
DOI 10.1007/s00165-012-0253-4
BCS © 2012
Formal Aspects of Computing

Formal Aspects
of Computing

The Safety-Critical Java memory model
formalised
Ana Cavalcanti, Andy Wellings and Jim Woodcock
Department of Computer Science, University of York, Deramore Lane, York YO10 5GH, UK

To Carroll Morgan, on his 60th birthday

Abstract. Safety-Critical Java (SCJ) is a version of Java for real-time programming, restricted to facilitate cer-
tification of implementations of safety-critical systems. Its development is the result of an international effort
involving experts from industry and academia. What we provide here is, as far as we know, the first formalisation
of the SCJ model of memory regions. We use Hoare and He’s unifying theories of programming (UTP), enabling
the integration of our theory with refinement models for object orientation and concurrency. In developing the
SCJ theory, we also make a contribution to UTP by providing a general theory of invariants (an instance of
which is used in the SCJ theory). The results presented here are a first essential ingredient to formalise the novel
programming paradigm embedded in SCJ, and enable the justification and development of formal reasoning
techniques based on refinement.

Keywords: Safety-Critical Java; Memory safety; Semantics; Unifying theories of programming; Integration;
Refinement

1. Introduction

Modern society is almost totally reliant on software-based infrastructure. This demands modelling and program-
ming languages and techniques that facilitate and ensure quality. Subsets of two languages have dominated high-
integrity real-time engineering. The first is Ada [Bar05], which provides good support through its Spark [Bar03]
and Ravenscar subsets [Bur99] and the Spark Examiner Toolset, but which has a limited community. The second
is C/C++ (see, for example [Hat95, MIS07]), which jointly have a much larger community, but whose safer subsets
lack support for formal development. In both cases, various modern programming features found useful in other
sectors of the software industry are left out on the grounds of safety.

An international community effort has produced a high-integrity real-time version of Java: Safety-Critical
Java (SCJ) [SCJDraft]. It achieves a compromise between the safety of Ada and the popularity of C/C++, and
provides an ambitious novel take on the combined safe use of object orientation and real-time programming.
SCJ lacks, however, a formal underpinning for its programming models. In this paper, we provide a formalisation
for its memory management model.

Correspondence and offprint requests to: J. Woodcock, E-mail: jim.woodcock@york.ac.uk

A. Cavalcanti et al.

Fig. 1. The internal architecture of the Java virtual machine (taken from [Ven07, Chapter 5])

SCJ is based on a subset of Java augmented by the real-time specification for Java (RTSJ) [Wel04]. In Java,
programmers need not be concerned with memory management. In contrast, in SCJ (and the RTSJ), a pro-
grammer must consider in which area to create objects according to their anticipated lifetime, and tools and
techniques are needed to ensure efficient use of memory and absence of run-time errors. In order to understand
the full implications of the SCJ memory model, it is necessary to appreciate the run-time data structures that are
maintained by a Java virtual machine—Fig. 1 shows its internal architecture. In the context of this paper, our
main concern is with the heap and the programming stacks.

All objects are placed on the heap, which is traditionally scanned by a garbage collector to remove any that
are unused, and so unreachable. Each thread of control has an associated stack that is used to store variables
that are local to methods. Variables and object fields can be of a primitive type (int, short, and so on) or of a
reference type. We ignore here all issues associated with native methods.

The RTSJ supplements Java’s garbage-collected heap memory model with support for memory regions [Ven07]
called memory areas. As with the Java heap, these regions are used to store dynamically created objects; variables
local to methods are still managed by the stacks associated with each thread of control.

SCJ restricts the RTSJ memory model to prohibit use of the heap. The RTSJ and SCJ both introduce two
new kinds of memory area: a collection of scoped memories and a single immortal memory. Objects allocated
in a scoped memory have a lifetime that is determined by the number of threads that are currently using that
scoped memory area. When there are no such threads, all the objects are collected. A program can have many
scoped memory areas and their use can be nested. In contrast, each program has only a single instance of immor-
tal memory, and objects created there have a lifespan equal to that of the program. Statically declared objects
and fields are created in immortal memory, as are objects created by static initialisers.

Currently, SCJ includes annotations that can be used to document programs, and enable static verification of
properties including memory safety (the avoidance of dangling references). The work in [TPV10] presents rules
for use of the annotations, and a tool that checks statically that these rules are followed. It is not at all trivial to
convince ourselves that the rules proposed and enforced by the tool achieve the level of memory safety claimed.

The Safety-Critical Java memory model formalised

Fig. 2. Safety critical mission phases (taken from [SCJDraft])

While we do not necessarily expect to find any problems, the formalisation of the memory model (and of other
aspects of the SCJ programming model) is essential for the justification of the soundness of such techniques.

Our first contribution is an informal description of the SCJ memory model that explains the rationale for
its design. (For a discussion of the design of the concurrency model, we refer to [WK11].) As a second con-
tribution, we provide a relational semantics for this model; it is based on Hoare and He’s unifying theories of
programming (UTP) [HH98]. Finally, we present a general UTP theory for operation and state invariants, which
we instantiate to capture in an elegant and concise way the properties of the SCJ structure of memory areas.

The UTP is a relational framework that supports refinement-based reasoning about a variety of paradigms.
It covers models for concurrent, functional and logic programming, for instance. It has also been used to define
constructs related to object-orientation [SCS06] and time [SCJS10]. By casting the SCJ memory model in UTP,
we pave the way for its integration with these theories, that cater for other, also very important, aspects of an SCJ
program.

In the next section, we present informally the SCJ memory model; an introduction to UTP is provided in
Sect. 3. Next, Sect. 4 presents a general UTP theory for program invariants. In Sect. 5, we instantiate those results
to formalise the SCJ memory model. We draw our conclusions in Sect. 8.

2. Safety-Critical Java memory model

SCJ recognises that safety-critical software varies considerably in complexity. At one end of the spectrum, the
application consists of a single thread executing a single function on a single processor with a simple timing con-
straint. At the other end, it is multithreaded, executing in multiple modes on multiple processors. Consequently,
there are three compliance levels (0–2) for SCJ programs and implementations. In this work, we are concerned
with Level 1, which, roughly, corresponds in complexity to the Ravenscar profile for Ada.

The SCJ programming model is based on the notion of missions, which are managed by a mission
sequencer (see Fig. 2). At Level 1, missions may be composed into sequences, but nested missions are prohibited.
A Level 1 mission consists of a bounded set of asynchronous event handlers (ASEHs), which can be considered
as being equivalent to real-time threads. Both periodic and aperiodic event handlers are supported: each handler
executes a sequence of releases that are either time triggered (periodic) or event triggered (aperiodic). Conse-
quently, an SCJ program is a concurrent program with threads of control for the main program, the mission
sequencer, and one for each of the ASEHs.

The main goal of the SCJ memory model is to support the disciplined use of dynamic memory management.
Traditionally, safety-critical systems do not allocate memory during the execution of a mission due to (a) the
error-prone nature of manual allocation and deallocation schemes (typified by malloc and free in C) that can
result in a violation of safe memory accesses due to dangling references, and (b) the complexity of automatic
memory deallocation schemes based on garbage collection (and resulting difficulty regarding certification).

The region-based approach of the RTSJ provides safer and more predictable support for dynamic memory
management, but the overall model is still complex. SCJ, consequently, constrains the use of its features: garbage
collection is not supported, and only a restricted version of the scoped memory model is provided.

Basically, the structure of the memory areas is fixed as shown in Fig. 3. Every thread of control in an SCJ
program has a default memory allocation context: the memory area in which objects created by the allocator (the
new operation) are placed. The main program’s thread of control has immortal memory as its default allocation
context. It is this thread that, for instance, creates the application’s mission sequencer and any objects that should
exist throughout the lifetime of the program, and places them in immortal memory.

A. Cavalcanti et al.

Fig. 3. SCJ memory model

The mission sequencer’s thread of control is then started with immortal memory as its default allocation con-
text. It is responsible for creating the mission memory, a scoped memory area that becomes the default allocation
context for a mission. There is no thread of control associated with a mission; instead, the mission sequencer’s
thread of control performs the mission initialisation. The ASEHs are created in mission memory during the
mission initialisation phase. Mission memory is cleared at the end of each mission, so that the memory can be
used for the next mission. Any objects that must remain across missions must be stored in immortal memory.

Each ASEH has an associated private “per-release” memory area, and this is the default memory allocation
context every time the ASEH is released. It is cleared at the end of each release, for reuse in the next release. Any
object that is required to live across releases must be placed in mission memory.

An ASEH can create a temporary, private, scoped-memory area and change its default allocation context to
the newly created area. More than one of these can be created and they are used in a LIFO manner. The stack
of private temporary memory areas arises from nested calls to a create method. As the inner calls are finished,
memory areas are popped off.

In the example shown in Fig. 3 there are therefore:

• Six thread-of-control stacks: one for the main program, one for the mission sequencer, and one for each
ASEH.

• A single immortal memory—accessible by all threads of control.

• A single mission memory—accessible by the ASEHs and the mission sequencer.

• One private per-release memory area for each ASEH—accessible only by the associated ASEH.

• A stack of temporary private scoped memory area for each ASEH—accessible only by the associated ASEH.

Hence, each ASEH can access the immortal and mission memory areas, and its associated per-release and private
memory areas. The mission sequencer can access only the mission and the immortal memory, and the main pro-
gram can access only the immortal memory. The thread stacks associated with the ASEHs, the mission sequencer,
and the main program can hold only references to objects in the memory areas that they are able to access.

The aim of this restricted model is to ensure that dangling references cannot occur, and that programs are ame-
nable to static analysis techniques that can determine the absence of run-time errors, such as illegal-assignment
errors. As already said, an assertion-based technique is presented in [TPV10].

The Safety-Critical Java memory model formalised

Fig. 4. Summary of SCJ memory model

Figure 3 illustrates the SCJ memory model; Fig. 4 summarises the SCJ memory areas and their properties; and
Sect. 5 formalises this model in UTP.

3. Unifying theories of programming

In UTP, relations are defined by predicates over an alphabet: a set of the names of observational variables that
record information about the behaviour of a program. In the theory of general relations, these include the vector
of programming variables v, and their dashed counterparts v′, with v used to refer to an initial observation of
the value of v, and v′ to a later observation. The set of undecorated (unprimed) variables in the alphabet αP
of a predicate P is called its input alphabet inαP, and the set of dashed variables is its output alphabet outαP.
A condition is a predicate whose alphabet includes only input variables.

Theories are characterised by their alphabet and by healthiness conditions defined by monotonic idempo-
tent functions on predicates. The theory contains all the predicates on the alphabet that are fixed points of the
healthiness conditions. As an example, we consider designs.

The general theory of relations in UTP cannot distinguish between terminating and nonterminating pro-
grams. The distinction is achieved in the subtheory of designs, which includes two extra boolean observational
variables to record the start and the termination of a program: ok and ok′. The monotonic idempotents used to
specify the healthiness conditions for designs are defined by the following fixed-point equations.

H1 P � ok ⇒ P

H2 P � P ; J where J �̂ (ok ⇒ ok′) ∧ v′ � v

Here the alphabet of P is {ok, ok′, v, v′}. If P is H1-healthy, then it makes no restrictions on the final value of
variables before it starts. If P is H2-healthy, then termination must be a possible outcome from every initial state.
The functional composition of H1 and H2 is named H.

A. Cavalcanti et al.

Every design D can be written in the form P � Q, where P is its precondition, and Q its postcondition; P � Q
is defined as ok ∧ P ⇒ ok′ ∧ Q. The set of relations constructed in this way is exactly the set fixed points of H.
Moreover, every design D can be written as ¬ D f � Dt, where f is the boolean false, t is true, and Db is the
predicate D[b/ok′] obtained by substituting b for ok′ in D.

Typically, a theory defines a number of programming operators of interest. Common operators like assign-
ment, sequence, and conditional, are defined for general relations. A conditional is written as P � b � Q; its
behaviour is (described by) P if the condition b holds, else it is defined by Q.

P � b � Q �̂ (b ∧ P) ∨ (¬b ∧ Q) where α(b) ⊆ α(P) � α(Q)

Sequence is relational composition.

P ; Q �̂ ∃w0 • P[w0/w′] ∧ Q[w0/w],where outα(P) � inα(Q)′ � w′

The relation P ; Q is defined by a quantification that relates the intermediate values of the variables. It is required
that outα(P) is equal to inα(Q)′, which is named w′. The sets w, w′, and w0 are used as lists that enumerate the
variables of w and the corresponding decorated variables in the same order.

A central concern of UTP is refinement. A program P is refined by a program Q, written P
 Q, if, and only
if, P ⇐ Q, for all possible values of the variables of the alphabet. The set of alphabetised predicates over a given
alphabet forms a complete lattice with this ordering. Recursion is modelled by weakest fixed-points.

The design that models skip, the program that terminates without changing any variable, is II , which is
defined as (true � v′ � v), where v is the list of programming variables in the alphabet. Interestingly, II is the
left identity of sequential composition, but not necessarily the right identity. This requires that the precondition
does not contain dashed variables, a property not adequate, for instance, in the theory of reactive designs used
as a concurrency model (for CSP).

A theory needs to be closed under the programming operators: they need to take healthy predicates to healthy
predicates, so that they can be used to define models compositionally. In the next section, we provide some general
results for the healthiness conditions of a theory of designs with invariants.

4. Invariants in UTP

In [HH98], designs are used to construct more general relations to model, for example, reactive programs. For
these, even in the presence of divergence, some properties hold; for instance, the history of previous interactions
is not affected. In [CHW06, HCW08], we take a similar approach in a theory for objects and sharing as available
in Java. Our theory captures essential physical properties of sharing; for instance, variables that share a memory
location have the same value.

On the other hand, when an SCJ program aborts, there is no guarantee that its restrictions on memory areas
are maintained. So we present our theory as a subset of the theory of designs. Other examples of design subtheo-
ries are presented in the line of work established in [He07], which provides UTP theories for BPEL-like languages,
with new forms of nontermination to handle exceptions. Here, we provide a general account of design subtheories
characterised by invariants and with the standard notion of termination.

It is in the spirit of UTP to define theories for particular programming features, and combine them to capture
more complex paradigms. We could conceivably treat the two issues of the memory structure of SCJ programs
and termination separately. We would then characterise a subtheory of relations using a healthiness condition
HSCJ, for instance, and then use the designs’ healthiness condition H to embed it in the theory of designs.

This is, however, not adequate. The design characterised by H(P), if P is an HSCJ-healthy predicate that
does not have ok and ok′ in its alphabet, is ¬ P � false. Its precondition considers the possibility of HSCJ not
holding (even if we are not in an abortive state), and, in this case, it is miraculous. What we need instead is a
theory that allows for the memory restrictions to be violated just in the case of nontermination, a situation from
which a program cannot recover.

In what follows, subtheories of designs are defined by healthiness conditions that either capture operation
invariants or invariants of a single state observation. In both cases, invariants are broken only by nontermination.
We use these general results later to characterise our theory for the SCJ memory model.

The Safety-Critical Java memory model formalised

4.1. Operation invariants

For an operation invariant defined by a predicate � (a binary relation on before and after states), the subthe-
ory of designs that satisfy this invariant is characterised by the healthiness condition OIH(operation-invariant
healthiness).

OIH(�) D � D ∧ (ok ∧ ¬ D f ⇒ �)

An OIH(�)-healthy design ensures that, when its precondition holds, so does �.

Theorem 4.1 OIH(�) is a monotonic idempotent function on designs.

Proof. First, we show that OIH(�)(D) is a design.

OIH(�)(D)

� (¬ D f � Dt) ∧ (ok ∧ ¬ D f ⇒ �) [property of designs and definition of OIH(�)]

� (ok ∧ ¬ D f ⇒ ok′ ∧ Dt) ∧ (ok ∧ ¬ D f ⇒ �) [definition]

� ¬ D f � Dt ∧ � [propositional calculus and definition of designs]

Since ok ∧ ¬ (¬ D f � Dt ∧ �)f � ok ∧ ¬ D f , then OIH(�) is idempotent. Finally, to establish monotonicity,
we consider designs D1 and D2 such that D1 ⇒ D2. That OIH(�)(D1) ⇒ OIH(�)(D2), follows from
¬ Df

2 ⇒ ¬ Df
1. �

We define the healthy identity IIOI (�) �̂ OIH(�)(II). For reflexive �, that is, for those such that, for every v,
�[v/v′], we have that IIOI (�) is the sequence left unit.

Theorem 4.2 If � is reflexive, IIOI (�) ; D � D, for every OIH(�)-healthy D.

Proof.

IIOI (�) ; D
� OIH(�)(II) ; OIH(�)(D) [definition of IIOI and D is OIH(�)-healthy]

� (true � v′ � v ∧ �) ; (¬ D f � Dt ∧ �) [Theorem 4.1]

� ¬ (v′ � v ∧ � ; D f) � v′ � v ∧ � ; Dt ∧ � [design sequence closure]

� ¬ (�[v/v′] ∧ D f) � �[v/v′] ∧ Dt ∧ � [sequence one-point rule]

� ¬ D f � Dt ∧ � [� reflexive]
� D [definition of design, Theorem 4.1, and D is OIH(�)-healthy]

�

IIOI (�) is not necessarily the right unit. As in the theory of general designs, this requires that the precondition
refers to no dashed variables.

Lemma 4.1 If � is reflexive, D ; IIOI (�) � (¬ ∃ v′ • D f � Dt ∧ �).

Proof.

D ; IIOI (�)
� OIH(�)(D) ; OIH(�)(II) [definition of IIOI and D is OIH(�)-healthy]

� (¬ D f � Dt ∧ �) ; (true � v′ � v ∧ �) [Theorem 4.1]

� ¬ (D f ; true) � Dt ∧ � ; v′ � v ∧ � [sequence design closure]

� ¬ ∃ v′ • D f � Dt ∧ � ; v′ � v ∧ � [relational calculus]

� ¬ ∃ v′ • D f � Dt ∧ � ∧ �[v′/v] [sequence one-point rule]

� ¬ ∃ v′ • D f � Dt ∧ � [� is reflexive]

�

A. Cavalcanti et al.

OIH(�) is closed with respect to conjunction, disjunction (which models nondeterminism) and conditional.
These are established by the following theorems.

Theorem 4.3 OIH(�) is closed with respect to conjunction.
Proof.

D1 ∧ D2

� OIH(�)(D1) ∧ OIH(�)(D2) [by D1 and D2 are OIH(�)-healthy]

� D1 ∧ (ok ∧ ¬ Df
1 ⇒ �) ∧ D2 ∧ (ok ∧ ¬ Df

2 ⇒ �) [definition of OIH(�)]

� D1 ∧ D2 ∧ ((ok ∧ ¬ Df
1) ∨ (ok ∧ ¬ Df

2) ⇒ �) [propositional calculus]

� D1 ∧ D2 ∧ (ok ∧ ¬ (D1 ∧ D2)f ⇒ �) [propositional calculus]
� OIH(�)(D1 ∧ D2) [definition of OIH(�)]

�

Theorem 4.4 OIH(�) is closed with respect to disjunction.
Proof.

D1 ∨ D2

� OIH(�)(D1) ∨ OIH(�)(D2) [Theorem 4.1]

� (¬ Df
1 � Dt

1 ∧ �) ∨ (¬ Df
2 � Dt

2 ∧ �) [definition of OIH(�)]

� (¬ Df
1 ∧ ¬ Df

2 � (Dt
1 ∧ �) ∨ (Dt

2 ∧ �)) [design disjunction closure]

� (¬ (Df
1 ∨ ¬ Df

2) � (Dt
1 ∨ Dt

2) ∧ �) [propositional calculus]
� OIH(�)(D1 ∨ D2) [Theorem 4.1]

�

Theorem 4.5 OIH(�) is closed with respect to conditional.
Proof.

D1 � b � D2

� OIH(�)(D1) � b � OIH(�)(D2) [D1 and D2 are OIH(�)-healthy]

� (¬ Df
1 � Dt

1 ∧ �) � b � (¬ Df
2 � Dt

2 ∧ �) [Theorem 4.1]

� (¬ Df
1 � b � ¬ Df

2) � (Dt
1 ∧ � � b � Dt

2 ∧ �) [design conditional closure]

� ¬ (Df
1 � b � Df

2) � (Dt
1 ∧ � � b � Dt

2 ∧ �) [conditional negation]

� ¬ (Df
1 � b � Df

2) � (Dt
1 � b � Dt

2) ∧ � [conditional conjunction]

� ¬ (Df
1 � bf � Df

2) � (Dt
1 � bt � Dt

2) ∧ � [ok′ not free in b]

� ¬ (D1 � b � D2)f � (D1 � b � D2)t ∧ � [substitution]
� OIH(�)(D1 � b � D2) [Theorem 4.1]

�

For OIH(�) to be closed with respect to sequence, we need � to be transitive, that is, (� ; �) ⇒ �. To prove
that, we need the lemma below; it confirms that the postcondition of P � Q is indeed Q.

Lemma 4.2 (P � Q)t � Q, provided ok ∧ P and ok′ is not free in P.

Proof.
(P � Q)t

� (ok ∧ P ⇒ ok′ ∧ Q)t [definition of designs]
� ok ∧ P ⇒ Q [ok′ is not free in P and propositional calculus]
Q [ok ∧ P and propositional calculus]

�

The Safety-Critical Java memory model formalised

Finally, the theorem below establishes closure with respect to sequence.
Theorem 4.6 If D1 and D2 are OIH(�)-healthy designs, and � is transitive, then D1 ; D2 is OIH(�)-healthy.
Proof.

D1 ; D2

� ¬ (D1 ; D2)f � (D1 ; D2)t [design property]

� ¬ (D1 ; D2)f � Dt
1 ; Dt

2 [design sequence postcondition]

� ¬ (D1 ; D2)f � Dt
1 ∧ � ; Dt

2 ∧ � [D1, D2 are OIH-healthy]

� ¬ (D1 ; D2)f � (Dt
1 ∧ � ; Dt

2 ∧ �) ∧ � [� transitive]

� ¬ (D1 ; D2)f � (Dt
1 ; Dt

2) ∧ � [D1, D2 are OIH-healthy]

� ¬ (D1 ; D2)f � (D1 ; D2)t ∧ � [design sequence postcondition]
� OIH(D1 ; D2) [Theorem 4.1]

�

The set of OIH(�)-healthy designs is a complete lattice, since it is the image of a monotonic idempotent health-
iness condition [HH98], so recursion can still be defined using weakest fixed-points. The bottom and top of the
lattice are the same as that for the lattice of designs: abort (that is, the design (false � true), which is equal to
(false � �)) and magic (true � false).

4.2. State invariants

For a state invariant defined by a condition ψ , the subtheory of designs whose input variables satisfy ψ is
characterised by the following healthiness condition, ISH (input-state healthiness).

ISH(ψ) D � D ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok′ ∧ Dt)

Theorem 4.7 ISH(ψ) is an idempotent function on designs.
Proof. First, we show that ISH(ψ)(D) is a design.

ISH(ψ)(D)

� (¬ D f � Dt) ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok′ ∧ Dt) [property of designs and definition of ISH(�)]

� (ok ∧ ¬ D f ⇒ ok′ ∧ Dt) ∨ (ok ∧ ¬ D f ∧ ψ ⇒ ok′ ∧ Dt) [definition]

� ¬ ok ∨ D f ∨ ¬ ψ ∨ ok′ ∧ Dt [propositional calculus]

� ¬ D f ∧ ψ � Dt [propositional calculus and definition of designs]

The arguments for idempotence and monotonicity are similar to those used in Theorem 4.1. �

We define the healthy identity IIIS(ψ) �̂ ISH(ψ)(II). It is indeed the left-unit of sequence; the proof of this
result is a simple consequence of the definitions of IIIS(ψ) and sequence, and Theorem 4.7 above.

Theorem 4.8 IIIS(ψ) ; D � D, for every ISH(ψ)-healthy D.
Proof.

IIIS(ψ) ; D
� ISH(ψ)(II) ; ISH(ψ)(D) [definition of IIIS(ψ) and D is ISH(ψ)-healthy]

� (ψ � v′ � v) ; (¬ D f ∧ ψ � Dt) [Theorem 4.7]

� ¬ (¬ ψ ; true) ∧ ¬ ((v′ � v) ; ¬ (¬ D f ∧ ψ)) � (v′ � v) ; Dt [sequence of designs]

� ψ ∧ ¬ (D f ∨ ¬ ψ) � Dt [predicate calculus]

� ¬ D f ∧ ψ � Dt [propositional calculus]
� ISH(ψ)(D) [Theorem 4.7]
D [D is ISH(ψ)-healthy]

�

A. Cavalcanti et al.

Again, right unit does not hold in all cases.

Theorem 4.9 D ; IIIS(ψ) � ¬ (∃ v′ • D f) ∧ ψ ∧ ¬ (Dt ; ¬ ψ) � Dt, for every ISH(ψ)-healthy D.

Proof.

D ; IIIS(ψ)
� ISH(ψ)(D) ; ISH(ψ)(II) [definition of IIIS(ψ) and D is ISH(ψ)-healthy]

� (¬ D f ∧ ψ � Dt) ; (ψ � v′ � v) [Theorem 4.7]

� ¬ ((D f ∨ ¬ ψ) ; true) ∧ ¬ (Dt ; ¬ ψ) � Dt ; (v′ � v) [sequence of designs]

� ¬ (∃ v′ • D f ∨ ¬ ψ) ∧ ¬ (Dt ; ¬ ψ) � ∃ v0 • Dt[v0/v′] ∧ v′ � v0 [sequence]

� ¬ (∃ v′ • D f) ∧ ψ ∧ ¬ (Dt ; ¬ ψ) � Dt [predicate calculus]

�

So, not only does the precondition have to have no dashed variables, but the postcondition cannot break the
invariant. The invariant ψ is assumed by all programs, including the identity. It aborts if the previous program
does not establish ψ .

To establish the result for conjunction, we need the following lemma, which shows us that the precondition
of a design P � Q is indeed P.

Lemma 4.3 ok ∧ ¬ (P � Q)f � ok ∧ P, provided ok′ is not free in P.

Proof.

ok ∧ ¬ (P � Q)f

� ok ∧ ¬ (ok ∧ P ⇒ ok′ ∧ Q)f [definition of designs]
� ok ∧ ¬ ¬ (ok ∧ P) [ok′ is not free in P and propositional calculus]
� ok ∧ P [propositional calculus]

�

ISH(ψ) is closed with respect to conjunction, disjunction, conditional, and sequence. This is established by
the following four theorems.

Theorem 4.10 ISH(ψ) is closed with respect to conjunction.

Proof.

D1 ∧ D2

� ISH(ψ)(D1) ∧ ISH(ψ)(D2) [by D1 and D2 are ISH(ψ)-healthy]

� (¬ Df
1 ∧ ψ � Dt

1) ∧ (¬ Df
2 ∧ ψ � Dt

2) [Theorem 4.7]

� ((¬ Df
1 ∧ ψ) ∨ (¬ Df

2 ∧ ψ) � (¬ Df
1 ∧ ψ ⇒ Dt

1) ∧ (¬ Df
2 ∧ ψ ⇒ Dt

2)) [conjunction of designs]

� ((¬ Df
1 ∨ ¬ Df

2) ∧ ψ � ψ ⇒ (¬ Df
1 ⇒ Dt

1) ∧ (¬ Df
2 ⇒ Dt

2)) [propositional calculus]

� ((¬ Df
1 ∨ ¬ Df

2) ∧ ψ � (¬ Df
1 ⇒ Dt

1) ∧ (¬ Df
2 ⇒ Dt

2)) [property of designs]

� ISH(ψ)((¬ Df
1 ∨ ¬ Df

2) � (¬ Df
1 ⇒ Dt

1) ∧ (¬ Df
2 ⇒ Dt

2)) [Theorem 4.7 and Lemma 4.3]
� ISH(ψ)(D1 ∧ D2) [conjunction of designs]

�

Theorem 4.11 ISH(ψ) is closed with respect to disjunction.

Proof.

D1 ∨ D2

� ISH(ψ)(D1) ∨ ISH(ψ)(D2) [by D1 and D2 are ISH(ψ)-healthy]

� (¬ Df
1 ∧ ψ � Dt

1) ∨ (¬ Df
2 ∧ ψ � Dt

2) [Theorem 4.7]

The Safety-Critical Java memory model formalised

� (¬ Df
1 ∧ ¬ Df

2 ∧ ψ � Dt
1 ∨ Dt

2) [disjunction of designs]

� ISH(ψ)(¬ Df
1 ∧ ¬ Df

2 � Dt
1 ∨ Dt

2) [Theorem 4.7]

� ISH(ψ)(¬ (D1 ∨ ¬ D2)f � (D1 ∨ D2)t) [propositional calculus]
� ISH(ψ)(D1 ∨ D2) [disjunction of designs]

�

Theorem 4.12 ISH(ψ) is closed with respect to conditional.

Proof.

D1 � b � D2

� ISH(ψ)(D1) � b � ISH(ψ)(D2) [D1 and D2 are ISH(�)-healthy]

� (¬ Df
1 ∧ ψ � Dt

1) � b � (¬ Df
2 ∧ ψ � Dt

2) [Theorem 4.7]

� ((¬ Df
1 ∧ ψ) � b � (¬ Df

2 ∧ ψ) � Dt
1 � b � Dt

2) [conditional of designs]

� ((¬ Df
1 � b � ¬ Df

2) ∧ ψ � Dt
1 � b � Dt

2) [propositional calculus]

� ISH(ψ)(¬ Df
1 � b � ¬ Df

2 � Dt
1 � b � Dt

2) [Theorem 4.7]

� ISH(ψ)((¬ D1 � b � ¬ D2)f � (D1 � b � D2)t) [propositional calculus]
� ISH(ψ)(D1 � b � D2) [conditional of designs]

�

Theorem 4.13 If D1 is an ISH(ψ)-healthy design, then D1 ; D2 is ISH(ψ)-healthy.

Proof.

D1 ; D2

� ISH(ψ)(D1) ; D2 [D1 is ISH(ψ)-healthy]

� (¬ Df
1 ∧ ψ � Dt

2) ; (¬ Df
2 � Dt

2) [Theorem 4.7]

� ¬ ((Df
1 ∨ ¬ ψ) ; true) ∧ ¬ (Dt

1 ; Df
2) � Dt

1 ; Dt
2 [sequence of designs]

� ¬ (¬ ψ ∨ (Df
1 ; true)) ∧ ¬ (Dt

1 ; Df
2) � Dt

1 ; Dt
2 [relational calculus, ψ is a condition]

� ψ ∧ ¬ (Df
1 ; true) ∧ ¬ (Dt

1 ; Df
2) � Dt

1 ; Dt
2 [propositional calculus]

� ISH(ψ)(¬ (Df
1 ; true) ∧ ¬ (Dt

1 ; Df
2) � Dt

1 ; Dt
2) [Theorem 4.7]

� ISH(ψ)((¬ Df
1 � Dt

2) ; (¬ Df
2 � Dt

2)) [design sequence]
� ISH(ψ)(D1 ; D2) [designs]

�

The bottom of the lattice that it defines is abort, but the top is (ψ � false). This is miraculous only whenψ holds.
The subtheory of designs whose output variables satisfy ψ ′ is characterised by the following healthiness con-

dition, OSH (output-state healthiness). The predicate ψ ′ is that obtained by substituting all output alphabet
variables for their input counterparts in ψ .

OSH(ψ) D � D ∧ (ok ∧ ¬ D f ∧ ψ ⇒ ψ ′)

We observe that OSH(ψ) can be defined as OIH(ψ ⇒ ψ ′), and that ψ ⇒ ψ ′ is reflexive and transitive. So,
it satisfies all the properties discussed in the previous section. Most importantly, as shown below, ISH(ψ) and
OSH(ψ) commute.

A. Cavalcanti et al.

Theorem 4.14 ISH(ψ) and OSH(ψ) commute.

Proof.

ISH(ψ) ◦ OSH(ψ)(D)
� ISH(ψ) ◦ OIH(ψ ⇒ ψ ′)(D) [observation: OSH(ψ) � OIH(ψ ⇒ ψ ′)]
� ISH(ψ)(¬ D f � Dt ∧ (ψ ⇒ ψ ′)) [Theorem 4.1]

� ¬ D f ∧ ψ � Dt ∧ (ψ ⇒ ψ ′) [Theorem 4.7]

� ¬ D f ∧ ψ � Dt ∧ ψ ′ [property of designs]

� OSH(ψ)(¬ D f ∧ ψ � Dt) [Theorem 4.1]
� OSH(ψ) ◦ ISH(ψ)(D) [Theorem 4.7]

�

As shown above, an ISH(ψ) and OSH(ψ)-healthy design D can be written as (¬ D f ∧ ψ � Dt ∧ ψ ′),
so that ψ is assumed and established. Since ISH(ψ) and OSH(ψ) are idempotent, by Theorem 4.14, so is
SIH(ψ) �̂ ISH(ψ) ◦ OSH(ψ) [HH98]; this is our healthiness condition for a theory with state invariant
ψ .

When healthiness functions C1 and C2 commute, then every predicate that is (C1 ◦ C2)-healthy is also C1
and C2-healthy.

Theorem 4.15 If C1 ◦ C2(P) � P, then C1(P) � P and C2(P) � P, provided C1 and C2 commute.

Proof.

C1

C1(P)
� C1(C1(C2(P))) [P is C1 ◦ C2-healthy]
� C1(C2(P)) [C1 is idempotent]
� P [P is C1 ◦ C2-healthy]

C2

C2(P)
� C2(C1(C2(P))) [P is C1 ◦ C2-healthy]
� C2(C2(C1(P))) [C1 ◦ C2 � C2 ◦ C1]
� C2(C1(P)) [C2 is idempotent]
� P [P is C1 ◦ C2-healthy and C1 ◦ C2 � C2 ◦ C1]

�

From this and the theorems above and in Sect. 4.1, we can conclude that SIH(ψ) distributes through conjunction,
disjunction, and conditional.

Theorem 4.16 For any operator op, and healthiness conditions C1 and C2 closed with respect to op, if they commute,
then C1 ◦ C2 is closed as well.

Proof.

P op Q
� C1(P op Q) [P and Q are C1-healthy (Theorem 4.15) and C1 is closed with respect to op]
� C1(C2(P op Q)) [P and Q are C2-healthy (Theorem 4.15) and C2 is closed with respect to op]
� C1 ◦ C2(P op Q) [function composition]

�

For operation and state invariants �1 and ψ2, OIH(�1) and SIH(ψ2) commute.

The Safety-Critical Java memory model formalised

Theorem 4.17 OIH(�1) and SIH(ψ2) commute.

Proof.

OIH(�1) ◦ SIH(ψ2)(D)

� OIH(�1)(¬ D f ∧ ψ2 � Dt ∧ ψ ′
2) [Theorem 4.14]

� ¬ D f ∧ ψ2 � Dt ∧ ψ ′
2 ∧ �1 [Theorem 4.1 and Lemmas 4.3 and 4.2]

� SIH(ψ2)(¬ D f � Dt ∧ �1) [Theorem 4.14 and Lemmas 4.3 and 4.2]
� SIH(�2) ◦ OIH(ψ1)(D) [Theorem 4.1]

�

So, using an argument similar to that above, we can conclude that a theory characterised by

IH(�1, ψ2) �̂ OIH(�1) ◦ SIH(ψ2)

is closed with respect to conjunction, disjunction, conditional, and sequence. The same applies to theories char-
acterised by two operation invariants �1 and �2; OIH(�1) and OIH(�2) commute, and define a theory with
invariant �1 ∧ �2. A similar result holds for state invariants ψ1 and ψ1. The UTP theory for the SCJ memory
model presented in the next section combines several operation and state invariants.

The identity of a IH(�1, ψ2) theory is IIIH (�1, ψ2) �̂ IH(�1, ψ2)(II). It is the left unit of sequence, but not
the right unit.

Theorem 4.18 If �1 is reflexive, IIIH (�1, ψ2) ; D � D, for every IH(�1, ψ2)-healthy D.

Proof.

IIIH (�1, ψ2) ; D
� IH(�1, ψ2)(II) ; IH(�1, ψ2)(D) [definition of IH(�1, ψ2)(II), D is IH(�1, ψ2)-healthy]

� (ψ2 � v′ � v ∧ ψ ′
2 ∧ �1) ; (¬ D f ∧ ψ2 � Dt ∧ ψ ′

2 ∧ �1) [Theorem 4.17]

�
⎛

⎝

ψ2 ∧ ¬ ((v′ � v ∧ ψ ′
2 ∧ �1) ; (D f ∨ ¬ ψ2))

�
(v′ � v ∧ ψ ′

2 ∧ �1) ; (Dt ∧ ψ ′
2 ∧ �1)

⎞

⎠ [sequence of designs]

�
⎛

⎝

ψ2 ∧ ¬ (ψ2 ∧ �1[v/v′] ∧ (D f ∨ ¬ ψ2))
�
ψ2 ∧ �1[v/v′] ∧ Dt ∧ ψ ′

2 ∧ �1

⎞

⎠ [sequence one-point rule, twice]

� ψ2 ∧ ¬ (ψ2 ∧ (D f ∨ ¬ ψ2)) � ψ2 ∧ Dt ∧ ψ ′
2 ∧ �1 [�1 is reflexive]

� ψ2 ∧ ¬ D f � Dt ∧ ψ ′
2 ∧ �1 [propositional calculus and designs]

� IH(�1, ψ2)(D) [Theorem 4.17]
� D [D is IH(�1, ψ2)-healthy]

�

Again, right unit does not hold in all cases.

Theorem 4.19 D ; IIIH (�1, ψ2) � ¬ (∃ v′ • D f) ∧ ψ ∧ ¬ (Dt ; ¬ ψ) � Dt, for every IH(�1, ψ2)-healthy D.

Proof.

D ; IIIH (�1, ψ2)
� IH(�1, ψ2)(D) ; IH(�1, ψ2)(II)

[definition of IIIH (�1, ψ2) and D is IH(�1, ψ2)-healthy]

� (¬ D f ∧ ψ2 � Dt ∧ ψ ′
2 ∧ �1) ; (ψ2 � v′ � v ∧ ψ ′

2 ∧ �1) [Theorem 4.17]

�
⎛

⎝

¬ ((D f ∨ ¬ ψ2) ; true) ∧ ¬ ((Dt ∧ ψ ′
2 ∧ �1) ; ¬ ψ2)

�
(Dt ∧ ψ ′

2 ∧ �1) ; (v′ � v ∧ ψ ′
2 ∧ �1)

⎞

⎠

[sequence of designs]

A. Cavalcanti et al.

�
⎛

⎝

¬ (∃ v′ • D f ∨ ¬ ψ2) ∧ ¬ (∃ v′ • Dt ∧ ψ ′
2 ∧ �1 ∧ ¬ ψ ′

2)
�
∃ v0 • Dt[v0/v′] ∧ ψ ′

2[v0/v′] ∧ �1[v0/v′] ∧ v′ � v0 ∧ ψ ′
2 ∧ �1[v0/v]

⎞

⎠

[sequence]

� ¬ (∃ v′ • D f ∨ ¬ ψ2) � Dt ∧ ψ ′
2 ∧ �1 ∧ �1[v′/v] [predicate calculus]

� ¬ (∃ v′ • D f) ∧ ψ2 � Dt ∧ ψ ′
2 ∧ �1 [�1 is reflexive]

�

The bottom of the lattice is abort, and the top is (ψ2 � false).

5. A theory for the Safety-Critical Java memory model

In this section, we consider first a theory that captures the structure of memory areas in SCJ. Afterwards, we
extend it to take into account the execution model of the missions, releases of the handlers, and the creation
of private temporary memory areas. This separation of concerns simplifies the presentation of our theory, and
allows the treatment of various aspects of the model independently.

Type definitions The elements of the stacks (for the program, mission sequencer, and handlers) are frames, which
define a context of execution for a method. To provide a model for a frame, we introduce the notion of a variable
name as just an element of the unspecified set VName, and of a reference, from the set Ref . We also define the set
of values as Value � PValue ∪ Ref , where PValue is the unspecified set of primitive values and the special value
null. With these, we can define Frame � VName �→ Value, so that a frame is a partial function associating the
names of the variables in scope to their values.

A function refsIn : Frame → F Ref defines the finite set of references (to objects in a memory area) in the
stack. It is defined as refsIn f � ran(f � Ref), using the range restriction operator �.

We identify a memory area with its contents; for simplicity, we do not capture issues related to size, although
this could be done by extending our model. Concretely, we define the set MAreaC � Ref �→ OValue of memory
contents, where OValue is the set of record (object) values: functions that associate fields to their values, that is,
OValue � VName �→ Value.

We also define two functions refsRes, refsIn : MAreaC → F Ref . For a memory area ma, the set refsRes ma
contains the references that identify objects that reside in ma. The references used in these objects (to refer to
other objects in the same or in other memory areas) are those in refsIn ma. Precisely, refsRes ma � dom ma, and
refsIn ma � ⋃

(ran(| (� Ref)(| ran ma |) |)). For a memory area ma (or more precisely, for the contents ma of a
memory area), ran ma gives its objects. By using relational image (| |) to apply the operator (� Ref) to all of
them, we project out all their fields with a primitive or null value. The ranges of these objects are the references
used in ma; distributed union provides a single set containing all of them.

In order to identify the handlers of a mission, we consider the set HName. It contains valid handler identifiers,
or names.

The alphabet of our theory includes eight extra observational variables defined below, and their dashed coun-
terparts, in addition to ok, ok′, and the programming variables (and their dashed counterparts). We have also ten
healthiness conditions, which are also specified and discussed in the sequel.

Alphabet First, we have the stacks pStack,msStack : stack Frame for the program and the mission sequencer.
The set handlers : F HName records the handlers of the current mission, and the variable

hStack : handlers → stack Frame

groups their stacks as a total function associating each handler to its stack.
To record the memory areas, we have first immortal,mission : MAreaC. The per-release memory areas are

grouped in perR : handlers → MAreaC. The temporary private memory areas are organised in a stack as recorded
in the alphabet variable tPriv : handlers → stack MAreaC. A simple model for a stack is, of course, a sequence,
whose last element is the top of the stack.

The Safety-Critical Java memory model formalised

A stacked temporary private memory area is called a parent in relation to all those areas of the same handler
that are stacked afterwards. More generally, the immortal memory area is the parent of the mission memory
area, which is a parent of all per-release memory areas. Additionally, the per-release memory area of a handler
is a parent of all its stacked temporary private memory areas.

Healthiness conditions We can only add object values to the immortal area. This is an operation invari-
ant, and gives rise to our first healthiness condition HSCJ1. To define it, we introduce a function
profile : MAreaC → (Ref �→ F VName). For a memory area ma, the function profile ma associates each
reference residing in ma with the set of fields of the object that it identifies in ma. This is the domain of the
function (in OValue) that defines that object. Formally, we have profile ma � {r : dom ma • r �→ dom(ma r) }.
Our healthiness condition HSCJ1 requires that the immortal memory is changed only by adding new references
to its profile. Existing references remain, and the structure of the objects to which they point (as captured by their
sets of field names) is preserved.

HSCJ1 �̂ OIH(profile immortal ⊆ profile immortal ′)
The operation invariant for HSCJ1 is reflexive and transitive, because ⊆ is.

The references in the program stack can target only objects in the immortal memory. This is specified by the
healthiness condition HSCJ2, which uses a lifted version of refsIn : stack Frame → F Ref that applies to stacks
of frames sf (instead of frames or memory areas). We can define it in terms of the version of refsIn for frames as
refsIn sf � ⋃(refsIn(| ran sf |)). The range of sf is a set of frames; we use relational image to apply refsIn to all of
them. The distributed union collects together all references occurring in all frames of sf .

HSCJ2 �̂ SIH(refsIn pStack ⊆ refsRes immortal)

Analogously, the references in the immortal memory can target only objects in the immortal memory itself. This
is the state invariant specified below.

HSCJ3 �̂ SIH(refsIn immortal ⊆ refsRes immortal)

Similarly, the references in the mission-sequencer stack and in the mission memory area are for objects
either in the immortal or in the mission memory areas. To capture this healthiness condition, we define
refsRes : F MAreaC → F Ref , for a set of memory areas mas as refsRes mas � ⋃

(refsRes(| mas |)). It col-
lects the references in each of the memory areas in mas.

HSCJ4 �̂ SIH(refsIn msStack ⊆ refsRes {immortal,mission})
HSCJ5 �̂ SIH(refsIn mission ⊆ refsRes {immortal,mission})

For each handler, the references in its stack are for objects in its own temporary private areas, in its own per-release
area, or in the mission or immortal memory.

HSCJ6 �̂ SIH

(∀ h : handlers •
refsIn (hStack h) ⊆

refsRes ({immortal,mission, perR h} ∪ ran(tPriv h))

)

For each handler, the references in its per-release memory area are for objects in that same area, or in the mission
or immortal memory areas.

HSCJ7 �̂ SIH
(∀ h : handlers •

refsIn (perR h) ⊆ refsRes{immortal,mission, perR h}
)

Finally, in a temporary private memory area of any handler, the references target objects that can be in the
immortal memory, in the mission memory, in the associated per-release memory for the same handler, in a parent
stacked area, or in that same temporary private memory area.

HSCJ8 �̂

SIH

(∀ h : handlers; i : 1 . . #(tPriv h) •
refsIn (tPriv h i) ⊆

refsRes({immortal,mission, perR h} ∪ {j : 1 . . i • tPriv h j})

)

We use #s to denote the size of the sequence (or stack) s.
As already said, private temporary memory areas are created by calls to a method create. For every handler,

therefore, the size of its frame stack is greater than the size of the stack of its temporary private memory areas.

HSCJ9 �̂ SIH(∀ h : handlers • #(hStack h) > #(tPriv h))

A. Cavalcanti et al.

Finally, the memory areas are disjoint in their use of the reference space.

HSCJ10 �̂
SIH(disjoint 〈refsRes immortal, refsRes mission〉 � seqPR perR � seqTP tPriv)

We use seqPR perR and seqTP tPriv to denote the sequences of sets of references residing in the per-release and
temporary private memory areas in perR and tPriv. Precisely, we have that #seqPR perR � #handlers and

∃b : (1 . . #handlers) �→ handlers •
∀ i : 1 . . #seqPR perR • seqPR perR i � refsRes (perR (b i))

We use A �→ B to refer to the set of bijective functions between A and B. Additionally, we define
seqTP tPriv � �/(seqS tPriv), to get the sequence of all sets of references residing in all memory areas
in all stacks in tPriv. In seqS tPriv, we have a sequence of sequences of sets of references. We define that
#seqS tPriv � #handlers and additionally

∃b : (1 . . #handlers) �→ handlers •
∀ i : 1 . . #seqS tPriv • seqS tPriv i � (tPriv (b i) o

9 refsRes)

We use (tPriv (b i) o
9 refsRes) to denote the composition of tPriv (b i) with the function refsRes. We observe that

tPriv (b i) is a stack of memory areas, and so a function from natural numbers to memory areas. By composing
this function with refsRes, we get a function from natural numbers to the sets of references residing in the memory
areas. Because tPriv (b i) is a sequence, so is tPriv (b i) o

9 refsRes. This is a sequence of sets of references. The
distributed concatenation of all such sequences (operator �/) defines seqTP tPriv.

Our theory contains the fixed points of the healthiness conditions above. They are the fixed points of HSCJ,
which we define as the composition of all the healthiness functions. With the results in Sect. 4, we conclude that
HSCJ is closed with respect to conjunction, disjunction, conditional, and sequence.

6. Programming variables and their values

Programming variables in the alphabet can be either specification or allocated variables. As the name suggests,
specification variables are used only to write abstract definitions of the behaviour of programs (or their compo-
nents). They model, for instance, inputs and outputs. Allocated variables, on the other hand, are included in one
of the frames of one of the stacks.

Our next three healthiness conditions require that the value of every allocated variable in the alphabet is in
accordance with what is recorded in the stacks. This is what links our mathematical account of a program, in terms
of the names of the variables in its alphabet, with the way those variables are represented as values in memory.
We have one healthiness condition for the program stack (HV1), one for the mission-sequencer stack (HV2), and
one for the handlers stacks (HV3).

To define these conditions, we use a function vars : stack Frame → F VName that characterises the set of
active variables according to a given stack. These are the variables in the domains of the frames:

vars sf � ⋃ dom(| ran sf |)
provided there are no redeclarations, that is, disjoint {i : 1 . . #sf • i �→ dom(sf i)}. (As usual, we assume that
variable names are not reused in declarations to avoid handling stacks of values for alphabet variables.)

The value of a variable vn (according to a stack sf and its associated memory areas mas) is characterised by
a set A of sequences of variable names, and a function V that associates some of these sequences to primitive
values. If the value associated with vn in sf is primitive or null, then 〈vn〉 is the only sequence in A. If, on the other
hand, the value of vn is a reference (to an object), then we also have all the (possibly infinite) extensions of 〈vn〉
that identify a field of that object, or a field of one of its fields, and so on. For example, for the variable z in the
stack s of Fig. 5, A contains only 〈z〉. In the case of x, we have 〈x〉, 〈x,m〉, 〈x, n〉, 〈x,m, u〉, and so on. For clarity,
in examples, we describe these sequences as z, x, x.m, x.n, x.m.u, and so on.

The function V maps sequences of variable names to values. The sequences describe addressing paths that
identify a variable or an object field, each of which contain a primitive or null value. V maps these paths, which
are names, to the values they contain. For instance, it maps the name z to 2, and it maps the path x.m.u to null.

The Safety-Critical Java memory model formalised

Fig. 5. Example memory configuration

This characterisation of values is the same used in [CHW06, HCW08], where we have defined a UTP theory for
the Java memory model that captures the structure of objects and sharing.

We introduce a dereferencing function to yield the values associated with a variable name, relative to a stack
and some memory areas. This function returns a pair: the first element is the set of all valid paths that start from
variable name; the second element is a mapping from those paths to particular values.

Formally, we define the value !(vn, sf ,mas) of a variable name vn according to a stack sf and associated
memory areas mas using the dereferencing function

! : VName × stack Frame × F MAreaC → P SName × (SName � �→ PValue)

specified as !(vn, sf ,mas) � (A(vn, sf ,mas),V (vn, sf ,mas)). Here, SName is the set of possibly infinite sequences
of variable names (from VName). The set SName � �→ PValue is that of the finite partial functions from SName
to PValue. The set A(vn, sf ,mas) is defined as shown below.

A(vn, sf ,mas) �
⎧

⎪

⎨

⎪

⎩

sn : SName |
(

head sn � vn ∧
let u �� sval(vn, sf) •

u ∈ PValue ∧ tail sn � 〈 〉 ∨ path(tail sn,
⋃

mas, u)

)

⎫

⎪

⎬

⎪

⎭

Here sval(vn, sf) � (
⋃

(ran sf)) vn is the value of vn as recorded in sf . The condition path(sn,ma, r) requires that
the sequence of variable names sn identifies a path in the memory area ma starting from the reference r. We use it
above to make sure that the extensions of 〈vn〉 are in accordance with the information in the memory areas mas.
With the assumption that they are disjoint, we consider

⋃

mas. The starting reference is the value u of vn in sf .
The formal definition of path(sn,ma, r) is as follows. We require the existence of a (possibly infinite) sequence

sr of references that can be traversed using the sequence of names sn. The last value of sn, if any, might be a
primitive value, rather than a reference, so the type of sr is SVal, the set of sequences of values.

path(sn,ma, r) ⇔
⎛

⎜

⎜

⎝

∃ sr : SVal •

⎛

⎜

⎜

⎝

head sr � r ∧
⎛

⎝

∀ i : dom sn •
(

(sr i) ∈ dom ma ∧ (sn i) ∈ dom(ma (sr i)) ∧
sr(i + 1) � ma (sr i) (sn i)

)

⎞

⎠

⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

For each name sn i in sn, the corresponding value sr i in sr must be a reference in ma to an object ma (sr i) with
a field named sn i. Additionally, the next value sr (i + 1) in sr must be the value ma (sr i) (sn i) of that field.

A. Cavalcanti et al.

The definition of V (vn, sf ,mas) is in many ways similar. In its domain, we have only finite sequences in
A(vn, sf ,mas): those that lead to a primitive value.

V (vn, sf ,mas) �
⎧

⎪

⎨

⎪

⎩

sn : seq VName; pv : PValue |
(

sn ∈ A(vn, sf ,mas) ∧
let u �� sval(vn, sf) •

u ∈ PValue ∧ pv � u ∨ tpath(tail sn,
⋃

mas, u, pv)

)

⎫

⎪

⎬

⎪

⎭

The condition tpath(sn,ma, r, pv) requires that sn identifies a path in the memory area ma starting from r and
terminating at the primitive value pv. Its formalisation is similar to that of path(sn,ma, r) as shown below.

tpath(sn,ma, r) ⇔
⎛

⎜

⎜

⎜

⎝

∃ sr : seq Val •

⎛

⎜

⎜

⎜

⎝

head sr � r ∧ #sr � #sn + 1 ∧ last sr � pv
⎛

⎜

⎝

∀ i : 1 . . #sn •
(

(sr i) ∈ dom ma ∧
(sn i) ∈ dom(ma (sr i)) ∧
sr(i + 1) � ma (sr i) (sn i)

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

⎞

⎟

⎟

⎟

⎠

In this case, we require the existence of a finite sequence sr of values, with r as its first element, pv as its last
element, and that can be traversed using sn.

The condition HV1 requires that the value of every variable v in the program stack is given by pStack itself
and its associated immortal area.

HV1 �̂ SIH(
∧

v : vars(pStack) • v � !(v, pStack, {immortal}))
The definition takes the conjunction over all the variable names in the program stack, and makes sure that the
value for this name is the same as the one we get by dereferencing the corresponding name. We make the dis-
tinction between v as a mathematical variable, which denotes a value (the occurrence on the left-hand side in the
equation above), and v as the name of a program variable (the occurrence on the right-hand side in the equation).
The healthiness conditions HV2 and HV3 are similar.

HV2 �̂ SIH(
∧

v : vars(msStack) • v � !(v,msStack, {immortal,mission}))

HV3 �̂
SIH

(∀ h : handlers • (
∧

v : vars(hStack h) •
v � !(v, hStack h, {immortal,mission, perR h} ∪ ran (tPriv h)))

)

Implicitly, these conditions require that all the stack variables v are in the alphabet, since they are in the alphabet
of the conjunctions.

We define HV as the composition of the functions HV1–HV3.

7. History of memory usage

What we have not captured so far is, for instance, the fact that during the life time of a mission, we can only
add objects to the mission memory, until it is cleared at the end of the mission. For the immortal memory, we
have HSCJ1, which defines profile immortal ⊆ profile immortal ′ as an invariant. It is not the case, however, that
profile mission ⊆ profile mission′, for example, is an invariant of our theory. Since mission is cleared when the
mission is finished, and later used when a new mission is started, there is no guarantee that mission′ is related
to mission in every pair of observations of an SCJ program. The same comments apply to the per-release and
private temporary memory areas in perR and tPriv in relation to the handler releases and the calls to the create
method. Once created, we can only add objects to these areas, until they are cleared.

To establish the required properties, we keep information about the program flow, in terms of the start and
end of missions, of handler releases, and of create methods. For that, we consider a set Ident of identifiers for
missions, releases, and create calls. The special identifier none is used when there is no mission or release in
execution. For create calls, we use Identp � Ident \ {none}.

The Safety-Critical Java memory model formalised

History is recorded in our theory by three additional alphabet variables; with them, we can state five extra
healthiness conditions. We add to the alphabet first an injective non-empty sequence missions : iseq1 Ident
of mission identifiers. Similarly, to record the history of handler releases during the current mission, we use a
sequence releases : handlers → iseq1Ident.

Finally, to record the sequence of nested create calls during the current release of a handler, we use
creates : handlers → seq1(iseq Identp). An injective sequence of identifiers (different from none), that is, an
element of iseq Identp, is used to represent a particular configuration of the stack of nested calls: each call has a
different identifier. As the stack grows and shrinks, the history of individual changes is recorded in a sequence,
an element of seq1(iseq Identp). We have in creates such a sequence for the current release of each of the handlers.
If there is no current release, the stack of calls is, of course, empty.

Example 7.1 If we use natural numbers as identifiers, when in a program three missions have started and finished,
the value of missions might be 〈1, 2, 3, none〉. If a fourth mission is then started, its value might become 〈1, 2, 3, 4〉.

If for a particular mission, for example, 4 above, we have handlers a, b, and c, the function releases takes the
value {a �→ 〈none〉, b �→ 〈none〉, c �→ 〈none〉} when none of the handlers have been released yet. Similarly, in this
situation, creates takes the value {a �→ 〈 〈〉 〉, b �→ 〈 〈〉 〉, c �→ 〈 〈〉 〉}, because if no handler has been released, then
no calls to create can have been made.

If the handler a, for instance, is released a few times, for instance, twice, handlers a takes a value like 〈1, 2〉, if
the second release is still active, or the value 〈1, 2, none〉, if it is now finished. In this latter situation, creates a is
again 〈 〈〉 〉, because there can be no current calls to create.

If a is then released for a third time, so that handlers a takes the value like 〈1, 2, 3〉, for example, and
during this release, it makes two nested calls to create, then creates a takes the value 〈 〈〉, 〈1〉, 〈1, 2〉 〉. If
the second nested call is finished, and then a new call is made, the history record creates a is expanded
to 〈 〈〉, 〈1〉, 〈1, 2〉, 〈1, 2, 3〉, 〈1, 2, 4〉 〉. If all calls are finished, and a new fresh call is made, it evolves to
〈 〈〉, 〈1〉, 〈1, 2〉, 〈1, 2, 3〉, 〈1, 2, 4〉, 〈1, 2〉, 〈1〉, 〈〉, 〈5〉 〉.

As said above, if there is no current mission, the last element of missions is the identifier none. In this case, the
mission memory is empty, and there are no handlers. This is captured by our next healthiness condition HH1.

HH1 �̂ SIH(last missions � none ⇒ refsRes mission � ∅ ∧ handlers � ∅)

History records can only ever grow: history information should not be lost or altered. We do not keep in the
record, however, the none identifiers. The following relation s1 ≤H s2 between sequences of identifiers establishes
when s2 is a proper extension of the history record in s1.

s1 ≤H s2 �̂ front s1 ≤ s2 ∧ last s1 �� none ⇒ last s1 � s2(#s1)

The next healthiness condition uses this relation to restrict changes to missions.

HH2 �̂ OIH(missions ≤H missions′)

Reflexivity and transitivity of this invariant follows from that of ≤H .
Finally, if the mission history does not change, that is, during the execution of a particular mission, we can

only ever add objects to mission, the set of handlers does not change, and the history of releases is preserved.

HH3 �̂ OIH

⎛

⎜

⎝

missions � missions′ ⇒
(

profile mission ⊆ profile mission′ ∧
handlers′ � handlers ∧
∀ h : handlers • releases h ≤H releases′h

)

⎞

⎟

⎠

Transitivity follows from transitivity of ⊆, equality, and ≤H .
If a handler is currently not released, then its per-release memory area is empty, as is its stack of temporary

private memory areas.

HH4 �̂ SIH
(∀ h : handlers | last(releases h) � none •

refsRes (perR h) � ∅ ∧ creates h � 〈 〈〉 〉
)

A. Cavalcanti et al.

To identify the valid history records of all changes to the stack of calls to the createmethod, we first define a rela-
tion between sequences from iseq Identp. It holds when only one change is necessary to obtain one from the other.

s1 ∼S s2 �̂ | #s1 − #s2 | � 1 ∧ (s1 < s2 ∨ s2 < s1)

Additionally, in a proper history record for a sequence of stacks, if a new element is added to the stack at any
point, its identifier should be fresh. This is the property histSS ss defined below for sequences ss of stacks.

histSS ss �̂
⎛

⎜

⎝

∀ i : i . . #ss − 1 •
(

ss i ∼S ss (i + 1) ∧
#(ss(i + 1)) > #(s i) ⇒

last(s(i + 1)) �∈ ⋃ ran(| ran ((1 . . i) � ss) |)

)

⎞

⎟

⎠

The next healthiness condition establishes that all sequences of stacks in the range of creates satisfy the histSS
property.

HH5 �̂ SIH(∀ h : handlers • histSS (creates h))

The current number of nested calls to create determines the size of the stack of temporary private memory areas
of the associated handler.

HH6 �̂ SIH(∀ h : handlers • #(last(creates h)) � #(tPriv h))

Finally, during the same release of a handler h, the contents of its per-release memory area can only be increased
(with the addition of new objects), and the history of create calls can only be extended. Additionally, the contents
of every stacked temporary private memory area that remains across observations, namely, those that correspond
to the create calls in the range of the last stack in both creates h and creates′ h, can only be increased.

HH7 �̂

OIH

⎛

⎜

⎜

⎜

⎝

missions � missions′ ⇒ ∀ h : handlers | releases h � releases′ h •
⎛

⎜

⎝

profile (perR h) ⊆ profile (perR′ h) ∧ creates h ≤ creates′h ∧
(∀ id : ran(last(creates h)) ∩ ran(last(creates′ h));

i : Z | i � pos(id, last(creates h)) •
profile(tPriv h i) ⊆ profile(tPriv′ h i)

)

⎞

⎟

⎠

⎞

⎟

⎟

⎟

⎠

The function pos(e, s) determines the unique position in the injective sequence s in which the element e
occurs. We observe that, when the previous healthiness conditions hold, pos(id, last(creates h)) is equal to
pos(id, last(creates′ h)).

We call the composition of the above healthiness functions HH.

8. Conclusions

To the best of our knowledge, we have presented here the only formal characterisation of the SCJ memory model
available so far. This is an essential ingredient to justify the soundness of assertion-based static checking tech-
niques (like that in [TPV10]). As a UTP theory, our model is also adequate for unification with existing models
of concurrency, object orientation, and timing.

We reuse the ideas of an existing UTP model for objects and sharing [HCW08] to address the relationship
between the structure established by the references in the memory areas and the values of the programming
variables and attribute accesses. What we do not cover are features of models like [HH03, CS06]; these do not
consider the issue of variable values, but provide support for reasoning about the memory graph structure. For
SCJ, we will need to build on such techniques to take advantage of the separation enforced by the memory areas.

Another assertion-based technique proposed for SCJ is SafeJML [HHL10]. It extends the well-established
JML [Bur+05] to cover functionality and timing properties. The focus is on annotations that allow the use of
existing technology for worst-case execution-time analysis to reason about SCJ programs.

Another contribution of this paper is a general characterisation of subset theories of designs. With this, we
have given an elegant definition for the SCJ theory. Our general results are useful for all theories for programs
that do not exhibit special forms of termination, and do not provide guarantees on abortion.

Our model does not capture the flow of control of an SCJ program, as partially depicted in Fig. 2. This is
the subject of ongoing work, which formalises the SCJ programming model in Circus [OCW09], a refinement
language based on Z and CSP. The semantic model of Circus is based on UTP, and it is our plan to use the theory

The Safety-Critical Java memory model formalised

presented here as basis for the design of an extension of Circus that is appropriate to reason about SCJ programs.
The intended model of a complete SCJ program will be a predicate of the stateless CSP theory, just like that of a
complete Circus program. So, it will have the form shown below, where the alphabet variables representing the
memory structure are local.

var immortal,mission . . . ; P ; end immortal,mission . . .

In this case, P will be a predicate in the theory resulting from the embedding of the SCJ model presented here
in the Circus theory of reactive designs. In the long run, we plan to provide a reasoning framework for SCJ
programs that can cater for concurrency, object-orientation, time, and sharing.

Acknowledgments

The work reported here is funded by EPSRC (EP/H017461/1, “hiJaC: High-integrity Java Applications using
Circus”) and UKIERI (SA08-047, “Verified Software Initiative: Embedded Systems”). This paper is a revised
and extended version of that presented at FM 2011 in Limerick [CWW11]; the results were also presented at IFIP
WG 2.3 in Winchester in September 2011.

References

[Bar03] Barnes J (2003) High integrity software: the SPARK approach to safety and security. Addison-Wesley, Boston
[Bar05] Barnes J (2005) Programming in Ada 95. Addison-Wesley, Boston
[Bur+05] Burdy L et al. (2005) An overview of JML tools and applications. Softw Tools Technol Transf 7(3):212–232
[Bur99] Burns A (1999) The Ravenscar profile. Ada Lett XIX(4):49–52. ACM, New York
[CHW06] Cavalcanti ALC, Harwood W, Woodcock JCP (2006) Pointers and records in the unifying theories of programming. In: Dunne

S, Stoddart B (eds) UTP symposium. Lecture notes in computer science, vol 4010. Springer, Berlin, pp 200–216
[CS06] Chen Y, Sanders J (2006) Compositional reasoning for pointer structures. In: Mathematics of program construction. Lecture

notes in computer science, vol 4014. Springer, Berlin, pp 115–139
[CWW11] Cavalcanti A, Wellings AJ, Woodcock J (2011) The Safety-Critical Java memory model: a formal account. In: Butler M,

Schulte W (eds) Proceedings FM 2011: 17th international symposium on formal methods. Lecture notes in computer science,
vol 6664. Springer, Berlin, pp 246–261

[HCW08] Harwood W, Cavalcanti ALC, Woodcock JCP (2008) A theory of pointers for the UTP. In: Fitzgerald JS, Haxthausen AE,
Yenigun H (eds) ICTAC08: theoretical aspects of computing. Lecture notes in computer science, vol 5160. Springer, Berlin,
pp 141–155

[HH03] Hoare CAR, He J (2003) A trace model for pointers and objects. In: Programming methodology. Springer, Berlin, pp 223–245
[HH98] Hoare CAR, He J (1998) Unifying theories of programming. Prentice-Hall, Eaglewoods Cliffs
[HHL10] Haddad G, Hussain F, Leavens GT (2010) The design of SafeJML, a specification language for SCJ with support for WCET

specification. 8th international workshop on Java technologies for real-time and embedded systems. ACM, New York
[Hat95] Hatton L, Safer C (1995) Developing software in high integrity and safety-critical systems. McGraw-Hill, New York
[He07] He J (2007) UTP semantics for web services. In: Davies J, Gibbons J (eds) Integrated formal methods. Lecture notes in computer

science, vol 4591. Springer, Berlin, pp 353–372
[MIS07] MISRA (2007) Motor Industry Software Reliability Association. In: MISRA AC INT: introduction to the MISRA guidelines

for the use of automatic code generation in automotive systems. ISBN: 978-906400-00-2
[OCW09] Oliveira MVM, Cavalcanti ALC, Woodcock JCP (2009) A UTP semantics for Circus. Formal Aspects Comput 21(1–2):3–32
[SCJDraft] Locke D, Andersen BS, Brosgol B, Fulton M (2010) Safety Critical Java specification, first release 0.76, The Open Group,

2010, UK. http://jcp.org/aboutJava/communityprocess/edr/jsr302/index.html.
[SCJS10] Sherif A, Cavalcanti ALC, He J, Sampaio ACA (2010) A process algebraic framework for specification and validation of

real-time systems. Formal Aspects Comput 22(2):153–191
[SCS06] Santos TLVL, Cavalcanti ALC, Sampaio ACA (2006) Object orientation in the UTP. In: Dunne S, Stoddart B (eds) Unifying

theories of programming. Lecture notes in computer science, vol 4010. Springer, Berlin, pp 18–37
[TPV10] Tang D, Plsek A, Vitek J (2010) Static checking of Safety Critical Java annotations. In: 8th international workshop on Java

technologies for real-time and embedded systems. ACM, New York
[Ven07] Venners B (2007) Inside the Java virtual machine. http://www.artima.com/insidejvm/ed2
[Wel04] Wellings A (2004) Concurrent and real-time programming in Java. Wiley, New York
[WK11] Wellings A, Kim M (2011) Asynchronous event handling and Safety Critical Java. In: Concurrency and computation: practice

and experience, vol 23. doi:10.1002/cpe.1756

Received 18 December 2011
Revised 9 May 2012
Accepted 27 May 2012 by Peter Höfner, Robert van Glabbeek, Ian Hayes and Cliff Jones

http://jcp.org/aboutJava/communityprocess/edr/jsr302/index.html
http://www.artima.com/insidejvm/ed2
http://dx.doi.org/10.1002/cpe.1756

	The Safety-Critical Java memory model formalised
	Abstract
	1 Introduction
	2 Safety-Critical Java memory model
	3 Unifying theories of programming
	4 Invariants in UTP
	4.1 Operation invariants
	4.2 State invariants

	5 A theory for the Safety-Critical Java memory model
	6 Programming variables and their values
	7 History of memory usage
	8 Conclusions
	Acknowledgments
	References

