Circus to cater for time, object-orientation, and the SCJ memory model.

By extending Circus with SCJ constructs, we can model SCJ programs
accurately in the unified framework of a refinement language. Our final refine-
ment target is, in a sense, an SCJ program, since the SCJ-Circus model is so
low level as to allow direct translation to Java code. We are, however, tackling

Safety-Critical Java Programs from Circus Models 3

this translation as separate work in line with what we have previously achieved
for low-level Circus models and corresponding Java implementations [13].

A preliminary version of our refinement strategy is presented in [11], where
it is applied to a very simple toy example: a communication line. Here, we
describe our development technique in much more detail, and provide concrete
guidance for design and verification. We also define modelling and refinement
patterns that target specific design strategies. Finally, we apply our technique
to a much more significant case study: the collision detector (CDx) discussed
in [19], which is a benchmark in the RTSJ and SCJ communities.

Our development strategy establishes, by construction, that the SCJ-Circus
model is a refinement of the specification used as the first anchor. This means
that safety, liveness, and timing properties are preserved. Safety requires that
the sequences of interactions (traces) of the program are possible for the spec-
ification. Liveness requires that deadlock or divergence in the program can
occur only if allowed in the specification. Finally, preservation of the timing
properties requires that the deadlines and budgets defined in the specification
are enforced by the deadlines and budgets defined for the components of the
program. Our long-term goal is to provide for Safety-Critical Java at least the
same level of support that the SPARK tools, for instance, provide for Ada.

Regarding time, our strategy makes use of decomposition via refinement. It
is inspired by the work in [17], which introduces time into Morgan’s refinement
calculus so that derivation of code from specifications is similar to that for
untimed specifications. In our approach, the requirements in the first anchor
are localised in the SCJ components of the final target anchor. It is, in this
way, annotated with the machine-independent timing requirements that every
correct implementation (for a specific platform) needs to satisfy. Verifying that
they do may require, for instance, schedulability analysis.

Mukherjee et al. [27] have developed a framework consisting of a real-time
specification language based on VDM-SL, an implementation language de-
signed for safety-critical systems, and a collection of rules for decomposing
specifications into code. Specifications are expressed using pre and postcondi-
tions with a time clause. As in our approach, correctness of the decomposition
is guaranteed by the rules, but their focus is on sequential systems.

Some aspects of resources are not covered in Circus. We argue informally
that the patterns that we use ensure that the use of resources is adequate: for
instance, there is no memory leak. More rigorous support for quantification of
memory usage is proposed in complementary lines of work for RTSJ [3].

An additional contribution of the work presented here is an extension of
the original CDx to produce a concurrent version available at www.cs.york.

ac.uk/circus/hijac; it exploits the features of SCJ Level 1. The complete
description of the application of our refinement strategy to this example is
in [43], where the refinement steps and the novel refinement laws needed are
discussed in detail. Here, we describe the overall development strategy that we
propose for SCJ programs, and use the concurrent CDx to illustrate the ideas.

The goal of this paper is to present an accessible description of our tech-
nique. Our novel contributions are as follows. First, we present a detailed

4 Ana Cavalcanti et al.

strategy for development by refinement of SCJ programs. It is a solid basis for
other more specialised techniques that can focus on particular aspects of the
development, like parallelisation or sharing, for instance. Second, we propose
a novel variant of Circus that captures the SCJ programming paradigm: SCJ-
Circus. Finally, a concurrent version of an important benchmark for the RTSJ
and SCJ communities has been developed and made available.

Next, we present the notations used in our work, namely, SCJ and Circus,
and our case study, the CDx . Section 3 presents our refinement strategy and
Section 4, its application to the CDx . We draw our conclusions in Section 5.

2 Preliminaries

We present now a brief overview of SCJ, of the CDx , and of Circus.

2.1 Safety-Critical Java

The components of the programming paradigm adopted by SCJ are a safelet,
a mission sequencer, missions, and event handlers. The control flow for an SCJ
Level 1 program consists of a sequence of missions, during which a number of
event handlers are executed concurrently. The safelet is the entry point of the
application, and the mission sequencer defines the sequence of missions to be
executed. During a mission, event handlers are released.

The handlers of a mission are either released periodically, or respond to
aperiodic events. They are executed concurrently by a priority-based sched-
uler, and access to shared data has to be performed by synchronized meth-
ods (whose implementations support the priority-ceiling emulation protocol to
bound priority inversions). A mission continues to execute until one of its han-
dlers requests termination. A cleanup phase is performed after termination has
occurred, and afterwards the next mission, if any, is prepared for execution.

An API defines interfaces and abstract classes to be used in an SCJ pro-
gram. The safelet class is an implementation of the Safelet interface. Its
methods are setUp() and tearDown(), which perform initialisation and final-
isation tasks, and getSequencer(), which creates the mission sequencer. This
is an object of a subclass of the MissionSequencer abstract class. It imple-
ments the getNextMission() method, which returns the next mission to be
executed. Missions are implemented as subclasses of Mission; typically, they
override methods like initialize(), which creates the mission’s handlers.

The event handlers are instances of a subclass of AperiodicEventHandler,
AperiodicLongEventHandler, or PeriodicEventHandler. An instance of a
subclass of AperiodicLongEventHandler is an aperiodic handler that accepts
simple input data at release time. The code executed when the handler is
released is defined by the handleAsyncEvent() methods in these subclasses.

SCJ supports software events. These are in contrast with Circus events
that represent inputs and outputs of the application, which are typically in

Safety-Critical Java Programs from Circus Models 5

the form of an interaction with some hardware device. On the other hand,
software events are instances of the AperiodicEvent SCJ class. Aperiodic
handlers can be bound to them, and all bound handlers are released when a
software event is fired (via a call to the fire() method of AperiodicEvent).

The program, the missions, and the handler releases have associated mem-
ory areas (where dynamically created objects are stored). The immortal area
holds objects throughout the lifetime of the program: they are never deallo-
cated. A mission area is cleared out at the end of each mission. Each handler
has a per-release memory area, cleared out at the end of each release. During
a release, a stack of temporary private memory areas can be created.

In the next section we present an SCJ program based on the case study
described in [19], where the CDx is presented as a benchmark to profile imple-
mentations of RTSJ virtual machines. It is later explored in [20] in order to
adapt the code to comply with the architectural restrictions of SCJ. Here, we
consider a novel concurrent implementation in SCJ Level 1.

2.2 CDx : a concurrent collision detector

The purpose of the CDx is to detect potential collisions of aircraft located by
a radar device. We take the program discussed in [19] as a basis for the defini-
tion of our requirements. It uses a cyclic executive, and embeds the assumption
that the radar collects (and buffers) a frame of aircraft positions that becomes
available for input periodically. In each iteration, the CDx : (1) reads a frame;
(2) carries out a voxel-hashing step that maps aircraft to voxels; (3) checks for
collisions in each voxel; and (4) records and reports the number of detected
collisions. A voxel is a volumetric element; all voxels together subdivide the
entire space. The voxels in the CDx superimpose a coarse 2-dimensional grid
on the x-y plane with the height of a voxel extending along the entire z-axis.
Thus, the altitude of aircraft is abstracted away. This reduces the number
of necessary collision tests: after mapping aircraft to the voxels that are in-
tersected by their interpolated trajectories, it is sufficient to test for possible
collisions within each voxel. Details of the algorithm can be found in [19].

Since the majority of the computation burden is in the checking for col-
lisions in step (3), we propose a version of the CDx where this task is paral-
lelised. As a result, we obtain an SCJ program that illustrates the features of
SCJ Level 1. Our aim with the concurrent CDx is, most of all, to provide a
genuine and more representative Level 1 application. Due to the novelty of the
SCJ paradigm and technology, such applications are still difficult to come by
in the public domain. On the other hand, even though we are not specifying a
particular radar system, concurrent collision detection is a reasonable target
to improve the performance of such an application.

Our program contains 27 classes, and almost 3000 lines of code. Its design
is not overly complex, since it consists of a single mission, but it is not trivial.
We have seven handlers that interact using shared variables and a barrier.
Our first implementation had a mistake, a race condition, that we uncovered

6 Ana Cavalcanti et al.

+setUp() : void

+tearDown() : void

+getSequencer() : MissionSequencer

«interface»

Safelet

CDxSafelet

CDxMissionSequencer

+getNextMission() : Mission

MissionSequencer

+initialize() : void

+initColls() : void

+recColls(in n : int) : void

+getColls() : int

+currentFrame : RawFrame

+state : StateTable

+work : Partition

+collisions : int

+control : DetectorControl

CDxMission

+initialize() : void

+cleanup() : void

+requestTermination() : void

+terminationPending() : boolean

+missionMemorySize() : long

Mission

+handleAsyncEvent() : void

+register() : void

PeriodicEventHandler

+handleAsyncEvent() : void

+register() : void

AperiodicEventHandler

OutputCollisionsHandlerInputFrameHandler

ReducerHandler DetectorHandler

1..*

1

Shared

Data

Fig. 1 UML diagram for the concurrent CDx program

in conducting the case study discussed in Section 4. Unlike [19], we allow
aircraft to enter or leave the radar frame.

Figure 1 presents a UML class diagram that illustrates the CDx design.
The classes shaded are part of the SCJ API. The classes named CDxSafelet,
CDxMissionSequencer and CDxMission implement the safelet, the mission
sequencer, and the mission. The behaviour of the setUp() and tearDown()

methods of CDxSafelet is void; this is typically the case, and a new version of
the SCJ standard might remove these methods. The method getSequencer()

returns an instance of CDxMissionSequencer, and getNextMission() returns
an instance of CDxMission when called for the first time. Since the mission
does not terminate, getNextMission() is not called again.

For mission execution, first the initialize() method of CDxMission is
called. It creates the mission’s handler objects and shared data in mission mem-
ory. The handler classes are InputFrameHandler, OutputCollisionsHandler,
ReducerHandler, and DetectorHandler. We choose to create four instances
of DetectorHandler, possibly corresponding to a scenario in which we have
four processors. The refinement in Section 3 can proceed without changes in
the presence of two or more instances. A more general design for the CDx could
allow the configuration of the number of instances; our program, however, is
enough to illustrate the main aspects of our technique.

The shared data is held by public fields of CDxMission. The currentFrame
and state fields record the current and previous frame of aircraft positions;
recording previous positions is important for calculating their predicted mo-
tions. As we divide and distribute the computational work, work holds the
partitions of voxels to be checked by each of the detection handlers, and
collisions is used to accumulate the result of the detection. We recall that
the voxels partition the space in such a way that collision detection can be

Safety-Critical Java Programs from Circus Models 7

releases
handler

+handleAsyncEvent() : void

-reduce : AperiodicEvent

InputFrameHandler

+handleAsyncEvent() : void

-detect : AperiodicEvent

ReducerHandler

+handleAsyncEvent() : void

-control : DetectorControl

DetectorHandler (1)

fires event fires event

+handleAsyncEvent() : void

-control : DetectorControl

DetectorHandler (2)

+handleAsyncEvent() : void

-control : DetectorControl

DetectorHandler (3)

+handleAsyncEvent() : void

-control : DetectorControl

DetectorHandler (4)

releases
handlers

Periodically released
AperiodicEvent

reduce

AperiodicEvent
detect

+start() : void
+notify(in id : int) : void
-done() : boolean

-output : AperiodicEvent
-handlers_done : boolean[]

DetectorControl

Call the notify(id) method of DetectorControl when finished

+handleAsyncEvent() : void

OutputCollisionsHandlerAperiodicEvent
output

fires event releases handler

Radar Device

Device Access

output collisions

Device Access

Fig. 2 Parallel CDx control flow

carried out in each voxel independently. A further shared object control plays
a crucial part in orchestrating the execution of handlers.

Figure 2 summarises the control mechanism of the SCJ application. The
three software events, reduce, detect and output, are used to control ex-
ecution of the handlers. The program design ensures that the handlers ef-
fectively execute sequentially in each cycle, apart from the four instances of
DetectorHandler, which carry out their work concurrently.

The InputFrameHandler is the only periodic handler. It is released at
the beginning of each cycle to interact with the hardware to read the frame
into currentFrame and update state accordingly. Afterwards, it releases the
ReducerHandler, via the reduce event, to carry out the voxel partitioning and
distribute the work among the detector handlers by populating work. Once this
is done, it concurrently releases all DetectorHandler instances by firing the
detect event. These handlers carry out the detection work and store their re-
sult in collisions. The mechanism for releasing OutputCollisionsHandler,
which outputs the number of collisions to an external device, uses the shared
object control. DetectorControl provides a method notify(), which is
called by the detector handlers at the end of each release. It fires the event
output when all detection work is done. This illustrates that sharing may
occur not only to exchange data, but also in the design of execution control.

Our program highlights various features of the SCJ mission framework: the
subdivision of a mission into handlers, the control of handlers via software
events, and the sharing of data for both data communication and control
purposes. The verification of this program not only has to address functional
correctness, but also must show that the flow of activities in Figure 2 can be
executed within the duration of a cycle, which is treated as a hard deadline.

Next, we present Circus. In subsequent sections, we present our formal
development strategy based on Circus, and revisit the CDx as an example.

8 Ana Cavalcanti et al.

2.3 Circus

The key elements of Circus specifications are processes (like in CSP). They
interact with the environment through atomic and instantaneous events: either
simple synchronisations, or input and output communications. Unlike CSP, a
Circus process also encapsulates local state, defined as in Z, and accessible by
its local actions, but hidden to other processes.

A process specification defines its state as a Z schema (that is, a record
type). Local actions operate on the state, while possibly interacting with the
environment via events. The action notation is a mixture of the Z schema
calculus for abstract specification of data operations, CSP constructs for spec-
ification of interaction patterns, and imperative commands (assignments, con-
ditionals, and so on) from (Morgan’s) refinement calculus. A main action at
the end of the process specifies its visible behaviour.

An example of a process, ABReqsCDx , is in Figure 3; it specifies data
and behavioural (but not timing) requirements of the CDx as part of its first
anchor. Its state is defined by the schema AStateCDx with two components
posns and motions; they hold the current frame of aircraft positions, and their
motions in the radar field as 3-D vectors. The type Frame is that of (finite)
functions from aircraft to vectors; it is defined in Appendix A along with all
other constants and functions used in Figure 3. The state invariant is defined
by a predicate in the schema: the domains of posns and motions are the same.

Init , RecordFrame and CalcCollisions are (local) actions of ABReqsCDx
specified by Z (data) operation schemas. Init defines the initial values of posns
and motions to be the empty function ∅. RecordFrame changes the state (as
indicated by ∆AStateCDx) and takes an input frame?. It defines the new
value posns ′ of the posns state component to be equal to the input frame?.
The new value motions ′ of the state component motions is defined by a set of
mappings. For each aircraft a in the domain of posns ′, its associated motion
depends on whether a was already in the radar frame (a ∈ dom posns) or not.
If it was, its motion is the difference between its current position posns ′ a and
its previous position posns a. Otherwise, it is the zero vector ZeroV .

CalcCollisions does not change the state (as indicated by ΞAStateCDx)
and has an output colls! that indicates the number of collisions. A function
CalcCollisionSet determines the finite set collset of pairs of aircraft that are
on a collision route. If it is empty, that is, its size given by # collset is 0, then
colls! is 0. Otherwise, it is a number greater than or equal to the number of
possible collisions: if the value is greater than 0, there is at least one possible
collision. The division caters for the symmetry of collision detection: if a pair
(a1, a2) of aircraft is in collset , so is (a2, a1). By dividing the result by 2, we
obtain in colls! a better approximation of the number of collisions.

Additionally, we have a local action BReq1 that uses CSP constructs,
namely an input prefix and an output prefix. In an input prefix c?x −→ A,
we have that c is a channel, x is a new local variable that records an in-
put taken from c for use in the associated action A. In an output prefix
c!e −→ A, the value of an expression e is output through c, before A is exe-

Safety-Critical Java Programs from Circus Models 9

process ABReqsCDx =̂ begin

state AStateCDx
posns : Frame
motions : Frame

dom posns = dom motions

Init
AStateCDx ′

posns′ = ∅ ∧ motions′ = ∅

RecordFrame
∆AStateCDx
frame? : Frame

posns′ = frame?
motions′ = {a : dom posns′ •

a 7→ if a ∈ dom posns then (posns′ a)−V (posns a) else ZeroV }

CalcCollisions
ΞAStateCDx
colls! : N

∃ collset : F (Aircraft ×Aircraft) |
collset = CalcCollisionSet (posns,motions) •

(# collset = 0 ∧ colls! = 0) ∨ (# collset > 0 ∧ colls! ≥ (# collset) div 2)

BReq1 =̂ next frame?frame−→(
RecordFrame;
var colls : N • CalcCollisions ; output collisions!colls −→ BReq1

)
• Init ; BReq1

end

Fig. 3 Anchor A: Process for the behavioural requirements of the CDx

cuted. For example, BReq1 takes an input frame on the next frame channel,
and calls RecordFrame, which uses this input. This is followed by the declara-
tion of a local variable colls of type N. The body of the variable block invokes
CalcCollisions and then outputs on output collisions the value of colls. At
the end, we have a recursive call to BReq1 to establish a cyclic behaviour. The
interactions on next frame and output collisions represent the interactions of
the CDx with the environment: the radar and display hardware.

The main action of a process, which defines its behaviour, is written at the
end after the •. In our example, it is a call to Init , followed by a call to BReq1.

A parallel composition (A1 Jns1 | cs | ns2 KA2) of actions is parametrised by
a synchronisation set cs of channels and two disjoint sets ns1 and ns2 of variable
names that the individual parallel actions may modify. The modifications made
by each action only become visible after the parallelism has finished; during
the parallelism there is no possibility of interference. The parallel actions must
synchronise on interactions via the channels in cs.

10 Ana Cavalcanti et al.

process ATReqsCDx =̂ begin

TReq1 =̂ (TReqCycle � FRAME PERIOD 9 wait FRAME PERIOD) ; TReq1

TReqCycle =̂((
next frame?frame @ t −→
wait 0..(FRAME PERIOD − t −OUT DL);

)
� INP DL

(output collisions?c −→ skip) � OUT DL

)
• TReq1

end

Fig. 4 Anchor A: Process for the timing requirements of the CDx

Like actions, Circus processes can be combined using CSP operators: for
example, sequentially (P1; P2) or in interleaving (P1 9 P2). In a parallelism
P1 J cs K P2 of processes, the name sets ns1 and ns2 that are used in an ac-
tion parallelism are omitted since processes encapsulate their states. In an
interleaving, the processes (or actions) proceed in parallel, but independently
without communicating with each other. In a parallelism, they synchronise on
communications via the channels in the synchronisation set cs.

Process parallelism is used below in the definition of CDx , the process that
specifies the CDx . It combines ABReqsCDx and the process ATReqsCDx in
Figure 4, which specifies timing requirements and is discussed next.

process CDx =̂
ABReqsCDx J {|next frame, output collisions |} K ATReqsCDx

The parallel processes synchronise on all communications via next frame and
output collisions. (The fat brackets {| and |} are used to specify channel sets;
in our example, we have a set containing next frame and output collisions.)
In this way, the timing restrictions imposed by ATReqsCDx on interactions via
these channels are taken into account in the parallelism. Here, parallelism is
used as a specification device to conjoin the data and behavioural requirements
in ABReqsCDx with the timing requirements in ATReqsCDx .

Circus Time also includes Timed CSP constructs and deadlines [34,39].
As opposed to Timed CSP, it has a discrete time model; this is enough to
reason about software implementations. We still, however, have issues of ro-
bustness [22]; namely, it is possible to specify an infinitely fast system. On the
other hand, time stops are not (necessarily) an indication of a faulty model;
they are used to model deadlines. (Semantically, a deadline or time stop is a
miracle [39], and is treated in the usual way in refinement calculi [26].)

The process ATReqsCDx in Figure 4 makes use of Circus Time constructs.
It is a process without state, whose main action TReq1 defines a periodic cyclic
behaviour; the period is defined by a constant FRAME PERIOD .

There are two deadline operators in Circus Time: A � d asserts that A
terminates within d times units, and A � d asserts that A starts (via a vis-
ible interaction) within d time units. They typically are assumptions on the
environment because if A requires synchronisation with the environment, the

Safety-Critical Java Programs from Circus Models 11

deadlines enforce the fact that they take place in the established period. So, in
TReq1, for example, a deadline ensures that TReqCycle does not take longer
than FRAME PERIOD time units, in spite of its reliance on the provision of
inputs and acceptance of outputs by the environment.

An action wait t terminates after exactly t time units, and wait t1 . . t2 is
a nondeterministic choice of a wait period between t1 and t2. In Circus Time,
data operations Op do not take time: any time properties need to be explicitly
defined. In this context, the wait constructs can be used to define guarantees
provided by the program, as opposed to assumptions on the environment.

For example, if a data operation Op is followed in sequence by an input,
for instance, since Op terminates instantly, the program has to be ready to
input instantaneously. No implementation can satisfy this restriction (unless
Op is mostly trivial and can be regarded as instantaneous). So, a more realistic
model is Op ; wait 0 . . t , which states that Op can take up to t times units to
complete: t defines a time budget for Op. We observe that it is possible to use
a loosely defined constant c, introduced using a Z axiomatic description that
does not determine the value of c or even does not restrict it at all, to define
t . The model does not need to specify a particular value for the budget.

In TReq1, the action TReqCycle � FRAME PERIOD is interleaved with
a wait of FRAME PERIOD time units. Because the interleaving finishes only
when both these actions finish, if TReqCycle finishes before its deadline, that
is, FRAME PERIOD time units, the interleaving still waits until the end of
the period. After FRAME PERIOD , a recursive call restarts the cycle. This
definition of TReq1 follows a pattern of specification for periodic tasks; we
discuss it in more general terms in Section 3.1.

In a prefixing c@t −→ A, the variable t records the number of time units
during which the communication c was available before it took place. In
TReqCycle, for instance, next frame?frame @ t−→skip keeps in t the amount
of time since the input is offered until it is taken. It is used to define the amount
of time we can wait (for the calculation of collisions to finish), before we need
to make an output available. This is given by FRAME PERIOD minus t ,
minus the deadline OUT DL for the environment to accept the output. We
also have a deadline INP DL for the input via next frame. The values of
FRAME PERIOD , OUT DL, and INP DL are unspecified (that is, loosely
defined), but we require INP DL + OUT DL ≤ FRAME PERIOD for fea-
sibility of the model. If this does not hold, the FRAME PERIOD deadline
imposed on TReqCycle in TReq1 may become infeasible, since the input, the
output, or their combination might take too long.

In OhCircus, we also have classes; an example is given in Appendix B.3.
These, like processes, have a state (specified in Z). Behaviour, however, is not
specified by actions, but methods: data operations over the state, expressed
using either Z or the imperative command language adopted in Circus.

A complete account of Circus, OhCircus, and Circus Time can be found
in [8,28,9,34]. What we have provided here is a brief overview; we explain a
few more details of the notation as needed.

12 Ana Cavalcanti et al.

SCJ constructsS anchor

P model
application library

infrastructure

SCJ JVM

SCJ program

refinement (architecture)

A anchor

object-orientedO anchor

abstract

refinement (data)

refinement (detailed design)

execution model
(missions, handlers,
memory)

E anchor

п
п

п п

S anchor

expansion
()Circus

translation

P model components

program semantics

=

Fig. 5 Our approach to development and verification

3 Refinement strategy

In this section, we describe the steps of our refinement approach. Figure 5
shows the four Anchors A, O, E, and S, and other related artefacts. The an-
chors are all written using different subsets and versions of Circus. It is the
objective of our refinement strategy to guarantee that the anchors are related
by refinement (v) as suggested in Figure 5. By transitivity of refinement, it
establishes, therefore, that the A anchor, which defines an abstract model, is
refined by the S anchor, which describes an SCJ program.

As already hinted, in our strategy, refinement is carried out in three main
steps, each characterised by an anchor. The first step produces the O anchor,
and tackles the object-oriented data model of the program. The second step
introduces the E anchor, and tackles the correctness of the mission and han-
dler decomposition and of the use of memory areas in the program. Finally,
the third step, produces the S anchor, and tackles the correctness of the al-
gorithms implemented. Importantly, it also describes the sequence of missions
and parallelism of handlers in the E anchor directly in terms of SCJ constructs.
This enables and facilitates later automatic generation of SCJ code.

Each of these refinement steps is divided into phases, which tackle individ-
ual aspects of the design of the target anchor. Typically, a refinement phase is
realised in a series of stages, captured by the application of refinement laws.
For some phases, specific refinement laws are always applicable. In other cases,
there is a choice of laws depending on the design of the target anchor.

In Section 3.1, we discuss the construction of A anchors and present a few
patterns that capture typical timing requirements. In Sections 3.2 to 3.4, we
describe the phases of each of the three refinement steps, and their stages.
Section 4 describes the application of the strategy to the CDx , whose A anchor
is in Section 2.3. It is not in the scope of this paper to provide a detailed
presentation of refinement laws, but we present some examples.

Safety-Critical Java Programs from Circus Models 13

3.1 Anchor A: abstract model

The A anchor is the abstract model of the system under development. In its
specification, we use the basic Circus notation and Circus Time. Crucially, noth-
ing is said about classes, or objects and their allocation. An A anchor defines
an interaction pattern in the style of CSP. For that, it uses abstract data types
in the style of Z. Parallelism is used as a way of combining (conjoining) re-
quirements, rather than describing a concurrent design. The A anchor for our
example is CDx , presented in the previous section and reproduced below.

system CDx =̂
ABReqsCDx J {|next frame, output collisions |} K ATReqsCDx

We use system to emphasise the role of this process in specifying the be-
haviour of the overall system to be implemented. Semantically, there is no
distinction to a process declaration. As already said, ABReqsCDx (Figure 3),
specifies the behavioural requirements, and ATReqsCDx (Figure 4), the timing
requirements. They are composed in parallel to define the system.

As shown in Figure 5, an A anchor is the starting point of our refinement
strategy. We make no assumptions about the patterns of specification used in
an A anchor, but recognise that providing a complete formal specification of
a system from scratch can be a challenge. We, therefore, present here a few
patterns that identify how widely used concepts in the specification and design
of real-time systems can be captured; we consider periodic and sporadic tasks,
and input and output jitters. They are particularly useful when we adopt the
general pattern of modelling where we have a process that captures behavioural
requirements and a separate process to capture timing requirements.

Periodic tasks In this case, we consider a computation executed periodically.
In each period, there is a deadline d for completion of the computation, which
must be less than or equal to the period p. Moreover, there is a budget b for
the computation time, which is less than or equal to the deadline d .

The main action TReq of the process that specifies the timing requirements
in this case can be written according to the following pattern, with b ≤ d ≤ p.

TReq =̂ (A(wait 0 . . b) � d 9 wait p) ; TReq

We use A(wait 0 . . b) to denote an action A whose computation time, defined
in terms of Circus Time constructs, is between 0 and b. We observe that the
action wait 0 . . b does not necessarily occur in A and, in particular, it is not
a parameter of A. In Circus, actions cannot be used as parameters of other
actions. What this pattern requires is that the execution time defined for
A (using any combination of Circus Time constructs) is bounded by b. The
deadline ensures, in addition, that, even if there are synchronisations (with
the environment) in A, its execution does not take more than d time units.

In the CDx example, the main action TReq1 of the process ATReqsCDx
that captures the timing requirements specifies a periodic task. In this case,

14 Ana Cavalcanti et al.

the deadline and the period are the same, FRAME PERIOD , and TReqCycle
defines the computation. It uses deadlines (INP DL and OUT DL) to add
predictability to the communications, and a wait to define a budget for the
computation characterised in the behavioural requirements.

If the above pattern is used for d > p, it is possible for the computation
A(wait 0 . . b) � d to last longer than the period p, and in this case the next
cycle is delayed. If b > d , the deadline on A(wait 0 . . b) makes the choices
of waiting times d + 1 . . b infeasible. As usual in refinement calculi, infeasi-
ble (miraculous) behaviours cannot be refined to code. For a timing require-
ment, this means that the deadlines cannot be met by any implementation.
The restriction b > d ensures that the specification is feasible, and therefore
a useful starting point for a development by refinement.

Sporadic tasks In this case, a computation (with budget b and deadline d) is
triggered by a release event e with a minimum inter-arrival time m.

TReq =̂ e −→ (A(wait 0 . . b) � d 9 wait m) ; TReq

No relationship between d and m is required. If the computation finishes before
the minimum inter-arrival time, the wait m forces the task to wait before a
new trigger is accepted. Otherwise, the wait m has no effect. The budget b,
however, should be smaller than the deadline d (b ≤ d). Otherwise, as already
explained, the possibilities of computations in A(wait 0 . . b) that last longer
than d time unities give rise to infeasible behaviours.

Input and output jitters Often, the computation involves an input, followed by
a calculation and an output. An input jitter ij defines the maximum amount
of time that is available for reading the input (before it becomes outdated).
Similarly, an output jitter oj is the maximum amount of time available for
writing the output. The computation deadline d is taken up by an input time
less than or equal to ij , a calculation time, and an output time less than or
equal to oj . We, therefore, require that ij + oj is less than or equal to d .

If we take the input in?x and the output out !e as single events, we can
specify the computation as follows. This pattern can be used in conjunction
with either of the two previous patterns for tasks, with (ij + oj) ≤ d .

(in?x@t −→ (A(wait 0 . . (d − t − oj)) 9 wait(d − t − oj))) � ij ;
(out !e −→ skip) � oj

In t , we record the amount of time taken to carry out the input: the amount
of time since the program asked for the input x until it is actually provided.
The computation budget is at most d − t − oj , but the output is not offered
until d − t−oj time units have passed. That leaves time for the output, which
can take up to oj time units, and takes into account the fact that t time units
have already been taken up. There is no flexibility in finishing the computation
before, because the output should not be produced too soon.

Safety-Critical Java Programs from Circus Models 15

If the pattern above is used for values of ij , oj , and d that do not satisfy
the restriction (ij + oj) ≤ d , then the value d − t − oj may be negative. The
action wait t1 . . t2 is well defined even when t2 is smaller than t1. It is the
infeasible action (miracle), and cannot be implemented. Again, the restriction
associated with the use of the pattern ensures feasibility of the specification.

If abstracting the input and output as single events is not adequate, because
we want to reason about the input and output mechanisms, then we need a
different approach. In this case, we need Circus channels to represent the points
of interaction where the input starts and finishes, and where the output starts
and finishes, and we need to specify timing requirements using these events.

3.2 Anchor O: concrete state with objects

The first step of our refinement strategy is a data refinement: it introduces
concrete data to represent the abstract data types of the A anchor, and the
shared data. The target is an O anchor, which introduces the use of classes
and objects. The object-oriented constructs employed are those of OhCircus.

Due to the nature of data refinement (in Circus), the structure of the O
anchor, in terms of processes and actions, is the same as that of the correspond-
ing A anchor. Data refinement only replaces and adds state components to the
model. The types of the concrete components may be specified by OhCircus
classes, but creation and allocation of objects is not considered yet.

It is standard for developments by refinement to start with a data refine-
ment. The rationale is that architectural patterns and algorithms are typically
associated with a particular data representation, which is, therefore, consid-
ered and captured in the first step of refinement.

In a data refinement, particular algorithms are not considered, but it is
unrealistic to assume that the developer makes no consideration of how the
concrete data types proposed can be efficiently used to realise the functionality
of the program. In the case of our strategy, in this step we do not consider
explicitly the structure of missions and handlers of the target program. On
the other hand, it is only to be expected that a developer is aware of the need
to provide the program functionality via missions and handlers, and of the
sharing of data that might be required between them.

Figure 6 describes our proposed strategy for this step. We take inspiration
from Morgan’s auxiliary variables technique [25] to facilitate the specification
of the concrete components. So, in the first two phases of this step, CS and
SD, we introduce components of the concrete model, but eliminate those of
the abstract model only in the third and final phase, EL.

The following concerns are addressed: (a) refinement of abstract (model)
variables by concrete variables used by the program (in Phase CS); and (b) in-
troduction of state components for data shared between handlers and mis-
sions (in Phase SD). We make a distinction between data and control objects.
Whereas data objects are purely used to communicate data, control objects
have as their primary purpose to control the flow of execution, for instance,

16 Ana Cavalcanti et al.

Introduce
Concrete Variables

Introduce Variables
for Shared Data

CS

O AnchorA Anchor

Retain Abstract State

Eliminate
Specification

Variables
ELSD

Fig. 6 Overview of the strategy for the Anchor O Step

process SCJsystem =̂ begin
state SCJstate == [x , y, z : . . . | . . .]
Init =̂ . . .

Handler1 =̂ . . .var a, b, c • . . .
Handler2 =̂ . . .
. . .

InitM 1 =̂ . . .

HandlersM 1 =̂ (Handler1 ‖ Handler2 ‖ . . .) \ swevts

MArea1 =̂ var l ,m,n . . .

Mission1 = InitM 1 ; (HandlersM 1 J ns | mcs | {} K MArea1) \mcs
. . .

System =̂ Mission1 ; Mission2 ; . . .
• Init ; System

end

Fig. 7 Anchor E: sketch of its structure

by releasing handlers via software events. The shared objects we consider in
the O anchor and, therefore, in Phase SD, are exclusively data objects.

In all phases, including EL, we carry out a data refinement by applying
the Circus simulation laws in [8]. If any of the new components have a class
type, it needs to be declared. Introduction of a new class definition is a trivial
refinement; the only complexity comes from the specification of the class itself.

In our initial account of our refinement strategy [11], we do not consider
specifically the issue of sharing in this step. This is, however, necessary, since
the next step introduces the control structure of missions and handlers.

3.3 Anchor E: execution model

The second step of the refinement strategy introduces the architectural design
of the program in accordance with the SCJ execution model. The E anchor
embeds the structure of the missions and handlers. It is defined by a single
process (and associated type and class definitions), and is still written using
standard Circus, OhCircus, and Circus Time constructs.

The E anchor process takes the shape sketched in Figure 7, where we
consider a process named SCJsystem. The state components of the E anchor,
in Figure 7, x , y , and z , are the variables that should be allocated in immortal
memory (since they can be referenced by all missions). In the SCJ program,
they can become, for instance, static fields of the Safelet subclass.

Safety-Critical Java Programs from Circus Models 17

In the main action of the E anchor process, we call the local actions Init
and System in sequence. Init is the specification of the program initialisa-
tion (which can be implemented in the setUp method of the Safelet sub-
class). System is a sequence of Mission actions; in Figure 7, we have Mission1,
Mission2, and so on. For applications in which the sequence of missions to be
executed is defined dynamically (on the basis of values of variables in the
immortal memory), the specification of System needs to be more elaborate.

For each mission, the E anchor process has a group of actions; in Figure 7
we show those for Mission1. The variables to be allocated in mission memory
are defined as local variables of an action MArea. These are the variables that
are shared between two or more handlers. In Figure 7, we show MArea1 with
variables l , m, and n. Internal channels represent calls to data operations that
use or change these variables. Typically, these are methods of the objects held
in these variables. An initialisation action, InitM 1 in Figure 7, specifies how
the values of these variables are to be initialised.

The handler actions, which in Figure 7 are Handler1, Handler2, and so
on, define the behaviour of the releases of the handlers. Any software events
used to synchronise their behaviour are represented by internal channels; in
Figure 7, we use swevts to denote the set of such channels for Mission1. It is
the hiding of the set of channels swevts in the definition of Handlers that makes
the channels that represent the software events, that is, the elements of swevts,
internal. The hiding operator (\) is available for both actions and processes.
Local variables in the handler actions are allocated in per-release memory.
More elaborate algorithms may need to use temporary private memory areas
to control allocation and deallocation of objects.

The Handlers action specifies the concurrent behaviour of the handler re-
leases during the mission; in Figure 7, we sketch HandlersM 1. In the par-
allelisms between the handler actions, the synchronisation sets (omitted in
Figure 7) contain channels (in swevts) representing software events. The par-
ticular synchronisations required reflect the needs for sequentialisation of the
handlers. Access of handlers to objects in immortal memory is determined by
the name sets in these parallelisms. Due to the restrictions on parallelism in
Circus, we cannot have a race condition arising from handlers accessing the
same state component (here, variable in immortal memory) at the same time.

As already said, the behaviour of the mission itself is given by a mission
action; in Figure 7, we sketch Mission1. What we have is a parallelism between
the Handlers and the MArea actions. The synchronisation set mcs in this
parallelism contains all channels representing calls to methods of the objects
in the mission memory (which are defined in the MArea action). The name
set associated with the Handlers action (that is, ns in Figure 7) identifies the
objects in immortal memory used by the handlers. The name set associated
with the MArea action is always empty, since this action already encapsulates
the data that it uses: the object variables to be allocated in mission memory.

It is the objective of the second step of our strategy to transform the O
anchor to obtain a process in the shape of the E anchor identified in Figure 7.
Five phases define the refinement strategy in this step as depicted in Fig-

18 Ana Cavalcanti et al.

Collapse
Parallelism

Missions

CP

O Anchor

Data Sharing

SHMS

Algorithmic
Refinement

AR

E Anchor

Reintroduce Parallelism

Handlers

HS

Repeat for each mission

Fig. 8 Overview of the strategy for the Anchor E Step

ure 8. The first phase, CP, removes any parallelism used in the A anchor (and
preserved in the O anchor) to specify requirements, since these parallelisms
are typically not related to the concurrent design of the program. The second
phase, MS, introduces the sequences that reflect the architecture of the mis-
sions. The next two phases, HS and SH are repeated for each of the missions.
In HS, we introduce the parallelism that reflects the behaviour of the handlers
releases, and the control mechanisms that orchestrate their execution. In SH,
we define how variables are shared between handlers. The final phase HR uses
algorithmic refinement to derive the implementation of the methods.

In the sequel we discuss the five phases of the anchor E construction.

3.3.1 Phase CP: collapse parallelism

In the CP phase, we remove the parallelism in the O (and A) anchor to produce
a single process that gives a centralised and sequential account of the system.
The resulting process is useful as a normalised starting point to introduce the
concurrent program design in the next phases of this step.

The refinement to eliminate the parallelism can be carried out by judicious
and exhaustive application of step laws that evaluate parallelism of processes
and actions. They can be used to calculate (automatically) the definition of
the process resulting from this phase and its local actions. A collection of step
laws is available for Circus [28]; recasting them in the context of Circus Time,
to deal with constructs such as wait actions and deadlines, is ongoing work.

It is the CP phase that makes the rest of this refinement step independent
of the particular specification patterns used in the A anchor.

3.3.2 Phase MS: missions

In this phase, we transform the main action of the single process obtained in
the CP phase to split it into a sequential composition of (named) actions that
specify the requirements for the missions. We introduce, in particular, two new
actions: Init , which specifies how variables to be held in immortal memory are

Safety-Critical Java Programs from Circus Models 19

1. Definition of cycle timings.
2. Decomposition of data operations that are implemented across different handlers.
3. Distribution of time budget to sequential components.
4. Transformation of sequential data operations into parallel handler actions.
5. Transformation of parallel data operations into parallel handler actions.
6. Extraction of the handlers.

Fig. 9 Anchor E - Phase HS: Stages

to be initialised, and System, which specifies a sequence of mission actions. A
final step writes the main action in terms of Init and System.

Since, as a result of the CP phase, the main action is already sequential,
refinement in this phase is rather simple, and follows from the identification
of the events and operations to be realised by each of the missions. Mainly,
we apply an action-introduction law a few times to declare new local actions
defined by actions already used in the main action, including the actions Init
and System themselves. A standard copy rule is used to replace the occurrences
of the new action definitions with calls to these actions.

3.3.3 Phase HS: handlers

In this phase, we tackle one of the mission actions. As a result, we obtain, as the
specification of the behaviour of the mission after initialisation, an action that
composes in parallel: (a) the handler actions for its handlers; (b) an action
HandlerController that controls their interaction, if any; and (c) an action
Cycle that captures timing requirements for a cyclic mission.

We have a number of refinement stages that address intermediate goals of
the parallelisation; they are identified in Figure 9. Each stage is carried out
by specialised refinement laws (reported in [43]) that capture design patterns
for handlers and guide the refinement. Stage (2) refines Z data operations; all
other stages in this phase focus on action refinement.

Stage (1) introduces a (cyclic) design that embeds the overall timing re-
quirements. Typically, we use one of the patterns discussed in Section 3.1, with
deadlines directly associated with the communications, and budgets with data
operations. Elementary Circus refinement laws have to be applied that, for
instance, isolate prefixing, and distribute deadlines. Specialised parallelisation
laws introduce an interleaving with a wait action indicated in Section 3.1.

In Stage (2), decomposition of data operations is performed to reveal the
sequential and concurrent activities carried out by the handlers. We observe
that, even though handlers proceed concurrently, control between them via
software events might establish some sequentiality. Decomposition into oper-
ations to be executed in sequence uses the Circus constructor for sequential
(schema) actions (;). Decomposition into concurrent operations uses the con-
junction operator of the Z schema calculus (∧).

The decomposition of data operations in Stage (2) is accompanied by the
decomposition of their time budgets in Stage (3). We distribute the budget in

20 Ana Cavalcanti et al.

wait actions through the operations to their sequential components, including
those that may have been just introduced in Stage (2). Distribution of time
budgets to the parallel components is achieved in Stage (5).

In Stage (3), distribution uses the law wait 0. .w = wait 0. .w1; wait 0. .w2,
provided w = w1 + w2, and distribution laws of wait (and nondeterminism).
First of all, we decompose the wait actions into smaller time budgets, one
for each sequential component. The decomposed wait actions are then moved
through the structure of the operations and thereby attached to their respec-
tive components. This gives rise to timed definitions of the components.

Stage (4) introduces a concurrent design for handlers that embeds syn-
chronisations to enforce any required sequential execution. More precisely, the
timed sequential components that emerge in Stage (3) are now parallelised,
if they are to be executed in different handlers (or group of handlers). This
relies on (specialised) introduction laws for parallelism. Extra internal chan-
nels ensure that the original sequential flow of execution is preserved in the
parallelism. Moreover, propagation between the handlers of (shared) data, if
any, is achieved by communicating the data through these new channels.

Stage (5) mirrors the objectives of Stages (3) and (4), but is concerned
with the parallel data operations. We tackle the parallelisation of data opera-
tions specified using schema conjunction. More precisely, the parallel actions
identified in Stage (4) whose data operations are to be implemented concur-
rently in a group of handlers are now further decomposed themselves into
parallelisms. The refinement again uses specialised laws for introduction of
parallelism. They reflect design patterns used in handlers, and also distribute
the time budget of the data operations to the new parallel actions. The distri-
bution here, however, largely retains the original time budget, subtracting only
the time needed for communicating and merging the result of each handler.

It is in Stages (4) and (5) that control actions may emerge. In the final
Stage (6), we extract the behaviour of the mission cycle and handler releases.
At the end of Stage (5), we have a recursion of parallel actions; the recursion
captures a cyclic behaviour, and the parallelism can be directly traced to han-
dlers in the program, and the actions HandlerController and Cycle mentioned
above. In Stage (6), we distribute the recursion to the parallel actions to get
models for the cyclic behaviour of the individual handlers. The distribution is
justified by a law that introduces an extra internal channel sync that is used
to ensure lock-step progress of the handlers after each cycle.

Many of the refinement laws to be used here are transformation laws that
introduce parallelism. They are part of the basic Circus refinement strategy
in [8,9]. The techniques presented in the setting of those works are, however,
too general to allow for automation. In the case of the strategy that we propose,
automation can be envisaged due to the restricted architecture of missions.

Specialised laws are needed in most stages, but they are all of general use
across applications. The exceptions are the laws used in Stages (1) and (5),
which embed particular design patterns. For the CDx , for instance, as discussed
in Section 4, we need, in particular, laws appropriate for a periodic mission
and for handlers that execute in parallel several instances of a single handler

Safety-Critical Java Programs from Circus Models 21

1. Encapsulate shared data of sequential handlers
2. Encapsulate shared data of concurrent handlers
3. Introduce data to realise control mechanisms
4. Collect specification of the memory area data

Fig. 10 Anchor E - Phase SH: Stages

class. For other designs, other laws are necessary. What we envisage is the
development of a catalogue of laws that capture widely used designs.

3.3.4 Phase SH: sharing

In this phase, we model access to shared data and identify the atomic op-
erations required to avoid data races. We distinguish between objects to be
allocated in immortal, in mission, and in per-release or temporary private
memory areas. The state components and local variables to be allocated in
immortal memory remain or become state components. The variables to be
allocated in mission memory become local to a new action MArea. Finally,
those to be allocated in per-release and temporary memory areas remain or
become local to the relevant handler actions.

This is performed in four stages identified in Figure 10. Stage (1) encapsu-
lates data shared between handlers that execute in sequence. At this stage, a
pair of (groups) handlers that execute in sequence and share data is combined
in parallel, with some internal channel c used to (1) signal the end of one han-
dler; (2) trigger the start of the other; and (3) communicate the shared data.
We apply to each of these pairs a law that replaces the parametrised channel c
by a new, typeless channel c, and two new get and set channels used to write
and read the shared data. The resulting parallel actions still synchronise on
the (fresh) c channel, but the data is now transferred between the handlers
via the new get and set channels. The data sharing and control concerns are
thus isolated, and whereas the synchronisations on the new channels are later
refined to direct variable accesses, the synchronisation on c becomes a software
event. A new parallel action encapsulates the shared data, and provides the
get and set operations via synchronisations on the new channels. This new
parallel action is incorporated in MArea in the final Stage (4).

Stage (2) addresses the introduction of shared data accessed by handlers
concurrently. Unlike in Stage (1), this has to address synchronisation issues to
avoid race conditions. Specialised laws that introduce data access at the right
level of atomicity need to be applied in this stage. Precisely, this stage tar-
gets the refinement of the HandlerController action introduced in the previous
phase; this is the action that defines the control and sharing of data between
handlers executed concurrently. Specialised laws again introduce a new action
to encapsulate the shared data, and provide (atomic) data operations via syn-
chronisation on new fresh channels. Here, the specialised laws and strategy
reflect design patterns for data sharing in a concurrent design.

22 Ana Cavalcanti et al.

Stage (3) is concerned with the introduction of additional shared data in
order to realise control mechanisms. This shared data reflects particular control
designs. Again, specialised laws can capture design patterns.

In the final Stage (4), we collect the shared data definitions to construct
a new MArea action. It takes the shape of an interleaving of recursions; each
interleaved action corresponds to a new data type that encapsules the vari-
ables declared locally and provides atomic operations for accessing the data.
These are specified in a recursion that continuously offers synchronisations
that correspond to calls to these operations.

The refinement in this stage is mostly a reordering of the parallel actions
that declare local variables. After reordering, the parallelism between actions
that provide methods of the same object is collapsed into a single parallel
action since all their synchronisations correspond to methods in the same
class: the mission class. Specialised laws are used to perform the merging of
recursions where appropriate, and the refinement is guided by the program
design. This stage is concluded by the introduction of the local action MArea.

The laws used in all stages are specialised, but most are useful across ap-
plications. It is in Stages (2) and (3) that we need laws that embed particular
parallel designs. In the CDx case study (see Section 4), for example, we use a
law that supports the introduction of a barrier mechanism. As already men-
tioned, a catalogue of laws that capture widely used designs is needed.

3.3.5 Phase HR: handler refinement

In this final phase of the E anchor step, we mostly carry out algorithmic
refinement using [12]. In addition, whenever shared variables are used, we
need to explicitly introduce references and replace the organised access via
channels with access via (synchronized) methods. This relies on the ability to
relate values of variables to values stored in memory, as discussed in [16].

Any reference to logical methods is eliminated through algorithmic refine-
ment. If extra classes are needed, the techniques in [9] can be used.

Any objects created during refinement in this phase should be assigned to
local variables. This enforces their allocation in per-release memory, and avoids
memory leaks (which happen when an object allocated in mission memory
becomes unreachable because no variable in scope refers to it).

We can prove correct a program that leaks memory, because we do not
distinguish programs on the basis of their use of resources. To avoid such
designs, we propose the use of patterns. The allocation of local objects in
per-release memory, as suggested, is such a pattern.

3.4 Anchor S: Safety-Critical Java

The S anchor is written using SCJ-Circus; it is based on Circus, OhCircus, and
Circus Time, but includes several new constructs. Instead of paragraphs that
define processes, we have paragraphs for the declaration of safelets, mission

Safety-Critical Java Programs from Circus Models 23

sequencers, missions, and handlers. (We refer to Figures 29, 30, 32, and 33
for examples of paragraphs that define a mission sequencer, a mission, and
handlers.) They highlight the main components of an SCJ program.

In the last step of our refinement strategy, the process that defines the E
anchor is split to yield the definition of SCJ paragraphs that compose the S
anchor. For example, the state components of the E anchor, if any, become
state components of the safelet paragraph. The Init action gives rise to the
definition of the safelet setUp paragraph. For statically defined sequences of
missions, a simple sequencer paragraph (like that in Figure 29) is always
adequate. Each Mission action gives rise to a mission paragraph, and so on.

The introduction of the new SCJ paragraphs in this last step is justified
by their (new) refinement laws. They map the sequences and parallelisms of
actions used in the E anchor to the new constructs representing the components
of an SCJ program (handlers, missions, sequencers, and safelets).

The missions and handlers are already identified in the E anchor. What the
transformations in this final step of the refinement strategy check is whether
the use of memory is compatible with the SCJ paradigm.

For example, it is possible for development of the E anchor to introduce
in the refinement of a Handler action, for instance, an assignment of a local
variable to a state component. As previously explained, this would correspond
to an assignment of an object in per-release memory to an object in immortal
memory, which is forbidden in SCJ. Since refinement in Circus (and Circus Time
and OhCircus) does not take into account the restrictions of the SCJ memory
model, if the assignment achieves the specified functionality, it can be proved
to be correct in the E anchor development. Such a refinement, however, does
not correspond to a valid SCJ program. If adopted, the refinement in the final
step of the strategy that generates the S anchor fails.

The actions and processes declared in the SCJ paragraphs are defined in
terms of the P model described in [42] (see Figure 5). A safelet, for example,
is described in the P model by the parallel composition of two Circus pro-
cesses: one representing the SCJ framework and another the application class.
The same applies to the other SCJ paragraphs. The paragraphs of an S anchor
define the application components of these parallelisms.

3.5 Automation

In terms of automation of our technique, for the first O step, we have a chal-
lenge in the form of a data refinement. Results like those in [15] for Event-B
and in [2] for Alloy can be helpful. They provide a route to automate the
discovery of a retrieve relation between abstract and concrete states. This is
the most challenging aspect of a data refinement proof.

For the second E step, a high degree of automation is possible. The removal
of the structure of the O anchor in the CP phase can be automated (in a
normalisation process). Afterwards, in Phases MS, HS and SH, automation can
be achieved based on guidance provided by the definition of the parameters of

24 Ana Cavalcanti et al.

the design: the number of missions to be used, for each mission, the number of
handlers, the external events and data operations under the responsibility of
each handler, the allocation of the state components (in immortal or mission
memory), and the time budgets and deadlines.

Besides, patterns of design are also necessary to guide the refinement in
Stages (1) and (5) of Phase HS, and Stages (2) and (3) of Phase SH. These
are stages that are related to two aspects of the design: timed (Stage (1)
of Phase HS) and concurrent execution (all other stages just mentioned). It
is for these stages that a catalogue of refinement laws catering for popular
designs are envisaged. The wealth of literature and knowledge on patterns of
design for timed concurrent systems [38,5,6] makes it feasible to propose that
widely used architectures can be captured to provide a practical technique.
A similar approach is adopted in [7] to define a technique for verification
of implementations of Simulink diagrams; it is based on a widely adopted
architectural pattern for safety-critical applications in avionics.

The final algorithmic refinement in Phase HR cannot, in general, be auto-
mated. For specialised models and programming architectures, however, the
situation can be improved. We refer, for example, to the work in [1], which
achieves a high level of automation in proofs of algorithmic refinement. This
relies on the uniformity of the abstract models, which in the case of this work
are generated automatically from Simulink diagrams.

Finally, the last S step can be automated, given the restricted structure of
the E anchor. What must be noted, however, is that, as explained above, not
every SCJ program matches the organised structure of an SCJ-Circus model.
It is possible, for instance, to write an SCJ program using, for example, a
single class to define the safelet and the mission sequencer. It remains to be
investigated whether there is any practical advantage, perhaps in terms of use
of resources, in pursuing such programs.

4 CDx verification

The Anchor A for the CDx is presented in Section 2.3. In this section, we apply
our refinement strategy to derive a model of its implementation in SCJ-Circus.

4.1 Step to Anchor O

In the CDx , the focus of the data refinement is the process ABReqsCDx ,
which, as already explained, has an abstract state with components posns
and motions that need to be realised in a concrete data design. The process
ATReqsCDx has no state and does not need to be changed. By data refining
ABReqsCDx , we obtain a refined process, which we call OBReqsCDx . Com-
positionality of refinement guarantees that the new system specification given

Safety-Critical Java Programs from Circus Models 25

Field Type Class Purpose Memory Area

currentFrame RawFrame CDxMission data mission memory
state StateTable CDxMission data mission memory
work Partition CDxMission data mission memory
collisions int CDxMission data mission memory
control DetectorControl CDxMission control mission memory

Table 1 Shared data objects of the concurrent CDx

by the process OCDx below is a refinement of the process CDx .

system OCDx =̂ OBReqsCDx J {| . . . |} K ATReqsCDx

The parallel structure of the process CDx is preserved in OCDx , but we use
the refined model of behavioural requirements given by OBReqsCDx , rather
than the abstract ABReqsCDx . For conciseness, we omit the channel set used
in the parallelism because it does not change. In the sequel, we explain how
we construct OBReqsCDx by following each phase of our strategy in this step.

4.1.1 Phase CS

As already said, in this phase, we introduce the components of the concrete
state that represent the information recorded in the abstract state. Table 1 lists
the components of the concrete state of the CDx . The variables currentFame
and state represent the abstract posns and motions. Their types are the classes
RawFrame and StateTable; they are defined in [43], where the complete refine-
ment is presented, and reproduced in Appendices B.1 and B.2. We first of all
introduce these class declarations. We can specify their fields and methods
abstractly, and use algorithmic refinement to prove their implementations cor-
rect (in the last phase of the next step). Here, since this phase is not the focus
of our strategy, we provide already very concrete models of these classes.

The schema that defines the state at the end of this phase is given below.

OCSStateCDx
posns1 : Frame; motions1 : Frame;
currentFrame1 : RawFrame; state1 : StateTable

. . .

The variables currentFrame1 and state1 are new, whereas posns1 and motions1
correspond to the variables of the abstract specification. Figure 11 provides the
retrieve relation that defines the abstract state AStateCDx of ABReqsCDx in
terms of OCSStateCDx . When, like here, the retrieve relation is a function from
the concrete to the abstract state, it is possible to calculate (automatically)
the specification of the Z data operations in terms of the concrete state.

The predicate that defines the retrieve relation in Figure 11 first records
that, as mentioned, posns1 and motions1 are just posns and motions them-
selves. Next, we assert that currentFrame1 and state1 are not null, and then

26 Ana Cavalcanti et al.

OCSRetrCDx
AStateCDx
OCSStateCDx

posns1 = posns ∧ motions1 = motions
currentFrame1 6= null ∧ state1 6= null
posns =

λ a : Aircraft | currentFrame1.find(a) 6= − 1 • let i == currentFrame1.find(a) •

MkVector

(
currentFrame1.positions.getA(3 ∗ i),
currentFrame1.positions.getA(3 ∗ i + 1),
currentFrame1.positions.getA(3 ∗ i + 2)

)

motions =
λ a : Aircraft | currentFrame1.find(a) 6= − 1 • let prev == state1.position map.get(MkCallSign(a)) •

if prev 6= null
then posns(a)−V MkVector(prev .x , prev .y, prev .z)
else ZeroV

Fig. 11 Anchor O - Phase CS: Retrieve relation for the first data refinement

we define posns and motions in terms of currentFrame1 and state1. In both
cases, we use λ notation: λ a : Aircraft | p • e defines a function that associates
an aircraft a that satisfies the predicate p to the value of the expression e.

The currentFrame1 object of class RawFrame encodes aircraft positions in
an array positions of coordinates. Arrays are objects with methods getA(i)
and setA(i , v) to get and set (to v) the element at index i , and length to give
its length. The x , y and z coordinates of an aircraft are stored in consecutive
locations in positions. The class RawFrame establishes a mapping between
aircraft identifiers (call signs) and their offsets in the array. A logical method
find(a : Aircraft) returns the starting index of an aircraft a coordinates in
positions, or −1 if no record for the aircraft exists. Logical methods are used in
specifications, but do not need to be provided in an implementation. MkVector
takes three coordinates and constructs a binding (record) of type Vector .

Motions are captured by the component state1 of type StateTable. This
class has a field position map of a class type HashMap, which maps CallSign
objects to Vector3d objects. CallSign encodes call signs to implement the ab-
stract type Aircraft . The function MkCallSign converts Aircraft values into
CallSign objects. For each aircraft a in currentFrame (that is, such that
currentFrame1.find(a) 6= −1), the get method of HashMap is used to get
the motion vector prev of a in the position map of state1. If it is null, this is
a new aircraft that entered the radar frame. Otherwise, the x , y , and z fields
of prev are used to define a vector and calculate the new position.

The predicate that defines the concrete state invariant in OCSStateCDx ,
which is omitted above, as well as all Z data operations Init , RecordFrame and
CalcCollisions, can be mechanically derived as described in [41].

Safety-Critical Java Programs from Circus Models 27

OSDRetrCDx
OCSStateCDx
OSDStateCDx

posns2 = posns1 ∧ motions2 = motions1
currentFrame2 = currentFrame1 ∧ state2 = state1
∃ collset : F (Aircraft ×Aircraft) |

collset = CalcCollisionSet (posns2,motions2) •(
(# collset = 0 ∧ collisions2 = 0) ∨
(# collset > 0 ∧ collisions2 ≥ (# collset) div 2)

)
Fig. 12 Anchor O - Phase SD: Retrieve relation for the second data refinement

4.1.2 Phase SD

In this phase, we introduce in the concrete state the variables that are to hold
shared data. In our example, a shared variable work holds the partitioned lists
of aircraft in each voxel, which are distributed between the detector handlers.
Additionally, the shared integer collisions collects the detection result.

It can be useful to carry out an incremental data refinement and introduce
a single variable at a time to leverage the proof effort. In our case study, we
proceed in this way. So, we first introduce collisions, and then work , whose
class type Partition is defined in Appendix B.3.

The state retains all existing components (subscripted for disambiguation).
To introduce collisions we use the retrieve relation in Figure 12. The only
significant constraint is on the new component collisions2. Its specification
resembles that of the CalcCollisions operation. The possibility of referencing
the abstract state components posns2 and motions2 allows for this concise
formulation of the retrieve relation. The retrieve relation for work is in [43].

4.1.3 Phase EL

To construct the final model, we have to eliminate from the state the ab-
stract variables; in our example, those corresponding to posns and motions.
The resulting process OBReqsCDx is sketched in Figure 13. The definitions of
the data operations are those obtained after (significant) simplification of the
predicates obtained by calculation based on the (functional) retrieve relations.

In the state invariant and in RecordFrame the abstract variables posns and
motions are existentially quantified via local (let) definitions. For conciseness,
we use F1 and F2 to denote the abstraction functions used in the retrieve
relation OCSRetrCDx to define posns and motions (see Figure 11).

To define work , we use an existentially quantified variable voxel map of
type HashMap[Vector2d ,List [Motion]]. This is a generic class parametrised by
a key and a value type, here instantiated as objects that represent a pair (or a
two-dimensional vector) and a list of motions. Vector2d , List and Motion are
also OhCircus classes [43]. The existential quantification in the invariant spec-
ifies a fundamental correctness property of the voxel hashing: if two recorded

28 Ana Cavalcanti et al.

process OBReqsCDx =̂ begin

state OStateCDx
currentFrame : RawFrame; state : StateTable
work : Partition; collisions : Z

currentFrame 6= null ∧ state 6= null ∧ work 6= null
∃ voxel map : HashMap[Vector2d ,List [Motion]] •

voxel map 6= null ∧
let posns == F1(currentFrame) •
let motions == F2(currentFrame, state) • ∃ collset : F (Aircraft ×Aircraft) |

collset = CalcCollisionSet (posns,motions) •(
(# collset = 0 ∧ collisions = 0) ∨
(# collset > 0 ∧ collisions ≥ (# collset) div 2)

) ∧
. . . ∧
voxel map.values.elems =⋃

{i : 1 . . 4 • work .getDetectorWork(i).elems}

Init
OStateCDx ′

currentFrame′ = new RawFrame
state′ = new StateTable
work ′ = new Partition(4)
collisions′ = 0

RecordFrame
∆OStateCDx
frame? : Frame

let posns == F1(currentFrame) • let posns′ == F1(currentFrame′) •
let motions′ == F2(currentFrame′, state′) •
posns′ = frame? ∧
motions′ = λ a : dom posns′ • . . .

CalcCollisions
ΞOStateCDx
colls! : N

colls! = collisions

BReq1 =̂ next frame?frame−→(
RecordFrame;
var colls : N • CalcCollisions ; output collisions!colls −→ BReq1

)
• Init ; BReq1

end

Fig. 13 Anchor O of the CDx : behavioural requirements

aircraft collide, there is at least one voxel in voxel map that contains both of
them. This part of the invariant is omitted in Figure 13.

The method call voxel map.values.elems gives all voxels in voxel map.
(The values method has the same meaning as the respective Java method of
HashMap, and the logical method elems converts the resulting Java List into

Safety-Critical Java Programs from Circus Models 29

system ECPCDx =̂ begin

. . .

StartCycle =̂ (next frame?frame @ t1 −→ (RecordFrame ; CalcStep(t1))) � INP DL

CalcStep(t1) =̂ wait w : 0 . . (FRAME PERIOD − t1 −OUT DL) •
var colls : N • CalcCollisions ; OutputStep(t1,w , colls)

OutputStep(t1,w , colls) =̂((
output collisions!colls @ t2−→

wait FRAME PERIOD − (t1 + w + t2)

)
� OUT DL

)
; StartCycle

• Init ; StartCycle

end

Fig. 14 Anchor E - Phase CP: Result

a set.) The purpose of work is to partition voxel map.values.elems. The last
equality in the state invariant in Figure 13 establishes that the voxel list of
Motion objects for detector i is obtained by getDetectorWork(i). This does
not force the partitions to be disjoint (which is not essential for correctness).

We note that the state components of the O anchor still contain object
values rather than references, and so is not concerned with memory allocation.

4.2 Step to Anchor E

We describe here the application of each of the phases of the step that gener-
ates an E anchor in our case study. The starting point is the OCDx process,
which, as explained in Section 4.1, is defined by the parallel composition of
OBReqsCDx (in Figure 13) and ATReqsCDx (in Figure 4).

4.2.1 Phase CP

The process ECPCDx obtained in this phase is sketched in Figure 14; its state
and data operations are similar to those of OBReqsCDx and omitted. Its be-
havioural and timing restrictions are exactly those of OCDx (and CDx) as
defined in ATReqsCDx . It, however, combines in a single centralised specifi-
cation the data operations, interactions, and time budgets and deadlines. The
specification of ECPCDx is in a rather direct correspondence with an under-
lying state machine, and can be convoluted. This is not a problem, since this
specification can, as mentioned in Section 3.5, be calculated automatically.

In more detail, the main action of ECPCDx (see Figure 14) defines that
after the initialisation (Init), the behaviour of ECPCDx is given by StartCycle,
which waits for the next frame to be communicated on next frame. This has
a deadline INP DL as in the timing requirements in ATReqsCDx .

The subsequent data operation RecordFrame records the frame in the state.
Next, a call to CalcStep takes as parameter the elapsed time t before the syn-
chronisation on next frame takes place. After a nondeterministically chosen

30 Ana Cavalcanti et al.

wait period w that captures the time needed for the computation, it (instanta-
neously) calculates and then passes as parameters to OutputStep the number
colls of collisions, along with t and w . We use a construct wait w : t1 . . t2,
which introduces a variable w to record the nondeterministic choice of the
waiting period (between t1 and t2). In this case, the wait period cannot be
longer than the frame period FRAME PERIOD , minus t1, minus the maxi-
mum time OUT DL that can be taken for an output. This reflects the time
budget originally defined in ATReqsCDx .

OutputStep deals with outputting the collisions result via output collisions.
The time that has elapsed from the beginning of the cycle is given by t1 + w .
After imposing the respective deadline for the output, the final wait delays
the recursion that initiates the next cycle until the cycle period has elapsed,
considering that a further t2 time units have been used in the output.

This flat structure is the basis for the introduction of the missions and
handlers architecture, which is tackled next.

4.2.2 Phase MS

In our example, we have no variables in immortal memory, so no initialisation,
and we obtain a call to System as the main action.

Since we have a single mission, we require no transformation to StartCycle.
We introduce the System and mission actions below.

MisssionCDx =̂ Init ; StartCycle
System =̂ MissionCDx

With these, we can define the main action to be System as required.

4.2.3 Phase HS

The definition for StartCycle that we obtain in this phase is presented in
Figure 15. The parallel actions in Handlers correspond to the handlers; we
have actions for InputFrameHandler, ReducerHandler, the four instances of
DetectorHandler, and OutputCollisionsHandler. We introduce (again) a
cyclic behaviour whose period is given by FRAME PERIOD , but now with
the deadlines and time budgets associated explicitly with the interactions and
data operations, rather than separately via parallelism. In general, a cyclic
behaviour may or may not be already explicitly specified in the abstract A
anchor, and even if it is, it may need to be decomposed in an implementation.

In the sequel, we discuss the individual stages of this phase.

Stage (1) The action StartCycle (in Figure 14) is reproduced in Figure 16
with all action calls replaced by the actions themselves. There is no effort in
calculating this definition of StartCycle; it is just the result of the previous
phase, with some definitions expanded to make our discussions clearer.

Safety-Critical Java Programs from Circus Models 31

Handlers =̂

InputFrameHandler

J{currentFrame, state} | {| sync, reduce |} | {work}K

ReducerHandler

J{work} | {| sync, detect |} | {}K

DetectorHandler1

J{} | {| sync, detect , output |} | {}K
DetectorHandler2

J{} | {| sync, detect , output |} | {}K
DetectorHandler3

J{} | {| sync, detect , output |} | {}K
DetectorHandler4

J{} | {| sync, output |} | {}K

OutputCollisionsHandler

Cycle =̂ wait FRAME PERIOD

StartCycle =̂
Handlers J {currentFrame, state,work} |

{| sync, detect , output , recColls |}
| {collisions} K HandlerController

J{currentFrame, state,work , collisions} | {| sync |} | {}K

Cycle

\{| sync, reduce, detect , output , recColls |}

Fig. 15 Anchor E - Phase HS: Result

StartCycle =̂

next frame?frame @ t1−→

RecordFrame;
wait w : 0 . . (FRAME PERIOD − t1 −OUT DL) •var colls : N •(

CalcCollisions;(
output collisions!colls @ t2−→

wait FRAME PERIOD − (t1 + w + t2)

)
� OUT DL

) ;

StartCycle

� INP DL

Fig. 16 Anchor E - Phase HS: StartCycle at the end of phase CP

Two modelling patterns, and associated refinement strategies, are used in
this stage, whose result is in Figure 17. First, the mission is cyclic (with pe-
riod FRAME PERIOD), so we use an interleaving with a wait to specify the
cycle. Second, in each cycle, we have an input (next frame?frame) with a dead-
line (INP DL), a calculation (specified by RecordFrame and CalcCollisions),

32 Ana Cavalcanti et al.

StartCycle =̂

(next frame?frame −→ RecordFrame) � INP DL;var colls : N •(

CalcCollisions;
wait 0 . . (FRAME PERIOD − INP DL−OUT DL);
(output collisions!colls −→ skip) � OUT DL

)

9
wait FRAME PERIOD

 ;

StartCycle

Fig. 17 Anchor E - Phase HS: StartCycle at the end of the Stage (1)

with a time budget (FRAME PERIOD−INP DL−OUT DL), and an output
communication (output collisions!colls) also with a deadline (OUT DL).

Here, refinement reduces the nondeterminism in the original definition of
the budget for the calculations in StartCycle. In that definition (see Figure 16),
it depends on the value of the variables t1 and t2, which record the time taken to
input and output. In the design pattern that we consider, the budget is fixed to
FRAME PERIOD−INP DL−OUT DL, which considers the greatest values
that t1 and t2 can take: the deadlines INP DL and OUT DL. We, therefore,
rule out implementations that can take advantage of any time saved in the
input to take more time in the computation. Due to the unpredictability of the
environment this gain in computation time can practically never be exploited.

As already explained, in this stage, we also localise the deadlines on the
communications, and the budget on the calculations. Specifically, we isolate
the communication on next frame from the variable block and distribute the
deadline INP DL through the sequence. A specific parallelisation law intro-
duces the interleaving that defines the cycle period.

Stage (2) Only RecordFrame requires decomposition, since it is jointly imple-
mented by the InputFrameHandler, the ReducerHandler, and the (instances
of) DetectorHandler. CalcCollisions just provides the result of the detection
stored in the state; it is implemented in the OutputCollisionsHandler.

We first decompose RecordFrame into three sequential actions: StoreFrame,
ReducerAndPartitionWork , and DetectCollisions. StoreFrame is implemented
in the InputFrameHandler, and ReducerAndPartitionWork is implemented in
the ReducerHandler. The implementation of DetectCollisions is distributed
through the instances of DetectorHandler, and so in this stage we subse-
quently decompose DetectCollisions into parallel data operations.

The result of the decomposition of RecordFrame into a sequence shown in
Figure 18. StoreFrame updates the state; it takes as input a new frame frame?
of aircraft positions, which it records, and retains the previous frame of posi-
tions in state for computation of aircraft motions. ReduceAndPartitionWork
is concerned with the voxel-hashing as well as the distribution to the detection
handlers of voxel lists to be checked. It computes a new value for work .

The third operation DetectCollisions utilises the information in work . It
is implemented concurrently by each of the detector handlers, so it is further

Safety-Critical Java Programs from Circus Models 33

RecordFrame(frame?) =̂
StoreFrame(frame?) ; ReduceAndPartitionWork ; DetectCollisions

DetectCollisions =̂
var colls1, colls2, colls3, colls4 : Z • (∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1) ∧

(∃ i? : Z • CalcPartCollisions[colls2/pcolls!] ∧ i? = 2) ∧
(∃ i? : Z • CalcPartCollisions[colls3/pcolls!] ∧ i? = 3) ∧
(∃ i? : Z • CalcPartCollisions[colls4/pcolls!] ∧ i? = 4)

 ;

SetCollisionsFromParts([[colls1, colls2, colls3, colls4]])

Fig. 18 Anchor E - Phase HS: RecordFrame at the end of the Stage (2)

decomposed into a conjunction of data operations also shown in Figure 18.
The data operation CalcPartCollisions has an input i?; it defines the collisions
pcolls! in the i?-th voxel. Above, each of the four uses of this operation assigns
its partial result to a local variable colls1, colls2, colls3 or colls4. The operation
SetCollisionsFromParts used in sequence merges those results by assigning a
new value to collisions. It takes the bag of the local variables as a parameter,
and gives as output the sum of their values.

Stage (3) In StartCycle (as shown in Figure 17), as already explained, the
wait defines a period for the cycles; it is part of our pattern for modelling pe-
riodic tasks. On the other hand, the first wait captures a time budget for
computations: StoreFrame, ReduceAndPartitionWork , DetectCollisions and
CalcCollisions. In this stage, we distribute this budget to their sequential
components: CalcCollisions and the newly introduced sequential components
of RecordFrame, that is, StoreFrame, ReduceAndPartitionWork , and the con-
junction and SetCollisionsFromParts in the definition of DetectCollisions.

The result is sketched in Figure 19. The constants SFTB , RPWTB , CPCTB ,
SCTB , and CCTB , define the time budget for each data operation. Their sum
is FRAME PERIOD − INP DL − OUT DL, which was the original overall
budget of the calculation. In Figure 19, we partially expand the definition
of DetectCollisions to show how the budget is associated with its sequential
components. It is not distributed, however, to the parallel components in the
conjunction: the CalcPartCollisions operations (omitted in Figure 19).

For clarity, in the sequel we use named local actions to denote the timed
data operations. For instance, we define the timed specification of the data
operation that stores a frame as follows.

StoreFrameT (frame) =̂ wait 0 . . SFTB ; StoreFrame(frame)

Similarly, we have ReduceAndPartitionWorkT and CalcCollisionsT . We name
DetectCollisionsT the body of the first variable block in Figure 19, which uses
CalcPartCollisions and SetCollisionsFromParts.

Stage (4) Some of our new timed sequential components are assigned for ex-
ecution in different handlers or groups of handlers. Namely, StoreFrameT ,

34 Ana Cavalcanti et al.

StartCycle =̂

(next frame?frame −→wait 0 . . SFTB ; StoreFrame) � INP DL;
wait 0 . . RPWTB ; ReduceAndPartitionWork;var colls1, colls2, colls3, colls4 : Z •(

wait 0 . . CPCTB ;
(

(∃ i? : Z • . . .) ∧ . . .
)
;

wait 0 . . SCTB ; SetCollisionsFromParts([[colls1, . . .]])

) ;(
var colls : N •(

wait 0 . . CCTB ; CalcCollisions;
(output collisions!colls −→ skip) � OUT DL

))

9
wait FRAME PERIOD

;

StartCycle

Fig. 19 Anchor E - Phase HS: StartCycle at the end of the Stage (3)

ReduceAndPartitionWorkT , and CalcCollisionsT are executed in individual
separate handlers. Additionally, DetectCollisionsT embeds a concurrent design
implemented in a (separate) group of handlers. We now introduce a parallelism
of actions that correspond to these handlers and groups of handlers.

The result is in Figure 20. We have four sequential actions that are now
executed concurrently, with new internal channels reduce, detect and output
enforcing sequential execution. When StoreFrameT finishes, a communication
on reduce starts ReduceAndPartitionWorkT . In addition, this communication
outputs the values of currentFrame and state to ReduceAndPartitionWorkT .
Similarly, the new internal channel detect is used to order the executions
of ReduceAndPartitionWorkT and DetectCollisionsT , and share the value of
work . Finally, a synchronisation on output signals the end of DetectCollisionsT
and triggers the start of the output of the collisions.

Stage (5) We now tackle the action below from Figure 20.

detect?work−→
var colls1, . . . • DetectCollisionsT ; output !collisions −→ skip

It is refined to that shown in Figure 21. As explained in Section 2.2, we have
four instances of a handler class DetectorHandler, whose calculations de-
tect collisions as specified by CalcPartCollisions are merged as defined by
SetCollisionsFromParts. We, therefore, use a law that introduces a paral-
lelism between each of the calls to CalcPartCollisions and an extra action
HandlerController , which embeds the behaviour of SetCollisionsFromParts
and ultimately controls the execution of the concurrent handlers.

Each of the new parallel actions in Figure 21 synchronises on the original
detect and output channels, so synchrony with the other actions is maintained.
In addition, since there is still an element of sequentiality in DetectCollisionsT ,
we introduce another channel, recColls, to control the flow between the concur-
rent executions of CalcPartCollisions in DetectorHandler1, DetectorHandler2,
DetectorHandler3, and DetectorHandler4, and the subsequent execution of
SetCollisionsFromParts in HandlerController . Additionally, it communicates

Safety-Critical Java Programs from Circus Models 35

StartCycle =̂

(
(next frame?frame −→ StoreFrameT (frame)) � INP DL;
reduce!currentFrame!state −→ skip

)
J{currentFrame, state} | {| reduce |} | {work , collisions}K

(
reduce?currentFrame?state−→

ReduceAndPartitionWorkT ; detect !work −→ skip

)
J{work} | {| detect |} | {collisions}K

 detect?work−→(
var colls1, . . . •

DetectCollisionsT ; output !collisions −→ skip

)
J{collisions} | {| output |} | {}K output?collisions−→(
var colls : N •(

CalcCollisionsT ;
(output collisions!colls −→ skip) � OUT DL

))

\{| reduce, detect , output |}

9
wait FRAME PERIOD

;

StartCycle

Fig. 20 Anchor E - Phase HS: StartCycle at the end of the Stage (4)

detect?work −→ var colls1, . . . • DetectCollisionsT ; output !collisions −→ skip

v

DetectorHandler1

J{} | {| detect , output |} | {}K
DetectorHandler2

J{} | {| detect , output |} | {}K
DetectorHandler3

J{} | {| detect , output |} | {}K
DetectorHandler4

J{} | {| detect , output , recColls |} | {collisions}K

HandlerController

\ {| recColls |}

Fig. 21 Anchor E - Phase MH: Refinement in Stage (5)

the result obtained by each detection handler. In a later phase, recColls is
refined to a call to a method that records the results of the detector handlers.

For example, the definition of DetectorHandler1 is as shown in Figure 22.
The time budget CPCTB for the conjunction in DetectCollisionsT is now
available to each of the concurrent handlers that implement each of the oper-
ations. This relies on the fact that if a wait precedes a parallelism, then the
time budget that it embeds can be passed on to all parallel actions. The final
communication output?y ensures synchronisation at completion of each of the
detector handlers, and triggers the start of the OutputCollisionsHandler . The
actual value output is defined by HandlerController ; in the detector handlers,
output?y is used to indicate that any value y is acceptable.

36 Ana Cavalcanti et al.

DetectorHandler1 =̂ detect?work −→
var colls1 : Z •(

wait 0 . . CPCTB ;
(∃ i? : Z • CalcPartCollisions[colls1/pcolls!] ∧ i? = 1);
recColls!colls1−→ skip

)
;

output?y −→ skip

Fig. 22 Anchor E - Phase MH: DetectorHandler1 in Stage (5)

HandlerController =̂ detect?work−→

var colls1, colls2, colls3, colls4 : Z •

(recColls?x −→wait 0 . . RCTB ; colls1 := x) ;
(recColls?x −→wait 0 . . RCTB ; colls2 := x) ;
(recColls?x −→wait 0 . . RCTB ; colls3 := x) ;
(recColls?x −→wait 0 . . RCTB ; colls4 := x) ;
wait 0 . . SCFPTB ; SetCollisionsFromParts([[colls1, . . .]])

 ;

output !collisions −→ skip

Fig. 23 Anchor E - Phase MH: HandlerController in Stage (5)

HandlerController is defined in Figure 23. It collects the results of the de-
tection handlers via synchronisations on the recColls channel, records them in
local variables, and then uses SetCollisionsFromParts to merge them and as-
sign the result to collisions. The time budget SCTB of SetCollisionsFromParts
is now distributed, and RCTB × 4 + SCFPTB is equal to SCTB .

A significant generalisation of our refinement strategy in this phase (in
comparison to our previous work) follows from the handlers requiring syn-
chronisation. As shown above, the parallelism of handlers is not merely an in-
terleaving as in [11], but identifies synchronisation channels. This is to ensure
that handlers are released and executed in the correct order. At the program
level, this is achieved by software events and synchronised method calls.

Stage (6) This last stage eliminates the top-level recursion that defines the
mission cycle by distributing it to the parallel actions in its body; Figure 20
shows the recursion. The result is a top-level parallelism of actions that can
be directly traced to handlers in the program; it is shown in Figure 15.

4.2.4 Phase SH

In what follows, we discuss the refinements in each stage of SH.

Stage (1) In the CDx , this first stage targets the parallelisms between the ac-
tions InputFrameHandler and ReducerHandler , and between ReducerHandler
and the detector handler actions in Figure 15. These are the pairs of (groups
of) handlers that are executed in sequence.

In the first parallelism, the values of currentFrame and state are communi-
cated through the reduce channel. Refinement replaces it with a new typeless

Safety-Critical Java Programs from Circus Models 37

StartCycle =̂

(
µX •(

(next frame?frame −→ StoreFrameT (frame)) � INP DL;
setFrameState!currentFrame!state −→ reduce −→ sync −→X

))
J{currentFrame, state} | {| sync, reduce |} | {work}K
µX • reduce−→

getFrameState?currentFrame?state−→
ReduceAndPartitionWorkT ;
detect !work −→ sync −→X

J . . . K . . .

J{currentFrame, . . .} | {| getFrameState, setFrameState |} | {}K
var currentFrame : RawFrame •
var state : StateTable •

µX •
(

(setFrameState?v1?v2 −→ currentFrame, state := v1, v2)
@
(getFrameState!currentFrame!State −→ skip)

)
; X

Fig. 24 Anchor E - Phase SH: Refinement of the detector handlers in Stage (1)

channel reduce, and two new channels, getFrameState and setFrameState used
to write and read currentFrame and state. The result of refining the paral-
lelism between InputFrameHandler and ReducerHandler is given in Figure 24.
These actions still synchronise on the (fresh) reduce channel, but the data is
now transferred between them via getFrameState and setFrameState. A new
parallel action encapsulates currentFrame and state, and provides the get and
set operations via synchronisations on these channels.

To give an example of a specialised refinement law used in our strategy,
we present in Figure 25 Law seq-share-1, which captures the refinements to
be carried out in this stage. It can be used to justify the transformation just
described, for instance. This law applies to parallelisms of recursions of a
particular form. In both recursions, the end of an iteration is marked by a
synchronisation on a channel end . In addition, a channel c is used by one of
the recursions to send the value of an expression e at the end of its iteration.
In the other recursion, that value is read at the beginning of its iteration.
The first proviso guarantees that the recursions do agree on communications
over c and synchronisations on end , and the second that c is only used where
explicitly shown. Therefore, in spite of being in parallel, each iteration of one
recursion occurs before a corresponding iteration of the other recursion starts.
In our example, the channel end matches sync, and the channel c matches
reduce. The expression e is actually the values of currentFrame and state.
(We have two expressions rather than one, which is a trivial generalisation.)

With an application of Law seq-share-1, we obtain a different parallelism.
The original parallel actions are transformed to use channels c1, c2, and c3,
guaranteed to be fresh by a proviso. Synchronisation on c is replaced with
synchronisation on c3, output of e is carried out via c1, and input via c2. A

38 Ana Cavalcanti et al.

Law seq-share-1 (µX • A1 ; c ! e −→ end −→X)

Jns1 | cs | ns2K

(µX • c ? x −→A2 ; end −→X)

 \ {| c |}
=

 (µX • A1 ; c1 ! e −→ c3 −→ end −→X)

Jns1 | (cs \ {| c |}) ∪ {| c3 |} | ns2K

(µX • c3 −→ c2 ? x −→A2 ; end −→X)

 \ {| c3 |}
Jns1 ∪ ns2 | {| c1, c2 |} | ∅K(

var v : T • µX • (c1 ? x −→ v := x @ c2 ! v −→ skip) ; X
)

 \ {| c1, c2 |}
provided {| c, end |} ⊆ cs;

c 6∈ usedC (A1) ∪ usedC (A2); and
c1, c2 and c3 are fresh channels.

Fig. 25 Law seq-share-1 for refinement of detector handlers in Stage (1)

new parallel action reads and keeps the value of e in a local variable x , and
outputs it. In our example, c3 is taken as a new typeless channel reduce, c1
and c2 are setFrameState and getFrameState. In addition, we have a pair of
local variables currentFrame and state. A proof of Law seq-share-1 is in [43].

In a similar way we refine the parallelism between the new ReducerHandler
action and the DetectorHandler actions. This uses a slightly generalised ver-
sion of the sharing law, since not merely one, but four handlers concurrently
synchronise on the channel through which the data is passed.

Stage (2) The definition of HandlerController is omitted in Figure 24, but
remains as shown in Figure 23. We recall that this is an action that controls
the interaction of the concurrent handlers, rather than a model of a handler
itself. We use here another specialised law to obtain the result in Figure 26.
As in the previous stage, in a parallel action we now encapsulate the shared
collisions variable while identifying the atomic operations to access it, trig-
gered by communication on the channels initColls, recColls and output .

In this refinement, we rely on the fact that SetCollisionsFromParts takes
a bag of the values communicated through recColls as parameters. So, the
sequence of communications in HandlerController is refined to an interleaving.
The processing of the communicated values is isolated in the variable block
that encapsulates collisions (which later becomes part of MArea).

The parallel action for control in Figure 26 that is still left is decomposed
and collapsed with handler actions. Whereas in HS we admit residual con-
trol actions in the final model, in SH our aim is to eliminate them. This is
carried out by specialised laws that refine the parallelism between the con-
trol action and each of the handlers under control. In our example, these
are ReducerHandler , the subsequent DetectorHandler parallel actions, and
the final OutputCollisionsHandler . The synchronisation on initColls moves

Safety-Critical Java Programs from Circus Models 39

µX •

 initColls −→ detect −→

 (recColls?y −→ skip) 9
(recColls?y −→ skip) 9
(recColls?y −→ skip) 9
(recColls?y −→ skip)

 ;

output?y −→ sync −→X

J{} | {| initColls, recColls, output |} | {}K

var collisions : Z •
µX •

initColls −→ collisions := 0
@
recColls?x−→

wait 0 . . RCTB ; collisions := collisions + x
@
output !collisions −→ skip

 ; X

Fig. 26 Anchor E - Phase SH: Refinement of HandlerController in Stage (2)

to ReducerHandler . The following communications on recColls move to the
DetectorHandler actions. Finally, since communication on output is used both
for control and data communication, it is replaced with synchronisations on
two channels like in Stage (1). A first communication on a new synchronisa-
tion channel output triggers the OutputCollisionsHandler , which then takes
the value of collisions using a new channel getColls.

At the end of this stage, the handler actions in Figure 24 are nearly un-
changed, except for the additional synchronisations to get and set data, and
to trigger data operations. For example, the actions that model the detector
handlers are similar. For the first handler, for instance, it is as follows.µX •

detect−→
getWork?work −→ var colls1 : Z • . . . ;
recColls!colls1−→ output?y −→ sync −→X

When triggered by detect , it gets work using a synchronisation, carries out its
original calculation (omitted above), shares its result colls1 via recColls, and
triggers OutputCollistionsHandler via output before synchronising on sync.

Stage (3) Further refinement is carried out in this stage to implement particu-
lar control mechanisms possibly embedded in the parallelism of handlers using
SCJ constructs. In our case study, we have the barrier-like synchronisations
on output performed between the detector handlers, which originates from the
their parallelisation in Stage (5) of Phase MH.

Software events allow a handler to fire several other handlers at the same
time. On the other hand, if we have a situation in which several handlers have
to agree to fire another handler, we need a protocol. In Circus, both scenarios
can be modelled using multi-synchronisation between handlers: using a single
channel in a parallelism that requires all relevant handlers to synchronise. In
a refinement to an implementation, different approaches are required.

40 Ana Cavalcanti et al.

µX •(
detect−→
getWork?work −→ var colls1 : Z • CalcPartCollisions1T ;
recColls!colls1−→ notify!1−→ sync −→X

)
J{} | {| sync, detect |} | {}KµX •(

detect−→
getWork?work −→ var colls2 : Z • CalcPartCollisions2T ;
recColls!colls2−→ notify!2−→ sync −→X

)
. . .

J{} | {| start ,notify, sync |} | {}K

var control : DetectorControl •

µX •
start −→ control .start
@
notify?i−→ control .notify(i);(

control .done N output −→ skip
@
¬ control .done N skip

)

 ; X

J{} | {| start , detect |} | {}K(

µX • start −→ detect −→ sync −→X
)

Fig. 27 Anchor E - Phase SH: Refinement of the detector handlers in Stage (3)

In our example, the internal channels detect and output are both used for
multi-synchronisation (see Figure 15). To implement the multi-synchronisation
on detect , we can use a software event to be used by the ReducerHandler to fire
the detector handlers. As already discussed, this is tackled in Stage (1) above.
On the other hand, the multi-synchronisation on output requires a barrier
protocol, so that termination of all detection handlers lead to the release of
the OutputCollisionsHandler. This is tackled here in Stage (3).

The result of the refinement is sketched in Figure 27 and again arises from
the use of a specialised law; it is applied to the parallelism of the four detector
handlers. Since there is no barrier mechanism in SCJ, the strategy embedded
in the law is the use of a new control variable control that records the handlers
still in execution. Synchronisations on output are replaced by the interleaved
outputs on notify . They correspond to method calls to signal termination of
each detector. The synchronisation on output is now carried out by the new
control parallel action, and thus managed by the shared control object. It is
not a multi-sychronisation anymore, and so models a software event now.

The channel start corresponds to a method call that resets the value of
control to capture that none of the handlers has terminated yet. Just like
in the previous stage, the new control action that enforces that start occurs
before detect is distributed to the handlers. In this case, start is moved to
ReduceHandler (and detect is already in the DetectorHandler actions).

Safety-Critical Java Programs from Circus Models 41

MArea =̂

var currentFrame : RawFrame •
var state : StateTable •
var work : Partition •
var collisions : Z •

µX •

setFrameState?v1?v2 −→ currentFrame, state := v1, v2
@
getFrameState!currentFrame!state −→ skip
@
setWork?v −→ work := v
@
getWork !work −→ skip
@
initColls −→ collisions := 0
@
recColls?x−→

wait 0 . . RCTB ; collisions := collisions + x
@
getColls!collisions −→ skip

; X

9

var active : F(1 . . 4) •

µX •

start −→ active := {1, 2, 3, 4}
@
notify?i−→ active := (active \ {i});(

active = ∅ N output −→ skip
@
¬ active = ∅ N skip

)

 ; X

Fig. 28 Anchor E - Phase SH: MArea

There are different ways to achieve the barrier control of execution, hence
the elimination of the synchronisation on output involves design. We can, how-
ever, provide refinement laws that embed a variety solutions.

Stage (4) The refinement in this stage is a reordering of the parallel actions
that declare local variables; in our example, the variables are currentFrame
and state (in Figure 24), work , which is also encapsulated in a parallel ac-
tion (omitted here) in Stage (1), collisions (in Figure 26), and control (in
Figure 27). They are brought together to specify MArea shown in Figure 28.

After reordering, the parallel actions that provide methods of the same ob-
ject are collapsed. For instance, the parallel action that declares currentFrame
and state synchronises on the channels setFrameState and getFrameState, the
action for work synchronises on setWork and getWork , and that for collisions
synchronises on initColls, recColls and getColls. They are collapsed into a
single parallel action since all their synchronisations correspond to methods in
the same class: the mission class. On the other hand, the action that models
interaction with control is retained because in the program this is realised by
a separate object (of the class DetectorControl).

42 Ana Cavalcanti et al.

sequencer MainMissionSequencer =̂ begin

state MainMissionSequencerState == [mission done : bool]

initial =̂ mission done := false

getNextMission =̂
if mission done = false−→mission done := true; ret := MissionCDx
8 mission done = true−→ ret := null
fi

end

Fig. 29 Anchor S: Mission sequencer paragraph

4.2.5 Phase HR

In this phase, in principle we refine to code all remaining data operations. It
is not the focus of this work or paper, so we do not discuss it any further.

4.3 Step to Anchor S

The components of the E anchor can be mapped to processes now defined by
paragraphs of SCJ-Circus in direct correspondence with classes of a program.

Safelet The paragraph safelet defines the setUp and tearDown methods. In
our example, they are empty (skip), and so this paragraph is omitted.

Mission sequencer Figure 29 presents the mission sequencer for the CDx .
In a sequencer paragraph, the state clause declares the fields of the SCJ
mission-sequencer class, which determine the state components of the mission-
sequencer application process. In the initial clause, we have the SCJ class con-
structor (and so the initialisation operation of the underlying process). Finally,
getNextMission defines the body of the getNextMission method (and the
corresponding Circus action in the mission-sequencer process). The assignment
to the special variable ret defines the mission to be returned. (It is an implicit
result parameter of methods that have a return type different from void.)

As illustrated, SCJ-Circus paragraphs establish a link via underlying Circus
processes to the E anchor. The direct correspondence enables automation of
refinement. On the other hand, SCJ-Circus paragraphs also establish a link to
code, by identifying components directly implementable using an SCJ API.

Mission For each mission, we have a mission paragraph. Figure 30 shows the
paragraph in our case study: it defines the behaviour of the single mission of
our application. The shared variables in mission memory, which were clearly
identified in the MArea action, become state components of the process, and
references to objects. This is made explicit by the ref type constructor.

The initial action corresponds to the constructor of the SCJ class. We
create shared objects using the special newM operator, which instantiates

Safety-Critical Java Programs from Circus Models 43

mission MissionCDx =̂ begin

state MissionCDxState
currentFrame : ref RawFrame; state : ref StateTable
work : ref Partition; collisions : Z
control : ref DetectorControl

initial =̂(
currentFrame := newM RawFrame ; state := newM StateTable;
work := newM Partition(4) ; collisions := 0

)
initialize =̂

var reduce : AperiodicEvent • reduce := newEvent AperiodicEvent;
var detect : AperiodicEvent • detect := newEvent AperiodicEvent;
var output : AperiodicEvent • output := newEvent AperiodicEvent;
control := newM DetectorControl(output , 4);
var h1 : Handler • h1 := newHdlr InputFrameHandler(self , reduce);
var h2 : Handler •

h2 := newHdlr(reduce) ReducerHandler(self , detect , control);
var h3 : Handler • h3 := newHdlr(detect) DetectorHandler(self , control , 1);
. . .
register h1 ; register h2 ; . . . ; register h7

cleanup =̂ skip

MArea =̂
µX •

setCurrentFrame?v −→ currentFrame := v
@
getCurrentFrame!currentFrame −→ skip
@
. . .
initCollsC −→ collisions := 0 ; initCollsR −→ skip
@
recCollsC ?x−→(

wait 0 . . RCTB ; collisions := collisions + x ;
recCollsR −→ skip

)

; X

end

Fig. 30 Anchor S: Mission paragraph MissionCDx

them in mission memory. The initialize action models the initialize()

method of the mission, creating its handlers and SCJ events.

Three events are created via the newEvent construct and assigned to
local variables reduce, detect and output of type AperiodicEvent . We note that
AperiodicEvent as well as Handler are not OhCircus class types, but sets of
identifiers specifically introduced for each SCJ application. After creating the
control objects that release the handlers, initialize instantiates the handlers
of the mission. Here, we use new notation: newHdlr to create a handler, and
newHdlr (evt) to specify that the new handler is bound to an aperiodic event
evt . (In SCJ this corresponds to passing the event to the super constructor
when extending AperiodicEventHandler.)

Two further SCJ-Circus constructs are introduced. The first, register h,
corresponds to a call to the register() method of a handler; it registers the

44 Ana Cavalcanti et al.

handler h with the mission. The second one, fire evt , fires the event evt and
thus corresponds to calling the fire() method of AperiodicEvent. These are
not encoded in OhCircus because they model interactions with the framework.

The MArea action is also included in the mission paragraph. It includes the
calls to the local methods of the mission. Methods that are to be implemented
in other classes become part of their specifications.

Unlike in the E anchor, method calls in the S anchor are encoded by two
channels, one for the call (with a name with suffix C) and one for the re-
turn (with suffix R). Direct variable access though is still modelled by a single
synchronisation as we consider such operations atomic.

We observe the direct correspondence between the mission paragraph in
Figure 30 and the MissionCDx action of the E anchor. We also observe the
direct correspondence between the paragraph in Figure 30 and the SCJ code
of the mission class, which we sketch in Figure 31. The state components
become fields of the class. The initial action becomes the class constructor,
and the initialize action becomes the initialize() method. We note that
the bound event identified in newHdlr becomes the last parameter of the
handler constructor. The cleanup action is just skip, so there is no need
to (re)define the cleanUp method in the class, since what is inherited from
Mission is appropriate in this case. Finally, the methods in the first interleaved
action in MArea become local methods of the mission class.

Handlers The definition of a Circus process that models a handler depends
on whether it is periodic or aperiodic. In our example, we have one periodic
handler InputFrameHandler . The others are aperiodic. For conciseness, we
omit the complete model of the handlers found in [43]. Instead, we give one
example of a periodic and one example of an aperiodic handler.

A periodic paragraph defines a periodic handler, whose period is de-
fined in the declaration of the paragraph. In our example in Figure 32, it
is FRAME PERIOD . The state paragraph defines the fields of the SCJ han-
dler class. Here, we have just the mission and SCJ event that is used to release
ReducerHandler . As already explained, these are identifiers (used in the frame-
work model) that record the mission that uses the handler, and the release
event. In the SCJ program, they are realised by objects.

The class constructor, defined in the initial paragraph, takes them as pa-
rameters. The handler method handleAsyncEvent() is defined by the para-
graph of the same name. It has a direct correspondence with the handler spec-
ification as a parallel action of MissionCDx in the E anchor (see Figure 24,
for example). The communication on next frame corresponds to an external
(synchronous) device access in the program. The subsequent wait captures
the amount of time consumed by the data operation StoreFrame. The omit-
ted definition of StoreFrame arises from algorithmic refinement during the
HR phase of the previous step and uses methods of the RawFrame and State
classes. The dispatch paragraph captures the behaviour in each release of the
handler (typically using a call to handleAsyncEvent).

Safety-Critical Java Programs from Circus Models 45

public class CDxMission extends Mission {

public RawFrame currentFrame;

public StateTable state;

public Partition work;

public int collisions;

public DetectorControl control;

public CDxMission() {

currentFrame = new RawFrame();

state = new StateTable();

work = new Partition(4);

collisions = 0;

}

public void initialize() {

AperiodicEvent reduce = new AperiodicEvent();

AperiodicEvent detect = new AperiodicEvent();

AperiodicEvent output = new AperiodicEvent();

control = new DetectorControl(output, 4);

InputFrameHandler h1 = new InputFrameHandler(this, reduce);

ReducerHandler h2 = new ReducerHandler(this, detect, control, reduce);

DetectorHandler h3 = new DetectorHandler(this, control, 1, detect);

...

h1.register();

h2.register();

h3.register();

...

}

public long missionMemorySize() {

return Constants.MISSION_MEMORY_SIZE;

}

public RawFrame getFrame() {

return currentFrame;

}

public void setFrame(RawFrame frame) {

currentFrame = frame;

}

...

}

Fig. 31 CDx Mission class implementation

The aperiodic paragraph is similar in structure. The difference is in the
description of the dispatch action, which now also captures the external or
SCJ event by which the handler is released. An example of an aperiodic handler
is included in Figure 33. The handler paragraph is parametrised by a handler
identified hdl to permit instantiation: we require four instances of this handler.

In an aperiodic handler, the dispatch action is typically much more elabo-
rate. In our example, a synchronisation is raised by the framework model of the
SCJ event bound to the handler (detect in the example). More precisely, the

46 Ana Cavalcanti et al.

periodic(FRAME PERIOD) handler InputFrameHandler =̂ begin

state InputFrameHandlerState
mission : Mission
reduce : AperiodicEvent

initial InputFrameHandlerInit(m : Mission, evt : AperiodicEvent) =̂
mission := m ; reduce := evt

handleAsyncEvent =̂(
(next frame ? frame −→wait 0 . . STTB ; StoreFrame) � INP DL;
fire reduce

)
StoreFrame =̂ . . . “emerges from handler refinement.”

dispatch handleAsyncEvent

end

Fig. 32 Anchor S: Periodic handler paragraph InputFrameHandler

aperiodic handler DetectorHandler =̂ hdl : Handler • begin

state DetectorHandlerState
mission : MissionCDx
control : DetectorControl
id : Z

initial DetectorHandlerInit(m : Mission; c : ref DetectorControl ,n : Z) =̂
mission := m ; control := c ; id := n

CalcPartCollisions =̂ res pcolls : Z •
ret := . . . “algorithm for counting collisions in voxel”

handleAsyncEvent =̂(
var colls : Z •(

wait 0 . . CPCTB ; CalcPartCollisions(colls);
recCollsC !colls −→ recCollsR −→ notifyC !id −→ notifyR −→ skip

))
dispatch release.hdl −→ handleAsyncEvent

end

Fig. 33 Anchor S: Aperiodic handler paragraph DetectorHandler

channel release of type Handler is used to release aperiodic handlers bound to
software events. The method in handleAsyncEvent is again in direct corre-
spondence with the specification of the handler in the E anchor (see Figure 27).

Our refinement patterns and strategy lead to models for programs without
memory leaks. In the initial action, only assignments to mission state compo-
nents arise; these correspond to mission fields, so that, any objects referred by
them do not become unreachable. In the initialize action, objects are associ-
ated with local variables, but these are passed as parameters to the handlers,
whose constructors assign them to handler fields. The handler objects are part
of the SCJ infrastructure. They are not even objects in SCJ-Circus. In addi-
tion, in the CDx , in the refinement of StoreFrame, we ensure that allocated
memory is reused when new frames arrive.

Safety-Critical Java Programs from Circus Models 47

Our case study provides evidence that the CDx , despite its complexity, can
be essentially constructed using our refinement approach originally described
in [11] with added support for SCJ events.

5 Conclusions

The SCJ specification enables the development of Java applications using a
restricted infrastructure, in such a way that they are amenable to certification
under, for instance, the stringent requirements of DO-178C, the civil aerospace
guidance document for software development, and similar standards. The as-
sumption is that a small and predictable virtual machine and libraries enhance
certifiability and permit meeting tight performance requirements.

It is our view that the SCJ specification embeds two elements: a pro-
gramming paradigm, and its implementation on a Java platform. One of the
contributions of our work is to identify this novel paradigm in the design of
SCJ-Circus. While the construction of an SCJ-Circus model may have many
applications, our main goal is the definition of a programming theory for SCJ.
This is embedded in the semantic basis of SCJ-Circus, and its laws.

An important product of such a theory of programming is a development
and verification technique that reveals core laws (of refinement), and can also
be used to justify more specialised techniques. Our main contribution in this
paper is the definition of a general refinement technique for SCJ. We have
presented in detail a strategy for refinement-based development of SCJ pro-
grams. It singles out the main issues involved in this task by identifying steps,
phases, and stages of refinement that tackle them separately. Namely, we need
to address data design using an object-oriented model; introduction of data
for shared use; decomposition into a sequence of missions; for each mission,
definition of a timed architecture, decomposition into concurrently executed
handlers, and data sharing between handlers (both for those executed in se-
quence and for those truly executing concurrently); algorithmic refinement;
and finally, implementation in terms of the SCJ API.

In relation to our own previous work [11], we provide a much more detailed
account of the refinement steps related to the verification of missions, handlers,
and sharing. We also now cover software events, handler synchronisation, bar-
riers, and a few other patterns of programming. Finally, we validate the whole
approach with a significant case study, which is in itself a contribution. No-
tably, the detailed work on the refinement of the case study revealed a race
condition involving the control object: we have a faulty implementation of the
barrier mechanism. It could cause the program to deadlock in a very specific
execution that had never been observed during testing. We could trace this
glitch directly to a failure of the refinement in the Stage (3) of the SH phase.
The majority of the models that we have presented have been checked with
the Circus tools. Tools for SCJ-Circus are under development.

Our technique, due to its reliance on algebraic laws of refinement (rather
than on posit-and-prove techniques or on model checking) is suitable both

48 Ana Cavalcanti et al.

when we already have an implementation to verify and when we are developing
an implementation from scratch. If an implementation exists, its design of
missions and handlers and use of (shared) data can be used to guide the choice
and application of refinement steps and laws. In this case, we start from the
A anchor, and reconstruct the development of the existing implementation.

A proof of correctness of an existing implementation can be convoluted.
The value in applying our technique comes in structuring and organising such
a proof, by concentrating on particular aspects in isolation. It can also help
to establish properties of the implementation that are not obvious from the
code. For example, in the CDx , the main data operation is CalcCollisions
in the A anchor (see Figure 3). Its implementation is distributed over five
handlers, and cannot be easily traced in the code. Traceability is established
by the refinement: if we follow our example, we can see that the calculation
in CalcCollisions becomes part of RecordFrame (O step, Figure 13), which is
then decomposed and split to the reducer and detector handlers (Stages (2-5)
of Phase HS in the E step, Figures 20 and 21).

We use several variants of Circus, and their underlying UTP theories. SCJ-
Circus is built from the following items in the UTP framework: nondetermin-
istic imperative programming with specifications (based on Z) [40]; reactive
processes with concurrency and communication (based on CSP) [29]; object
orientation, with classes and inheritance (based on OhCircus) [33]; discrete
real-time (based on Circus Time) [34,37]; and an SCJ memory model [10].
Some of these theories need to be brought to maturity and linked together.
Soundness of our laws relies on the fact that the combination of the theories
is conservative. Proof and soundness of some laws is discussed in [43].

The general character of our technique is essential to fulfill its role in the
SCJ programming theory. Since SCJ is a new technology, however, there is
still much work to be done. Our technique can be used, for instance, to justify
or suggest techniques that rely on A anchors generated from models written
in more user-friendly notations. It can also be used to justify techniques that
tackle specific aspects of the verification. Our technique provides a framework
to guide the integration of other specialised techniques.

Future work As future work, we envisage the development of techniques for
automatic generation of A anchors from domain-specific models, written in
semi-formal or graphical notations like UML, for instance. In [23], for example,
we describe a tool for automatic generation of Circus models from Simulink
diagrams. In this scenario, where the starting specification is guaranteed (by
construction) to have a particular architecture, it is possible to envisage more
specialised refinement strategies. They can take advantage of the regularity of
the model to improve automation of the development.

For certain tasks, successful application of the refinement strategy already
requires the identification of design patterns. A catalogue of such patterns and
their associated refinement laws and strategies is an important direction for
future work. We observe, on the other hand, that our technique is already a

Safety-Critical Java Programs from Circus Models 49

specialisation of the general Circus refinement technique. It is in this way that
it can afford some level of automation.

In all our examples so far, the external events can be realised as atomic and
virtually instantaneous interactions with the environment. For the CDx , the
input next frame?frame, for instance, is realised by an interrupt that reads
the frame into internal storage. This might take time, but it is a negligible
amount of time, and so virtually instantaneous. When this does not hold, we
need either to revise our event abstractions, or to provide a separate argument
of noninterference, such as the inter-arrival times of frames is large enough
to ensure that the device data will be available for the duration of the read.
The latter is likely to be convoluted and not compositional. A catalogue of
programming patterns that satisfy our assumption can avoid this complication.

We do not address the issue of resources formally. There is nothing in
our refinement theory that favours one design or another based on their use
of memory or their performance, and in our technique we embed good de-
signs in specialised laws. For a more formal approach, we need resource-aware
programming models. They can be accommodated in the UTP, as discussed
in [18], but this topic has not been further developed yet.

We have not as yet come across SCJ programs (in the public domain) that
make use of several missions. A case study to illustrate the development of
programs with multiple missions is, therefore, left as future work. As a first
step, we have developed ourselves a multi-mission pacemaker controller [35].
The indication of the Open Group is that missions can be used to cater for
different modes of operation in control systems. In this case, the A anchor
has to model the various modes of operations, and sequentialisation in the CP
phase should bring out the individual sequential components that can be split
across missions. In this case, the second step of our refinement approach, which
generates the E anchor, needs to be adapted: we need a iterative strategy like
that adopted for the handlers; we leave the details of this as future work.

The last Step S transforms a Circus model into an SCJ-Circus model, and
in doing so, checks that the modelled program satisfies the restrictions of
the SCJ paradigm. An alternative approach that can be explored consists in
delaying any algorithmic refinement to the very end of the strategy. In this
case, instead of refinement laws of Circus, we need to use refinement laws of
SCJ-Circus. They would embed the restrictions of the SCJ memory model, and
prevent the development of implementations that violate them.

SCJ-Circus programs are so close to actual SCJ code as to enable auto-
matic code generation. A technique and tool to achieve this goal is part of our
agenda for future work. In addition, the definition of the SCJ infrastructure
embedded in the P model specifies the required functionality of an SCJ imple-
mentation: we plan to prove the correctness of an existing implementation.

As well as a target for our refinements, an S anchor can be used in iso-
lation to model existing programs. It is possible to generate S anchors from
SCJ programs that follow an organised pattern of programming. It requires,
for example, the use of separate classes to define the safelet, the mission se-
quencer, the missions, and each of the handlers. As far as we can see, this does

50 Ana Cavalcanti et al.

not impose any serious restrictions. At the moment, however, example SCJ
programs are few and far between, as the technology it yet to reach maturity.

In fact, additional case studies and tools are an important line of work to
ascertain the practical relevance of SCJ and of our technique. Case studies
are the best way forward in providing a usable catalogue of patterns, and
associated laws and strategies. Automating different aspects of the strategy
via, for instance, a specialised refinement editor for SCJ or a theorem prover
like in [44] is a further goal that makes use of our strategy scalable.

Acknowledgments This work is funded by EPSRC grant EP/H017461/1. Chris
Marriott and Neeraj Singh have contributed with useful discussions.

References

1. Adams, M.M., Clayton, P.B.: Cost-Effective Formal Verification for Control Systems.
In: ICFEM 2005, LNCS, vol. 3785, pp. 465 – 479. Springer-Verlag (2005)

2. Bolton, C.: Using the Alloy Analyzer to Verify Data Refinement in Z. ENTCS 137(2),
23 – 44 (2005)

3. Braberman, V., Fernandez, F., Garbervetsky, D., Yovine, S.: Parametric Prediction of
Heap Memory Requirements. In: International Symposium on Memory Management,
pp. 141 – 150. ACM Special Interest Group on Programming Language (2008)

4. Burns, A.: The Ravenscar Profile. Ada Letters XIX, 49 – 52 (1999)
5. Burns, A., Wellings, A.J.: Concurrent and Real-Time Programming in Ada. Cambridge

University Press (2007)
6. Burns, A., Wellings, A.J.: Real-Time Systems and Programming Languages, 4th edn.

Addison Wesley (2009)
7. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: From Control Law Diagrams to Ada

via Circus. FACJ 23(4), 465 – 512 (2011)
8. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strategy for

Circus. FACJ 15(2 - 3), 146 – 181 (2003)
9. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: Unifying Classes and Pro-

cesses. SoSyM 4(3), 277 – 296 (2005)
10. Cavalcanti, A.L.C., Wellings, A., Woodcock, J.C.P.: The Safety-Critical Java memory

model formalised. FACJ (2012). DOI: 10.1007/s00165-012-0253-4
11. Cavalcanti, A.L.C., Wellings, A., Woodcock, J.C.P., Wei, K., Zeyda, F.: Safety-Critical

Java in Circus. In: A.P. Ravn (ed.) 9th JTRES, ACM Digital Library. ACM (2011)
12. Cavalcanti, A.L.C., Woodcock, J.C.P.: ZRC—A Refinement Calculus for Z. FACJ 10(3),

267—289 (1999)
13. Freitas, A.F., Cavalcanti, A.L.C.: Automatic Translation from Circus to Java. In: FM

2006, LNCS, vol. 4085, pp. 115 – 130. Springer-Verlag (2006)
14. Freitas, L., McDermott, J.P.: Formal methods for security in the xenon hypervisor.

STTT, 13(5), 463 – 489 (2011)
15. Grov, G., Ireland, A., Llano, M.T.: Refinement Plans for Informed Formal Design. In:

3rd ABZ, LNCS, vol. 7316, pp. 208 – 222. Springer (2012)
16. Harwood, W., Cavalcanti, A.L.C., Woodcock, J.C.P.: A Theory of Pointers for the UTP.

In: ICTAC, LNCS, vol. 5160, pp. 141 – 155. Springer-Verlag (2008)
17. Hayes, I.J., Utting, M.: A sequential real-time refinement calculus. Acta Informatica

37(6), 385 – 448 (2001)
18. Hoare, C.A.R., He, J.: Unifying Theories of Programming. Prentice-Hall (1998)
19. Kalibera, T., Hagelberg, J., Pizlo, F., Plsek, A., Titzer, B., Vitek, J.: CDx : A Family

of Real-time Java Benchmarks. In: Proceedings of the 7th JTRES, pp. 41 – 50. ACM
(2009)

20. Kalibera, T., Parizek, P., Malohlava, M., Schoeberl, M.: Exhaustive Testing of Safety
Critical Java. In: 8th JTRES, pp. 164 – 174. ACM (2010)

Safety-Critical Java Programs from Circus Models 51

21. Locke, D., Andersen, B.S., Brosgol, B., Fulton, M., Henties, T., Hunt, J.J.,
Nielsen, J.O., Nilsen, K., Schoeberl, M., Tokar, J., Vitek, J., Wellings, A.: Safety
Critical Java Specification, First Release 0.76. The Open Group, UK (2010).
jcp.org/aboutJava/communityprocess/edr/jsr302/index.html

22. Markey, N.: Robustness in real-time systems. In: 6th IEEE International Symposium
on Industrial Embedded Systems, pp. 28 – 34. IEEE (2011)

23. Marriott, C., Zeyda, F., Cavalcanti, A.L.C.: A Tool Chain for the Automatic Generation
of Circus Specifications of Simulink Diagrams. In: ABZ, LNCS, vol. 7316, pp. 294 – 307.
Springer (2012)

24. Miyazawa, A., Cavalcanti, A.L.C.: Refinement-oriented models of stateflow charts. SCP
77(10 – 11), 1151 – 1177 (2012)

25. Morgan, C.C.: Auxiliary Variables in Data Refinement. IPL 29(6), 293 – 296 (1988)
26. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)
27. Mukherjee, P., Stavridou, V.: Decomposition in Real-Time Safety-Critical Systems.

Real-Time Systems 14, 183 – 202 (1998)
28. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs Using Circus.

Ph.D. thesis, University of York (2006)
29. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for Circus.

FACJ 21(1-2), 3 – 32 (2009)
30. Oliveira, W.R., Barros, R.S.M.: The Real Numbers in Z. In: Proceedings of the 2nd

BCS-FACS Northern Formal Methods Workshop. British Computer Society (1997)
31. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes.

ICTAC 58, 249–261 (1988)
32. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall (1998)
33. Santos, T.L.V.L., Cavalcanti, A.L.C., Sampaio, A.C.A.: Object Orientation in the UTP.

In: Unifying Theories of Programming, LNCS, vol. 4010, pp. 18 – 37. Springer-Verlag
(2006)

34. Sherif, A., Cavalcanti, A.L.C., He, J., Sampaio, A.C.A.: A process algebraic framework
for specification and validation of real-time systems. FACJ 22(2), 153 – 191 (2010)

35. Singh, N.K., Wellings, A.J., Cavalcanti, A.L.C.: The cardiac pacemaker case study and
its implementation in safety-critical Java and Ravenscar Ada. In: 10th JTRES, pp. 62
– 71. ACM (2012)

36. Tofte, M., Talpin, J.P.: Region-based memory management. Information and Compu-
tation 132(2), 109 – 176 (1997)

37. Wei, K., Woodcock, J.C.P., Burns, A.: A Timed Model of Circus with the Reactive
Design Miracle. In: 8th SEFM, pp. 315 – 319. IEEE Computer Society (2010)

38. Wellings, A.: Concurrent and Real-Time Programming in Java. Wiley (2004)
39. Woodcock, J.C.P.: The miracle of reactive programming. In: Unifying Theories of Pro-

gramming 2008, LNCS, pp. 202 – 217. Springer (2009)
40. Woodcock, J.C.P., Cavalcanti, A.L.C.: A Tutorial Introduction to Designs in Unifying

Theories of Programming. In: IFM 2004, LNCS, vol. 2999, pp. 40 – 66. Springer-Verlag
(2004). Invited tutorial.

41. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof. Prentice-
Hall (1996)

42. Zeyda, F., Cavalcanti, A.L.C., Wellings, A.: The Safety-critical Java Mission Model: a
formal account. In: ICFEM, LNCS (2011)

43. Zeyda, F., Cavalcanti, A.L.C., Wellings, A., Woodcock, J.C.P., Wei, K.: Refinement of
the Parallel CDx. Tech. rep., University of York, Department of Computer Science,
York, UK (2012)

44. Zeyda, F., Oliveira, M.V.M., Cavalcanti, A.L.C.: Mechanised support for sound refine-
ment tactics. FACJ 24(1), 127 – 160 (2012)

A Appendix: Definitions in Anchor A of the CDx

The type Frame is the set of partial functions from aircraft to (3d) vectors whose size is less
than or equal to MAX AIRCRAFT , the maximum number of aircraft detected.

Frame =̂ { f : Aircraft 7 7→Vector | # f ≤ MAX AIRCRAFT }

The domain of the function determines the aircraft in view of the radar. We introduce

52 Ana Cavalcanti et al.

Aircraft as the set of non-empty sequences of byte values: Aircraft =̂ seq1(byte) where byte
is the set of integers from −128 to 127. The sequences represent unique call signs, mirroring
the way aircraft are identified in aviation. The type Vector is defined by a schema whose
components x , y and z correspond to the coordinates of a vector.

Vector =̂ [x : R; y : R; z : R]

The work in [30] describes how real numbers can be axiomatised in Z.
We introduce common operators on vectors such as sum (+V), difference (−V), scalar

produce (∗V), dot product (·V) and length (| |). Their Z definitions are omitted here
as they are standard. We also define ZeroV and UnitV for the zero and unit vector.
MkVector(c1, c2, c3) yields a record 〈|x == c1, y == c2, z == c3|〉 of type Vector .

The function CalcCollisionSet yields collisions as a set of aircraft pairs.

CalcCollisionSet : (Frame × Frame)→ F(Aircraft ×Aircraft)

∀ posns,motions : Frame • CalcCollisionSet (posns,motions) ={
a1 : Aircraft ; a2 : Aircraft | a1 ∈ dom posns ∧ a2 ∈ dom posns ∧

collide ((posns a1,motions a1), (posns a2,motions a2))

}
The pairs (a1, a2) in the set of collisions are characterised by a set comprehension that
uses of a relation collide that captures whether their trajectories (posns a1,motions a1) and
(posns a2,motions a2) are at risk of colliding. A trajectory is a pair of vectors: the first gives
the trajectory’s position and the second its motion. We define Trajectory =̂ Vector×Vector .

collide : P (Trajectory × Trajectory)

∀ t1, t2 : Trajectory • collide(t1, t2)⇔ distance(t1, t2) ≤ THRESHOLD

THRESHOLD is a constant that specifies the minimum acceptable distance between two
trajectories; if it is less than or equal to that, we signal a potential collision.

The distance function carries out the actual distance calculation of aircraft trajectories.

distance : Trajectory × Trajectory → R

∀ t1, t2 : Trajectory • distance(t1, t2) =(
µ d : R |(

(∃ x : R | 0 ≤ x ≤ 1 • d = |(t2.1 +V x ∗V t2.2)−V (t1.1 +V x ∗V t1.2)|) ∧
(∀ x : R | 0 ≤ x ≤ 1 • d ≤ |(t2.1 +V x ∗V t2.2)−V (t1.1 +V x ∗V t1.2)|)

))
We determine the minimal distance between two traversing points. This may not be the
minimal distance between any two points, but is consistent with the algorithm in [19].

B Appendix: some classes

B.1 Appendix: class RawFrame

The class RawFrame is used to encode radar frames as data objects in the program. It
records the position of all aircraft, identified by their call sign, that are currently in view of
the radar. Some constants capture static variables used in the program.

NUMBER OF PLANES : Z;
LENGTH OF CALLSIGN : Z

class RawFrame =̂ begin

The implementation uses two arrays: callsigsn, to record aircraft positions, and positions,
to determine the respective call signs of the aircraft. It also includes a planeCnt integer

Safety-Critical Java Programs from Circus Models 53

component to determine the number of valid entries in the array ensemble.

state RawFrameState
public callsigns : byteArray
public positions : floatArray
public planeCnt : int

The initialisation schema captures the initilisations of the state components in the code.
Here, we create the data objects for both arrays and also define that, initially, there are no
valid entries in the arrays; hence, no aircrafts are initially recorded in the frame.

initial RawFrameInit
RawFrameState ′

callsigns′ =
newM byteArray(LENGTH OF CALLSIGN ∗NUMBER OF PLANES)

positions′ = newM floatArray(3 ∗NUMBER OF PLANES)
planeCnt ′ = 0

The logical methods are used in the refinement for the definition of retrieve relations. The
function getCallSign determines the call sign result ! recorded in callsigns with index plane?.

logical function getCallSign
ΞRawFrameState
plane? : Z
result ! : seq byte

0 ≤ plane? < planeCnt
result ! = LENGTH OF CALLSIGN
∀ i : 1 . . LENGTH OF CALLSIGN •

result !(i) = callsigns.getA(plane? ∗ LENGTH OF CALLSIGN + i − 1)

The find logical function uses getCallSign to obtain the index result ! for an aircraft given
by its call sign a? within the array ensemble. This, in particular, allows us to determine the
position of an aircraft with a given call sign.

logical function find
ΞRawFrameState
a? : Aircraft
result ! : Z

result ! =

(
if (∃1 i : 0 . . (planeCnt − 1) • RawFrame.getCallSign(i) = a?)
then (µ i : 0 . . (planeCnt − 1) | RawFrame.getCallSign(i) = a?)
else− 1

)
The following private method is overloaded. Although, strictly speaking, overloading is not
allowed in OhCircus, a simple renaming can be used to give semantics to the class. To be
faithful to the code, we use the overloading here. In the same vein, we also use for loops,
whose meaning can be given by recursion in the usual way.

private copy(signs : byteArray, posns : floatArray) =̂ var i : Z •(
for i = 0 to signs.length − 1 • self .callsigns.setA(i , signs.getA(i));
for i = 0 to posns.length − 1 • self .positions.setA(i , posns.getA(i));
self .planeCnt = posns.length div 3

)
The only method in the interface of RawFrame is copy defined below.

public copy(frame : RawFrame) =̂ self .copy(frame.callsigns, frame.positions)

end

It uses the private copy methods above to copy the arrays of a given instance of the class
RawFrame itself to the arrays of the current object.

54 Ana Cavalcanti et al.

B.2 Appendix: class StateTable

The class StateTable is used to record previous aircraft positions. This is important to
calculate the predicted trajectories of aircraft and determine their potential collisions.

class StateTable =̂ begin

A hash map positionMap stores aircraft positions. For memory management, there is a store
of pre-allocated objects for 3d vectors: the allocatedVectors and usedVectors fields.

StateTableState
private position map : HashMap[CallSign, ref Vector3d]
private allocatedVectors : Vector3dArray
private usedVectors : int

The initialisation creates the data objects for the position map and as allocates 3d vector
objects for the object store. The allocation during initialisation ensures that the vector
objects are created in mission memory; this is crucial since those objects are shared between
the handlers. Initially, no objects are in use from the store.

initial Init =̂
position map := newM HashMap;
allocatedVectors := newM Vector3dArray(MAX VECTORS);(

for index = 0 to allocatedVectors.length − 1 •
allocatedVectors.setA(index ,newM Vector3d)

)
;

usedVectors := 0

The put method is used to insert an element into the position map. This is essentially using
the corresponding put method of HashMap, with added logic that ensures that 3d vector
objects are not created anew, but recycled from the pre-allocated object store.

public put(callsign : CallSign, x : float , y : float , z : float) =̂

var v : ref Vector3d • v := position map.get(callsign);
if v = null−→(

v := allocatedVectors.getA(usedVectors);
usedVectors := usedVectors + 1;
position map.put(callsign, v)

)
8¬ v = null−→ skip
fi ;
v .x = x ; v .y = y ; v .z = z

The get method infers the position of an aircraft from the position map.

public get(callsign : CallSign) =̂ ret := position map.get(callsign)

end

B.3 Appendix: class Partition

The class Partition holds the data for partitions of the voxel space.

class Partition =̂ begin

It records a list parts of arrays corresponding to the partitions as well as a cyclic counter

Safety-Critical Java Programs from Circus Models 55

that facilitates recording voxels’ aircrafts in the partitions.

state PartitionState
private parts : ListArray[LinkedList]
private counter : Z

parts 6= null ∧ 0 ≤ counter < parts.length

The initialisation allocates the parts list and determines that all partitions are empty (this
is achieved by a call to the method clear of this same class defined next).

initial Init(n : Z) =̂(
parts := newM ListArray(n);
(for i = 0 to n − 1 • parts.setA(i ,newLinkedList));
self .clear

)
The clear method clears the voxel lists for all partitions.

public synchronized clear =̂

(for index = 0 to parts.length − 1 • parts.getA(index).clear) ; counter := 0

The recordMotionList records the aircraft in a voxel in one of the partitions. The cyclic
counter counter is used to ensure that partitions are populated in a balanced manner.

public synchronized recordMotionList(motions : List) =̂(
parts.getA(counter).add(motions);
counter := (counter + 1) mod parts.length

)
The getDetectorWork method obtains the content of one of the partitions subsequent to all
voxel motion lists being recorded. It simply returns the respective entry of the parts array.

public synchronized getDetectorWork(id : Z) =̂ ret := parts.getA(id − 1)

end

