
Under consideration for publication in Formal Aspects of Computing

Angelic Nondeterminism in the

Unifying Theories of Programming
Ana Cavalcanti1, Jim Woodcock1 and Steve Dunne2

1Department of Computer Science, University of York, York, YO10 5DD, England
2School of Computing, University of Teesside, Middlesbrough, TS1 3BA, England

Keywords: semantics, refinement, relations, predicate transformers.

Abstract. Hoare and He’s unifying theories of programming (UTP) is a model of alphabetised relations
expressed as predicates; it supports development in several programming paradigms. The aim of Hoare and
He’s work is the unification of languages and techniques, so that we can benefit from results in different
contexts. In this paper, we investigate the integration of angelic nondeterminism in the UTP; we propose the
unification of a model of binary multirelations, which is isomorphic to the monotonic predicate transformers
model and can express angelic and demonic nondeterminism.

1. Introduction

Angelic nondeterminism is a specification and programming concept that is typically available in unified
languages of refinement calculi [Mor94, BW98], and in concurrent constraint programming languages [JSS91].
In program development techniques, it is reflected in choice constructs in which the choice is not arbitrary,
but made to guarantee success, if possible. In programming languages, it is reflected in the use of backtracking
in exhaustive searches. The work in [MGW96] explores angelic nondeterminism in tactics of proofs.

In contrast, demonic nondeterminism is related to an arbitrary choice construct that provides no guar-
antees; success is still a possibility, but it does not influence the choice. Demonic choice is commonly used to
model abstraction and information hiding; in this case, choice is used in a specification to explicitly indicate
options that are left open to the programmer.

In [GM91], Gardiner and Morgan identify angelic choice with the least upper bound in the lattice of
monotonic predicate transformers. In [MG90], they use this construct to define logical constants, which are
pervasive in refinement techniques, and sometimes named logical, auxiliary, or angelic variables. They play
a fundamental rôle in the formalisation of data refinement of recursive programs, and, more importantly,
they are used in calculational simulation rules for specification statements and guarded commands.

In [Mor94] Morgan proposes an algebraic approach to refinement. In that work, logical constants are at
the heart of the formalisation of initial variables, which are used in specification statements: they appear in

Correspondence and offprint requests to: Ana Cavalcanti.

2 Ana Cavalcanti, Jim Woodcock and Steve Dunne

postconditions to refer to values of variables before the execution of the program. Logical constants are also
central to the stepwise calculational development of sequences and loops.

Back and von Wright’s work [BW98] has also explored the use of angelic nondeterminism. They have
extensively studied the set of monotonic predicate transformers as a lattice with the refinement ordering.
They have identified interesting sublattices, in which choice can be angelic or demonic, and a complete base
language, which can describe any monotonic predicate transformer [BW89, BW90]. More recently, they have
suggested the use of angelic choice to model user interactions with a system, and game-like situations.

Morgan’s refinement calculus has been adapted to handle Z specifications; the resulting calculus is called
ZRC [CW99]. It is incorporated in Circus [WC02], a combination of Z and CSP that supports refinement
of state-rich, reactive programs. The design of Circus follows the trend to combine notations; it has been
successfully applied in case studies, and has a refinement technique that supports decomposition of the
state and behaviour of centralised systems [CSW03]. Extensions of Circus include constructs to handle, for
example, time and mobility.

The semantics of Circus is based on Hoare and He’s unifying theories of programming (UTP) [HJ98,
WC04]. This is a predicate-based relational model that links constructs in several paradigms: imperative,
concurrent, logical, and others. By providing a framework for the study of state and reactive aspects of a
program, the UTP is a solid basis for the model of Circus and of its extensions. Nevertheless, logical constants
and, more generally, angelic nondeterminism are not considered. Since we adopt Morgan’s calculational
refinement style, we have pursued the possibility of modelling angelic nondeterminism in the UTP.

Angelic nondeterminism has been extensively studied using weakest precondition semantics. There are
results on the relationship between relational and predicate transformer models in which relations are sets of
pairs of states and predicates are sets of states [Hes92, CW98]. These results establish that a straightforward
relational model that associates initial with final states cannot capture angelic and demonic nondeterminism.

In this paper, firstly, we consider a set-based relational model for the UTP. Secondly, we propose a
predicate transformer model; conjunctive predicate transformers correspond to the set-based relations, and
therefore to UTP relations. These models clarify some aspects of the UTP, and establish that the general
model of UTP relations does not cover angelic nondeterminism.

In [CW05] we have proposed a UTP theory that can cover both angelic and demonic nondeterminism
based on the model of binary multirelations introduced in [Rew03]. We based our proposal on an isomorphism
between binary multirelations and predicate transformers suggested in [Rew03]. We have studied refinement
and some programming operators, including sequence and angelic nondeterminism in that theory. It was
unfortunate that the refinement relation had a definition different from that adopted in all other UTP
theories: implication, instead of reverse implication. Also, we had a quite elaborate definition for sequence.

Here, we consider a different isomorphism between binary multirelations and predicate transformers; in
the new UTP theory that it suggests, refinement is reverse implication. From the point of view of unification,
which is, of course, a central concern in the UTP, this is very pleasing. It means that the new theory can be
combined with the existing UTP theories using the approach already illustrated in [HJ98]. In the context
of the new theory, we consider the definition of all programming operators studied in the general theory
of relations, and designs, which are basically specification statements. We also give a definition of sequence
that is much simpler than that in [CW05]; this makes our theory much more tractable and attractive.

In the next section, we present an overview of the UTP. In Section 3, we consider a set-based relational
model and a predicate transformer model for the UTP. In Section 4, we enrich the UTP with a theory to
cope with angelic and demonic nondeterminism. The definition of programming operators in the new theory
is the subject of Section 5. Finally, in Section 6 we present our conclusions and directions for future work.

2. Unifying theories of programming

The objective of Hoare and He’s work on unifying theories of programming is to study and compare pro-
gramming paradigms. The main concern is with program development; using the framework of the UTP, it
should be possible to take advantage of different techniques and approaches whenever convenient.

In the general theory of relations of the UTP, a relation is a pair (αP ,P), where αP is a set of names of
observational variables, and P is a predicate. The set of variables is the alphabet of the relation; it contains
both the set inαP of undashed names of the observational variables, and the set outαP of dashed names.
The undecorated name of a variable refers to its value before the execution of the program, and the dashed
name refers to its value in a subsequent observation. The free variables of P must be contained in αP .

Angelic Nondeterminism in the Unifying Theories of Programming 3

Each observational variable records information relevant to characterise the behaviour of a program. For
example, program variables are observational variables; the model of an assignment x := e, if the program
variables are x , y, and z , is as follows.

x := e =̂ (x ′ = e ∧ y ′ = y ∧ z ′ = z)

The alphabet is { x , y, z , x ′, y ′, z ′ }. The assignment sets the final value of x , which is represented by x ′,
to e; all the other variables are unchanged. The program II =̂ (v ′ = v) skips: it does not change the
observational variables v . We write v ′ = v as an abbreviation for a conjunction of equalities that state that
the final value of each variable is equal to its initial value.

A sequence P ; Q is defined as relational composition, if, for each dashed variable in the alphabet of P ,
the undashed variable is in the alphabet of Q . The set inα′Q is obtained by dashing all variables in αQ .

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) provided outαP = inα′Q = { v ′ }

The notation P(v ′) emphasises that P may have free occurrences of observational variables v ′; the later
reference to P(v0) refers to the predicate obtained by substituting v0 for the free occurrences of v ′ in P .
Similarly, for Q(v) and Q(v0). In all cases, v , v ′, and v0 stand for lists of variables.

The nondeterministic choice P uQ =̂ P ∨ Q of relations P and Q with the same alphabet is demonic.
It behaves like either P or Q .

The set of relations with a particular alphabet is a complete lattice, with order ⇐; this is the refinement
ordering in this setting. More formally, the program denoted by P is refined by that denoted by Q when
[Q ⇒ P]; in that case we write P v Q . As a matter of fact, P and Q can be either programs (assignments,
sequence, choices, and others) or any relation used to specify a program; they are all relations. The square
brackets denote universal quantification over all the alphabet.

In contrast with the other operators, the greatest lower bound uS of a set S of relations is defined

algebraically: [P ⇐ uS] =̂ ([P ⇐ X] for all X in S). The bottom of this lattice is the program ⊥ =̂ true,
which is called abort . Incidentally, the top element is false; it is written > and called miracle.

Recursion is modelled using least fixed points. If F (X) is a relation, in which X is used as a recursion
variable, the recursive program is written µ X • F (X). This is the least fixed point of the function F .

Hoare and He point out what they regard an infelicity. The recursive program µX • X is supposed
to model an infinite loop; it is equivalent to ⊥ or true. Nonetheless, if the alphabet is { x , x ′ }, then the
sequence (µX • X) ; x ′ = 3 is equivalent to x ′ = 3, even though it should not be possible to recover from a
program that does not terminate.

The solution proposed by Hoare and He is the introduction of an extra boolean observational variable
ok to record termination. If ok has value true, it means that the program has started; if ok ′ has value true,
then the program has terminated. In this new theory, relations take the form of designs P ` Q .

(P ` Q) =̂ (ok ∧ P) ⇒ (ok ′ ∧ Q)

The predicates P and Q are the program’s pre and postcondition. If the design has started and the precon-
dition P holds, then it terminates and establishes the postcondition Q .

In this new theory, assignment and skip are redefined. Below, y and y ′ stand for the observational variables
other than x and x ′.

x := e =̂ true ` x ′ = e ∧ y ′ = y II =̂ true ` v ′ = v

The new definitions use designs to take ok and ok ′ into account.
Four healthiness conditions on relations P are regarded of interest in the theory of designs; they are

summarised in Table 1. Healthiness condition H1 states that any restrictions on the behaviour of P only need
to hold if it has started. The second healthiness condition states that P cannot require non-termination: if it
holds when ok ′ is false, then it also holds when ok ′ is true. Together, H1 and H2 characterise the designs: a
predicate is H1 and H2 if and only if it can be written as a design.

The healthiness conditions H3 and H4 are expressed as equations between programming constructs.
Results presented in [HJ98] clarify that H3 designs can be expressed using preconditions that do not refer
to dashed observational variables, and that H4 designs model feasible or implementable programs.

Designs form a UTP theory characterised by an alphabet that includes ok and ok ′, and by the healthiness
conditions H1 and H2. For reactive programs, for instance, we have a theory of relations whose alphabets
include six other observational variables, and that satisfy two other healthiness conditions. Alphabets and

4 Ana Cavalcanti, Jim Woodcock and Steve Dunne

H1 P = (ok ⇒ P) No predictions before startup

H2 [P [false/ok ′] ⇒ P [true/ok ′]] Non-termination is not required

H3 P = P ; II Preconditions do not use dashes

H4 P ; true = true Feasibility

Table 1. UTP Healthiness conditions

healthiness conditions are the basis to compare and combine different theories. Later on, we present a theory
for angelic (and demonic) nondeterminism; beforehand, we study set-based models for the UTP.

3. Set-based models

In this section, we consider two set-based models for the UTP: relations, characterised by sets of pairs, and
predicate transformers, with predicates characterised by sets. These models further clarify the role of the
healthiness conditions in Table 1 and the internalized model of nontermination based on ok and ok ′. Most
importantly, however, they provide guidance in the definition of a UTP theory based on binary multirelations.
It is this theory that can capture both angelic and demonic nondeterminism.

3.1. Relations

The set-based relational model is that of sets of pairs of states. A state associates names (of observational
variables) to their values. The set SA of all states on an alphabet A contains the records with a component
for each variable in A. Each such state is an observation of the behaviour of a program. A relation, like a
UTP predicate, is a pair (αR,R), where αR is the alphabet, and R is a relation between the elements of
SinαR and SoutαR. Such a relation models a program by associating an observation of an initial state with
a possible observation of a later state.

The model for abort is the universal relation: Sinα × Soutα; when the predicate P (or relation R) is not
relevant, instead of writing inαP (or inαR) and outαP (or outαR), we simply write inα and outα. Partiality
models miracles. If a state is not in the domain of the relation, then it is miraculous at that state: it can
achieve any required result. In particular, the model of miracle is the empty relation.

It is not difficult to see that the first general predicate-based theory of the UTP is isomorphic to this
set-based model. A simple proof is presented in [CW04]; it is based on the functions p2sb and sb2p.

Definition 3.1.

p2sb.(αP ,P) =̂ (αP , { s1 : SinαP ; s2 : SoutαP | P [s1, s2/inαP , outαP] })

sb2p.(αR,R) =̂ (αR, ∃ s1 : SinαR, s2 : SoutαR • (s1, s2) ∈ R ∧
(
∧

x : inαR • x = s1.x) ∧ (
∧

x : outαR • x = s2.x))

The first, p2sb, transforms a UTP relation into a set-based relation; the second, sb2p is its inverse: it
transforms a set-based relation into a UTP relation. Both p2sb and sb2p do not change the alphabet of the
relations. A similar set-based model is used by Hoare and He when they discuss denotational semantics.

The set-based relation defined by p2sb for a predicative relation P is formed by pairs of states s1 and
s2 such that P holds when the observational variables take the values associated to them by s1 and s2. The
predicate P [s/A] is obtained by replacing x with s .x , for all x in A.

The predicate defined by sb2p for a relation R is an existential quantification over pairs of states s1 and
s2 in R. For each pair, a conjunction of equalities requires that each observational variable takes the value in
the corresponding state. Since alphabets are finite, the conjunction is finite. If we use θA as an abbreviation
for the state on alphabet A that associates each component of name x in A with the value of the variable
x , then sb2p.(α,R) can be expressed as (θinαR, θoutαR) ∈ R. The proof is a straightforward application
of the one-point rule. The existential quantification probably accounts for a clearer definition for sb2p; in
proofs the shorter formulation is more convenient.

Standard work on relational semantics [HH85] singles out a special state to indicate non-termination; this

Angelic Nondeterminism in the Unifying Theories of Programming 5

SBH1 ∀ s1, s2 | s1.ok = false • (s1, s2) ∈ R

SBH2 ∀ s1, s2 | (s1, s2) ∈ R ∧ s2.ok ′ = false • (s1, s2 ⊕ {ok ′ 7→ true}) ∈ R

SBH3 ∀ s1 | (∃ s2 • s2.ok ′ = false ∧ (s1, s2) ∈ R) • ∀ s2 • (s1, s2) ∈ R

Table 2. Set-based healthiness conditions

is not the case in our model. If an initial state is associated with all possible final states, then we cannot say
whether the final state is simply arbitrary or we have a possibility of non-termination. In standard relational
semantics, the model for abort that we presented above is actually the model for a program that always
terminates, but whose final state is arbitrary.

The isomorphism characterised by p2sb and sb2p suggests that the general UTP model of relations is
not able to capture non-termination. As already mentioned, Hoare and He pointed out a paradox in the
fact that, if the alphabet is { x , x ′ }, then (µX • X); x := 3 is equivalent to x := 3. This is not really
a paradox: the value of (µX • X) is the bottom of the lattice ⊥, which is not an aborting program, but
the program that terminates and gives an arbitrary value to x . If, in sequence, we assign 3 to x , then the
arbitrariness is irrelevant. Their model is sensible, for terminating programs. (Their attempt to solve the
supposed paradox by giving a strongest fixed point semantics to recursion was always doomed to fail.)

For designs, the alphabet includes ok and ok ′; therefore, these variables are also part of the alphabet
of the corresponding set-based relations. In Table 2, we present healthiness conditions SBH1, SBH2, and
SBH3 over such relations; we omit the obvious types of s1 and s2. The theorem below, proved in [CW04],
establishes that H1, H2, and H3 correspond to SBH1, SBH2, and SBH3 in the set-based model.

Theorem 3.1. For every UTP relation (αP ,P) that satisfies H1, p2sb.(αP ,P) satisfies SBH1. Conversely,
for every set-based relation (αR,R) that satisfies SBH1, sb2p.(αR,R) satisfies H1. The same holds for H2

and SBH2, and for H3 and SBH3.

The condition SBH1 requires that, in a healthy relation R, all states s1 for which s1.ok is false are related
to all possible final states. This means that a state in which the program has not started is not miraculous
and leads to no controlled behaviour. In relations that are SBH2-healthy, if a state s1 is related to a state
s2 for which s2.ok

′ is false, then s1 is also related to s2 ⊕ {ok ′ 7→ true}. This is the same state as s2, except
that the value of ok ′ is true. This means that if it is possible not to terminate from s1, it is also possible to
terminate. Its behaviour, however, may not be completely arbitrary: it is not required that R relates s1 to
all possible final states; this is what is required by SBH3.

We believe that it is not difficult to observe that SBH3 relations are necessarily SBH2. If the initial state
s1 is related to all possible final states, then it is also related to s2⊕{ok ′ 7→ true}. This rather obvious result
seems to be not so clear in the predicate setting. It means that, at least for the purpose of the study of
total correctness of sequential programs, Hoare and He did not need to consider four healthiness conditions,
but only three of them: H1, H3, and H4. It turns out, however, that non-H3 designs are important for the
modelling of more sophisticated programming paradigms like CSP, for instance.

The healthiness condition H4 requires feasibility. It is not relevant for us, as miracles are an important
part of Morgan’s refinement calculus and ZRC.

3.2. Predicate transformers

In the model of predicate transformers, we regard predicates as sets of states. The model is composed of
pairs (αPT ,PT), where αPT is the alphabet of the transformer, and PT is a total monotonic function from
P SoutαPT to P SinαPT . A program is modelled by its weakest precondition transformer [Dij76].

Isomorphisms between predicate transformers and set-based relational models have been studied [Hes92];
the one below is similar to that in [CW98]. We define functions sb2pt and pt2sb; the first transforms a
set-based relation into a weakest precondition, and the second transforms a weakest precondition back into
a set-based relation. For simplicity, we ignore alphabets, which are maintained by both functions.

Definition 3.2. sb2pt .R.ψ =̂ ¬ dom(R −B ψ)

pt2sb.PT = { s1 : SinαPT ; s2 : SoutαPT | s1 ∈ ¬ PT .(¬ { s2 }) }

In the definition of sb2pt , ψ is a postcondition, or rather, a set of states on outαR, which is given as argument

6 Ana Cavalcanti, Jim Woodcock and Steve Dunne

PTH1 PT .ψ ⊆ { s1 : SinαPT | s1.ok = true } provided ψ 6= SoutαPT

PTH3 PT .ψ = PT .{ s2 : ψ | s2.ok ′ = true } provided ψ 6= SoutαPT

Table 3. Predicate transformers healthiness conditions

to the transformer sb2pt .R. The relation R −B ψ models all executions of R that do not lead to a state that
satisfies ψ; the operator −B is range subtraction. In dom(R −B ψ), we have all initial states in which it
is possible not to achieve ψ. The complement ¬ dom(R −B ψ) contains all initial states in which we are
guaranteed to reach a state that satisfies ψ: the required weakest precondition.

The relation pt2sb.PT associates an initial state s1 to a final state s2 if s1 is not in the weakest precondition
that guarantees that PT does not establish s2. Since it is not guaranteed that PT will not establish s2, then
it is possible that it will. The possibility is captured in the relation.

Since the general set-based relations can only model terminating programs, we cannot expect an isomor-
phism between them and the whole set of predicate transformers. In fact, we prove that they are isomorphic
to the set of universally conjunctive predicate transformers PT : those that satisfy the property below.

PT .(
⋂

{ i • ψi }) =
⋂

{ i • PT .ψi } (1)

An important and well-known consequence of this isomorphism is that UTP relations cannot model angelic
as well as demonic nondeterminism. Since we have an isomorphism between UTP relations and set-based
relations, and another between set-based relations and universally conjunctive predicate transformers, then
UTP relations are isomorphic to universally conjunctive predicate transformers.

As already said, the angelic choice in which we are interested is the least upper bound of the lattice
of monotonic predicate transformers. Joins in the lattice of universally conjunctive predicate transformers
are not preserved in the lattice of monotonic predicate transformers [BW92]. We need a relational model
isomorphic to the monotonic predicate transformers.

We investigate, next, the set of predicate transformers that correspond to UTP designs. In this case, ok
is in the alphabet of the states in a precondition, and ok ′ is in the alphabet of the states in a postcondition.
Table 3 gives healthiness conditions over such predicate transformers PT . The first healthiness condition,
PTH1, requires that the weakest precondition for PT to establish any ψ is included in the set of initial states
s1 for which s1.ok is true. In other words, in order to guarantee a postcondition, PT must start. The only
exception is the postcondition SoutαPT , which imposes no restrictions whatsoever.

The healthiness condition PTH3 states that, in calculating PT .ψ, we can ignore all the states s2 in ψ
for which s2.ok

′ is false. In other words, even if we have s2 and s2 ⊕ {ok ′ 7→ true} in ψ, so that termination
is not required, if PT can guarantee s2 or s2 ⊕ {ok ′ 7→ true}, then it can guarantee s2 ⊕ {ok ′ 7→ true}.
Moreover, if s2 is in ψ, but s2 ⊕ {ok ′ 7→ true} is not, so that non-termination is actually required, then PT
cannot do it. Consequently, predicate transformers do not capture information related to the possibility of
non-termination. Again, the postcondition SoutαPT is an exception.

As stated in the theorem below, which is proved in [CW04], PTH1 and PTH3 correspond to H1 and H3.

Theorem 3.2. For every set-based relation R that satisfies SBH1, sb2pt .R satisfies PTH1. Conversely, for
every predicate transformer PT that satisfies PTH1, pt2sb.PT satisfies SBH1. The same holds for SBH3 and
PTH3.

The healthiness conditions PTH1 and PTH3 restrict the behaviour of the predicate transformers for post-
conditions different from SoutαPT . This postcondition, however, is of special interest.

Standard universally conjunctive predicate transformers can only model terminating programs; this is
because, if (1) holds for the empty set, then PT .Soutα = Sinα. In words, for the postcondition that does not
impose any restrictions, any initial state is satisfactory. Nevertheless, the postcondition that does not impose
any restriction still requires termination. Therefore, it is required that the program always terminates.

In the context of predicate transformers that involve states on ok and ok ′, however, the situation is differ-
ent. The postcondition Soutα does not require termination: it accepts any final state s2, even those for which
s2.ok

′ = false. Similarly, the precondition Sinα does not even require the program to start. Therefore, the
universal conjunctivity of the predicate transformers corresponding to designs does not imply that only ter-
minating programs can be modelled. Unfortunately, conjunctivity is still an issue: the predicate transformers
that are PTH1 and PTH3 healthy are conjunctive. As a consequence, they cannot model angelic nondeter-

Angelic Nondeterminism in the Unifying Theories of Programming 7

minism. We need a model isomorphic to monotonic, not necessarily conjunctive, predicate transformers. This
is pursued in the next section.

As an aside, we observe that when we consider H3-healthy designs, we get a model isomorphic to standard
conjunctive weakest preconditions; in [CW04] we present an isomorphism between the predicate transformers
above and those on postconditions and preconditions that do not refer to ok and ok ′. In [Dun01], different
healthiness conditions that lead to a theory of general correctness are proposed.

4. Binary Multirelations

A relational model isomorphic to monotonic predicate transformers is presented in [Rew03]; in that work,
the relations are called binary multirelations. We studied that model in the context of the UTP in [CW05].
We defined a binary multirelation as a pair (αBM ,BM), where αBM is an alphabet, and BM is a relation
between SinαBM and postconditions: elements of PSoutαBM . Intuitively, BM captured the behaviour of a
program by associating each initial state with all the postconditions that the program can angelically choose
to satisfy. The encoding of this model in the UTP leads to a theory in which refinement is captured by
implication, instead of reverse implication.

In this section, we explore a similar model of binary multirelations in which behaviour is captured by
relating an initial state to all the sets of states from which an angelic choice can be made to determine a
final state for the program. The choice between the sets of states themselves is demonic.

The model for abort , for example, is the universal relation; this means that we can demonically choose
any set of states as options open for the angelic choice. In other words, the demonic choice prevails, since
any set of options whatsoever, including the empty set, can be left for the angelic choice. Miracle, on the
other hand, is the empty relation; this means that there are no demonic choices to be made. In general, a
computation characterised by a binary multirelation BM is at risk of not terminating when executed from
any starting state s such that (s , ∅) ∈ BM . On the other hand, execution is miraculous from any state
outside the domain of BM . All this is, of course, in sympathy with the set-based model of Section 3.

The binary multirelation for an assignment x := e relates every initial state s1 with every set that includes
s ′
1
⊕{x ′ 7→ e}. The state s ′

1
is obtained from s1 by dashing the names of each of the variables in its domain.

Therefore, s ′
1
⊕ {x ′ 7→ e} is a final state in which the value for each variable v ′ of outα is s1.v , except for

x ′, whose value is e. If executed in s1, the assignment x := e reaches the final state s ′
1
⊕ {x ′ 7→ e}. The fact

that the binary multirelation associates s1 to all sets that include this state, instead of just to the singleton
set { s ′

1
⊕ {x ′ 7→ e} }, needs further explanation.

In fact, given any two states s2 and s3, providing the set { s2, s3 } of angelic choices, in addition to the
set { s2 }, as an extra option available for demonic choice is immaterial. Since s3 cannot be guaranteed to be
available for the angelic choice, there can be no guarantee that the program will achieve s3. More generally,
in algebraic terms, we have that P u (P tQ) = P , where u and t represent demonic and angelic choice; this
property can be easily proved in the predicate transformer model, for example.

In general, in the binary multirelation model, if an initial state s1 is associated with a set of states ss ,
then associating s1 to a superset of ss does not add to the options that are actually available for angelic
choice. We could provide a definition of refinement that takes this fact into account, and regards the relation
that associates s1 only to ss1 and a relation that associates s1 to ss1 and to one or more of its supersets as
equal. We are striving, however, for a simple definition of refinement. Therefore, we choose to identify one
of those binary multirelations as the unique model of the program that actually only provides the states in
ss for angelic choice. Inspired by the model in [Rew03], we choose the set of binary multirelations that are
upward closed. This is captured in the following healthiness condition.

BMH ∀ s1, ac1, ac2 | (s1, ac1) ∈ BM ∧ ac1 ⊆ ac2 • (s1, ac2) ∈ BM

This states that, if from an initial state s1, the set of angelic choices ac1 is available for demonic choice, so
are all the supersets ac2 of ac1.

The binary multirelation that models the angelic choice x := 0 t x := 1, with alphabet { x , x ′ }, is
{ s1, ac | { (x ′ 7→ 0), (x ′ 7→ 1) } ⊆ ac }. It associates to each initial state s1 the sets of angelic choices that
include (x ′ 7→ 0) and (x ′ 7→ 1). This is because the angel can ensure the final value of x to be either 0 or 1,
as required. We use (x ′ 7→ v) to denote a record with a single component named x ′ whose value is v . For the
demonic choice, x := 0 u x := 1, the range of the binary multirelation includes the supersets of { (x ′ 7→ 0) }
and {(x ′ 7→ 1) }. In this case, the demon is in control: the final value of x is arbitrarily chosen to be 0 or 1.

8 Ana Cavalcanti, Jim Woodcock and Steve Dunne

For x := 0 t (x := 1 u x := 2), which is a program that involves an angelic and a demonic choice, the
model is { s1, ac | {(x ′ 7→ 0), (x ′ 7→ 1)} ⊆ ac ∨ {(x ′ 7→ 0), (x ′ 7→ 2)} ⊆ ac }. The demonic choices available
cannot prevent the angelic choice of 0 for the final value of x : all sets ac that can be demonically chosen
include the state (x ′ 7→ 0). The options (x ′ 7→ 1) and (x ′ 7→ 2), however, are left open for demonic choice.
The functions below define an isomorphism between binary multirelations and predicate transformers.

Definition 4.1. bm2pt .BM .ψ = { s1 | (s1,¬ ψ) /∈ BM }

pt2bm.PT = { (s1, ψ) | s1 ∈ ¬ PT .(¬ ψ) }

The function bm2pt converts a binary multirelation to a weakest precondition transformer. We have that
bm2pt .BM is guaranteed to establish a postcondition ψ in all initial states s1 for which there is not a set of
states disjoint from ψ that can be demonically chosen. If, in all sets of states available for demonic choice,
there is at least one state that is acceptable from the point of view of ψ, or in other words, belongs to ψ,
the angelic choice is guaranteed to select such a state to satisfy ψ. In the definition of bm2pt , we consider
specifically whether the complement of ψ is associated to s1. If any set disjoint from ψ is associated to s1,
then upward closedness guarantees that the complement of ψ is also associated with s1.

Conversely, the multirelation pt2bm.PT associates an initial state s1 with all the postconditions that PT
is not guaranteed not to establish from s1. These are the sets of states that may be reached from s1. They
are taken as available for demonic choice.

This isomorphism is simpler than that presented in [Rew03], which constructs the binary multirelation
corresponding to a predicate transformer using prime filter representations of states. Our proof that bm2pt
and pt2bm characterise an isomorphism between predicate transformers and binary multirelations is very
simple, although slightly more complex than that in [CW05].

Theorem 4.1. pt2bm.(bm2pt .BM) = BM

Proof.

pt2bm.(bm2pt .BM) [definition of pt2bm]

= { (s1, ψ) | s1 ∈ ¬ bm2pt .BM .(¬ ψ) } [definition of bm2pt]

= { (s1, ψ) | s1 ∈ ¬ { s1 | (s1,¬ ¬ ψ) /∈ BM } } [property of sets]

= { (s1, ψ) | s1 ∈ { s1 | (s1, ψ) ∈ BM } } [property of set comprehension]

= { (s1, ψ) | (s1, ψ) ∈ BM } [property of sets]

= BM

Theorem 4.2. bm2pt .(pt2bm.PT) = PT

Proof.

bm2pt .(pt2bm.PT).ψ [definition of bm2pt]

= { s1 | (s1,¬ ψ) /∈ pt2bm.PT } [definition of pt2bm]

= { s1 | (s1,¬ ψ) /∈ { (s1, ψ) | s1 ∈ ¬ PT .(¬ ψ) } } [property of set comprehension]

= { s1 | s1 /∈ ¬ PT .(¬ ¬ ψ) } [property of sets]

= { s1 | s1 ∈ PT .ψ } [property of sets]

= PT .ψ

The following two theorems establish that monotonic predicate transformers correspond to BMH-healthy

Angelic Nondeterminism in the Unifying Theories of Programming 9

sb2ppt2sbbm2pt

binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

Fig. 1. Models and isomorphisms

multirelations. First of all, healthy binary multirelations define monotonic predicate transformers.

Theorem 4.3. For a BMH-healthy binary multirelation BM , bm2pt .BM is monotonic.

Proof. We consider two postconditions ψ1 and ψ2.

ψ1 ⊆ ψ2 [property of sets]

⇒ ¬ ψ2 ⊆ ¬ ψ1 [BM is healthy]

⇒ ∀ s1 • (s1,¬ ψ2) ∈ BM ⇒ (s1,¬ ψ1) ∈ BM [predicate calculus]

⇒ ∀ s1 • (s1,¬ ψ1) /∈ BM ⇒ (s1,¬ ψ2) /∈ BM [definition of bm2pt]

⇒ bm2pt .BM .ψ1 ⊆ bm2pt .BM .ψ2

Now, a monotonic predicate transformer corresponds to a healthy binary multirelation.

Theorem 4.4. For a monotonic PT , the binary multirelation pt2bm.PT is BMH-healthy.

Proof. We consider two postconditions ψ1 and ψ2, and an initial state s1.

ψ1 ⊆ ψ2 [property of sets]

⇒ ¬ ψ2 ⊆ ¬ ψ1 [PT is monotonic]

⇒ PT .(¬ ψ2) ⊆ PT .(¬ ψ1) [property of sets]

⇒ ¬ PT .(¬ ψ1) ⊆ ¬ PT .(¬ ψ2) [property of sets]

⇒ s1 ∈ ¬ PT .(¬ ψ1) ⇒ s1 ∈ ¬ PT .(¬ ψ2) [definition of pt2bm]

= (s1, ψ1) ∈ pt2bm.PT ⇒ (s1, ψ2) ∈ pt2bm.PT

In conclusion, we have a model isomorphic to monotonic predicate transformers. What we need now is a way
of expressing multirelations as alphabetised predicates.

4.1. Predicative theory

The key point to define a UTP theory based on binary multirelations is the choice of alphabet. We propose
a view of a binary multirelation as a relation between a state on an alphabet inα and a state on { ac′ }. The
value of ac′ is the set of angelic choices available to the program: a set of states on an alphabet outα.

Figure 1 summarises the isomorphisms we have defined so far. We are looking for a way of representing
binary multirelations as UTP predicates. We cannot use pt2sb in the transformation because it cannot handle
non-conjunctive predicate transformers. Instead, we define an isomorphism between binary multirelations

10 Ana Cavalcanti, Jim Woodcock and Steve Dunne

sb2ppt2sbbm2pt

binary
multirelations

predicate
transformers

Set-based
relations

UTP
predicates

pt2bm sb2pt p2sb

pt2p
bm2sb

sb2bm

Fig. 2. Extra isomorphism

and set-based relations with alphabet inα ∪ { ac′ }. It is based on the functions below.

Definition 4.2.

bm2sb.BM = { s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }

sb2bm.ACR = { s1 : Sinα; ss : PSoutα | (s1, (ac
′ 7→ ss)) ∈ ACR }

Using bm2sb, we get a standard set-based relation in which the sets in the range of the original binary
multirelation are wrapped in records with a single component ac′; the function sb2bm unwraps these records.
The proof that bm2sb and sb2sm establish an isomorphism is trivial.

Since predicate transformers are the standard setting for the study of angelic nondeterminism, we aim at
expressing predicate transformers as predicates using pt2bm, bm2sb, and sb2p. In our calculations, we name
the composition of pt2bm, bm2sb, and sb2p as pt2p =̂ sb2p ◦ bm2sb ◦ pt2bm. The next theorem is useful.

Theorem 4.5. pt2p.PT = θinα ∈ ¬ PT .(¬ ac′)

We omit its simple proof. Figure 2 shows the additional isomorphism and function that we use in the sequel.
For example, the predicate transformer abort maps all postconditions to the empty set: it can never guarantee
anything. In the UTP, it corresponds to true.

Theorem 4.6. pt2p.abort = true.

Proof.

pt2p.abort [Theorem 4.5]

= θinα ∈ ¬ abort .(¬ ac′) [definition of abort]

= θinα ∈ ¬ ∅ [property of sets]

= true

The everywhere miraculous program is represented by false. Other relations are considered in Section 5.

4.2. Healthiness condition

In the UTP, the healthiness condition for binary multirelations is as follows.

PBMH P ; (ac ⊆ ac′) = P

This requires that, if, after executing P , we execute a program that enlarges ac′, then the result could have
been obtained by P itself. A healthy P characterises ac′ not by defining a particular value for it, but the
smallest set of elements it should include. All the supersets should be allowed.

Angelic Nondeterminism in the Unifying Theories of Programming 11

Healthy binary multirelations correspond to PBMH-healthy predicates.

Theorem 4.7. If BM is BMH-healthy, then sb2p.(bm2sb.BM) is PBMH-healthy.

Proof.

sb2p.(bm2sb.BM); (ac ⊆ ac′) [definition of bm2sb]

= sb2p.{ s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }; (ac ⊆ ac′) [definition of sb2p]

= (θinα, θ{ ac′ }) ∈ { s1 : Sinα; s2 : S{ac′} | (s1, s2.ac
′) ∈ BM }; (ac ⊆ ac′) [property of sets]

= ((θinα, ac′) ∈ BM); (ac ⊆ ac′) [definition of sequence]

= ∃ ac0 • (θinα, ac0) ∈ BM ∧ ac0 ⊆ ac′ [BM is BMH-healthy and predicate calculus]

= (θinα, ac′) ∈ BM [definitions of sb2p and bm2sb]

= sb2p.(bm2sb.BM)

This proof is simpler than that of the corresponding theorem in [CW05].

Theorem 4.8. If P is a PBMH-healthy predicate, then sb2bm.(p2sb.P) is BMH-healthy.

Proof. Let ψ1 and ψ2 be such that ψ1 ⊆ ψ2.

(s1, ψ1) ∈ sb2bm.(p2sb.P) [definition of p2sb]

= (s1, ψ1) ∈ sb2bm.{ s1, s2 | P [s1, s2/inα, ac
′] } [definition of sb2bm]

= (s1, ψ1) ∈ { s1 : Sinα; ss : P S{ac′} | (s1, (ac
′ 7→ ss)) ∈ { s1, s2 | P [s1, s2/inα, ac

′] }} [property of sets]

= (s1, (ac
′ 7→ ψ1)) ∈ { s1, s2 | P [s1, s2/inα, ac

′] } [property of sets]

= P [s1, ψ1/inα, ac
′] [P is PBMH-healthy]

= (P ; ac ⊆ ac′)[s1, ψ1/inα, ac
′] [substitution]

= P [s/inα]; ac ⊆ ψ1 [definition of sequential composition]

= ∃ ac0 • P [s1, ac0/inα, ac
′] ∧ ac0 ⊆ ψ1 [ψ1 ⊆ ψ2]

⇒ ∃ ac0 • P [s1, ac0/inα, ac
′] ∧ ac0 ⊆ ψ2 [definition of sequential composition, and substitution]

= (P ; (ac ⊆ ac′))[s1, ψ2/inα, ac
′] [P is PBMH-healthy]

= P [s1, ψ2/inα, ac
′] [definitions of p2sb and sb2bm]

= (s1, ψ2) ∈ sb2bm.(p2sb.P)

It is pleasing that the healthiness condition can be cast in a quite simple way, and also in terms of the
fixpoint of an idempotent function PBMH defined as PBMH(X) = X ; ac ⊆ ac′. This is important for the
approach to linking theories encouraged by the UTP.

12 Ana Cavalcanti, Jim Woodcock and Steve Dunne

4.3. Refinement

The refinement relation is reverse implication, as in all theories of the UTP. We prove that this corresponds
to the refinement relation of the model of binary multirelations.

Definition 4.3. BM1 vBM BM2 =̂ BM2 ⊆ BM1

The pre-order proposed in [Rew03] for binary multirelations becomes a partial order in the restricted setting
of healthy binary multirelations; also, it collapses to set inclusion. We have adopted the inverse order here,
which is also the standard definition of refinement for set-based relations.

It is reassuring that this order corresponds to the usual refinement relation in the model of predicate
transformers, which we present below.

Definition 4.4. PT1 vPT PT2 =̂ ∀ψ • PT1.ψ ⊆ PT2.ψ

The next theorem establishes that the above notions of refinement are indeed compatible.

Theorem 4.9. BM1 vBM BM2 if, and only if, bm2pt .BM1 vPT bm2pt .BM2.

Proof.

bm2pt .BM1 vPT bm2pt .BM2 [definition of vPT]

= ∀ψ • bm2pt .BM1.ψ ⊆ bm2pt .BM2.ψ [definition of bm2pt]

= ∀ψ • { s1 | (s1,¬ ψ) /∈ BM1} ⊆ { s1 | (s1,¬ ψ) /∈ BM2} [property of sets]

= ∀ψ, s1 • (s1,¬ ψ) /∈ BM1 ⇒ (s1,¬ ψ) /∈ BM2 [property of sets]

= ∀ψ, s1 • (s1,¬ ψ) ∈ BM2 ⇒ (s1,¬ ψ) ∈ BM1 [predicate calculus]

= ∀ψ, s1, φ | φ = ¬ ψ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [property of sets]

= ∀ψ, s1, φ | ψ = ¬ φ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [predicate calculus]

= ∀ s1, φ • (s1, φ) ∈ BM2 ⇒ (s1, φ) ∈ BM1 [property of sets]

= BM2 ⊆ BM1 [definition of vBM]

= BM1 vBM BM2

The correspondence between UTP and binary multirelation refinement is established below.

Theorem 4.10. P v Q if, and only if, sb2bm.(p2sb.P) vBM sb2bm.(p2sb.Q).

Proof.

sb2bm.(p2sb.P) vBM sb2bm.(p2sb.Q) [definition of vBM]

= sb2bm.(p2sb.Q) ⊆ sb2bm.(p2sb.P) [property of sets]

= ∀ s1, ψ • (s1, ψ) ∈ sb2bm.(p2sb.Q) ⇒ (s1, ψ) ∈ sb2bm.(p2sb.P) [definitions of sb2bm and p2sb]

= ∀ s1, ψ • Q [s1, ψ/inα, ac
′] ⇒ P [s1, ψ/inα, ac

′] [predicate calculus]

= ∀ x : inα, ac′ • Q ⇒ P [the alphabet is inα ∪ {ac′}]

= [Q ⇒ P] [definition of refinement in the UTP]

= P v Q

Refinement vR in the set-based model of the UTP is also reverse set inclusion, like in the binary multirelation

Angelic Nondeterminism in the Unifying Theories of Programming 13

model. That this relation corresponds to the others is not a surprising result; the proof that it corresponds to
refinement in the predicate model and in the binary multirelation model, for example, is a direct consequence
of subset inclusion properties. In the next section, we use the following result.

Theorem 4.11. PT1 vPT PT2 if, and only if, pt2p.PT1 v pt2p.PT2.

Proof.

pt2p.PT1 v pt2r .PT2 [definition of pt2p]

= sb2p.(bm2sb.(pt2bm.PT1)) v sb2p.(bm2sb.(pt2bm.PT2)) [definition of sb2p and property of sets]

= bm2sb.(pt2bm.PT1) vR bm2sb.(pt2bm.PT2) [definition of bm2sb and property of sets]

= pt2bm.PT1 vBM pt2bm.PT2 [Theorem 4.9]

= bm2pt .(pt2bm.PT1) vPT bm2pt .(pt2bm.PT2) [Theorem 4.2]

= PT1 vPT PT2

Now, we have a UTP theory that corresponds to monotonic predicate transformers. In the next section,
we explore the definition of the operators in our new theory; besides angelic choice, we consider operators
defined the general theory of UTP relations and designs.

5. Operators

We have already calculated the definition of abort in our new theory; the calculation for miracle is equally
simple. In this section, we use the function pt2p to justify the definitions of other relations and relational
operators in our theory of angelic nondeterminism.

5.1. Choice: angelic and demonic

Of course, angelic choice P t Q is the first operator of interest. In the predicate transformer model, it is
characterised by disjunction (or union), which is the least upper bound operator. In our new UTP theory,
it is characterised by conjunction. The program P t Q gives all the guarantees that can be provided by
choosing P , together with those that arise from the possibility of choosing Q .

Theorem 5.1. pt2p.(P t Q) = pt2p.P ∧ pt2p.Q

Proof.

pt2p.(P t Q) [Theorem 4.5]

= θinα ∈ ¬ (P t Q).(¬ ac′) [predicate transformer semantics of t]

= θinα ∈ ¬ (P .(¬ ac′) ∨ Q .(¬ ac′)) [property of sets]

= θinα ∈ ¬ P .(¬ ac′) ∩ ¬ Q .(¬ ac′) [property of sets]

= θinα ∈ ¬ P .(¬ ac′) ∧ θinα ∈ ¬ Q .(¬ ac′) [Theorem 4.5]

= pt2p.P ∧ pt2p.Q

Like in the original UTP model, demonic choice is captured by disjunction. In the predicate transformer
model, it is captured by conjunction: a postcondition is guaranteed by P u Q only if both P and Q can

14 Ana Cavalcanti, Jim Woodcock and Steve Dunne

guarantee it, so that the arbitrary choice is not a problem.

Theorem 5.2. pt2p.(P u Q) = pt2p.P ∨ pt2p.Q

Proof. Similar to that of Theorem 5.1.

Logical constants are defined as the least upper bound operator in the complete lattice of monotonic predicate
transformers [GM91], which is equal to that in the complete boolean lattice of predicate transformers [BW90].
It also corresponds to the least upper bound operator in our theory: universal quantification.

Theorem 5.3. pt2p.(conX • P(X)) = ∀X • pt2p.P(X)

Proof.

pt2p.(conX • P(X)) [Theorem 4.5]

= θinα ∈ ¬ (conX • P(X)).(¬ ac′) [predicate transformer semantics of con]

= θinα ∈ ¬ (
⊔
{X • P(X) }).(¬ ac′) [property of lattice of predicate transformers]

= θinα ∈
⋂
{X • ¬ P(X).(¬ ac′) } [property of sets]

= ∀X • θinα ∈ ¬ P(X).(¬ ac′) [Theorem 4.5]

= ∀X • pt2p.P(X)

A similar proof establishes that the greatest lower bound operator in the predicate transformer model
corresponds to the greatest lower bound operator in our theory.

5.2. Assignment

Assignment can be defined as follows as a predicate transformer.

(x := e).ψ = { s | s ′ ⊕ {x ′ 7→ e} ∈ ψ } (2)

This corresponds to substitution: the standard weakest precondition semantics of assignment, but it is
expressed using sets. Moreover, there is a slight complication due to the fact that postconditions and pre-
conditions are predicates on different variables, or rather, states on inα and on outα. A similar weakest
precondition semantics is considered in [CW99] for Z. In the above notation, x := e is guaranteed to estab-
lish ψ when executed in an initial state s , if the final state s ′ ⊕ {x ′ 7→ e} obtained by dashing the variables
of s and associating e to x ′ belongs to ψ.

The theorem below gives a definition for assignment in our UTP theory of angelic nondeterminism.

Theorem 5.4. pt2p.(x := e) = (θinα)′ ⊕ {x ′ 7→ e} ∈ ac′

Proof.

pt2p.(x := e) [Theorem 4.5]

= θinα ∈ ¬ ((x := e).ac′) [predicate transformer semantics of x := e (2)]

= θinα ∈ ¬ { s | s ′ ⊕ {x ′ 7→ e} ∈ ¬ ac′ } [property of sets]

= (θinα)′ ⊕ {x ′ 7→ e} ∈ ac′

The assignment is a deterministic command, which does not really involve either demonic or angelic choices.
Therefore, the uniquely determined final state of the assignment is in all sets of angelic choices available for
demonic choice. Moreover, since any set that includes that final state is available for demonic choice, the
angelic choice can provide no interesting guarantees.

Angelic Nondeterminism in the Unifying Theories of Programming 15

5.3. Conditional

We consider the conditional command P C b B Q , which behaves like P , if the condition b holds, and like Q
otherwise. This is the form of conditional studied in the UTP, where b is a condition: a predicate over the
input alphabet, only. To convert b to a set, we use the function c2sb, which is similar to p2sb, but it results
in sets of states, instead of sets of pairs of states; its inverse is sb2c, which is similar to sb2p.

Definition 5.1. c2sb.P = { s | P [s/α] }
sb2c.b = θinα ∈ b

It is not difficult to establish an isomorphism between sets of states and conditions based on c2sb and sb2c.
The semantics of conditionals in our new theory is the subject of the next theorem.

Theorem 5.5. pt2p.(P C b B Q) = (b ⇒ pt2p.P) ∧ (¬ b ⇒ pt2p.Q)

Proof.

pt2p.(P C b B Q) [Theorem 4.5]

= θinα ∈ ¬ (P C b B Q).(¬ ac′) [predicate transformer semantics of P C b B Q]

= θinα ∈ ¬ (c2sb.b ∩ P .(¬ ac′) ∪ ¬ c2sb.b ∩ Q .(¬ ac′)) [property of sets]

= θinα ∈ ¬ (c2sb.b ∩ P .(¬ ac′)) ∧ θinα ∈ ¬ (¬ c2sb.b ∩ Q .(¬ ac′)) [property of sets]

= (θinα ∈ ¬ c2sb.b ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (θinα ∈ c2sb.b ∨ θinα ∈ ¬ Q .(¬ ac′))

[property of sets and definition of sb2c]

= (¬ sb2c.(c2sb.b) ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (sb2c.(c2sb.b) ∨ θinα ∈ ¬ Q .(¬ ac′))

[definitions of sb2c and c2sb]

= (¬ b ∨ θinα ∈ ¬ P .(¬ ac′)) ∧ (b ∨ θinα ∈ ¬ Q .(¬ ac′)) [definition of pt2p]

= (¬ b ∨ pt2p.P) ∧ (b ∨ pt2p.Q) [predicate calculus]

= (b ⇒ pt2p.P) ∧ (¬ b ⇒ pt2p.Q)

Basically, the semantics of conditional is the same as that in the general theory of relations.

5.4. Sequence

Sequential composition cannot correspond to relational composition, since the relations are not homogeneous.
We provide here a much simpler definition than that suggested in [CW05], though.

The weakest precondition semantics of sequence is function composition. In our setting, since precondi-
tions are over states on inα and postconditions are over states on outα, the composition is not direct. The
definition is as follows.

(P ; Q).ψ = P .(Q .ψ)′ (3)

As usual, the weakest precondition for P ; Q to establish ψ is the weakest precondition for P to establish
the weakest precondition for Q to establish ψ. However, the weakest precondition for Q to establish ψ is
not a postcondition, since it is a set of initial states. The corresponding postcondition is (Q .ψ)′. For a set
of initial states ss , the set ss ′ contains states s ′, for each initial state s in ss ; more formally, in terms of the
relational image operator: ss ′ = ′(| ss |).

In the context of our UTP theory, the definition can be surprisingly simple. The definition of sequence
for binary multirelations is very intuitive.

BM1; BM2 = { s1, ss | ∃ ss0 • (s1, ss
′
0
) ∈ BM1 ∧ ss0 ⊆ { s1 | (s1, ss) ∈ BM2 } } (4)

An initial state s1 is associated to a set of angelic choices ss in (BM1; BM2) if BM1 associates s1 to a set

16 Ana Cavalcanti, Jim Woodcock and Steve Dunne

ss ′
0

of angelic choices such that, whatever state from ss0 is chosen, the execution of BM2 from that state
may lead to the availability of ss for angelic choice. This is the definition in [Rew03]. For healthy binary
multirelations, it can be simplified as shown below.

BM1; BM2 = { s1, ss | (s1, { s1 | (s1, ss) ∈ BM2 }
′) ∈ BM1} (5)

In words, the set of angelic choices ss is available for (BM1; BM2) from an initial state s1 if all the initial
states of BM2 from which ss is available is a set of angelic choices available for BM1 from s1. This can be
expressed in the predicative theory using substitution.

Theorem 5.6. pt2p.(P ; Q) = (pt2p.P)[{ s ′ | (pt2p.Q)[s/inα] }/ac′]

Proof.

pt2p.(P ; Q) [Theorem 4.5]

= θinα ∈ ¬ (P ; Q).(¬ ac′) [predicate transformer semantics of sequence (3)]

= θinα ∈ ¬ P .(Q .(¬ ac′))′ [property of sets]

= θinα ∈ ¬ P .(¬ (¬ Q .(¬ ac′))′) [property of sets]

= θinα ∈ ¬ P .(¬ { s | s ∈ ¬ Q .(¬ ac′)}′) [property of substitution]

= θinα ∈ ¬ P .(¬ { s ′ | (θinα ∈ ¬ Q .(¬ ac′))[s/inα]}) [Theorem 4.5]

= θinα ∈ ¬ P .(¬ { s ′ | (pt2p.Q)[s/inα]}) [property of substitution]

= (θinα ∈ ¬ P .(¬ ac′))[{ s ′ | (pt2p.Q)[s/inα]}/ac′] [Theorem 4.5]

= (pt2p.P)[{ s ′ | (pt2p.Q)[s/inα] }/ac′]

In conclusion, this theorem supports the following definition for sequence.

P ; Q =̂ P [{ s ′ | Q [s/inα] }/ac′]

It states that a set of angelic choices ac′ for P ; Q is a set that is available for Q when it is executed in any
of the states s of a set of angelic choices for P . This is a definition that is possibly not obvious, but could
be calculated using the isomorphism between predicate transformers and the UTP predicative theory.

An example of a simple sequence of two assignments can be illuminating; we consider x := 2; x := x +1.
We assume that x is the only variable in the input alphabet.

x := 2; x := x + 1 [semantics of assignment and sequence]

= ((x ′ 7→ 2) ∈ ac′)[{ s ′ | ((x ′ 7→ x + 1) ∈ ac′)[s/x] }/ac′] [property of substitution]

= ((x ′ 7→ 2) ∈ ac′)[{ s ′ | (x ′ 7→ s .x + 1) ∈ ac′ }/ac′] [property of substitution]

= (x ′ 7→ 2) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ } [property of sets]

= (x ′ 7→ (x 7→ 2).x + 1) ∈ ac′ [property of states]

= (x ′ 7→ 2 + 1) ∈ ac′ [semantics of assignment]

= x := 3

As should be expected, the sequence of assignments is equivalent to x := 3. In our second example, we
consider a sequence involving an angelic choice.

(x := 0 t x := 1); x := x + 1 [semantics of assignment, angelic choice, and sequence]

= ((x ′ 7→ 0) ∈ ac′ ∧ (x ′ 7→ 1) ∈ ac′)[{ s ′ | (x ′ 7→ s .x + 1) ∈ ac′ }/ac′] [property of substitution]

= (x ′ 7→ 0) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ } ∧ (x ′ 7→ 1) ∈ { s ′ | (x ′ 7→ s .x + 1) ∈ ac′ } [property of sets]

= (x ′ 7→ (x 7→ 0).x + 1) ∈ ac′ ∧ (x ′ 7→ (x 7→ 1).x + 1) ∈ ac′ [property of states]

= (x ′ 7→ 1) ∈ ac′ ∧ (x ′ 7→ 2) ∈ ac′ [semantics of assignment and angelic choice]

= x := 1 t x := 2

Since the angelic choice x := 0tx := 1 is followed by an assignment that increments x , the program actually

Angelic Nondeterminism in the Unifying Theories of Programming 17

guarantees x to take the value 1 or 2, as required.

5.5. Recursion

Finally, we consider recursion.

Theorem 5.7. pt2p.(µX • F (X))) = µX • (pt2p.F))(X)

Proof.

pt2p.(µX • F (X)) [property of µ]

= pt2p.(u{X | F (X) vPT X }) [Theorem 5.3]

= u{ pt2p.X | F (X) vPT X } [Theorem 4.11]

= u{ pt2p.X | pt2p.F (X) v pt2p.X } [property of sets]

= u{X | (pt2p.F)(X) v X } [property of µ]

= µX • (pt2p.F))(X)

As usual, recursion is given by the least fixed point operator.

5.6. Designs

The theory of angelic nondeterminism captures termination; this should not come as a surprise since we
have a model isomorphic to monotonic predicate transformers. A program that aborts includes the empty
set as an option for demonic choice. For example, we have already established that abort is true; on the
other hand, the program that can lead to an arbitrary final state, but always terminates is ac′ 6= ∅.

In particular, abort is the left zero for sequence.

Theorem 5.8. abort ; Q = abort

Proof.

abort ; Q [definitions of abort and sequence]

= true[{ s ′ | Q [s/inα] }/ac′] [property of substitution]

= true [definition of abort]

= abort

As as consequence of this result, the paradox that motivated the definition of the theory of designs is not a
concern in our theory. Therefore, there is no need to include the extra observational variables; at least, not
just to model termination.

In order to give the weakest precondition semantics of a design, we need to define universal quantification
and alphabet extension for predicates defined as sets of states. The usual semantics of designs, or rather, of
specifications given by a precondition and a postcondition, is as follows.

(P ` Q).ψ = P ∩ ∀outα • ¬ Q ∪ (ψ † inα) (6)

This is basically in direct correspondence with the perhaps more familiar predicative definition; a similar
set-based formulation is used in [CN02]. The definition of universal quantification is as follows.

s ∈ (∀x • P) = ∀ v • s ⊕ {x 7→ v} ∈ P (7)

In (6) we use a universal quantification over the whole output alphabet; the extension of the above definition

18 Ana Cavalcanti, Jim Woodcock and Steve Dunne

for sets of variables is straightforward. Also, in (6), Q is a set of states over the joint alphabet inα ∪ outα;
the postcondition ψ, however, is a set of states on outα. We use the † operator to extend the alphabet of ψ
to inα ∪ outα. Its definition is as follows; basically, the values of the extra variables are left unconstrained.

s ∈ (P † x) = { x } −C s ∈ P (8)

Again, in (6) we apply † to a set of names inα, instead of to a single variable x . The definition above can be
extended in the obvious way.

The next theorem gives a semantics for designs in our new theory. We take P and Q to be predicates,
and use c2sb to convert then to sets of states.

Theorem 5.9. pt2p.(P ` Q) = P ⇒ ∃ outα • Q ∧ θoutα ∈ ac′

Proof.

pt2p.(P ` Q) [definition of pt2p]

= θinα ∈ ¬ (P ` Q).(¬ ac′) [predicate transformer semantics of designs]

= θinα ∈ ¬ (c2sb.P ∩ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα)) [property of sets]

= θinα ∈ ¬ c2sb.P ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα) [definition of sb2c]

= ¬ sb2c.(c2sb.P) ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα) [sbc2.(c2sb.P) = P]

= ¬ P ∨ θinα /∈ ∀outα • ¬ c2sb.Q ∪ (¬ ac′ † inα) [definition of ∀ (7) and predicate calculus]

= ¬ P ∨ ∃ v • θinα⊕ {outα 7→ v} /∈ ¬ c2sb.Q ∪ (¬ ac′ † inα) [property of sets]

= ¬ P ∨ ∃ v • θinα⊕ {outα 7→ v} ∈ c2sb.Q ∧ θinα⊕ {outα 7→ v} ∈ ¬ (¬ ac′ † inα)

[definition of † (8) and property of sets]

= ¬ P ∨ ∃ v • θinα⊕ {outα 7→ v} ∈ c2sb.Q ∧ θinα⊕ {outα 7→ v} ∈ (ac′ † inα) [definition of † (8)]

= ¬ P ∨ ∃ v • θinα⊕ {outα 7→ v} ∈ c2sb.Q ∧ inα−C θinα ⊕ {outα 7→ v} ∈ ac′ [property of −C]

= ¬ P ∨ ∃ v • θinα⊕ {outα 7→ v} ∈ c2sb.Q ∧ {outα 7→ v} ∈ ac′ [predicate calculus]

= ¬ P ∨ ∃ outα • θinα ⊕ θoutα ∈ c2sb.Q ∧ θoutα ∈ ac′ [definition of sb2c]

= ¬ P ∨ ∃ outα • sb2c.(c2sb.Q) ∧ θoutα ∈ ac′ [sbc2.(c2sb.P) = P]

= ¬ P ∨ ∃ outα • Q ∧ θoutα ∈ ac′ [predicate calculus]

= P ⇒ ∃ outα • Q ∧ θoutα ∈ ac′

In words, if P holds, then ac′ is any set that contains a state that satisfies Q ; the nondeterminism in a
design is demonic. We observe that Q is not a predicate over inα ∪ ac′, but over inα ∪ outα, where outα is
the alphabet of the states in ac′.

6. Conclusions

The central objective of Hoare and He’s UTP is to formalise different programming paradigms within a
common semantic framework, so that they may be directly compared and new compound programming
languages and refinement calculi may be developed. This ambitious research programme has only just been
started. An important question to ask is: what are the theoretical limits to this investigation?

Angelic nondeterminism is a valuable concept: it plays an important rôle in refinement calculi, and
it is used as an abstraction in search-based and constraint-oriented programming, hiding details of how

Angelic Nondeterminism in the Unifying Theories of Programming 19

particular strategies are implemented. The main contribution of this paper is a predicative account of binary
multirelations that allows the unification of angelic nondeterminism into the UTP.

We describe the UTP predicative theories of alphabetised relations and of designs, where it is possible to
observe the start and termination of a program. Designs enable reasoning about total correctness, and a set-
based model of relations brings this fact sharply into focus. We show that there is an isomorphism between
our set-based relations and universally conjunctive predicate transformers. This establishes a connection
with an existing result: conjunctive predicate transformers cannot capture angelic nondeterminism.

A relational model that can capture both angelic and demonic nondeterminism is presented in [Rew03].
We cast that model in the UTP predicative style, including a healthiness condition and the refinement
relation. This allows its use in an integrated framework that covers, for instance, concurrency and higher-
order programming. We are going to use this model to extend the existing semantics of Circus [WC02], our
combined formalism, and prove refinement laws.

It is unavoidable that the definition of sequence is more complicated than that in the original UTP model.
It is part of the philosophy of the UTP to study constructs and concepts in isolation: we have provided a
theory for angelic nondeterminism which can be incorporated to the other theories as needed. Moreover, our
calculations revealed a tractable definition based on substitution.

In [BW98], Back and von Wright present another relational model isomorphic to predicate transformers;
it is actually a functional model called choice semantics. In that work, a program P is a function from initial
states s1 to the set of postconditions that can be satisfied when P is executed in s1. The choice semantics
is, of course, isomorphic to binary multirelations. Since in the UTP relations are defined punctually, it was
more convenient to base our work on binary multirelations rather than on choice semantics.

The work in [MGW96] presents a functional semantics for a tactic language which includes angelic
nondeterminism. The semantics of angelic choice is a list that contains all the options available to the
angel; demonic nondeterminism is not included. In [MCR04], the set-based model of binary relations is used
to support angelic and demonic nondeterminism in a calculus for functional programs. They adopt two
refinement relations, one of which is the same as ours.

Both [Rew03] and [MCR04] present operations that model, for example, angelic nondeterminism and
sequence. Our contribution is to cast these operations at the level of UTP predicates, where they can be
integrated into more powerful theories of programming. Moreover, our comparatively simple definition of
sequence takes advantage of the healthiness condition of the model of binary multirelations. We also go
further in that we consider logical constants, recursion, assignments, conditionals, and designs.

Acknowledgements

The authors are grateful to Will Harwood for extensive discussions, and to Carroll Morgan for pointing out
the work on binary multirelations. This work is partially funded by QinetiQ and the Royal Society.

References

[BW89] R. J. R. Back and J. Wright. A Lattice-theoretical Basis for a Specification Language. In J. L. A. van de Snepscheut,
editor, Mathematics of Program Construction: 375th Anniversary of the Groningen University, volume 375 of
Lecture Notes in Computer Science, pages 139 – 156, Groningen, The Netherlands, 1989. Springer-Verlag.

[BW90] R. J. R. Back and J. Wright. Duality in Specification Languages: A Lattice-theoretical Approach. Acta Informatica,
27(7):583 – 625, 1990.

[BW92] R. J. R. Back and J. Wright. Combining angels, demons and miracles in program specifications. Theoretical
Computer Science, 100:365 – 383, 1992.

[BW98] R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction. Graduate Texts in Computer
Science. Springer-Verlag, 1998.

[CN02] A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data refinement of classes. In L. Eriksson and P. A.
Lindsay, editors, FME 2002: Formal Methods — Getting IT Right, volume 2391 of Lecture Notes in Computer
Science, pages 471 – 490. Springer-Verlag, 2002.

[CSW03] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement Strategy for Circus. Formal Aspects
of Computing, 15(2 - 3):146 — 181, 2003.

[CW98] A. L. C. Cavalcanti and J. C. P. Woodcock. A Weakest Precondition Semantics for Z. The Computer Journal,
41(1):1 – 15, 1998.

[CW99] A. L. C. Cavalcanti and J. C. P. Woodcock. ZRC—A Refinement Calculus for Z. Formal Aspects of Computing,
10(3):267—289, 1999.

20 Ana Cavalcanti, Jim Woodcock and Steve Dunne

[CW04] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic Nondeterminism and Unifying Theories of Programming
(Extended Version). Technical report, University of Kent - Computing Laboratory, 2004.

[CW05] A. L. C. Cavalcanti and J. C. P. Woodcock. Angelic Nondeterminism and Unifying Theories of Programming . In
J. Derrick and E. Boiten, editors, REFINE 2005, volume 137 of Eletronic Notes in Theoretical Computer Science.
Elsevier, 2005.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
[Dun01] S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the Context of General Correctness. In

A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish Workshop in Formal Methods, BCS Electronic Workshops
in Computing, Dublin, Ireland, July 2001.

[GM91] P. H. B. Gardiner and C. C. Morgan. Data Refinement of Predicate Transformers. Theoretical Computer Science,
87:143 – 162, 1991.

[Hes92] W. H. Hesselink. Programs, Recursion and Unbounded Choice – Predicate Transformation Semantics and Trans-
formation Rules. Cambridge Tracts in Theoretical Computer Science 27. Cambridge University Press, 1992.

[HH85] C. A. R. Hoare and Jifeng He. The Weakest Prespecification. Technical Monograph TM-PRG-44, Oxford University
Computing Laboratory, Oxford – UK, 1985.

[HJ98] C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall, 1998.
[JSS91] R. Jagadeesan, V. Shanbhogue, and V. Saraswat. Angelic non-determinism in concurrent constraint programming.

Technical report, Xerox Park, January 1991.
[MCR04] C. E. Martin, S. A. Curtis, and I. Rewitzky. Modelling Nondeterminism. In Mathematics of Program Construction,

Lecture Notes in Computer Science, pages 228 – 251, 2004.
[MG90] C. C. Morgan and P. H. B. Gardiner. Data Refinement by Calculation. Acta Informatica, 27(6):481—503, 1990.
[MGW96] A. P. Martin, P. H. B. Gardiner, and J. C. P. Woodcock. A Tactical Calculus. Formal Aspects of Computing,

8(4):479–489, 1996.
[Mor94] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
[Rew03] I. Rewitzky. Binary Multirelations. In H. Swart, E. Orlowska, G. Schmidt, and M. Roubens, editors, Theory

and Application of Relational Structures as Knowledge Instruments, volume 2929 of Lecture Notes in Computer
Science, pages 256 – 271, 2003.

[WC02] J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert, J. P. Bowen, M. C. Henson, and
K. Robinson, editors, ZB 2002: Formal Specification and Development in Z and B, volume 2272 of Lecture Notes
in Computer Science, pages 184 – 203. Springer-Verlag, 2002.

[WC04] J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs in Unifying Theories of Program-
ming. In E. A. Boiten, J. Derrick, and G. Smith, editors, IFM 2004: Integrated Formal Methods, volume 2999 of
Lecture Notes in Computer Science, pages 40 – 66. Springer-Verlag, 2004. Invited tutorial.

