
A Tutorial Introduction to CSP in
Unifying Theories of Programming

Ana Cavalcanti and Jim Woodcock

Department of Computer Science
University of York

Heslington, York YO10 5DD, UK
{Ana.Cavalcanti,Jim.Woodcock}@cs.york.ac.uk

Abstract. In their Unifying Theories of Programming, Hoare & He use
the alphabetised relational calculus to give denotational semantics to a
wide variety of constructs taken from different programming paradigms.
We give a tutorial introduction to the semantics of CSP processes. We
start with a summarised introduction of the alphabetised relational cal-
culus and the theory of designs, which are precondition-postcondition
specifications. Afterwards, we present in detail a theory for reactive pro-
cesses. Later, we combine the theories of designs and reactive processes
to provide the model for CSP processes. Finally, we compare this new
model with the standard failures-divergences model for CSP.

1 Introduction

The book by Hoare & He [6] sets out a research programme to find a common
basis in which to explain a wide variety of programming paradigms: unifying
theories of programming (UTP). Their technique is to isolate important language
features, and give them a denotational semantics. This allows different languages
and paradigms to be compared.

The semantic model is an alphabetised version of Tarski’s relational calculus,
presented in a predicative style that is reminiscent of the schema calculus in
the Z [15] notation. Each programming construct is formalised as a relation
between an initial and an intermediate or final observation. The collection of
these relations forms a theory of the paradigm being studied, and it contains
three essential parts: an alphabet, a signature, and healthiness conditions.

The alphabet is a set of variable names that gives the vocabulary for the
theory being studied. Names are chosen for any relevant external observations
of behaviour. For instance, programming variables x , y , and z would be part of
the alphabet. Also, theories for particular programming paradigms require the
observation of extra information; some examples are a flag that says whether the
program has started (okay); the current time (clock); the number of available
resources (res); a trace of the events in the life of the program (tr); or a flag that
says whether the program is waiting for interaction with its environment (wait).
The signature gives the rules for the syntax for denoting objects of the theory.
Healthiness conditions identify properties that characterise the theory.

Each healthiness condition embodies an important fact about the computational
model for the programs being studied.

Example 1 (Healthiness conditions).

1. The variable clock gives us an observation of the current time, which moves
ever onwards. The predicate B specifies this.

B =̂ clock ≤ clock ′

If we add B to the description of some activity, then the variable clock
describes the time observed immediately before the activity starts, whereas
clock ′ describes the time observed immediately after the activity ends. If we
suppose that P is a healthy program, then we must have that P ⇒ B .

2. The variable okay is used to record whether or not a program has started.
A sensible healthiness condition is that we should not observe a program’s
behaviour until it has started; such programs satisfy the following equation.

P = (okay ⇒ P)

If the program has not started, its behaviour is not restricted. �

Healthiness conditions can often be expressed in terms of a function φ that makes
a program healthy. There is no point in applying φ twice, since we cannot make a
healthy program even healthier. Therefore, φ must be idempotent, and a healthy
P must be a fixed point: P = φ(P); this equation characterises the healthiness
condition. For example, we can turn the first healthiness condition above into an
equivalent equation, P = P ∧ B , and then the following function on predicates
andB =̂ λX • P ∧ B is the required idempotent.

The relations are used as a semantic model for unified languages of speci-
fication and programming. Specifications are distinguished from programs only
by the fact that the latter use a restricted signature. As a consequence of this
restriction, programs satisfy a richer set of healthiness conditions.

Unconstrained relations are too general to handle the issue of program ter-
mination; they need to be restricted by healthiness conditions. The result is the
theory of designs, which is the basis for the study of the other programming
paradigms in [6]. Here, we present the general relational setting, and the tran-
sition to the theory of designs. Next we take a different tack, and introduce the
theory of reactive processes, which we then combine with designs to form the
theory of CSP [5, 11]; we assume knowledge of CSP.

In the next section, we present the most general theory of UTP: the alpha-
betised predicates. In the following section, we establish that this theory is a
complete lattice. Section 4 restricts the general theory to designs; an alternative
characterisation of the theory of designs using healthiness conditions is also pre-
sented. Section 5 presents the theory of reactive processes; Section 6 contains
our treatment of CSP processes; and Section 7 relates our model to Roscoe’s
standard model. We summarise the work in Section 8.

2

2 The alphabetised relational calculus

The alphabetised relational calculus is similar to Z’s schema calculus, except that
it is untyped and rather simpler. An alphabetised predicate (P ,Q , . . . , true) is
an alphabet-predicate pair, where the predicate’s free variables are all members
of the alphabet. Relations are predicates in which the alphabet is composed
of undecorated variables (x , y , z , . . .) and dashed variables (x ′, a ′, . . .); the
former represent initial observations, and the latter, observations made at a
later intermediate or final point. The alphabet of an alphabetised predicate P is
denoted αP , and may be divided into its before-variables (inαP) and its after-
variables (outαP). A homogeneous relation has outαP = inαP ′, where inαP ′

is the set of variables obtained by dashing all variables in the alphabet inαP . A
condition (b, c, d , . . . , true) has an empty output alphabet.

Standard predicate calculus operators can be used to combine alphabetised
predicates. Their definitions, however, have to specify the alphabet of the com-
bined predicate. For instance, the alphabet of a conjunction is the union of the
alphabets of its components: α(P ∧ Q) = αP ∪ αQ . If a variable is mentioned
in the alphabet of P and Q , then they are both constraining the same variable.

A distinguishing feature of UTP is its concern with program development,
and consequently program correctness. A significant achievement is that the
notion of program correctness is the same in every paradigm in [6]: in every
state, the behaviour of an implementation implies its specification.

If we suppose that αP = {a, b, a ′, b′}, then the universal closure of P is
simply ∀ a, b, a ′, b′ • P , which is more concisely denoted as [P]. The correctness
of a program P with respect to a specification S is denoted by S � P (S is
refined by P), and is defined as follows.

S � P iff [P ⇒ S]

Example 2 (Refinement). Suppose we have the specification x ′ > x ∧ y ′ = y ,
and the implementation x ′ = x + 1 ∧ y ′ = y . The implementation’s correctness
is argued as follows.

x ′ > x ∧ y ′ = y � x ′ = x + 1 ∧ y ′ = y [�]

= [x ′ = x + 1 ∧ y ′ = y ⇒ x ′ > x ∧ y ′ = y] [universal one-point rule, twice]

= [x + 1 > x ∧ y = y] [arithmetic and reflection]

= true

And so, the refinement is valid. �

As a first example of the definition of a programming constructor, we consider
conditionals. Hoare & He use an infix syntax for the conditional operator, and
define it as follows.

P � b � Q =̂ (b ∧ P) ∨ (¬ b ∧ Q) if αb ⊆ αP = αQ
α(P � b � Q) =̂ αP

Informally, P � b � Q means P if b else Q .

3

The presentation of conditional as an infix operator allows the formulation of
many laws in a helpful way.

L1 P � b � P = P idempotence

L2 P � b � Q = Q � ¬ b � P symmetry

L3 (P � b � Q) � c � R = P � b ∧ c � (Q � c � R) associativity

L4 P � b � (Q � c � R) = (P � b � Q) � c � (P � b � R)distributivity

L5 P � true � Q = P = Q � false � P unit

L6 P � b � (Q � b � R) = P � b � R unreachable branch

L7 P � b � (P � c � Q) = P � b ∨ c � Q disjunction

L8 (P
 Q) � b � (R
 S) = (P � b � R)
 (Q � b � S) interchange

In Law L8 , the symbol
 stands for any truth-functional operator.
For each operator, Hoare & He give a definition followed by a number of

algebraic laws as those above. These laws can be proved from the definition;
proofs omitted here can be found in [6] or [14]. We also present extra laws that
are useful in later proofs, as well as in illuminating the theory.

Negating a conditional negates its operands, but not its condition.

Law 1 (not-conditional)

¬ (P � b � Q) = (¬ P � b � ¬ Q)

Proof

¬ (P � b � Q) [conditional]

= ¬ ((b ∧ P) ∨ (¬ b ∧ Q)) [propositional calculus]

= (b ⇒ ¬ P) ∧ (¬ b ⇒ ¬ Q) [propositional calculus]

= (b ∧ ¬ P) ∨ (¬ b ∧ ¬ Q) [conditional]

= (¬ P � b � ¬ Q) �

If we apply the law of symmetry to the last result, we see that negating a
conditional can be used to negate its condition, but in this case, the operands
must be both negated and reversed: ¬ (P � b � Q) = (¬ Q � ¬ b � ¬ P).

Below is an instance of Law L8 with a compound truth-functional operator.

Law 2 (conditional-and-not-conditional)

(P � b � Q) ∧ ¬ (R � b � S) = (P ∧ ¬ R) � b � (Q ∧ ¬ S)

Proof

(P � b � Q) ∧ ¬ (R � b � S) [Law 1]

= (P � b � Q) ∧ (¬ R � b � ¬ S) [L8]

= (P ∧ ¬ R) � b � (Q ∧ ¬ S)) �

4

Implication distributes in both directions through the conditional.

Law 3 (implies-conditional)

(P ⇒ (Q � b � R)) = ((P ⇒ Q) � b � (P ⇒ R))
((P � b � Q) ⇒ R) = ((P ⇒ R) � b � (Q ⇒ R))

Proof (rightwards)

(P ⇒ (Q � b � R)) [propositional calculus and conditional]

= (¬ P ∨ Q ∧ b ∨ R ∧ ¬ b) [case analysis]

= (¬ P ∧ (b ∨ ¬ b) ∨ Q ∧ b ∨ R ∧ ¬ b) [propositional calculus]

= (¬ P ∧ b ∨ ¬ P ∧ ¬ b ∨ Q ∧ b ∨ R ∧ ¬ b) [propositional calculus]

= ((¬ P ∨ Q) ∧ b ∨ (¬ P ∧ R) ∧ ¬ b [propositional calculus]

= ((P ⇒ Q) ∧ b ∨ ¬ b ∧ (P ⇒ R) [conditional]

= ((P ⇒ Q) � b � (P ⇒ R))

The proof of the opposite direction is similar. �

A consequence of the exchange and unit laws is that conjunction and disjunction
both distribute through the conditional.

Law 4 (conditional-conjunction)

(P � b � Q) ∧ R = (P ∧ R) � b � (Q ∧ R) �

Law 5 (conditional-disjunction)

(P � b � Q) ∨ R = (P ∨ R) � b � (Q ∨ R) �

A conditional may be simplified by using a known condition.

Law 6 (known-condition)

b ∧ (P � b � Q) = (b ∧ P)
¬ b ∧ (P � b � Q) = (¬ b ∧ Q) �

Two absorption laws allow a conditional’s operands to be simplified.

Law 7 (assume-if-condition)

(P � b � Q) = ((b ∧ P) � b � Q) �

Law 8 (assume-else-condition)

(P � b � Q) = (P � b � (¬ b ∧ Q)) �

5

Sequence is modelled as relational composition. Two relations may be composed
providing the output alphabet of the first is the same as the input alphabet of
the second, except only for the use of dashes.

P(v ′) ; Q(v) =̂ ∃ v0 • P(v0) ∧ Q(v0) if outαP = inαQ ′ = {v ′}
inα(P(v ′) ; Q(v)) =̂ inαP
outα(P(v ′) ; Q(v)) =̂ outαQ

Sequence is associative and distributes backwards through the conditional.

L1 P ; (Q ; R) = (P ; Q) ; R associativity

L2 (P � b � Q) ; R = ((P ; R) � b � (Q ; R)) left distribution

The definition of assignment is basically equality; we need, however, to be careful
about the alphabet. If A = {x , y , . . . , z} and αe ⊆ A, where αe is the set of free
variables of the expression e, the assignment x :=A e of expression e to variable
x changes only x ’s value.

x :=A e =̂ (x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)
α(x :=A e) =̂ A ∪ A′

There is a degenerate form of assignment that changes no variable: it has the
following definition.

II A =̂ (v ′ = v) if A = {v}
α II A =̂ A ∪ A′

Here, v stands for a list of observational variables. We use v ′ = v to denote the
conjunction of equalities x ′ = x , for all x in v . When clear from the context, we
omit the alphabet of assignments and II .

II is the identity of sequence.

L5 P ; II αP = P = II αP ; P unit

We keep the numbers of the laws presented in [6] that we reproduce here.
Since sequence is defined in terms of the existential quantifier, there are two

one-point laws. We prove one of them; the proof of the other is a simple exercise.

Law 9 (left-one-point)

v ′ = e ; P = P [e/v] where αP = {v , v ′} �

6

Law 10 (right-one-point)

P ; v = e = P [e/v ′] where αP = {v , v ′}
Proof

P ; v = e [sequence]

= ∃ v0 • P [v0/v ′] ∧ (v = e)[v0/v] [substitution]

= ∃ v0 • P [v0/v ′] ∧ v0 = e [predicate calculus]

= P [v0/v ′][e/v0] [substitution]

= P [e/v ′] �

In theories of programming, nondeterminism may arise in one of two ways: either
as the result of run-time factors, such as distributed processing; or as the under-
specification of implementation choices. Either way, nondeterminism is modelled
by choice; the semantics is simply disjunction.

P � Q =̂ P ∨ Q if αP = αQ
α(P � Q) =̂ αP

The alphabet must be the same for both arguments.
Variable blocks are split into the commands var x , which declares and intro-

duces x in scope, and end x , which removes x from scope. Their definitions are
presented below, where A is an alphabet containing x and x ′.

var x =̂ (∃ x • II A)

end x =̂ (∃ x ′ • II A)

α(var x) =̂ A \ {x}
α(end x) =̂ A \ {x ′}

The relation var x is not homogeneous, since it does not include x in its alphabet,
but it does include x ′; similarly, end x includes x , but not x ′.

The results below state that following a variable declaration by a program Q
makes x local in Q ; similarly, preceding a variable undeclaration by a program
Q makes x ′ local.

(var x ; Q) = (∃ x • Q)

(Q ; end x) = (∃ x ′ • Q)

More interestingly, we can use var x and end x to specify a variable block.

(var x ; Q ; end x) = (∃ x , x ′ • Q)

In programs, we use var x and end x paired in this way, but the separation is
useful for reasoning.

Variable blocks introduce the possibility of writing programs and equations
like that below.

(var x ; x := 2 ∗ y ; w := 0 ; end x)
= (var x ; x := 2 ∗ y ; end x) ; w := 0

Clearly, the assignment to w may be moved out of the scope of the declaration of

7

x , but what is the alphabet in each of the assignments to w? If the only variables
are w , x , and y , and suppose that A = {w , y ,w ′, y ′}, then the assignment on the
right has the alphabet A; but the alphabet of the assignment on the left must
also contain x and x ′, since they are in scope. There is an explicit operator for
making alphabet modifications such as this: alphabet extension.

P+x =̂ P ∧ x ′ = x for x , x ′ /∈ αP
α(P+x) =̂ αP ∪ {x , x ′}

In our example, if the right-hand assignment is P =̂ w :=A 0, then the left-hand
assignment is denoted by P+x .

3 The complete lattice

The refinement ordering is a partial order: reflexive, anti-symmetric, and transi-
tive. Moreover, the set of alphabetised predicates with a particular alphabet A is
a complete lattice under the refinement ordering. Its bottom element is denoted
⊥A, and is the weakest predicate true ; this is the program that aborts, and
behaves quite arbitrarily. The top element is denoted �A, and is the strongest
predicate false ; this is the program that performs miracles and implements
every specification. These properties of abort and miracle are captured in the
following two laws, which hold for all P with alphabet A.

L1 ⊥A � P bottom element

L2 P � �A top element

The least upper bound is not defined in terms of the relational model, but by the
Law L1 below. This law alone is enough to prove Laws L1A and L1B , which
are actually more useful in proofs.

L1 P � (�S) iff (P � X for all X in S) unbounded nondeterminism

L1A (�S) � X for all X in S lower bound

L1B if P � X for all X in S , then P � (�S) greatest lower bound

These laws characterise basic properties of least upper bounds.
A function F is monotonic if and only if P � Q ⇒ F (P) � F (Q). Operators

like conditional and sequence are monotonic; negation and conjunction are not.
There is a class of operators that are all monotonic: the disjunctive operators.
For example, sequence is disjunctive in both arguments.

L6 (P � Q) ; R = (P ; R) � (Q ; R) ; -� left distribution

L7 P ; (Q � R) = (P ; Q) � (P ; R) ; -� right distribution

Since alphabetised relations form a complete lattice, every construction defined
solely using monotonic operators has a fixed point. Even more, a result by Tarski

8

says that the set of fixed points is a complete lattice. The extreme points in
this lattice are often of interest; for example, � is the strongest fixed point of
X = P ; X , and ⊥ is the weakest.

The weakest fixed point of the function F is denoted by μF , and is simply
the greatest lower bound (the weakest) of all the fixed points of F .

μF =̂ �{X | F (X) � X }
The strongest fixed point νF is the dual of the weakest fixed point.

Hoare & He use weakest fixed points to define recursion. They write a re-
cursive program as μX • C(X), where C(X) is a predicate that is constructed
using monotonic operators and the variable X . As opposed to the variables in
the alphabet, X stands for a predicate itself, and we call it the recursive vari-
able. Intuitively, occurrences of X in C stand for recursive calls to C itself. The
definition of recursion is as follows.

μX • C(X) =̂ μF where F =̂ λX • C(X)

The standard laws that characterise weakest fixed points are valid.

L1 μF � Y if F (Y) � Y weakest fixed point

L2 [F (μF) = μF] fixed point

L1 establishes that μF is weaker than any fixed point; L2 states that μF is
itself a fixed point. From a programming point of view, L2 is just the copy rule.

The while loop is written b ∗P : while b is true, execute the program P . This
can be defined in terms of the weakest fixed point of a conditional expression.

b ∗ P =̂ μX • ((P ; X) � b � II)

Example 3 (Non-termination). If b always remains true, then obviously the loop
b ∗P never terminates, but what is the semantics for this? The simplest example
of such an iteration is true ∗ II , which has the semantics μX • X .

μX • X [least fixed point]

= �{Y | (λX • X)(Y) � Y } [function application]

= �{Y | Y � Y } [reflexivity of �]

= �{Y | true } [property of �]

= ⊥ �

A surprising, but simple, consequence of Example 3 is that a program can recover
from a non-terminating loop!

Example 4 (Aborting loop). Suppose that the sole state variable is x and that c
is a constant.

(b ∗ P) ; x := c [Example 3]

= ⊥ ; x := c [⊥]

9

= true ; x := c [assignment]

= true ; x ′ = c [sequence]

= ∃ x0 • true ∧ x ′ = c [predicate calculus]

= x ′ = c [assignment]

= x := c �

Example 4 is rather disconcerting: in ordinary programming, there is no recov-
ery from a non-terminating loop. It is the purpose of designs to overcome this
deficiency in the programming model.

4 Designs

The problem pointed out above in Section 3 can be explained as the failure of
general alphabetised predicates P to satisfy the equation below.

true ; P = true

The solution is to consider a subset of the alphabetised predicates in which a
particular observational variable, called okay , is used to record information about
the start and termination of programs. The above equation holds for predicates
P in this set. As an aside, we observe that false cannot possibly belong to this
set, since false = false ; true .

The predicates in this set are called designs. They can be split into precond-
ition-postcondition pairs, and are in the same spirit as specification statements
used in refinement calculi. As such, they are a basis for unifying languages and
methods like B [1], VDM [7], Z, and refinement calculi [8, 2, 9].

In designs, okay records that the program has started, and okay ′ that it
has terminated. In implementing a design, we are allowed to assume that the
precondition holds, but we have to fulfill the postcondition. In addition, we can
rely on the program being started, but we must ensure that it terminates. If the
precondition does not hold, or the program does not start, we are not committed
to establish the postcondition nor even to make the program terminate.

A design with precondition P and postcondition Q is written (P � Q). It is
defined as follows.

(P � Q) =̂ (okay ∧ P ⇒ okay ′ ∧ Q)

If the program starts in a state satisfying P , then it will terminate, and on
termination Q will be true.

Abort and miracle are defined as designs in the following examples. Abort
has precondition false and is never guaranteed to terminate.

Example 5 (Abort).

false � false [design]

= okay ∧ false ⇒ okay ′ ∧ false [false zero for conjunction]

10

= false ⇒ okay ′ ∧ false [vacuous implication]

= true [vacuous implication]

= false ⇒ okay ′ ∧ true [false zero for conjunction]

= okay ∧ false ⇒ okay ′ ∧ true [design]

= false � true �

Miracle has precondition true, and establishes the impossible: false.

Example 6 (Miracle).

true � false [design]

= okay ∧ true ⇒ okay ′ ∧ false [true unit for conjunction]

= okay ⇒ false [contradiction]

= ¬ okay �

A reassuring result about a design is the fact that refinement amounts to either
weakening the precondition, or strengthening the postcondition in the presence
of the precondition. This is established by the result below.

Law 11 Refinement of designs

P1 � Q1 � P2 � Q2 = [P1 ∧ Q2 ⇒ Q1] ∧ [P1 ⇒ P2] �

The most important result, however, is that abort is a zero for sequence. This
was, after all, the whole point for the introduction of designs.

L1 true ; (P � Q) = true left-zero

In this new setting, it is necessary to redefine assignment and II , as those intro-
duced previously are not designs.

(x := e) =̂ (true � x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z)

II D =̂ (true � II)

In the sequel, for clarity, we refer to II as II rel .
When program operators are applied to designs, the result is also a design.

This follows from the laws below, for choice, conditional, sequence, and recursion.
A choice between two designs is guaranteed to terminate when they both are;
since either of them may be chosen, either postcondition may be established.

T1 ((P1 � Q1) � (P2 � Q2)) = (P1 ∧ P2 � Q1 ∨ Q2)

If the choice between two designs depends on a condition b, then so do the
precondition and the postcondition of the resulting design.

T2 ((P1 � Q1) � b � (P2 � Q2)) = ((P1 � b � P2) � (Q1 � b � Q2))

A sequence of designs (P1 � Q1) and (P2 � Q2) terminates when P1 holds, and

11

Q1 is guaranteed to establish P2. On termination, the sequence establishes the
composition of the postconditions.

T3 ((P1 � Q1) ; (P2 � Q2))
= ((¬ (¬ P1 ; true) ∧ ¬ (Q1 ; ¬ P2)) � (Q1 ; Q2))

Preconditions can be relations, and this fact complicates the statement of Law
T3 ; if P1 is a condition instead, then the law is simplified as follows.

T3′ ((p1 � Q1) ; (P2 � Q2)) = ((p1 ∧ ¬ (Q1 ; ¬ P2)) � (Q1 ; Q2))

A recursively defined design has as its body a function on designs; as such, it
can be seen as a function on precondition-postcondition pairs (X ,Y). Moreover,
since the result of the function is itself a design, it can be written in terms of a
pair of functions F and G , one for the precondition and one for the postcondition.

As the recursive design is executed, the precondition F is required to hold
over and over again. The strongest recursive precondition so obtained has to
be satisfied, if we are to guarantee that the recursion terminates. Similarly, the
postcondition is established over and over again, in the context of the precon-
dition. The weakest result that can possibly be obtained is that which can be
guaranteed by the recursion.

T4 (μX ,Y • (F (X ,Y) � G(X ,Y))) = (P(Q) � Q)
where P(Y) = (νX • F (X ,Y)) and Q = (μY • P(Y) ⇒ G(P(Y),Y))

Further intuition comes from the realisation that we want the least refined fixed
point of the pair of functions. That comes from taking the strongest precondition,
since the precondition of every refinement must be weaker, and the weakest
postcondition, since the postcondition of every refinement must be stronger.

Like the set of general alphabetised predicates, designs form a complete lat-
tice. We have already presented the top and the bottom (miracle and abort).

�D =̂ (true � false) = ¬ okay

⊥D =̂ (false � true) = true

The least upper bound and the greatest lower bound are established in the
following theorem.

Theorem 1. Meets and joins

�i
(Pi � Qi) = (

∧
i Pi) � (

∨
i Qi)

�i(Pi � Qi) = (
∨

i Pi) � (
∧

i Pi ⇒ Qi) �

As with the binary choice, the choice �
i
(Pi � Qi) terminates when all the

designs do, and it establishes one of the possible postconditions. The least upper
bound models a form of choice that is conditioned by termination: only the

12

terminating designs can be chosen. The choice terminates if any of the designs
does, and the postcondition established is that of any of the terminating designs.

Designs are special kinds of relations, which in turn are special kinds of
predicates, and so they can be combined with the propositional operators. A
design can be negated, although the result is not itself a design.

Lemma 1 (not-design).

¬ (P � Q) = (okay ∧ P ∧ (okay ′ ⇒ ¬ Q))

Proof

¬ (p � Q) [design]

= ¬ (okay ∧ p ⇒ okay ′ ∧ Q) [¬ (P ⇒ Q) = P ∧ ¬ Q , twice]

= okay ∧ p ∧ (okay ′ ⇒ ¬ Q) �

If the postcondition of a design promises the opposite of its precondition, then
the design is miraculous.

Law 12 (design-contradiction)

(P � ¬ P) = (P � false)

Proof

P � ¬ P [design]

= okay ∧ P ⇒ okay ′ ∧ ¬ P [propositional calculus]

= ¬ okay ∨ ¬ P ∨ (okay ′ ∧ ¬ P) [propositional calculus]

= ¬ okay ∨ ¬ P [propositional calculus]

= ¬ okay ∨ ¬ P ∨ (okay ′ ∧ false) [propositional calculus]

= okay ∧ P ⇒ okay ′ ∧ false [design]

= P � false �

Another way of characterising the set of designs is by imposing healthiness con-
ditions on the alphabetised predicates. Hoare & He identify four healthiness
conditions that they consider of interest: H1 to H4 . We discuss two of them.

4.1 H1 : unpredictability

A relation R is H1 healthy if and only if R = (okay ⇒ R). This means that
observations cannot be made before the program has started. The H1 -healthy
relations R are exactly those that satisfy the left-zero and unit laws below.

true ; R = true and II D ; R = R

The idempotent corresponding to this healthiness condition is defined as

H1 (R) = okay ⇒ R

It is indeed an idempotent.

13

Law 13 (H1-idempotent)

H1 ◦ H1 = H1

Proof

H1 ◦ H1 (R) [H1]

= okay ⇒ (okay ⇒ R) [propositional calculus]

= okay ∧ okay ⇒ R [propositional calculus]

= okay ⇒ R [H1]

= H1 (R) �

The healthiness condition H1 turns the relational identity into the design II D .

Law 14 II D-H1 - II

II D = H1 (II)

Proof

II D [II D]

= (true � II) [design]

= (okay ⇒ okay ′ ∧ II) [II , propositional calculus]

= (okay ⇒ okay ∧ okay ′ ∧ II ∧ okay ′ = okay) [propositional calculus]

= (okay ⇒ okay ∧ II ∧ okay ′ = okay) [II , propositional calculus]

= (okay ⇒ II) [H1]

= H1 (II) �

H1 tells us that, try as we might, we simply cannot make an observation of the
behaviour of a design until after it has started. A design with a rogue postcon-
dition, such as (true � (¬ okay ⇒ x ′ = 0)), tries to violate H1 , but it cannot.
We can simplify it by expanding the definition of a design, and then simplifying
the result with propositional calculus. It is possible to avoid this expansion by
applying H1 to the postcondition.

Law 15 (design-post-H1)

(P � Q) = (P � H1 (Q))

Proof

P � H1 (Q) [H1]

= P � (okay ⇒ Q) [design]

= okay ∧ P ⇒ okay ′ ∧ (okay ⇒ Q) [propositional calculus]

= ¬ okay ∨ ¬ P ∨ (okay ′ ∧ Q) [design]

= P � Q �

14

We can also push the application of H1 through a negation.

Law 16 (design-post-not-H1)

(P � ¬ Q) = (P � ¬ H1 (Q))

Proof

P � ¬ H1 (Q) [H1]

= P � ¬ (okay ⇒ Q) [propositional calculus]

= P � okay ∧ ¬ Q [design]

= okay ∧ P ⇒ okay ′ ∧ okay ∧ ¬ Q [propositional calculus]

= okay ∧ P ⇒ okay ′ ∧ ¬ Q [design]

= P � ¬ Q �

H1 enjoys many other properties, some of which we see later in the paper.

4.2 H2 : possible termination

The second healthiness condition is [R[false/okay ′] ⇒ R[true/okay ′]]. This
means that if R is satisfied when okay ′ is false, it is also satisfied then okay ′

is true. In other words, R cannot require nontermination, so that it is always
possible to terminate.

If P is a predicate with okay ′ in its alphabet, we abbreviate P [b/okay ′] as
Pb . Furthermore, we abbreviate P [false/okay ′] as P f and P [true/okay ′] as P t .
Thus, P is H2 -healthy if and only if [P f ⇒ P t].

This healthiness condition may also be expressed in terms of an idempotent.
For that, we define a predicate J =̂ (okay ⇒ okay ′) ∧ v ′ = v , for an alphabet
including okay and okay ′, and the variables in the lists v and v ′. As expected,
v ′ is the list of variables obtained by dashing each of the variables in v .

Law 17 (H2 -J)

(R = R ; J) = [Rf ⇒ Rt]

Proof

R = R ; J [universal equality]

= ∀ okay ′ • R = R ; J [okay ′ is boolean]

= (R = R ; J)t ∧ (R = R ; J)f [substitution]

= (Rt = R ; J t) ∧ (Rf = R ; J f) [J]

= (Rt = R ; (v ′ = v)) ∧ (Rf = R ; (¬ okay ∧ v ′ = v)) [right-one-point]

= (Rt = R ; (v ′ = v)) ∧ (Rf = Rf) [sequence]

= Rt = ∃ okay ′ • R [okay ′ boolean]

15

= Rt = Rt ∨ Rf [propositional calculus]

= [Rf ⇒ Rt] �

The idempotent corresponding to this healthiness condition is H2 (R) = R ; J .
It is indeed an idempotent.

Law 18 (H2 -idempotent)

H2 ◦ H2 = H2

Proof

H2 ◦ H2 [H2]

= (R ; J) ; J [associativity]

= R ; (J ; J) [J and sequence]

= R ; ∃ ok0, v0 • (okay ⇒ okay0) ∧ v0 = v ∧ (okay0 ⇒ okay ′) ∧ v ′ = v0

[predicate calculus]

= R ; ∃ ok0, v0 • (okay ⇒ okay0) ∧ (okay0 ⇒ okay ′) ∧ v ′ = v
[predicate calculus]

= R ; (okay ⇒ okay0) ∧ v ′ = v [J]

= R ; J [H2]

= H2 (R) �

An important property of healthiness conditions is commutativity. For example,
H1 and H2 commute.

Law 19 (commutativity-H2 -H1)

H1 ◦ H2 = H2 ◦ H1

This means that we can use H1 and H2 independently to make a relation
healthy. The result is a relation that is both H1 and H2 healthy, and, moreover,
it is the same no matter in which order we applied H1 and H2 .

In the proof of this law, we use the following property of J .

Lemma 2.

¬ okay = ¬ okay ; J

Proof

¬ okay ; J [J]

= ¬ okay ; (okay ⇒ okay ′) ∧ v ′ = v [sequence]

= ¬ okay ∧ ∃ okay • okay ⇒ okay ′ [predicate calculus]

= ¬ okay �

16

Proof (Law 18)

H1 ◦ H2 (P) [H1]

= okay ⇒ H2 (P) [H2 -idempotent]

= okay ⇒ P ; J [propositional calculus]

= ¬ okay ∨ (P ; J) [not-okay-J]

= (¬ okay ; J) ∨ (P ; J) [; -� left distribution]

= ¬ (okay ∨ P) ; J [propositional calculus]

= ¬ (okay ⇒ P) ; J [H2 and H2 -idempotent]

= H2 ◦ H1 (P) �

The designs are exactly those relations that are H1 and H2 healthy. Relations
R that are H1 and H2 healthy are designs that can be written as (¬ Rf � Rt),
where Rf = Rf and Rt = Rt . Moreover, designs are H1 and H2 healthy.

5 Reactive processes

A reactive program interacts with its environment, which can include other pro-
grams and the users. Its behaviour cannot be characterised by its final state only;
we need to record information about the interactions. Actually, many reactive
programs do not terminate, and so do not have a final state; yet, they are useful
due to their interactions with the environment. The interactions are viewed as
events. In the context of CSP processes, these are communications.

To model a reactive process, we need three extra observational variables: tr ,
wait , and ref , besides okay . The purpose of tr is to record the trace of events
in which the process has engaged. The variable wait is a boolean; it records
whether the process has terminated or not. Finally, ref records the set of events
in which the process may refuse to engage. Moreover, the variable okay is given
a different interpretation: it records divergence.

In view of this intuitive account of the observational variables, we can in-
terpret the occurrences of these variables and their dashed counterparts in a
description of a process P as follows.

– okay records whether the process that is executing currently, or has just
finished, is in a stable state or has diverged; okay ′ records whether the next
observation of P is that of a stable state or a divergent state.

– wait records whether the execution of the previous process has finished or
not; wait ′ records whether the next observation is that of an intermediate
or a final state of P .

– tr records the events which occurred until the last observation; tr ′ contains
all those events that will have occurred until the next observation.

– ref records the set of events that could be refused in the last observation;
ref ′ records the set of events that can be refused in the next observation.

With these observations, it is clear that a reactive process is properly started if

17

it is initiated in a state with wait false; that is, if its predecessor has terminated.
We often want to refer to a predicate P [false/wait], which we abbreviate as Pf .
Combining this with our earlier notation, P t

f describes a reactive process P that
was properly started, and has not diverged. This substitution does not disturb
healthiness conditions that do not mention wait and okay ′, such as H1 .

Law 20 (H1 -wait-okay ′)

(H1 (P))cb = H1 (Pc
b)

Proof

(H1 (P))cb [H1]

= (okay ⇒ P)cb [substitution]

= okay ⇒ Pc
b [H1]

= H1 (Pc
b) �

Not every relation is a reactive process. As for designs, some healthiness condi-
tions need to be imposed. Before we investigate them, however, we give a simple
example of a reactive process.

5.1 Reactive II

The reactive II is defined as follows.

II rea =̂ ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref

We use tr ≤ tr ′ to state that tr is a prefix of tr ′. It amounts to saying that
the process cannot change history, and modify the sequence of events that
have occurred previously. II rea establishes that either we are in a divergent
state (¬ okay), in which case we can only guarantee that the trace is extended,
or we are in a stable state, and the value of all the variables is maintained.

Alternative definitions of II rea can be formulated. For example, it can be
defined in terms of the relational II , which we now call II rel . First, we introduce
the following definition.

II
−okay
rel =̂ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref

Clearly, II rea = ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ II
−okay
rel . Now we see a more direct

relationship between II rea and II rel .

Law 21 (II rea- II rel)

II rea = ¬ okay ∧ tr ≤ tr ′ ∨ II rel

Proof

II rea [II rea]

= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ II
−okay
rel [propositional calculus]

18

= (okay ∨ ¬ okay) ∧ (¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ II
−okay
rel)
[propositional calculus]

= (okay ∧ ¬ okay ∧ tr ≤ tr ′) ∨ (okay ∧ okay ′ ∧ II
−okay
rel)

∨
(¬ okay ∧ ¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ okay ′ ∧ II

−okay
rel)

[propositional calculus]

= (okay ∧ okay ′ ∧ II
−okay
rel)

∨
(¬ okay ∧ tr ≤ tr ′)
∨
(¬ okay ∧ okay ′ ∧ II

−okay
rel)

[II rel and II
−okay
rel]

= (okay ∧ II rel) ∨ (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ okay ′ ∧ II
−okay
rel)

[propositional calculus]

= II rel ∨ (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ okay ′ ∧ II
−okay
rel)

[propositional calculus]

= II rel ∨ (¬ okay ∧ tr ≤ tr ′) ∨ (¬ okay ∧ okay ′ ∧ II
−okay
rel ∧ tr ≤ tr ′)

[propositional calculus]

= ¬ okay ∧ tr ≤ tr ′ ∨ II rel �

II rea may also be defined using a conditional.

Law 22 (II rea-conditional)

II rea = II rel � okay � tr ≤ tr ′

Proof

II rea [Law IIrea- II rel]

= (¬ okay ∧ tr ≤ tr ′) ∨ II rel [propositional calculus]

= (¬ okay ∧ tr ≤ tr ′) ∨ (okay ∧ II rel) [conditional]

= II rel � okay � tr ≤ tr ′ �

The law below states that, in a non-divergent state, II rea is just like II rel .

Law 23 (okay- II rea)

okay ∧ II rea = okay ∧ II rel

Proof

okay ∧ II rea [II rea]

= okay ∧ (¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref)
[propositional calculus]

19

= okay ∧ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref [equality]

= okay ∧ okay = okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref [def. of II rel]

= okay ∧ II rel �

In this case, okay , II rea is a unit for sequence.

Law 24 (okay- II rea-unit)

okay ∧ II rea ; P = okay ∧ P

Proof

okay ∧ II rea ; P [property of sequence]

= (okay ∧ II rea) ; P [okay- II rea]

= (okay ∧ II rel) ; P [sequence]

= okay ∧ II rel ; P [unit]

= okay ∧ P �

In general, however, it is not an identity. If the state is divergent, then it only
guarantees that the trace is either left untouched or extended.

II rea is H2 healthy.

Law 25 (II rea-H2 -healthy)

II rea = H2 (II rea)

Proof In this proof, we use v as an abbreviation for all the observational vari-
ables. Actually, we use v0 and v ′ to stand for the list of corresponding zero-
subscripted and dashed variables. We use the same sort of abbreviation in sub-
sequent proofs as well.

II rea = H2 (II rea) [H2 -idempotent]

= II rea ; J [J]

= II rea ; ((okay ⇒ okay ′) ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref)
[sequence]

= ∃ okay0,wait0, tr0, ref0 •
II rea [v0/v ′]
∧
((okay0 ⇒ okay ′) ∧ tr ′ = tr0 ∧ wait ′ = wait0 ∧ ref ′ = ref0)

[predicate calculus]

= ∃ okay0 • II rea [okay0/okay ′] ∧ (okay0 ⇒ okay ′) [II rea]

= ∃ okay0 •
(¬ okay ∧ tr ≤ tr ′ ∨ okay0 ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref)
∧
(okay0 ⇒ okay ′) [predicate calculus]

20

= ¬ okay ∧ tr ≤ tr ′ ∨ (∃ okay0 • okay0 ⇒ okay ′)
∨
∃ okay0 • okay0 ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref ∧ (okay0 ⇒ okay ′)

[predicate calculus]

= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref [II rea]

= II rea �

II rea is not, however, H1 healthy. This is because its behaviour when okay is
false is not arbitrary: the restriction on the traces still applies. In conclusion,
II rea is not a design; in fact, no reactive process is a design, although they can
all be expressed in terms of a design. This is further explained later.

5.2 R1

The first reactive healthiness condition states that, what has happened cannot
be changed: P = P ∧ tr ≤ tr ′. As explained above for II rea , this means that
a process cannot change the past history of events. An important observation
is that this is guaranteed even when the previous process has diverged. More
precisely, even if ¬ okay , we have this guarantee.

As a function, R1 is defined as R1 (P) = P ∧ tr ≤ tr ′. It is an idempotent.

Law 26 (R1 -idempotent)

R1 ◦ R1 = R1

Proof

R1 ◦ R1 (P) [R1]

= P ∧ tr ≤ tr ′ ∧ tr ≤ tr ′ [propositional calculus]

= P ∧ tr ≤ tr ′ [R1]

= R1 (P) �

II rea is R1 healthy.

Law 27 (II rea-R1 -healthy)

II rea = R1 (II rea)

Proof

II rea = R1 (II rea) [R1]

= II rea ∧ tr ≤ tr ′ [II rea]

= (¬ okay ∧ tr ≤ tr ′

∨
okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref) ∧ tr ≤ tr ′

[tr ′ = tr ⇒ tr ≤ tr ′]

= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref [II rea]

= II rea �

As already said, II rea is not H1 healthy. If we use H1 to make it healthy, and

21

then use R1 to make it a reactive process again, we get back II rea .

Law 28 (II rea-R1 -H1)

II rea = R1 ◦ H1 (II rea)

Proof

R1 ◦ H1 (II rea) [R1 and H1]

= (okay ⇒ II rea) ∧ tr ≤ tr ′ [propositional calculus]

= ¬ okay ∧ tr ≤ tr ′ ∨ II rea ∧ tr ≤ tr ′ [II rea]

= ¬ okay ∧ tr ≤ tr ′ ∨ ¬ okay ∧ tr ≤ tr ′

∨
okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref

[propositional calculus]

= ¬ okay ∧ tr ≤ tr ′ ∨ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref [II rea]

= II rea �

This shows that R1 and H1 are not independent: they do not commute. R1 ,
however, commutes with H2 .

Law 29 (commutativity-R1 -H2)

H2 ◦ R1 = R1 ◦ H2

Proof We now use v0 to abbreviate the list of 0-subscripted variables correspond-
ing to the variables of the alphabet, except okay0. Similarly for v ′. In other proofs
that follow, we use this sort of abbreviation whenever convenient.

H2 (R1 (P)) [Law H2-idempotent]

= R1 (P); J [R1]

= (P ∧ tr ≤ tr ′); J [J and sequence]

= (∃ okay0 • P [okay0/okay ′] ∧ (okay0 ⇒ okay ′)) ∧ tr ≤ tr ′

[predicate calculus]

= ∃ okay0, v0 • P [v0/v ′] ∧ tr ≤ tr0 ∧ (okay0 ⇒ okay ′) ∧ v ′ = v0

[predicate calculus]

= (∃ okay0, v0 • P [v0/v ′] ∧ (okay0 ⇒ okay ′) ∧ v ′ = v0) ∧ tr ≤ tr ′

[J and sequence]

= (P ; J) ∧ tr ≤ tr ′ [R1]

= R1 (P ; J) [Law H2-idempotent]

= R1 (H2 (P)) �

Although we have already proved it as a theorem, the fact that II rea is both R1

22

and H1 healthy follows immediately from the next law, which embeds II rel in
the space of reactive processes.

Law 30

II rea = R1 ◦ H1 (II rel)

Proof

II rea [II rea - II rel]

= (¬ okay ∧ tr ≤ tr ′) ∨ II rel [II rel]

= (¬ okay ∧ tr ≤ tr ′) ∨ (II rel ∧ tr ≤ tr ′) [propositional calculus]

= (okay ⇒ II rel) ∧ tr ≤ tr ′ [H1]

= H1 (II rel) ∧ tr ≤ tr ′ [R1]

= R1 ◦ H1 (II rel) �

Recall from Law 14 that H1 (II rel) is simply II D , II in the space of designs.
Closure is another important issue for a theory. By applying any of the pro-

gram operators to an R1 -healthy process, we get another R1 -healthy process.

Law 31 (closure-∧-R1)

R1 (P ∧ Q) = P ∧ Q provided P and Q are R1 healthy

Proof

R1 (P ∧ Q) [R1]

= P ∧ Q ∧ tr ≤ tr ′ [propositional calculus]

= P ∧ tr ≤ tr ′ ∧ Q ∧ tr ≤ tr ′ [R1]

= R1 (P) ∧ R1 (Q) [assumption]

= P ∧ Q �

Law 32 (closure-∨-R1)

R1 (P ∨ Q) = P ∨ Q provided P and Q are R1 healthy

Proof Similar to that of Law closure-∧-R1 . �

Law 33 (closure- � � -R1)

R1 (P � b � Q) = P � b � Q provided P and Q are R1 healthy

Proof

R1 (P � b � Q) [R1]

= (P � b � Q) ∧ tr ≤ tr ′ [conditional-conjunction]

23

= (P ∧ tr ≤ tr ′) � b � (Q ∧ tr ≤ tr ′) [R1]

= (R1 (P) � b � R1 (Q)) [assumption]

= (P � b � Q) �

Law 34 (closure-;-R1)

R1 (P ; Q) = P ; Q provided P and Q are R1 healthy

Proof

R1 (P ; Q) [assumption]

= R1 (R1 (P) ; R1 (Q)) [R1]

= ((P ∧ tr ≤ tr ′) ; (Q ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ [sequence]

= ∃ tr0, v0 •
P [tr0, v0/tr ′, v ′] ∧ tr ≤ tr0 ∧ Q [tr0, v0/tr , v] ∧ tr0 ≤ tr ′ ∧ tr ≤ tr ′

[property of ≤]

= ∃ tr0, v0 • P [tr0, v0/tr ′, v ′] ∧ tr ≤ tr0 ∧ Q [tr0, v0/tr , v] ∧ tr0 ≤ tr ′

[sequence]

= R1 (P) ; R1 (Q) [assumption]

= P ; Q �

Because R1 is defined by conjunction, its scope may be extended over other
conjunctions.

Law 35 (R1 -extends-over-and)

R1 (P) ∧ Q = R1 (P ∧ Q)

Proof

R1 (P) ∧ Q [R1]

= P ∧ tr ≤ tr ′ ∧ Q [propositional calculus]

= P ∧ Q ∧ tr ≤ tr ′ [R1]

= R1 (P ∧ Q) �

A consequence of this law is that, when an R1 process is negated, within the
scope of another R1 process, the healthiness condition is not negated.

Law 36 (R1 -and-not-R1)

R1 (P) ∧ ¬ R1 (Q) = R1 (P ∧ ¬ Q)

Proof

R1 (P) ∧ ¬ R1 (Q) [R1]

= P ∧ tr ≤ tr ′ ∧ ¬ (Q ∧ tr ≤ tr ′) [propositional calculus]

= P ∧ tr ≤ tr ′ ∧ ¬ Q [R1]

= R1 (P ∧ ¬ Q) �

24

Substitution for wait and okay ′ distribute through the R1 healthiness condition.

Law 37 (R1 -wait)

(R1 (P))b = R1 (Pb)

Proof

(R1 (P))b [R1]

= (P ∧ tr ≤ tr ′)b [substitution]

= Pb ∧ tr ≤ tr ′ [R1]

= R1 (Pb) �

Law 38 (R1 -okay ′)

(R1 (P))c = R1 (Pc)

Proof

(R1 (P))c [R1]

= (P ∧ tr ≤ tr ′)c [substitution]

= Pc ∧ tr ≤ tr ′ [R1]

= R1 (Pc) �

The space described by applying R1 to designs is a complete lattice because
R1 is monotonic. The relevance of this fact is made clear in the next section.

5.3 R2

There are two formulations for this healthiness condition. Intuitively, it estab-
lishes that a process description should not rely on the history that passed before
its activation, and should restrict only the new events to be recorded since the
last observation. These are the events in tr ′ − tr .

R2 (P(tr , tr ′)) =̂ � s • P(s, s � (tr ′ − tr))
R2b(P(tr , tr ′)) =̂ P(〈〉, tr ′ − tr)

The first formulation requires that P is not changed if the value s of tr is made
arbitrary. The second formulation requires that P is not changed if the value of
tr is taken to be the empty sequence.

These formulations characterise the same set of processes: an R2 -healthy
process is also R2b healthy, and vice-versa.

Law 39 (R2b-is-R2)

R2b = R2 ◦ R2b

Proof

R2 ◦ R2b(P(tr , tr ′)) [R2b]

= R2 (P(〈 〉, tr ′ − tr)) [R2]

25

= � s • P(〈 〉, tr ′ − tr)(s, s � (tr ′ − tr)) [substitution]

= � s • P(〈 〉, s � (tr ′ − tr) − s) [property of −]

= � s • P(〈 〉, tr ′ − tr) [property of �]

= P(〈 〉, tr ′ − tr) [R2b]

= R2b(P) �

Law 40 (R2 -is-R2b)

R2 = R2b ◦ R2

Proof

R2b ◦ R2 (P(tr , tr ′)) [R2]

= R2b(� s • P(s, s � (tr ′ − tr))) [R2b]

= (� s • P(s, s � (tr ′ − tr)))(〈 〉, tr ′ − tr) [substitution]

= � s • P(s, s � (tr ′ − tr) − 〈 〉) [property of −]

= � s • P(s, s � (tr ′ − tr)) [R2]

= R2 (P) �

In the sequel, we adopt R2b as our second healthiness condition for reactive
processes, and actually refer to it as R2 . Not all properties of R2b that we
prove in the sequel hold for R2 ; so this is an important point.

R2 is an idempotent.

Law 41 (R2 -idempotent)

R2 ◦ R2 = R2

Proof

R2 ◦ R2 (P(tr , tr ′)) [R2]

= P(〈 〉, tr ′ − tr)(〈 〉, tr ′ − tr) [substitution]

= P(〈 〉, (tr ′ − tr) − 〈 〉) [property of −]

= P(〈 〉, tr ′ − tr) [R2]

= R2 (P) �

R2 is independent from H1 , H2 , and R1 .

Law 42 (commutativity-R2 -H1)

H1 ◦ R2 = R2 ◦ H1

Proof

H1 (R2 (P(tr , tr ′))) [H1 and R2]

= okay ⇒ P(〈 〉, tr ′ − tr) [tr and tr ′ are not free in okay]

26

= (okay ⇒ P)(〈 〉, tr ′ − tr) [H1 and R2]

= R2 (H1 (P)) �

Law 43 (commutativity-R2 -H2)

H2 ◦ R2 = R2 ◦ H2

Proof

H2 (R2 (P(tr , tr ′))) [R2 and H2 -idempotent]

= P(〈 〉, tr ′ − tr) ; J [J and sequence]

= ∃ tr0, v0 •
P(〈 〉, tr ′ − tr)[v0/v ′]
∧
(okay0 ⇒ okay ′) ∧ tr ′ = tr0 ∧ wait ′ = wait0 ∧ ref ′ = ref0

[predicate calculus]

= ∃ okay0 • P(〈 〉, tr ′ − tr)[okay0/okay ′] ∧ (okay0 ⇒ okay ′) [substitution]

= (∃ okay0 • P [okay0/okay ′] ∧ (okay0 ⇒ okay ′))(〈 〉, tr ′ − tr)
[predicate calculus]

= (∃ tr0, v0 •
P [tr0, v0/tr ′, v ′]
∧
(okay0 ⇒ okay ′) ∧ tr ′ = tr0 ∧ wait ′ = wait0 ∧ ref ′ = ref0)(〈 〉, tr ′ − tr)

[J and sequence]

= (P ; J)(〈 〉, tr ′ − tr) [R2 and H2 -idempotent]

= R2 (H2 (P)) �

Law 44 (commutativity-R2 -R1)

R1 ◦ R2 = R2 ◦ R1 �

Proof

R1 ◦ R2 (P(tr , tr ′)) [R1 and R2]

= P(〈〉, tr ′ − tr) ∧ tr ≤ tr ′ [≤ and −]

= P(〈〉, tr ′ − tr)〈〉 ≤ tr ′ − tr [substitution]

= (P ∧ tr ≤ tr ′)(〈〉, tr ′ − tr) [R1 and R2]

= R2 ◦ R1 (P(tr , tr ′)) �

Again, the programming operators are closed with respect to R2 . For the con-
ditional, we have a result for a particular condition. For brevity, we omit proofs.

Law 45 (closure-∧-R2)

R2 (P ∧ Q) = P ∧ Q provided P and Q are R2 healthy �

27

Law 46 (closure-∨-R2)

R2 (P ∨ Q) = P ∨ Q provided P and Q are R2 healthy �

Law 47 (closure- � tr ′ = tr � -R2)

R2 (P � tr ′ = tr � Q) = P � tr ′ = tr � Q if P and Q are R2 healthy �

Law 48 (closure-;-R2)

R2 (P ; Q) = P ; Q provided P and Q are R2 healthy �

Since R2 constrains only tr and tr ′, substitution for wait and okay ′ distribute
through its application.

Law 49 (R2 -wait)

(R2 (P))b = R2 (Pb)

Proof

(R2 (P))b [R2]

= (� s • P [s, s � (tr ′ − tr)/tr , tr ′])b [substitution]

= � s • (Pb)[s, s � (tr ′ − tr)/tr , tr ′] [R2]

= R2 (Pb) �

Law 50 (R2 -okay ′)

(R2 (P))c = R2 (Pc)

Proof

(R2 (P))c [R2]

= (� s • P [s, s � (tr ′ − tr)/tr , tr ′])c [substitution]

= � s • (Pc)[s, s � (tr ′ − tr)/tr , tr ′] [R2]

= R2 (Pc) �

The space of relations produced by applying R2 to designs is again a complete
lattice, since R2 is also monotonic.

5.4 R3

The third healthiness condition defines the behaviour of a process when that
which is currently executing has not finished: P = (II rea � wait � P). Intu-
itively, this requires that, if the previous process has not finished, then P should
not start: it should behave like II rea .

28

The idempotent is R3 (P) = (II rea � wait � P).

Law 51 (R3 -idempotent)

R3 ◦ R3 = R3 �

Since II rea specifies behaviour for when ¬ okay holds, it should not be a big
surprise that R3 also does not commute with H1 . It does commute with the
other healthiness conditions, though.

Law 52 (commutativity-R3 -H2)

H2 ◦ R3 = R3 ◦ H2 �

Law 53 (commutativity-R3 -R1)

R1 ◦ R3 = R3 ◦ R1 �

Law 54 (commutativity-R3 -R2)

R2 ◦ R3 = R3 ◦ R2 �

Moreover, if all that there is about a process that is not H1 is the fact that it
specifies the behaviour required by R1 , then we have a commutativity property.

Law 55 (quasi-commutativity-R3 -H1)

R3 ◦ R1 ◦ H1 = R1 ◦ H1 ◦ R3 �

This sort of property is important because we are going to express reactive
processes as reactive designs.

The following lemmas characterise the behaviour of R3 processes in partic-
ular circumstances.

Lemma 3.

wait ∧ P = wait ∧ II rea provided P is R3

Lemma 4.

¬ okay ∧ wait ∧ R3 (P) = ¬ okay ∧ wait ∧ tr ≤ tr ′

Proof

¬ okay ∧ wait ∧ R3(P) [R3]

= ¬ okay ∧ wait ∧ II rea � wait � R [known condition]

= ¬ okay ∧ wait ∧ II rea II rea

= ¬ okay ∧ wait ∧ tr ≤ tr ′ �

29

Closure properties are also available for R3 .

Law 56 (closure-∧-R3)

R3 (P ∧ Q) = P ∧ Q provided P and Q are R3 healthy �

Law 57 (closure-∨-R3)

R3 (P ∨ Q) = P ∨ Q provided P and Q are R3 healthy �

Law 58 (closure- � � -R3)

R3 (P � � Q) = P � � Q provided P and Q are R3 healthy �

For sequence, we actually require that one of the processes is R1 as well. This
is not a problem because, as detailed in the next section, we actually work with
the theory characterised by all healthiness conditions.

Law 59 (closure-;-R3)

R3 (P ; Q) = P ; Q provided P is R3 , and Q is R1 and R3 �

R3 depends on the wait observation, so substitution for that variable cannot
distribute through the healthiness condition. Instead, it serves to simplify R3 ’s
conditional. If true is substituted, then the result is II rea , but with the substitu-
tion applied to it as well.

Law 60 (R3 -wait-true)

(R3 (P))t = (II rea)t �

On the other hand, if false is substituted for wait in R3 (P), then the result is
simply P , again with the substitution applied.

Law 61 (R3 -not-wait-false)

(R3 (P))f = Pf

Proof

(R3 (P))f [R3]

= (II rea � wait � P)f [substitution]

= (II rea)f � false � Pf [conditional unit]

= Pf �

Substitution for okay ′ interferes with II rea , and so does not distribute through
its application.

Law 62 (R3 -okay ′)

(R3 (P))c = ((II rea)c � wait � Pc)

Just like R1 and R2 , R3 is monotonic and so gives us a complete lattice when
applied to the space of designs.

30

5.5 R

A reactive process is a relation that includes in its alphabet okay , tr , wait , and
ref , and their dashed counterparts, and satisfies the three healthiness conditions
R1 , R2 , and R3 . We define R as the composition of these three.

R =̂ R1 ◦ R2 ◦ R3

Since each of the healthiness conditions R1 , R2 , and R3 commute, their order
in the definition above is irrelevant.

For reactive processes, II rea is indeed a restricted form of identity. To prove
that, we use the following lemmas.

Lemma 5. For a reactive process P,

(tr ≤ tr ′) ; P = tr ≤ tr ′

Proof

(tr ≤ tr ′) ; P [propositional calculus]

= (tr ≤ tr ′) ; ((okay ∨ ¬ okay) ∧ (wait ∨ ¬ wait) ∧ P) [; -� left distribution]

= (tr ≤ tr ′) ; (okay ∧ wait ∧ P) ∨
(tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P) ∨
(tr ≤ tr ′) ; (¬ okay ∧ wait ∧ P) ∨
(tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P)

[Lemma 4 and P is R3]

= (tr ≤ tr ′) ; (okay ∧ wait ∧ P) ∨
(tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P) ∨
(tr ≤ tr ′) ; (¬ okay ∧ wait ∧ tr ≤ tr ′) ∨
(tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P)

[P is R1]

= (tr ≤ tr ′) ; (okay ∧ wait ∧ P ∧ tr ≤ tr ′) ∨
(tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P ∧ tr ≤ tr ′) ∨
(tr ≤ tr ′) ; (¬ okay ∧ wait ∧ tr ≤ tr ′) ∨
(tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P ∧ tr ≤ tr ′)

[closure-;-R1]

= ((tr ≤ tr ′) ; (okay ∧ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
((tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
((tr ≤ tr ′) ; (¬ okay ∧ wait ∧ tr ≤ tr ′) ∨
((tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P)) ∧ tr ≤ tr ′

[sequence]

= ((tr ≤ tr ′) ; (okay ∧ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
((tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
(∃ okay0,wait0, tr0 • tr ≤ tr0 ∧ ¬ okay0 ∧ wait0 ∧ tr0 ≤ tr ′) ∨
((tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P)) ∧ tr ≤ tr ′

[pred. calculus]

= ((tr ≤ tr ′) ; (okay ∧ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
((tr ≤ tr ′) ; (okay ∧ ¬ wait ∧ P ∧ tr ≤ tr ′)) ∧ tr ≤ tr ′ ∨
tr ≤ tr ′ ∨
((tr ≤ tr ′) ; (¬ okay ∧ ¬ wait ∧ P)) ∧ tr ≤ tr ′

[pred. calculus]

= tr ≤ tr ′ �

31

Lemma 6. For a reactive process P,

(¬ okay ∧ tr ≤ tr ′) ; P = (¬ okay ∧ tr ≤ tr ′)

Proof

(¬ okay ∧ tr ≤ tr ′) ; P [sequence]

= ¬ okay ∧ (tr ≤ tr ′) ; P [Lemma 5]

= ¬ okay ∧ tr ≤ tr ′ �

Law 63 (II rea-sequence-reactive) Provided P is R healthy,

II rea ; P = (P � okay � tr ≤ tr ′)

Proof

II rea ; P [propositional calculus]

= ((okay ∨ ¬ okay) ∧ II rea) ; P [;-� left distribution]

= (okay ∧ II rea) ; P ∨ (¬ okay ∧ II rea) ; P [okay- II rea and unit]

= okay ∧ P ∨ (¬ okay ∧ II rea) ; P [II rea]

= okay ∧ P ∨
(¬ okay ∧ tr ≤ tr ′

∨
¬ okay ∧ okay ′ ∧ tr ′ = tr ∧ wait ′ = wait ∧ ref ′ = ref) ; P

[tr ′ = tr ⇒ tr ≤ tr ′]

= okay ∧ P ∨ (¬ okay ∧ tr ≤ tr ′) ; P [Lemma 6]

= okay ∧ P ∨ ¬ okay ∧ tr ≤ tr ′ [conditional]

= (P � okay � tr ≤ tr ′) �

As a matter of fact, we only need R1 and R3 in this proof.
There are closure properties for R, which follow from the closure properties

for R1 , R2 , and R3 .

Law 64 (closure-∧-R)

R(P ∧ Q) = P ∧ Q provided P and Q are R healthy �

Law 65 (closure-∨-R)

R(P ∨ Q) = P ∨ Q provided P and Q are R healthy �

Law 66 (closure- � tr ′ = tr � -R)

R(P � tr ′ = tr � Q) = P � tr ′ = tr � Q if P and Q are R healthy �

Law 67 (closure-;-R)

R(P ; Q) = P ; Q provided P and Q are R healthy �

Substitution for wait cannot distribute through R, since it does not distribute

32

through R3 ; however, it does have the expected simplification properties.

Law 68 (R-wait-false)

(R(P))f = R1 ◦ R2 (Pf)

Proof

(R(P))f [R]

= (R1 ◦ R2 ◦ R3 (P))f [R1 -wait-okay ′]
= R1 ((R2 ◦ R3 (P))f) [R2 -wait-okay ′]
= R1 ◦ R2 ((R3 (P))f) [R3 -not-wait]
= R1 ◦ R2 (Pf) �

Law 69 (R-wait-true)

(R(P))t = (II rea)t

Finally, substitution for okay ′ does not quite distribute through R, since it
interferes with II rea .

Law 70 (R-okay ′)

(R(P))c = ((II rea)c � wait � R1 ◦ R2 (Pc))

Since R1 , R2 , and R3 are all monotonic, so is their composition, and thus
R maps designs to a complete lattice. This is the set of CSP processes, as we
establish in the next section.

6 CSP processes

A CSP process is a reactive process that satisfies two other healthiness condi-
tions, which we present in the sequel.

6.1 CSP1

The first healthiness condition requires that, in case of divergence, extension of
the trace is the only property that is guaranteed: P = P ∨ (¬ okay ∧ tr ≤ tr ′).
It is important to observe that R1 requires that, in whatever situation, the
trace can only be increased. On the other hand, CSP1 states that, if we are in
a divergent state, ¬ okay , then there is no other guarantee.

The idempotent is CSP1 (P) = P ∨ ¬ okay ∧ tr ≤ tr ′.

Law 71 (CSP1 -idempotent)

CSP1 ◦ CSP1 = CSP1 �

33

This new healthiness condition is independent from the previous ones.

Law 72 (commutativity-CSP1 -R1)

CSP1 ◦ R1 = R1 ◦ CSP1 �

Law 73 (commutativity-CSP1 -R2)

CSP1 ◦ R2 = R2 ◦ CSP1 �

Law 74 (commutativity-CSP1 -R3)

CSP1 ◦ R3 = R3 ◦ CSP1 �

It is interesting to observe that, like R1 , CSP1 does not commute with H1 .
The reason is the same: it specifies behaviour for when ¬ okay .

The lack of commutativity means that, when applying R1 and H1 , the order
is relevant. As a matter of fact, CSP1 determines the order that should be used,
for processes that are already R1 .

Law 75 (CSP1 -R1 -H1)

CSP1 (P) = R1 ◦ H1 (P) provided P is R1 healthy �

A reactive process defined in terms of a design is always CSP1 healthy.

Law 76 (reactive-design-CSP1)

R(P � Q) = CSP1 (R(P � Q)) �

This is because the design does not restrict the behaviour when ¬ okay , and R
insists only that tr ≤ tr ′.

The usual closure properties hold for CSP1 processes.

Law 77 (closure-∧-CSP1)

CSP1 (P ∧ Q) = P ∧ Q provided P and Q are CSP1 healthy �

Law 78 (closure-∨-CSP1)

CSP1 (P ∨ Q) = P ∨ Q provided P and Q are CSP1 healthy �

Law 79 (closure- � � -CSP1)

CSP1 (P � � Q) = P � � Q provided P and Q are CSP1 healthy �

Law 80 (closure-;-CSP1)

CSP1 (P ; Q) = P ; Q provided P and Q are CSP1 healthy �

34

Substitution for wait and okay ′ distribute through CSP1 .

Law 81 (CSP1 -wait-okay ′) Provided P is R1 healthy,

(CSP1 (P))cb = CSP1 (Pc
b)

Proof

(CSP1 (P))cb [CSP1 -R1 -H1 , assumption]

= (R1 ◦ H1 (P))cb [R1 -wait-okay ′]
= R1 ((H1 (P))cb) [H1 -wait-okay ′]
= R1 ◦ H1 (Pc

b) [CSP1]

= CSP1 (Pc
b) �

If an R1 -healthy predicate R appears in a design’s postcondition, in the scope
of another predicate that is also R1 , then R is CSP1 healthy. This is because,
for R1 predicates, CSP1 amounts to the composition of H1 and R1 .

Law 82 (design-post-and-CSP1) Provided Q and R are R1 healthy.

(P � (Q ∧ CSP1 (R))) = (P � Q ∧ R)

Proof

P � Q ∧ CSP1 (R) [CSP1 -R1 -H1 , assumption: R is R1 healthy]

= P � Q ∧ R1 ◦ H1 (R) [assumption: Q is R1 healthy]

= P � R1 (Q) ∧ R1 ◦ H1 (R) [R1 -extends-over-and]

= P � R1 (Q) ∧ H1 (R) [design, propositional calculus]

= (P � R1 (Q)) ∧ (P � H1 (R)) [design-post-H1]

= (P � R1 (Q)) ∧ (P � R) [design, propositional calculus]

= P � R1 (Q) ∧ R [assumption: Q is R1 healthy]

= P � Q ∧ R �

A similar law applies to the negation of such a CSP1 predicate.

Law 83 (design-post-and-not-CSP1) Provided Q and R are R1 healthy.

(P � (Q ∧ ¬ CSP1 (R))) = (P � Q ∧ ¬ R)

Proof

P � Q ∧ ¬ CSP1 (R) [CSP1 -R1 -H1 , assumption: R is R1 healthy]

= P � Q ∧ ¬ R1 ◦ H1 (R) [assumption: Q is R1 healthy]

= P � R1 (Q) ∧ ¬ R1 ◦ H1 (R) [R1 -extends-over-and]

= P � R1 (Q) ∧ R1 (¬ R1 ◦ H1 (R)) [R1 -not-R1]

35

= P � R1 (Q) ∧ R1 (¬ H1 (R))
[R1 -extends-over-and, assumption: Q is R1 healthy]

= P � Q ∧ ¬ H1 (R) [design, propositional calculus]

= (P � Q) ∧ (P � ¬ H1 (R)) [design-post-not-H1]

= (P � R1 (Q)) ∧ (P � ¬ R) [design, propositional calculus]

= P � Q ∧ ¬ R �

These two laws are combined in the following law that eliminates CSP1 from
the condition of a conditional.

Law 84 (design-post-conditional-CSP1) Provided Q, R, and S are R1
healthy.

(P � (Q � CSP1 (R) � S)) = (P � (Q � R � S))

Proof

P � (Q � CSP1 (R) � S) [conditional]

= P � (Q ∧ CSP1 (R)) ∨ (S ∧ ¬ CSP1 (R)) [design, propositional calculus]

= (P � Q ∧ CSP1 (R)) ∨ (P � S ∧ ¬ CSP1 (R))
[design-post-and-CSP1 , assumption: Q and R are R1 healthy]

= (P � Q ∧ R) ∨ (P � S ∧ ¬ CSP1 (R))
[design-post-and-not-CSP1 , assumption: S is R1 healthy]

= (P � Q ∧ R) ∨ (P � S ∧ ¬ R) [design, propositional calculus, conditional]

= P � (Q � R � S) �

The many restrictions on these laws related to R1 healthiness are not a problem,
since CSP1 is a healthiness condition on reactive processes.

6.2 CSP2

The second healthiness condition for CSP processes, CSP2 , is defined in terms of
J (which was introduced in Section 4.2) as P = P ; J . It is a direct consequence
of Law 18 that CSP2 is a recast of H2 , now with an extended alphabet that
includes okay , wait , tr , and ref . In other words, in the theory of CSP processes,
we let go of H1 , but we retain H2 , under another disguise.

Idempotence and commutative properties for CSP2 follow from those for
H2 . We add only that it commutes with CSP1 .

Law 85 (commutativity-CSP2 -CSP1)

CSP1 ◦ CSP2 = CSP2 ◦ CSP1 �

Closure of designs is not established considering H1 and H2 individually; we
consider H2 below. It is not closed with respect to conjunction, and it is not
difficult to prove that P ∧ Q � CSP2 (P ∧ Q), providing P and Q are CSP2 .

36

Law 86 (closure-∨-CSP2)

CSP2 (P ∨ Q) = P ∨ Q provided P and Q are CSP2 healthy �

Law 87 (closure- � � -CSP2)

CSP2 (P � � Q) = P � � Q provided P and Q are CSP2 healthy �

Law 88 (closure-;-CSP2)

CSP2 (P ; Q) = P ; Q provided Q is CSP2 healthy �

For CSP processes, II rea is an identity.

Law 89 (II rea-sequence-CSP)

II rea ; P = P �

Substitution of true for okay ′ does not distribute through CSP2 , but produces
the disjunction of two the cases.

Law 90 (CSP2 -converge)

(CSP2 (P))t = P t ∨ P f

Proof

(CSP2 (P))t [CSP2]

= (P ; J)t [substitution]

= P ; J t [J]

= P ; ((okay ⇒ okay ′) ∧ II
−okay
rel)t [substitution]

= P ; ((okay ⇒ true) ∧ II
−okay
rel) [propositional calculus]

= P ; II
−okay
rel [propositional calculus]

= P ; (okay ∨ ¬ okay) ∧ II
−okay
rel [relational calculus]

= P ; okay ∧ II
−okay
rel ∨ P ; ¬ okay ∧ II

−okay
rel [okay-boolean, II

−okay
rel]

= P ; okay = true ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

∨
P ; okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′

[one-point]

= P t ∨ P false �

Substitution of false for okay ′ eliminates CSP2 .

Law 91 (CSP2 -diverge)

(CSP2 (P))f = P f

Proof

(CSP2 (P))f [CSP2]

= (P ; J)f [substitution]

37

= P ; J f [J]

= P ; ((okay ⇒ okay ′) ∧ II
−okay
rel)f [substitution]

= P ; ((okay ⇒ false) ∧ II
−okay
rel) [propositional calculus]

= P ; (¬ okay ∧ II
−okay
rel) [okay-boolean, II

−okay
rel]

= P ; (okay = false ∧ tr = tr ′ ∧ ref = ref ′ ∧ wait = wait ′) [one-point]

= P f �

It is trivial to prove that any reactive design is CSP2 , since CSP2 and H2
are the same. A reactive process defined in terms of a design is always CSP2
healthy.

Law 92 (reactive-design-CSP2)

R(P � Q) = CSP2 (R(P � Q)) �

The following theorem shows that any CSP process can be specified in terms of
a design using R.

Theorem 2. For every CSP process P,

P = R(¬ P f
f � P t

f) �

Together with Laws 76 and 92, this theorem accounts for a style of specification
for CSP processes in which we use a design to give its behaviour when the
previous process has terminated and not diverged, and leave the definition of
the behaviour in the other situations for the healthiness conditions.

Motivated by the result above, we express some constructs of CSP as a re-
active design. We show that our definitions are the same as those in [6], with a
few exceptions that we explain.

6.3 STOP

The UTP definition of STOP is as follows.

STOP =̂ R(wait := true)

At this point it is not clear whether ref is in the alphabet or not. We assume it
is, since reactive processes are required to include it in the alphabet, and CSP
processes are reactive processes. In this case, we want the following definition.

STOP = R(true � tr ′ = tr ∧ wait ′)

The only difference is that we do not restrict the value of ref ′ to be that of ref .
Since STOP deadlocks, all events can be refused. Therefore, we leave the value
of ref ′ unrestrained: any refusal set is a valid observation.

The next law describes the effect of starting STOP properly and insisting
that it does not diverge. The result is that it leaves the trace unchanged and
it waits forever. We need to apply CSP1 , since we have not ruled out the
possibility of its predecessor diverging.

38

Law 93 (STOP-converge)

STOP t
f = CSP1 (tr ′ = tr ∧ wait ′)

Proof

STOP t
f [STOP]

= (R(true � tr ′ = tr ∧ wait ′))tf [R-wait-false, R1 -okay ′, R2 -okay ′]

= R1 ◦ R2 ((true � tr ′ = tr ∧ wait ′)tf) [substitution]

= R1 ◦ R2 ((true � tr ′ = tr ∧ wait ′)t) [design, substitution]

= R1 ◦ R2 (okay ⇒ tr ′ = tr ∧ wait ′) [R2]

= R1 (okay ⇒ tr ′ = tr ∧ wait ′) [H1]

= R1 (H1 (tr ′ = tr ∧ wait ′)) [R1]

= R1 (H1 (R1 (tr ′ = tr ∧ wait ′))) [CSP1 -R1 -H1 and R1]

= CSP1 (tr ′ = tr ∧ wait ′) �

Now suppose that we start STOP properly, but insist that it does diverge. Of
course, STOP cannot do this, so the result is that it could not have been started.

Law 94 (STOP-diverge)

STOP f
f = R1 (¬ okay)

Proof

STOP f
f [STOP]

= (R(true � tr ′ = tr ∧ wait ′))ff [R-wait-false, R1 -okay ′, R2 -okay ′]

= R1 ◦ R2 ((true � tr ′ = tr ∧ wait ′)ff) [substitution]

= R1 ◦ R2 ((true � tr ′ = tr ∧ wait ′)f) [design, substitution]

= R1 ◦ R2 (¬ okay) [R2]

= R1 (¬ okay) �

It is possible to prove the following law for STOP : it is a left zero for sequence.

Law 95 (STOP-left-zero)

STOP ; P = STOP �

This is left as an exercise for the reader.

6.4 SKIP

In the UTP, the definition of SKIP is as follows.

SKIP =̂ R(∃ ref • II rea)

We propose the formulation presented in the law below.

39

Law 96 (SKIP-reactive-design)

SKIP = R(true � tr ′ = tr ∧ ¬ wait ′) �

This characterises SKIP as the program that terminates immediately without
changing the trace; the refusal set is left unspecified, as it is irrelevant after
termination. The proof of this law is left as an exercise.

6.5 CHAOS

The UTP definition for CHAOS is R(true). Instead of true , we use a design.

Law 97 (CHAOS-reactive-design)

CHAOS = R(false � true) �

It is perhaps not surprising that CHAOS is the reactive abort. An example of
the use of this new characterisation can be found in the proof of the law below.

Law 98 (CHAOS-left-zero)

CHAOS ; P = CHAOS �

This proof is also left for the reader.

6.6 External choice

For CSP processes P and Q with a common alphabet, their external choice is
defined as follows.

P � Q =̂ CSP2 ((P ∧ Q) � STOP � (P ∨ Q))

This says that the external choice behaves like the conjunction of P and Q if no
progress has been made (that is, if no event has been observed and termination
has not occurred). Otherwise, it behaves like their disjunction. This is an eco-
nomical definition, and we believe that its re-expression as a reactive design is
insightful. To prove the law that gives this description, we need a few lemmas,
which we present below.

In order to present external choice as a reactive design, we need to calculate
a meaningful description for R(¬ (P � Q)ff � (P � Q)tf). We start with the
precondition, and calculate a result for (P � Q)ff .

Lemma 7 (external-choice-diverge). Provided P and Q are R1 healthy,

(P � Q)ff = (P f
f ∨ Q f

f) � okay � (P f
f ∧ Q f

f)

Proof

(P � Q)ff [external-choice]

= (CSP2 (P ∧ Q � STOP � P ∨ Q))ff [CSP2 -diverge]

40

= (P ∧ Q � STOP � P ∨ Q)ff [substitution]

= (P ∧ Q)ff � STOP f
f � (P ∨ Q)ff [conditional]

= (P f
f ∧ Q f

f ∧ STOP f
f) ∨ ((P f

f ∨ Q f
f) ∧ ¬ STOP f

f) [STOP -diverge]

= (P f
f ∧ Q f

f ∧ R1 (¬ okay)) ∨ ((P f
f ∨ Q f

f) ∧ ¬ (R1 (¬ okay)))

[assumption: P and Q are R1 -healthy]

= (P f
f ∧ (R1 (Q))ff ∧ R1 (¬ okay))

∨
(((R1 (P))ff ∨ (R1 (Q))ff) ∧ ¬ (R1 (¬ okay)))

[R1 -wait , R1 -okay ′, twice]

= (P f
f ∧ R1 (Q f

f) ∧ R1 (¬ okay))
∨
((R1 (P f

f) ∨ R1 (Q f
f)) ∧ ¬ (R1 (¬ okay)))

[R1 -extends-over-and, R1 -disjunctive]

= (P f
f ∧ R1 (Q f

f) ∧ ¬ okay) ∨ (R1 (P f
f ∨ Q f

f) ∧ ¬ (R1 (¬ okay)))

[R1 -wait , R1 -okay ′, R1 -and-not-R1 , propositional calculus]

= (P f
f ∧ (R1 (Q))ff ∧ ¬ okay) ∨ R1 ((P f

f ∨ Q f
f) ∧ okay)

[assumption: Q is R1 -healthy, R1 -extends-over-and]

= (P f
f ∧ Q f

f ∧ ¬ okay) ∨ R1 (P f
f ∨ Q f

f) ∧ okay

[R1 -disjunctive, R1 -wait , R1 -okay ′, assumption: P and Q are R1 -healthy]

= (P f
f ∧ Q f

f ∧ ¬ okay) ∨ ((P f
f ∨ Q f

f) ∧ okay) [conditional]

= (P f
f ∨ Q f

f) � okay � (P f
f ∧ Q f

f) �

This result needs to be negated, but it remains a conditional on the value of
okay . Since it is a precondition, this conditional may be simplified.

Lemma 8 (external-choice-precondition).

(¬ (P � Q)ff � R) = (¬ (P f
f ∨ Q f

f) � R)

Proof

¬ (P � Q)ff � R [design]

= okay ∧ ¬ (P � Q)ff ⇒ okay ′ ∧ R [external-choice-diverge]

= okay ∧ ¬ ((P f
f ∨ Q f

f) � okay � (P f
f ∧ Q f

f)) ⇒ okay ′ ∧ R [not-conditional]

= okay ∧ (¬ (P f
f ∨ Q f

f) � okay � ¬ (P f
f ∧ Q f

f)) ⇒ okay ′ ∧ R

[known-condition]

= okay ∧ ¬ (P f
f ∨ Q f

f) ⇒ okay ′ ∧ R [design]

= ¬ (P f
f ∨ Q f

f) � R �

Now we turn our attention to the postcondition.

41

Lemma 9 (external-choice-converge).

(P � Q)tf = (P ∧ Q) � STOP � (P ∨ Q)tf
∨
(P ∧ Q) � STOP � (P ∨ Q)ff

Proof

(P � Q)tf [external choice]

= (CSP2 (P ∧ Q � STOP � P ∨ Q))tf [CSP2 -converge]

= (P ∧ Q � STOP � P ∨ Q)tf ∨ (P ∧ Q � STOP � P ∨ Q)ff �

The second part of the postcondition is in contradiction with the precondition,
and when we bring the two together it can be removed. The conditional on
STOP can then be simplified.

Lemma 10 (design-external-choice-lemma).

(¬ (P � Q)ff � (P � Q)tf) =
((¬ P f

f ∧ Q f
f) � ((P t

f ∧ Q t
f) � tr ′ = tr ∧ wait ′ � (P t

f ∨ Q t
f)))

Proof

¬ (P � Q)ff � (P � Q)tf
[external-choice-diverge, design, known-condition, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f) � (P � Q)tf [external-choice-converge]

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf
∨
(P ∧ Q � STOP � P ∨ Q)ff

[design, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf
∨
(¬ P f

f ∧ ¬ Q f
f) � (P ∧ Q � STOP � P ∨ Q)ff

[substitution]

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf
∨
(¬ P f

f ∧ ¬ Q f
f) � (P f

f ∧ Q f
f � STOP f

f � P f
f ∨ Q f

f)

[design, propositional calculus]

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf
∨
(¬ P f

f ∧ ¬ Q f
f) � false

[design-post-or]

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf ∨ false

[propositional calculus]

42

Ana Cavalcanti
Note
typo: look at the proof.

= (¬ P f
f ∧ ¬ Q f

f) � (P ∧ Q � STOP � P ∨ Q)tf [substitution]

= (¬ P f
f ∧ ¬ Q f

f) � (P t
f ∧ Q t

f � STOP t
f � P t

f ∨ Q t
f) [STOP -converge]

= (¬ P f
f ∧ ¬ Q f

f) � (P t
f ∧ Q t

f � CSP1 (tr ′ = tr ∧ wait ′) � P t
f ∨ Q t

f)

[design-post-conditional-CSP1 , assumption: P and Q R1 -healthy]

= (¬ P f
f ∧ ¬ Q f

f) � (P t
f ∧ Q t

f � tr ′ = tr ∧ wait ′ � P t
f ∨ Q t

f) �

Finally, we collect our results to give external choice as a reactive design.

Law 99 (design-external-choice)

P � Q = R((¬ P t
f ∧ ¬ Q t

f) � (P t
f ∧ Q t

f) � tr ′ = tr ∧ wait ′ � (P t
f ∨ Q t

f))

Proof

P � Q [CSP-reactive-design]

= R(¬ (P � Q)ff � (P � Q)tf) [design-external-choice-lemma]

= R((¬ P f
f ∧ ¬ Q f

f) � (P t
f ∧ Q t

f � tr ′ = tr ∧ wait ′ � P t
f ∨ Q t

f)) �

The design in this law describes the behaviour of an external choice P � Q when
its predecessor has terminated without diverging. In this case, the external choice
does itself diverge if neither P nor Q does; this is captured in the precondition.
The postcondition establishes that if there has been no activity, or rather, the
trace has not changed and the choice has not terminated, then the behaviour is
given by the conjunction of P and Q . If there has been any activity, then the
choice has been made and the behaviour is either that of P or that of Q .

6.7 Extra healthiness conditions: CSP3 and CSP4

The healthiness conditions CSP1 and CSP2 are not strong enough to restrict
the predicate model to only those that correspond to processes that can be
written using the CSP operators. As a matter of fact, there are advantages to
this greater flexibility. In any case, a few other healthiness conditions can be
very useful, if not essential. Here, we present two of these.

CSP3 This healthiness condition requires that the behaviour of a process does
not depend on the initial value of ref . In other words, it should be the case
that, when a process P starts, whatever the previous process could or could
not refuse when it finished should be irrelevant. Formally, the requirement is
¬ wait ⇒ (P = ∃ ref • P). If the previous process diverged, ¬ okay , then CSP1
guarantees that the behaviour of P is already independent of ref . So, this re-
striction is really relevant for the situation okay ∧ ¬ wait , as should be expected.

We can express CSP3 in terms of an idempotent: CSP3 (P) = SKIP ; P .

Lemma 11. P is CSP3 if and only if SKIP ; P = P.

43

Using this idempotent, we can prove that SKIP is CSP3 healthy.

Law 100 (SKIP-CSP3)

CSP3 (SKIP) = SKIP �

With this result, it is very simple to prove that CSP3 is indeed an idempotent.

Law 101 (CSP3 -idempotent)

CSP3 ◦ CSP3 = CSP3 �

Since CSP processes are not closed with respect to conjunction, we only worry
about closure of the extra healthiness conditions with respect to the other pro-
gramming operators.

Law 102 (closure-∨-CSP3)

CSP3 (P ∨ Q) = P ∨ Q provided P and Q are CSP3 healthy �

Law 103 (closure- � tr ′ = tr � -CSP3)

CSP3 (P � tr ′ = tr � Q) = P � tr ′ = tr � Q
provided P and Q are CSP3 healthy �

Law 104 (closure-;-CSP3)

CSP3 (P ; Q) = P ; Q provided P and Q are CSP3 healthy �

CSP4 The second extra healthiness condition, CSP4 , is similar to CSP3 .

P ; SKIP = P

It requires that, on termination or divergence, the value of ref ′ is irrelevant. The
following lemma makes this clear.

Lemma 12.

P ; SKIP = (∃ ref ′ • P) ∧ okay ′ ∧ ¬ wait ′

∨
P ∧ okay ′ ∧ wait ′

∨
(P ∧ ¬ okay ′) ; tr ≤ tr ′

This result shows that, if P = P ; SKIP , then if P has terminated without
diverging, the value of ref ′ is not relevant. If P has not terminated, then the value
of ref ′ is as defined by P itself. Finally, if it diverges, then the only guarantee is
that the trace is extended; the value of the other variables is irrelevant.

44

It is easy to prove that SKIP , STOP , and CHAOS are CSP4 healthy.

Law 105 (SKIP-CSP4)

CSP4 (SKIP) = SKIP �

Law 106 (STOP-CSP4)

CSP4 (STOP) = STOP �

Law 107 (CHAOS-CSP4)

CSP4 (CHAOS) = CHAOS �

The usual closure properties also hold.

Law 108 (closure-∨-CSP4)

CSP4 (P ∨ Q) = P ∨ Q provided P and Q are CSP4 healthy �

Law 109 (closure- � � -CSP4)

CSP4 (P � � Q) = P � � Q provided P and Q are CSP4 healthy �

Law 110 (closure-;-CSP4)

CSP4 (P ; Q) = P ; Q provided P and Q are CSP4 healthy �

As detailed in the next section, other healthiness conditions may be useful. We
leave this search as future work; [6] presents an additional healthiness condition
that we omit here: CSP5 .

7 Failures-divergences model

The failures-divergences model is the definitive reference for the semantics of
CSP [11]. It is formed by a set F of pairs and a set D of traces. The pairs are
the failures of the process. A failure is formed by a trace and a set of events; the
trace records a possible history of interaction, and the set includes the events
that the process may refuse after the interactions in the trace. This set is the
refusals of P after s. The set D of traces are the divergences of the process. After
engaging in the interactions in any of these traces, the process may diverge.

The simpler traces model includes only a set of traces. For a process P , the
set traces⊥(P) contains the set of all traces in which P can engage, including
those that lead to or arise from divergence.

A number of healthiness conditions are imposed on this model. This first
healthiness condition requires that the set of traces of a process are captured in
its set of failures. This is because the empty trace is a trace of every process and
every earlier record of interaction is a possible interaction of the process.

F1 traces⊥(P) = { t | (t ,X) ∈ F } is non-empty and prefix closed

The next healthiness condition requires that if (s,X) is a failure, then (s,Y) is

45

also a failure, for all subsets Y of X . This means that, if after s the process may
refuse all the events of X , then it may refuse all the events in the subsets of X .

F2 (s,X) ∈ F ∧ Y ⊆ X ⇒ (s,Y) ∈ F

Also concerning refusals, we have a healthiness condition that requires that if an
event is not possible, according to the set of traces of the process, then it must
be in the set of refusals.

F3 (s,X) ∈ F ∧ (∀ a : Y • s � 〈 a 〉 /∈ traces⊥(P)) ⇒ (s,X ∪ Y) ∈ F

The event � is used to mark termination. The following healthiness condition
requires that, just before termination, a process can refuse all interactions. The
set Σ includes all the events in which the process can engage, except � itself.

F4 s � 〈� 〉 ∈ traces⊥(P) ⇒ (s, Σ) ∈ F

The last three healthiness conditions are related to the divergences of a process.
First, if a process can diverge after engaging in the events of a trace s, then it
can diverge after engaging in the events of any extension of s. The idea is that,
conceptually, after divergence, any behaviour is possible. Even � is included in
the extended traces, and not necessarily as a final event. The set Σ∗ includes all
traces on events in Σ, and Σ∗� includes all traces on events in Σ ∪ {� }.

D1 s ∈ D ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ D

The next condition requires that, after divergence, all events may be refused.

D2 s ∈ D ⇒ (s,X) ∈ F

The final healthiness condition requires that if a trace that marks a termination
is in the set of divergences, it is because the process diverged before termination.
It would not make sense to say that a process diverged after it terminated.

D3 s � 〈� 〉 ∈ D ⇒ s ∈ D

Some of these healthiness conditions correspond to UTP healthiness conditions.
Some of them are not contemplated.

Refinement in this model is defined as reverse containment. A process P1 is
refined by a process P2 if and only if the set of failures and the set of divergences
of P2 are contained or equal to those of P1.

We can calculate a failures-divergences representation of a UTP process.
More precisely, we define a few functions that take a UTP predicate and return
a component of the failures-divergences model. We first define a function traces;
it takes a UTP predicate P and returns the set of traces of the corresponding pro-
cess. The behaviour of the process itself is that prescribed when okay and ¬ wait .
The behaviour in the other cases is determined by the healthiness conditions,
and is included so that sequence is simplified; it is just relational composition.

46

In the failures-divergences model, this extra behaviour is not captured and is
enforced in the definition of sequence.

traces(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ (tr ′ − tr) � 〈� 〉 | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

The value of tr records the history of events before the start of the process;
tr ′ carries this history forward. Again, this simplifies the definition of sequence.
In the failures-divergences model, this extra behaviour is not captured and is
enforced in the definition of sequence. Therefore, the traces in the set traces(P)
are the sequences tr ′ − tr that arise from the behaviour of P itself.

The set traces(P) only includes the traces that lead to non-divergent be-
haviour. Moreover, if a trace tr ′ − tr leads to termination, wait ′, then traces(P)
also includes (tr ′ − tr) � 〈� 〉, since � is used in the failures-divergences model
to signal termination.

The traces that lead to or arise from divergent behaviour are those in the set
divergences(P) defined below.

divergences(P) = { tr ′ − tr | okay ∧ ¬ wait ∧ P ∧ ¬ okay ′ }

The set traces⊥(P) mentioned in the healthiness conditions of the failures-
divergences model includes both the divergent and non-divergent traces.

traces⊥(P) = traces(P) ∪ divergences(P)

The failures are recorded for those states that are stable (non-divergent) or final.

failures(P) =
{ ((tr ′ − tr), ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }∪
{ ((tr ′ − tr) � 〈� 〉, ref ′ ∪ {� }) | okay ∧ ¬ wait ∧ P ∧ okay ′ ∧ ¬ wait ′ }

For the final state, the extra trace (tr ′ − tr) � 〈� 〉 is recorded. Also, after
termination, for every refusal set ref ′, there is an extra refusal set ref ′ ∪ {� }.
This is needed because � is not part of the UTP model and is not considered in
the definition of ref ′.

The set of failures in the failures-divergences model includes failures for the
divergent traces as well.

failures⊥(P) = failures(P) ∪ { (s, ref) | s ∈ divergences(P) }

For a divergent trace, there is a failure for each possible refusal set.
The functions failures⊥ and divergences map the UTP model to the failures-

divergences model. In studying the relationship between alternative models for
a language, it is usual to hope for an isomorphism between them. In our case,
this would amount to finding inverses for failures⊥ and divergences. Actually,
this is not possible; UTP and the failures-divergences model are not isomorphic.

47

The UTP model contains processes that cannot be represented in the failures-
divergences model. Some of them are useful in a model for a language that has
a richer set of constructions to specify data operations. Others may need to be
ruled out by further healthiness conditions, but we leave that for another day.

The failures-divergences model, for example, does not have a top element;
all divergence-free deterministic processes are maximal. In the UTP model,
R(true � false) is the top.

Lemma 13. For every CSP process P, we have that P � R(true � false). �

The process R(true � false) is (II rea � wait � ¬ okay ∧ tr ≤ tr ′). Its be-
haviour when okay and ¬ wait is false . As such, it is mapped to the empty
set of failures and divergences; in other words, it is mapped to STOP . Opera-
tionally, this can make sense, but STOP does not have the same properties of
R(true � false). In particular, it does not refine every other process.

In general terms, every process that behaves miraculously in any of its initial
states cannot be accurately represented using a failures-divergences model. We
do not, however, necessarily want to rule out such processes, as they can be
useful as a model for a state-rich CSP.

If we analyse the range of failures⊥ and divergences, we can see that it does
not satisfy a few of the healthiness conditions F1-4 and D1-3 .

F1 The set traces⊥(P) is empty for P = R(true � false); as discussed above,
this can be seen as an advantage. Also, traces⊥(P) is not necessarily prefix closed.
For example, the process R(true � tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′) engages in the
events a and b and then terminates. It does not have a stable state in which a
took place, but b is yet to happen.

F2 This is also not enforced for UTP processes. It is expected to be a conse-
quence of a healthiness condition CSP5 presented in [6].

F3 Again, it is simple to provide a counterexample.

R(true � tr ′ = tr � 〈 a 〉 ∧ ref ′ ⊆ { b } ∧ wait ′

∨
tr ′ = tr � 〈 a, b 〉 ∧ ¬ wait ′)

In this case, a is not an event that can take place again after it has already
occurred, and yet it is not being refused.

F4 This holds for CSP4 -healthy processes.

Theorem 3. Provided P is CSP4 healthy,

s � 〈� 〉 ∈ traces⊥(P) ⇒ (s, Σ) ∈ failures(P) �

D1 Again, CSP4 is required to ensure D1 -healthy divergences.

Theorem 4. Provided P is CSP4 healthy,

s ∈ divergences(P) ∩ Σ∗ ∧ t ∈ Σ∗� ⇒ s � t ∈ divergences(P) �

48

D2 This is enforced in the definition of failures⊥.

D3 Again, this is a simple consequence of the definition (of divergences).

Theorem 5.

s � 〈� 〉 ∈ divergences(P) ⇒ s ∈ divergences(P) �

We view the definition of extra healthiness conditions on UTP processes to
ensure F1 and F3 as a challenging exercise.

8 Conclusions

We have presented two UTP theories of programming: one for precondition-
postcondition specifications (designs), and one for reactive processes. We have
brought them together to form a theory of CSP processes. This is the starting
point for the unification of the two theories, whose logical conclusion is a theory
of state-rich CSP processes. This is the basis for the semantics of a new notation
called Circus [13, 3], which combines Z and CSP.

The theory of designs was only briefly discussed. It is the subject of a com-
panion tutorial [14], where through a series of examples, we have presented the
alphabetised relational calculus and its sub-theory of designs. In that paper, we
have presented the formalisation of four different techniques for reasoning about
program correctness.

Even though this is a tutorial introduction to part of the contents of [6], it
contains many novel laws and proofs. Notably, the recasting of external choice
as a reactive design can be illuminating. Also, the relationship with the failures-
divergences model is original.

We hope to have given a didactic and accessible account of CSP model in
the unifying theories of programming. We have left out, however, the defini-
tion of many CSP constructs as reactive designs and the exploration of further
healthiness conditions. These are going to be the subject of further work.

In [10], UTP is also used to give a semantics to an integration of Z and CSP,
which also includes object-oriented features. In [12], the UTP is extended with
constructs to capture real-time properties as a first step towards a semantic
model for a timed version of Circus. In [4], a theory of general correctness is
characterised as an alternative to designs; instead of H1 and H2 , a different
healthiness condition is adopted to restrict general relations.

Currently, we are collaborating with colleagues to extend UTP to capture
mobility, synchronicity, and object orientation. We hope to contribute to the
development of a theory that can support all the major concepts available in
modern programming languages.

9 Acknowledgements

This work is partially funded by the Royal Society of London and by QinetiQ
Malvern. The authors are the FME (Formal Methods Europe) Lecturers at the

49

Pernambuco Summer School, and are grateful for their support of this event,
where this tutorial was first presented. We have benefited from discussions with
Yifeng Chen about closure; the proof we have for Law 48 is his.

References

1. J-R. Abrial. The B-Book: Assigning Progams to Meanings. Cambridge University
Press, 1996.

2. R. J. R. Back and J. Wright. Refinement Calculus: A Systematic Introduction.
Graduate Texts in Computer Science. Springer-Verlag, 1998.

3. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

4. S. Dunne. Recasting Hoare and He’s Unifying Theories of Programs in the Context
of General Correctness. In A. Butterfield and C. Pahl, editors, IWFM’01: 5th Irish
Workshop in Formal Methods, BCS Electronic Workshops in Computing, Dublin,
Ireland, July 2001.

5. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
1985.

6. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,
1998.

7. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, 1986.

8. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
9. J. M. Morris. A Theoretical Basis for Stepwise Refinement and the Programming

Calculus. Science of Computer Programming, 9(3):287 – 306, 1987.
10. S. Qin, J. S. Dong, and W. N. Chin. A Semantic Foundation for TCOZ in Uni-

fying Theories of Programming. In K. Araki, S. Gnesi, and D. Mandrioli, editors,
FME2003: Formal Methods, volume 2805 of Lecture Notes in Computer Science,
pages 321 – 340, 2003.

11. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

12. A. Sherif and He Jifeng. Towards a Time Model for Circus. In International
Conference in Formal Engineering Methods, pages 613 – 624, 2002.

13. J. C. P. Woodcock and A. L. C. Cavalcanti. The Semantics of Circus. In D. Bert,
J. P. Bowen, M. C. Henson, and K. Robinson, editors, ZB 2002: Formal Specifi-
cation and Development in Z and B, volume 2272 of Lecture Notes in Computer
Science, pages 184—203. Springer-Verlag, 2002.

14. J. C. P. Woodcock and A. L. C. Cavalcanti. A Tutorial Introduction to Designs
in Unifying Theories of Programming. In IFM 2004: Integrated Formal Methods,
volume 2999 of Lecture Notes in Computer Science, pages 40 – 66. Springer-Verlag,
2004. Invited tutorial.

15. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.

50

