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ABSTRACT
This position paper proposes a refinement technique for the
development of Safety-Critical Java (SCJ) programs. It is
based on the Circus family of languages, which comprises
constructs from Z, CSP, Timed CSP, and object-orientation.
We cater for the specification of timing requirements, and
their decomposition towards the structure of missions and
event handlers of SCJ. We also consider the integrated re-
finement of value-based specifications into class-based de-
signs using SCJ scoped memory areas. We present a refine-
ment strategy, and a Circus variant that captures the essence
of the SCJ paradigm independently from Java.

Categories and Subject Descriptors
G.4 [Mathematical Software]: Verification

1. INTRODUCTION
An international effort has produced a specification for

a high-integrity real-time version of Java: Safety-Critical
Java (SCJ) [11]. SCJ is based on a subset of Java augmented
by the Real-Time Specification for Java (RTSJ) [25], which
supplements Java’s garbage-collected heap memory model
with support for memory regions [23] called memory areas.
The execution model of an SCJ program is based on mis-
sions and event handlers. Additionally, SCJ restricts the
RTSJ memory model to prohibit use of the heap, and de-
fine a policy for the use of memory areas. The SCJ design
favours certification. The plan for the standardisation work
includes the production of a reference virtual machine, but,
of course, no particular design technique.
Circus is a family of languages for refinement [2] based on a

flexible combination of elements from Z [28], CSP [19], and
imperative commands from Morgan’s calculus [12]. Vari-
ants and extensions of Circus include Circus Time [22], which
provides facilities from Timed CSP [17], and OhCircus [3],
which is based on the Java approach to object-orientation.
The semantics of the Circus languages is based on the Unify-
ing Theories of Programming (UTP) [8]. This is a relational
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framework that supports refinement-based reasoning about
a variety of paradigms. It has been used to define object-
oriented [20] and time [22] constructs, for instance.

We have recently presented a Circus-based formalisation of
the mission execution model of SCJ [30], and a UTP theory
for the memory model [4]. SCJ is organised in Levels (0,
1, and 2), with a decreasing amount of restrictions to the
mission execution model. Our work is on SCJ Level 1, which
corresponds roughly to the Ravenscar profile for Ada [1].

Our existing formalisations of SCJ can be used to justify
the soundness of verification techniques for SCJ. What we
present here is a proposal for a refinement strategy that
builds on these results on SCJ formal semantics. We also
rely on previous results on Circus variants and UTP theories
for object-orientation, time, and references [22, 7, 20, 3].

We propose an approach for stepwise development of SCJ
programs based on abstract models that do not consider the
details of either the SCJ mission or memory models. Four
Circus specifications characterise the development steps: we
call them anchors, as they identify intermediate targets for
refinement, and the design aspects treated in each step.

Each anchor is written using a different combination of
the Circus family of notations. The first anchor is the high-
level specification. The last is so close to an SCJ program
as to enable automatic code generation. It is written in
SCJ-Circus, a new version of Circus extended with constructs
that correspond to the components of the SCJ programming
paradigm. They are syntactic abbreviations for definitions
that use a combination of existing variants of Circus to cater
for time, object-orientation, and the SCJ memory model.

In the next section, we present SCJ, the Circus family, the
UTP, and our formalisations of the SCJ mission and memory
models. Section 3 presents our refinement strategy. The
applications of the last anchor are discussed in Section 4,
and a more general discussion of the refinement strategy is
in Section 5. We draw our conclusions in Section 6.

2. PRELIMINARIES
We present now the background to our work.

2.1 Safety-Critical Java
At SCJ Level 1, missions are executed in sequential order.

An SCJ mission consists of a set of handlers that are either
released periodically, or respond to aperiodic events. They
are executed in parallel by a priority-based scheduler, and
access to shared data has to be performed by synchronized

methods and statement blocks to avoid race conditions. A
mission normally continues to execute until one of its han-



dlers requests termination, upon which a cleanup phase is
performed and the next mission is prepared. Mission execu-
tion is controlled by an application-defined sequencer.
The sequencer and the missions are implemented by sub-

classes of the Mission and MissionSequencer abstract class-
es of the SCJ API. A concrete subclass of MissionSequencer
implements the getNextMission()method to determine the
next mission to be run. A concrete subclass of Mission over-
rides methods that initialise the handlers of that mission
and carry out cleanup tasks. Event handlers are derived
from one of the abstract classes AperiodicEventHandler,
AperiodicLongEventHandler, or PeriodicEventHandler.
They override the handleAsyncEvent() method to provide
the code that is executed when the handler is released. The
entry point of a program is an implementation of the Safelet
interface, which creates the mission sequencer.
Each component of this programming model has an asso-

ciated memory area, whose lifetime is that of the component.
An immortal area holds objects throughout the lifetime of
the program: they are never deallocated. A mission area is
cleared out at the end of each mission. Each release of a
handler has an associated per-release memory area, cleared
out at the end of the release. Additionally, during a release,
a stack of temporary private memory areas can be used.
An account of the mission model in Circus, and of the

memory model in the UTP, are briefly presented below.

2.2 Circus and the SCJ mission model
The key elements of Circus specifications are processes.

They interact with the environment through atomic and in-
stantaneous events: either simple synchronisations, or input
and output communications. Unlike CSP, a Circus process
also encapsulates local state, hidden to other processes.
A process specification defines its state as a Z schema. Lo-

cal actions operate on the state, while possibly interacting
with the environment. The action notation is a mixture of
Z’s schema calculus, standard CSP constructs, and impera-
tive commands from Morgan’s refinement calculus. A main
action at the end specifies the process behaviour.
An example of a process BReqs is in Figure 3. There,

the state is defined by a schema APState whose single com-
ponent is a collection col of type P char: it holds a set of
characters. Init and Insert are local actions specified by Z
operation schemas. Init defines the initial value of col to be
the empty set. Insert adds an input x? to col .
Additionally, InsertS , BReq1, BReq2 and BReq3 are ac-

tions that use (Timed) CSP elements, including synchronisa-
tions (c−→A), input (c ? x−→A(x )) and output (c ! v−→A)
prefixes, external choice (@), and recursion (µ X • A(X )).
Like in CSP, interactions (that is, synchronisations, inputs,
and outputs) are written as part of a prefixing operator
(−→). For example, in BReq2, we have a synchronisation on
out prefixing an action, which is itself another prefixing with
a synchronisation on enable. We, therefore, have that BReq2
is ready to synchronise on out , then on enable, then accept
an input x through the channel send , and finally recurse.
The main action (at the end after the •) involves two

parallelims. A parallel composition (A1 J ns1 | cs | ns2 K A2)
of actions is parametrised by a synchronisation set cs and
two disjoint sets of variables ns1 and ns2 that the parallel
actions may modify. In (BReq2 J{| send |}K BReq3 ) we omit
the name sets, as neither BReq2 nor BReq3 modify col ; they
synchronise on the channel send . This parallel action is,

however, itself in parallel with BReq1, which modifies col .
Like actions, we can also combine processes in Circus using
the CSP operators, for example, sequentially (P1; P2), in
parallel (P1 J cs K P2) or in interleaving (P1 9 P2).

In OhCircus, we also have classes; an example is in Fig-
ure 4. These, like processes, have a state (specified in Z).
Behaviour, however, is not specified by actions, but meth-
ods: data operations over the state, specified using either Z
or the guarded command language. In the example, meth-
ods are synchronised, so that there are never two methods
being executed in parallel with the same object as a target.

Circus Time includes also constructs in the style of Timed
CSP. In a prefixing c@t −→ A, the variable t records the
number of time units during which the communication c is
available. In BReq1, for instance, in?x@t −→ Skip records
the amount of time since the input through in is offered until
it is taken and assigned to x . An action wait d terminates
after d time units; also, wait t1 . . t2 is a nondeterministic
choice of a wait period d between t1 and t2. A timeout

action A1

d

⊲ A2 preempts the execution of A1 if it does
not engage in some interaction in d time units, in which
case the action A2 takes over. Finally, we have two extra
deadline operators: A◮d asserts that A terminates within
d times units, and A◭d asserts that A starts (via a visible
interaction) within d time units. Data operations do not
take time: any time properties need to be explicitly defined.

We have defined a Circus modelling pattern that captures
the SCJ framework behaviour, and also allows us to describe
particular applications [30]. An overview of this pattern
is in Figure 1. Here, we find the main components of the
SCJ mission model: Safelet , MissionSequencer , Missions,
AperiodicHandler , and PeriodicHandler . The overall spec-
ification of the system is their parallel composition. Each
of them is specified as a process obtained by the parallel
composition of a generic process (FW ) that captures the
SCJ framework behaviour, and an application-specific pro-
cess (App) that models a class that implements the compo-
nent. There is a process for each mission and event handler.

This Circus model of an SCJ program provides a seman-
tics for both the application and the virtual machine that
executes it. It is the underlying model of the most concrete
anchor of our refinement strategy (the P model in Figure 2).

2.3 UTP and the SCJ memory model
The UTP is part of a research agenda to understand the

relationship between programming theories. Programming
languages can be grouped by computational paradigm. An
alternative classification treats each paradigm at different
levels of abstraction, relating each computational model to
an implementation technology. A final classification focuses
on the method of presentation of the language definitions: de-
notational, algebraic, or operational. The UTP uses all three
ways of classifying programming theories.

As well as providing an arena in which to study existing
languages, the UTP can be used to define new ones. Having
identified the major programming constructs, we can com-
pose those we need in designing a new language. It is as
though we were walking down the aisle of the theory super-
market, shopping for those features we need, confident that
they can be plugged together to do what we want.

Each UTP theory is characterised by three things. The
first is its alphabet: the set of observational variables of the
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VŴ
[)
)[
46
W_
5

`a��������	
����

bc�&!d�&e �U"#

'(�U%Qe%Td�&e �U'((

fghijkglmgn

'(�U%Qe%Td�&e �Uo �PP

pqq��q���� r��� stu���

)+
/2
+W
v/
6
V0
*2
]v

)+
4
-
Wv
/6
V0
*2
]v

V4
6*
Wv
/6
V0
*2
]v

wx
yz
{w
y|
}~
w�
�
�|
��

)+
4
-
Wv
/6
V0
*2
)

2*
X
Y*
)+
�*
2̂
1
*+
]̂

2*
X
Y*
)+
�
*2̂
.
/0
0]̂

)*
6
)4
2W
�

)*
6
)4
2W
�

bc�&!d�&e �U"#

��U%Qe%Td�&e �U'((

��U%Qe%Td�&e �Uo �PP

pqq��q���� r��� stu���

fghijkglmgn

������������� � �

������������ � �

������������ � �

�����������������

����������������

�����������������

���������� � � �tu

¡¢g£¤jkgi¥¦nikg¥

§*
+̈
*©
+ª
[)
)[
4
6
.
/0
0

§
*+̈
*©
+ª
[)
)[
46
1
*+
]̂

*6
+*
2W
V
[)
-
/+
Zv

0*
/«
*W
V
[)
-
/+
Zv

¬

/6
V0
*2
®6
[+
]4
¯
°

/V
V
Wv
/6
V0
*2
]v

/Z
+Y
/+
4
2W
�

/Z
+Y
/+
4
2W
�

*6
+*
2W
V
[)
-
/+
Zv

0*
/«
*W
V
[)
-
/+
Zv

Figure 1: Circus-based model of an SCJ program

theory. The second is its signature: the syntax used to de-
note elements of the theory. The third is a set of healthiness
conditions that determine membership of the theory.
A theory recently presented formalises the SCJ memory

model [4]. It has an alphabet variable for each memory area.
In the case of the immortal , mission, and per-release (perR)
areas, they associate references to object-values. In the case
of a temporary private memory area (tPriv), we have a stack
of such functions. Healthiness conditions guarantee, for in-
stance, that objects cannot be deallocated from immortal .
Our structural model of SCJ memory areas is connected to

a theory of object references [7] for pointers and hierarchical
addressing as created by data types with recursive records.
This theory has three observational variables: A, a set of hi-
erarchical addresses; V , a partial function from addresses to
values; and S , an equivalence relation on addresses. For a
particular program, A describes all the legal names that can
be constructed: all variables and field accesses. V maps the
addresses of primitive (non-object) variables or fields to their
values. Finally, S relates addresses that share a common lo-
cation. Healthiness conditions guarantee, for example, that
A is prefix closed (if a.b.c is valid, then so is a.b, and so on).
Our addition of a deadline operator to the Circus Time

model in [22] is also relevant when reasoning about SCJ
programs. It is similar to operators in existing process alge-
bras and temporal logic [21, 9, 16]; we adopt a similar idea
to that in [9]: failure to meet a deadline results in infeasi-
bility in the model of the program. A deadline is viewed as
an assertion for static analysis [26, 24]; it is used to identify
timing paths and to inform a schedulability analysis. If the
deadline cannot be guaranteed, the program is rejected.
In each step of our refinement strategy, we use a dif-

ferent variant of Circus, and its underlying UTP theory.
The variant used in SCJ-Circus is built from the following

missions
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Figure 2: Our approach to development and verifi-

cation

items in the UTP shopping-cart: nondeterministic impera-
tive programming with specifications (based on Z) [27]; reac-
tive processes with concurrency and communication (based
on CSP) [15]; object orientation, with classes and inher-
itance (based OhCircus) [20]; discrete real-time (based on
Circus Time) [22, 24]; and an SCJ memory model [4]. The
UTP agenda is far from complete, so some of these theories
need to be brought to maturity and linked together.

3. REFINEMENT STRATEGY
In this section, we describe the steps of the refinement ap-

proach that we propose. Figure 2 shows the four Anchors A,
M, E, and S, and other artefacts mentioned in the next sec-
tion. The anchors are all written using different subsets and
versions of Circus. The common UTP model of the Circus



process BReqs =̂ begin

state APState == [col : P char]

Init == [APState ′ | col ′ = ∅]

Insert == [∆APState; x? : char | col ′ = col ∪ {x?}]

InsertS(w) =̂ (wait 0..w ; Insert) @ (send !(# col)@t −→ InsertS(w − t))

BReq1 =̂ (in?x@t −→ InsertS(100− t) @ send !(# col)−→ Skip) ; BReq1

BReq2 =̂ out −→ enable −→ send?x −→ BReq2

BReq3 =̂ send?x −→ disable −→ BReq3

• wait 0 . . 3 ; Init ; (BReq1 J {col} | {| send |} | {} K (BReq2 J {| send |} K BReq3 ) )
end

process TReqs =̂ begin

TReq1 =̂ ((in?x −→ Skip)◮5 9 wait 100) ; TReq1

TReq2 =̂ out −→wait 0 . . 7 ; enable −→ (disable −→ Skip)◮ 15 ; TReq2

• TReq1 9 TReq2
end

system AProtocol =̂ BReqs J {| in, out , enable, disable |} K TReqs

Figure 3: Protocol: Anchor A

variants makes it possible to establish a formal connection
between the anchors. It is the objective of the development
strategy that we present to guarantee that anchors are re-
lated by refinement (⊑) as suggested in Figure 2. As an
example, we use a simple protocol, which repeatedly inputs
characters, and uses a serial line to output, when requested,
the number of different inputs received.

3.1 Anchor A: abstract model
In this anchor, we use the basic Circus notation and Cir-

cus Time, including deadline operators. In other words, we
basically use the constructs of Z, CSP, Timed CSP, and Mor-
gan’s refinement calculus. Crucially, nothing is said about
classes, or objects and their allocation. An A anchor de-
fines the interaction pattern of the system in the style of
CSP. For that, it uses abstract data types in the style of
Z. Parallelism is used as a way of combining (conjoining)
requirements, rather than describing a concurrent design.
The A anchor for our example is in Figure 3. A first pro-

cess BReqs specifies the data and the interactions of the sys-
tem, that is, its behavioural requirements. Another process,
TReqs, defines the timing requirements. They are composed
in parallel to define the system, AProtocol here.
The channel in is used to input characters, and out to

request an output: the number of different characters that
have been input (through in) so far. A synchronisation on
enable is used to enable a serial line for output; similarly,
synchronisation on disable releases the line connection. The
channel send is used to provide the output over the line.
The process AProtocol that defines the system is distin-

guished with the keyword system; just like process, it in-
troduces a Circus process. We use system to emphasise its
role in specifying the behaviour of the system to be imple-
mented. Semantically, there is no distinction to process.
There are three behavioural requirements BReq1, BReq2,

and BReq3; each is specified by a separate recursion. They

are composed in parallel in the main action to specify that
the system must satisfy all requirements. BReq1 defines
that the value x input in the communication in?x must be
inserted in the state collection, and that, when requested,
the size of the collection is to be output through send . The
action InsertS defines how the data operation Insert is used.
The parameter w of InsertS determines the amount of time
that Insert can take. It can be up to 100 − t time units,
where t is the time between the offer to input, and the ac-
tual arrival of the input. Moreover, InsertS specifies that, if
before Insert concludes, there is a need to send information,
it must be done, but that decreases the amount of time w

available for Insert . (Since wait 0 . . w is a timing property
related to amount of time that a data operation may take,
it is specified in BReqs, rather than TReqs.)

In BReq2, it is defined that, if there is a request for output,
then we must enable the line, and output via send . BReq3
states that once the data is sent, the line must be disabled.

The main action that specifies the behaviour of AProtocol

starts with a wait of up to 3 time units, to reflect the fact
that the system may take some time to initialise and start
accepting events. This is followed by the data initialisation
operation Init , and the parallelism that conjoins the three
behavioural requirements BReq1, BReq2, and BReq3.

The process TReqs introduces two timing restrictions that
are interleaved (9): no need to synchronise. TReq1 states
that the input must be read within 5 time units (◮ 5), and
that in total 100 time units (wait 100) must be elapsed be-
fore an input is taken again. TReq2 states that if an output
is requested, then after at most 7 time units, the system
should ask for the line to be enabled. Moreover, once the
line is enabled, it cannot be held for more than 15 time units.

The variables col and x used in the UTP theories that de-
fine the main action of BReqs, for instance, are specification
variables. They denote values, not memory locations.



class List =̂
state LState == [val : char; next : List ; empty : Bool | empty = true ⇔ next = null ]

initial Init == [LState ′ | empty ′ = true]

synchronized public insert

∆LState; x? : char

let col == self .elems(); col ′ == self ′.elems() • col ′ = col ∪ {x?}

logical elems =̂ res col : P char •
if empty = true −→ col := ∅

8 empty = false −→ col := next .elems() ∪ {val}
fi

synchronized public size == [ΞLState; s! : num | let col == self .elems() • s! = # col ]

end

process MBReqs =̂ begin

state MPState == [l : List ]

Init =̂ (l := newList)

InsertS(w) =̂ (wait 0..w ; l .insert(x )) @ (send !(l .size())@t −→ InsertS(w − t))

BReq1 =̂ (in?x@t −→ InsertS(100− t) @ send !(l .size())−→ Skip) ; BReq1
. . .

Figure 4: Protocol: Anchor M

3.2 Anchor M: memory allocation
In this step, the target is an M anchor, which can use

classes and objects. The object-oriented constructs are those
of OhCircus. A variable of a class type denotes a reference
to an object, and a variable of a Z type denotes a value.
For our example, an M anchor is sketched in Figure 4. The
process MBReqs is a refinement of BReqs. It implements col
as an object of a class List . The Z data operations of the A

anchor are implemented by methods of List .
Like in [3], we use data refinement to replace Z data types

with class types. Since data refinement preserves the struc-
ture of actions, this affects just the data operations. In
Figure 4, we show the definitions of BReq1 and InsertS in
MBReqs; they are changed because they involve data oper-
ations. All other actions and processes from the A anchor
are kept unchanged, and are therefore omitted in Figure 4.
In List , the method elems is logical: it does not need

to be provided in the final implementation, but is used in
the specification. With the use of elems, the specifications
of insert and size are basically those of the corresponding Z
operations. The public methods insert and size are declared
to be synchronized; this follows the SCJ paradigm.
The UTP theory for the Circus language used in this step

includes a combination of those in [20, 7]. A declaration of
a variable of a class type, like l or next , enriches the set of
addresses (in A). An assignment l := newList , for instance,
also enriches A. The memory model here is very much that
of Java, where memory deallocation is unspecified.

3.3 Anchor E: execution model
The objective of this step is to introduce the parallel de-

sign of missions and handlers. It has four phases. The first,
CP, removes the parallelism used in the A anchor to spec-
ify requirements. The second, SH, defines how variables are
shared between missions and handlers. The third, MH, in-

troduces the sequences and parallelisms that reflect the ar-
chitecture of the missions and handlers. The final Phase AR

uses algorithmic refinement to derive the implementation of
the methods and handling routines.

3.3.1 PhaseCP: collapse parallelism
In the CP phase, we reduce the parallelism of recursions

in the M (and A) anchor to a single recursion. As men-
tioned before, parallelism is used in an A anchor to conjoin
requirements, not to model concurrency. In this phase, we
eliminate that parallelism, which is convenient only to spec-
ify requirements. What we obtain is a sequential account of
the specification that is useful as a normalised starting point
to introduce the concurrent design of the program.

The result of this phase for our example is sketched in
Figure 5; we name the refined system process EProtocol .
After the initialisation, the behaviour of EProtocol is given
by the action InPending(0, 5), whose parameters t and d

are the time since the start of the in cycle, and the deadline
on the communication through in. InPending(t , d) defines
that, at the beginning of the cycle, a communication through
either in or out is possible. After an input in?x@u, the
behaviour is defined by AfterInPinsert(t+u, 100−(t+u), x );
and after a request out@u, by InAfterOut(t + u, d − u, 7).

AfterInPinsert takes as parameters the time t since the
start of the in cycle, and the amount of time wins avail-
able to insert the third parameter x in the list. An internal

choice (⊓) defines the amount of time d actually taken.

Before d time units have elapsed, AfterInPinsert offers a
synchronisation on out ; if it happens, its behaviour is that
of AfterOutPinsert . If d time units are over before a syn-
chronisation on out , a time out ensures that the insertion is
completed, and the behaviour is defined by AfterIn.

For conciseness, in Figure 5 we omit the definitions of
InAfterOut , AfterOutPinsert , and AfterIn, and of the other



system EProtocol =̂ begin

state MPState == [l : List ]

Init =̂ (l := newList)

InPending(t , d) =̂ (in?x@u −→AfterInPinsert(t + u, 100− (t + u), x ))◭d

@
out@u −→ InAfterOut(t + u, d − u, 7)

AfterInPinsert(t ,wins, x ) =̂

⊓ d : 0 . . wins • (out@u −→AfterOutPinsert(t + u, d − u, 7, x ))
d

⊲ l .insert(x ); AfterIn(t + d)

. . .

• wait 0 . . 3 ; Init ; InPending(0, 5)
end

Figure 5: Protocol: phase CP

system EProtocol =̂ begin

. . .

AfterInPinsert(t ,wins, x ) =̂

⊓ d : 0 . . wins • (out@u −→AfterOutPinsert(t + u, d − u, 7, x ))
d

⊲ insertLC !x −→ insertLR−→AfterIn(t + d)

. . .

System =̂ InPending(0, 5)

MArea =̂





var l : List • wait 0 . . 3 ; Init ;

µ X •




insertLC?x −→ l .insert(x ) ; insertLR−→X

@
sizeLC −→ sizeLR!(l .size(x ))−→X













• (MArea J {| insertLC , insertLR, sizeLC , sizeLR |} K System) \ {| insertLC , insertLR, sizeLC , sizeLR |}
end

Figure 6: Protocol: phase SH

local actions that they use. They characterise a sort of state
machine that defines the behaviour of the system. Step laws
that evaluate the parallelism of actions can be used to calcu-
late the definition of InPending(t , d) and of the other local
actions. A collection of such laws are available for Circus.
Extra laws needed here are the subject of our future work.

3.3.2 PhaseSH: sharing
In the SH phase, we define the object-valued state compo-

nents that are to be allocated in immortal, in mission, and in
per-release or temporary private memory areas. Those to be
allocated in immortal memory remain as state components.
The components to be allocated in mission memory be-

come local to a new action MArea. To call their methods,
we use new channels. In our example, MArea models l , and
the state of EProtocol becomes empty (see Figure 6). For
each method, we have a channel to signal its call and an-
other to signal the return; in our example we have insertLC

and insertLR, for instance. Method calls are recursively
(µ) offered over and over again in choice, since they refer
to synchronised methods (see Figure 4). In Figure 6, we
show how the definition of an action like AfterInPinsert ,
which uses data in the mission memory, is changed to inter-
act with MArea. We omit the definition of the other actions
of EProtocol , some of which are affected in a similar way.

In the new main action, MArea is in parallel with another
new action System. It defines the behaviour of the system as
that specified by the main action obtained in Phase CP after
initialisation, but using the variables via MArea. If there
are variables to be allocated in the immortal area, they can
be modified by System directly, but not by MArea. In our
example, there are no such variables, so that the name sets
of the parallelism are empty and omitted.

The new method channels are internal, and so hidden (\).
Communications through them, therefore, do not take up
any time when System is ready to synchronise. This ensures
that they do not interfere on the timing properties of the
system. In the next step of refinement, they are refined to
commands that use the SCJ memory areas.

The state components to be allocated in per-release or
temporary private areas become local to System. (This re-
finement is trivial.) In the next step, they are further lo-
calised in new actions that represent the handlers.

3.3.3 PhaseMH: missions and handlers
In this phase, we introduce one action for each mission,

and one action for each handler. A refined System action
defines the sequence of missions. A mission action is the
parallel composition of the actions that model its handlers.
In our example, we have a single mission, with two handlers



system EProtocol =̂ begin

Handler1 =̂ ((in?x@t −→wait 0..(100− t) ; insertLC !x −→ insertLR−→ Skip)◭5 9 wait 100) ; Handler1

Handler2 =̂
out −→ sizeLC −→ sizeLR?x −→wait 0 . . 7 ; enable −→ (send !x −→ disable −→ Skip)◮ 15 ; Handler2

Mission =̂ (Handler1 9 Handler2)

System =̂ Mission

MArea =̂ . . .

• (MArea J {| insertLC , insertLR, sendLC , sendLR |} K System) \ {| insertLC , insertLR, sendLC , sendLR |}
end

Figure 7: Protocol: Anchor E

in interleaving; our E anchor is sketched in Figure 7. We
omit the definition of MArea, which is that in Figure 6.
Guidance and automation for this step of refinement has

to rely on the design decisions of how to decompose the
program into missions, and each mission into handlers. For
each handler, it is necessary to define the events that it
handles. If an event is the concern of more than one handler,
synchronisation between them is required.
The refinement laws to be used here are transformation

laws that introduce parallelism. They are part of the basic
Circus refinement strategy in [2, 3]. The techniques pre-
sented there are too general to allow automation. In the
case of the strategy that we propose here, automation is
possible due to the restricted architecture of missions.

3.3.4 PhaseAR: algorithmic refinement
In the final Phase AR, we mostly carry out algorithmic

refinement using [5]. In our case, we just need to refine
the Z schemas that specify the methods insert and size in
the class List (see Figure 4). The method elems is logical
and can be eliminated after the refinement of insert and size

removes the calls to it. If extra classes are needed to provide
a better design, the techniques in [3] can be used. It is in
this phase that the burden of proof lies.

3.4 Anchor S: Safety-Critical Java
An E anchor embeds the structure of missions and memory

areas. In this step, we produce the S anchor, which describes
them in terms of the framework presented in Section 2.2.
As already explained, the S anchor can be written using

the same Circus variant used in the M and E anchors, with
the addition only of constructs to use the SCJ memory ar-
eas. Instead, however, we use paragraphs for declaration of
safelets, mission sequencers, missions, and handlers. These
are just abbreviations, but they highlight the main com-
ponents of an SCJ program. Reasoning in this step can
be based on refinement laws for these constructs proved in
terms of laws for classes and processes.
The S anchor for our example is presented in Figure 8. It

includes a sequencer, a mission, and two handler para-
graphs. Although omitted in Figure 8, the classes are also
included; in our example, we have List .
Since the only List object l is in the MArea action in the

E anchor, the objects created in the insert method are allo-
cated in the mission memory. For that, we use assignments
of the form next := newmList , whose semantics is given

using the theory in [4]. The separation enforced by the SCJ
memory area model ensures that it is a correct implementa-
tion of the access policy defined by MArea.

As discussed in Section 2.2, a safelet, for example, is
described by the parallel composition of two Circus pro-
cesses: one representing the SCJ framework and another
representing the corresponding application class. The same
applies to the other components of the SCJ paradigm. The
paragraphs of an S anchor define these parallelisms, and the
complete Circus specification. The paragraph safelet, for
instance, defines the setUp and tearDown methods. In our
simple example, they are empty (modelled as Skip), and so
the safelet paragraph is omitted. The Circus specification
defined by the S anchor in Figure 8, along with the code of
an SCJ program that implements our protocol, is in [29].

In the sequencer paragraph, the state clause declares
the fields of the SCJ mission-sequencer class, which deter-
mine the state components of the mission-sequencer appli-
cation process. In the initial clause, we have the SCJ class
constructor, and so the initialisation operation of the pro-
cess. Finally, getNextMission defines the body of the get-
NextMissionmethod, and the corresponding Circus action in
the mission-sequencer process. The assignment to the spe-
cial variable ret defines the mission to be returned. (The
variable ret is an implicit result parameter of the method.)

For each mission, we have a mission paragraph. Its
state contains the field variables of the SCJ mission; it is
that of the corresponding mission application process. The
initialize clause defines the initialize method of the mis-
sion. It creates the mission fields, in our example, l , and
defines the handlers of the mission. These are declared by a
newHandler command, whose body uses the constructor
of a type defined by a handler paragraph. In our example,
we have two handlers defined using Handler1 and Handler2.
Finally, a mission paragraph defines the cleanup method.
In our example, the definition is trivial: Skip.

The definition of a Circus process that models a handler
depends on whether it is periodic or aperiodic. In our sim-
ple example, we have one periodic handler that handles one
input through the channel in. The second handler is ape-
riodic, and performs three synchronisations on out , enable,
and disable, and one output through send .

A periodic paragraph defines a periodic handler, whose
period is defined in the declaration of the paragraph. In
our example, it is 100. The state paragraph defines the
fields of the SCJ handler class. In our example, it is a refer-



sequencerMainMissionSequencer =̂ begin

state MainMissionSequencerState == [mission done : Bool ]
initial =̂ mission done := false

getNextMission =̂ if mission done = false −→mission done := true; ret := ProtocolMission

8 mission done = true −→ ret := null

fi
end

mission ProtocolMission =̂ begin

state MState == [l : List ]
initialize =̂ l := newList ; (newHandlerHandler1(l)) ; (newHandlerHandler2(l))
cleanup =̂ Skip

end

periodic(100) handler Handler1 =̂ begin

state Handler1 State == [l : List ]
initial Handler1 Init == [Handler1 State ′; list? : List | l ′ = list?]
handleAsyncEvent(x ,w) =̂ wait 0..w ; l .insert(x )
dispatch (in?x@t −→ handleAsyncEvent(x , 100− t))◭5

end

aperiodic handler Handler2 =̂ begin

state Handler2 State == [l : List ]
initial Handler2 Init == [Handler2 State ′; list? : List | l ′ = list?]
handleAsyncEvent =̂

var size : N • size := l .size() ; wait 0 . . 7 ; enable −→ (send ! size −→ disable −→ Skip)◮15
dispatch (out −→ handleAsyncEvent())

end

Figure 8: Sorter: Anchor S

ence to the list l in the mission area. The class constructor,
defined in the initial paragraph, takes it as a parameter.
The handler method handleAsyncEvent is captured by the
handleAsyncEvent paragraph. In our example, it is just
a call to the relevant method of List . The dispatch para-
graph captures the behaviour in each release of the han-
dler (typically using a call to handleAsyncEvent). In the
underlying Circus definition of the handler, we have a class
and an associated process that defines the communications,
and how the handler interacts with the SCJ framework. The
aperiodic paragraph is similar in structure.
In the safelet and sequencer paragraphs, use of new

leads to allocation in immortal memory, and in the mission

and initial paragraphs of a handler, to allocation in the
mission memory. In our example, l := newList in initialize

creates l in mission memory. In the handleAsyncEvent

and dispatch paragraphs, allocation occurs in the relevant
per-release memory by default. Use of the temporary private
memory areas has to be explicitly indicated.
Given its structure, it is simple to generate code from an

S anchor automatically. Other uses are discussed next.

4. FROM THE S ANCHOR
As said above, the semantics of an S anchor is a Circus-

based (and, therefore, UTP-based) specification: the Pmodel
in [30]. This means that we can Circus and the UTP to rea-
son about aspects of the program modelled by the S anchor.
Complementarily, it is possible to generate S models from

SCJ programs that follow an organised pattern of program-
ming. It requires, for example, the use of separate classes to
define the safelet, the mission sequencer, the missions, and
each of the handlers. As far as we can see, this does not im-

pose any serious practical restrictions. At the moment, how-
ever, examples of SCJ programs are few and far between, as
the technology has not yet reached maturity. An SCJ version
of the PapaBench (a real-time embedded systems bench-
mark) has been developed (d3s.mff.cuni.cz/~malohlava/
projects/jpapabench) and can provide a basis for further
experiments along with the examples in rtjava.blogspot.

com/2011/05/safety-critical-java-case-studies.html.
Generation of Smodels from programs can in itself be used

as a proof technique. For example, every program written in
the UTP theory for the SCJ memory model is memory safe.
So, any SCJ program that can be described using an Smodel
is memory safe. With a larger number of examples, it is also
possible to investigate refactoring strategies to enforce the
design patterns required for the automatic generation of S
models. At this stage, however, our purpose is to identify
good programming practice that facilitates reasoning.

Design patterns are at the heart of our proposed develop-
ment and verification approach. The constrained structure
of an S anchor guides our refinement strategy. Its detailed
account and proof of soundness, and its application to major
case studies, are our main challenges ahead.

Regarding time, our major concern is decomposition via
refinement. There are a number of works along this line.
Mukherjee et al.[13] have developed a framework consist-
ing of a real-time specification language (NewThink) based
on VDM-SL, an implementation language (NewSpeak) de-
signed for real-time safety-critical systems, and a collection
of rules for decomposing specifications into code. Specifica-
tions in NewThink are expressed using pre and postcondi-
tions with a time clause. As in our approach, correctness of
the decomposition is guaranteed by the rules. Their focus



is on sequential systems, but we believe that Circus rules
similar to theirs might be useful in our work.
Instead of decomposing time specifications into code, the

work in [14] supports decomposition of a system specified in
Duration Calculus into an untimed system communicating
with some timers. The idea of separating time aspects from
untimed behaviours might be also useful in reasoning about
time constraints when localising high-level requirements in
SCJ handlers during our refinement procedure.
Our refinement strategy is inspired by the work in [9],

in which time is introduced into Morgan’s calculus. The
advantage of this approach is that derivation of code from
specifications is similar to that for untimed specifications. In
our approach the requirements in the A anchor are localised
in the handlers in the E and S anchors. The S anchor is, in
this way, annotated with the machine-independent timing
requirements that every correct implementation (in a spe-
cific platform) needs to satisfy. Verifying that they do may
require, for instance, schedulability analysis.
This approach complements that in [6], where worst-case

timing analysis is carried out based on annotations and in-
formation about particular processors. While [9] has con-
centrated on a sequential language, for SCJ we need laws to
decompose the timing requirements over the parallel struc-
ture of missions and their handlers.
Finally, the framework components of the P model are a

high-level specification for an SCJ implementation. It can
be used either to facilitate the development of an SCJ im-
plementation or to aid in the proof of the correctness of an
existing implementation (for example, the Reference Imple-
mentation for SCJ [11] or the forthcoming Level 1 imple-
mentation for Open Safety Critical Java (ovmj.net/oscj)).
For that, we need to construct a Circus model of the API.

5. DISCUSSION
The technique proposed here is an idealised development

approach based on correctness by construction. Together
with its soundness justification, the technique provides a
solid programming theory for the SCJ paradigm. A num-
ber of additional practical issues can be addressed in that
context; they are part of our agenda for future work.
Programming with pointers (or references) is error-prone.

The chief culprit is aliasing, which happens when a mem-
ory location is addressed by more than one name. A write
access using one of these names implicitly modifies the val-
ues associated with all the aliases, and this makes reasoning
difficult. One solution is a holistic approach, in which we
keep control of every variable and memory location in the
program. If we develop the program in a top-down fashion,
with no use of libraries, as suggested so far, this is effective.
This, however, breaks down if we want to use library com-

ponents relying on their interfaces. As an example, we con-
sider a component for calculating the mean of a sequence of
numbers. Its abstract specification uses a sequence s with
two operations: one to add an element to the sequence, and
one to calculate the mean. Its implementation uses just two
memory locations to hold the sum of the numbers and the
size of the sequence. To reason about the system using the
interface of the component, it is important to say that the
storage used to implement s is not corrupted by anything
else in the system. We cannot, however, refer to sum and
size without breaking encapsulation, and giving up on mod-
ular reasoning. This degenerates into requiring a holistic

view. If, however, we do not mention the implementation’s
memory locations at all, then our reasoning is unsound in
the presence of aliasing. The problem is to control aliasing
without knowing which memory locations are being used.

Research to solve this problem is dominated by two ap-
proaches: separation logic and dynamic frames. Separation
logic is an axiomatic technique [18]. Dynamic frames [10],
on the other hand, is model oriented and fits in well with Cir-

cus. Dynamic frames are abstract variables whose values are
sets of memory locations; specifications determine the frame
required for the methods and how this changes at runtime.
The user of an abstract interface can rely on the implementa-
tion accessing only the locations in the interface’s frame, but
must guarantee to use a region of memory disjoint from that
frame. The SCJ memory model can be used to implement
this balance, making any sharing deliberate and explicit.

One of the advantages of Java is the availability of a wide
range of class libraries. They, however, present a challenge
both for our refinement strategy, as described above, and
for use with the SCJ memory model. Java libraries gen-
erally assume that memory allocation occurs on the heap,
and unused objects are garbage collected. Outside this con-
text, they are likely to generate errors. It is necessary to
determine how memory is used internally. Alternatively,
SCJ-aware libraries must be developed; they need to be con-
strained to be useable in any memory area.

To evaluate an approach to translate S anchors to SCJ
programs, we have analysed some of the larger SCJ case
studies using a tool. This revealed certain aspects that we
did not consider here, for instance, static methods and fields,
static and instance initialiser blocks, inheritance and inter-
faces, parts of the SCJ API such as Clocks and Time, and
the interaction with a library. For some of these points we
have already sketched out solutions. A compositional and
formalised translation strategy that can cope with all valid
SCJ programs that fulfil the structural requirements on the
class architecture is work in progress.

One important assumption of our technique is embedded
in CSP and Circus: the events identified in the A anchor can
be realised as atomic and virtually instantaneous interac-
tions with the program environment. In our example, for
instance, the aperiodic communication out is realised by an
interrupt that gets enabled and disabled. If this assump-
tion fails to hold, a separate argument of non-interference
needs to be made; that is likely to be convoluted and non-
compositional. We plan to propose a catalogue of program-
ming patterns that satisfy our assumption.

6. CONCLUSIONS
The goal of the SCJ specification is to enable the devel-

opment of safety-critical Java applications using a restricted
infrastructure, in such a way that the system is amenable to
certification under DO-178B, Level A, and other standards.
The assumption is that a small and highly predictable vir-
tual machine and libraries enhance certifiability and permit
meeting tight performance requirements.

It is our view that the SCJ specification embeds two el-
ements: a programming paradigm, and its implementation
on a Java-based platform. Our work identifies the novel
paradigm in the design of SCJ-Circus. It establishes a route
to generate programs that are guaranteed to satisfy the SCJ
specification. On the other hand, in following this route we
lose some of the generality afforded by writing such programs



directly, taking advantage of all facilities of Java retained in
SCJ, like inner classes, for example.
More experience with examples will tell us if and where

we need to generalise our theories and techniques. On the
other hand, patterns of specification and programming are
essential to enable automation of refinement, and generali-
sations come at the expense of automation. A compromise
needs to take into account scalability of the techniques, a
central issue to be further explored in our future work.
Our work addresses correctness in the sense of CSP (and

Circus): program safety (trace inclusion), liveness, and di-
vergence-freedom, with respect to an abstract specification.
We do not address, however, system safety and certification.
This more general concern involves correctness, but we need
to integrate our results in a certification approach.
We also do not address the issue of resources. There is

nothing in our refinement technique that favours one design
or another based on their use of memory or their perfor-
mance. For that, we need resource-aware programming the-
ories. They can be accommodated in the UTP, as discussed
in [8], but this topic has not been further developed yet.
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