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Abstract. Circus is a combination of Z and CSP; its chief distinguishing
feature is the inclusion of the ideas of the refinement calculus. Our main
objective is the definition of refinement methods for concurrent programs.
The original semantic model for Circus is Hoare and He’s unifying theories
of programming. In this paper, we present an equivalent semantics based on
predicate transformers. With this new model, we provide a more adequate
basis for the formalisation of refinement and verification-condition genera-
tion rules. Furthermore, this new framework makes it possible to include
logical variables and angelic nondeterminism in Circus. The consistency of
the relational and predicate transformer models gives us confidence in their
accuracy.

1 Introduction

Modern computing systems typically run on distributed, heterogeneous networks,
and are subject to complex constraints on functionality, performance, fault toler-
ance, security, and timing. If we want such systems to be dependable, then we must
address all these issues. There has been much progress in providing sound mathe-
matical foundations for these different aspects of complex systems, but it is usually
done in relative isolation. This is because researchers apply the principle of separa-
tion of concerns, allowing them to find a thorough solution to a particular problem
without being distracted by others. Subsequent researchers can then build on this
fundamental research by composing its theories.

Two examples of this separation of concerns lie in the theory of program specifi-
cation and development. First, research on state-based, model-oriented specification
languages originally focused on the specification and refinement of sequential soft-
ware, avoiding the complications of concurrency and distribution. Second, when
research on process algebras started in the 1970s, the major schools focused on
studying the semantics and theory of concurrency and communication, abstracting
from the details of data types and their operations. In both cases, researchers knew
that they would have to address the wider concerns in order for the techniques to
scale up to describing industrial-sized systems.

Recently, there has been considerable interest in bringing these two strands of
research together, and in particular combining Z [27, 32] and CSP [11, 24] in various
ways; Fischer has surveyed some of this work [7]. It is clear, however, that little has
been accomplished in understanding the formal development of programs starting
from specifications in these combined formalisms.

Circus [28, 30, 31] is a language for writing specifications, designs, and programs
for concurrent, communicating systems. It combines the languages of Z, CSP, the re-
finement calculus [18], and guarded commands [5]. As such, it is very convenient for
capturing and reasoning about static, dynamic, and reactive aspects of concurrent
and distributed systems, such as may be written in occam and Java.

The complete integration of the four languages involved in Circus has been
achieved by giving a single denotational semantics that describes all their con-
structs, in the manner of Hoare and He’s unifying theories of programming [12]. In
Hoare and He’s work, a number of different paradigms for programming are studied



as a series of linked theories, each formalised in an alphabetised variant of Tarski’s
relational calculus.

A long-standing trend in the formal development and verification of programs
is the use of predicate transformers, either directly or as a foundation [5, 1, 19, 14].
In the unifying theory, the relational model for sequential programs is linked to a
weakest-precondition model. Later, the relational model is augmented to cope with
concurrency and communication, and the link to the weakest-precondition setting
turns out not to be valid for the augmented model.

We present a new predicate transformer: the weakest reactive precondition. It
characterises the weakest precondition that guarantees that a given condition holds
in all observable states of a reactive program. We define the weakest reactive pre-
condition of a unifying theory relation that defines a reactive system. From this, we
calculate a weakest reactive precondition semantics for Circus.

This new semantic model is a convenient step towards the complete justification
of our extension to an existing refinement calculus for Z [4] that includes all Circus

constructs [26, 3]. Moreover, the weakest precondition semantics is a natural start-
ing point for the proposal of rules for verification-condition generation for Circus.
Finally, as an added benefit to the effort of calculating a new semantics for Circus,
we now have the possibility of modelling logical constants and angelic nondetermin-
ism, which are important for refinement techniques. The two models also provide
confirmation for the precision of each other.

In [25], laws are presented that completely characterise occam’s semantics, and
which are cast in terms of the denotational semantics of [23], although no proof of
equivalence was carried out. The laws presented in that work, however, are equali-
ties; they aim at characterising the semantics of the language, instead of supporting
the development of programs.

In the next section, we give an overview of Circus. Section 3 presents the basic
concepts of the unifying theory. The weakest precondition semantics of Circus is the
subject of Section 4. Finally, in Section 5 we present our conclusions.

2 Circus

A Circus program is a sequence of paragraphs; each of these may either be a Z
paragraph, a channel definition, a channel set definition, or a process definition. In
the BNF description of the syntax of Circus in Figure 1, we omit part of the syntax
of processes (Proc) and the syntax of communications (Comm), which we exemplify
later on in this section.

CircusPar∗ denotes a possibly empty list of elements from the category CircusPar;
similarly for PPar∗. N+ denotes a comma-separated list of valid Z identifiers (ele-
ments of N), and similarly for Exp+. The syntactic categories Par, Schema-Exp, Exp,
Pred, and Decl include the Z paragraphs, schema expressions, expressions, predi-
cates, and declarations; their definitions can be found in [27]. Finally, the syntactic
category CSExp of channel set expressions contains the empty set of channels {| |},
channel enumerations enclosed in {| and |}, and set expressions formed by the usual
set operators.

A process encapsulates state and behaviour. The basic form of process defin-
ition describes the state and operations, mainly as in a standard Z specification.
In the context of Circus, the operations are called actions and can be specified us-
ing schemas, CSP operators, and guarded commands. The predicate transformer
semantics calculated here characterises the behaviour of actions.

By way of illustration, we consider a little example due to Hoare [11]. The process
WSum below inputs natural numbers from a channel in, and outputs through a



Program ::= CircusPar∗

CircusPar ::= Par | ChanDef | ChanSetDef | ProcDef

ChanDef ::= channel CDecl

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | Schema-Exp

ChanSetDef ::= chanset N == CSExp

ProcDef ::= process N =̂ Proc

Proc ::= begin PPar∗ • Action end | Proc 2 Proc

| . . .

PPar ::= Par | N =̂ Action

Action ::= Schema-Exp | CSPActionExp | Command

CSPActionExp ::= Skip | Stop | Chaos
| Comm → Action | Pred & Action | Action; Action

| Action 2 Action | Action |[ CSExp ]| Action | µ N • Action

| Decl • Action | Action(Exp+)

Command ::= N+ : [Pred, Pred ] | N+ := Exp+

| if GuardedActions fi | var Decl • Action

GuardedActions ::= Pred → Action | Pred → Action 2 GuardedActions

Fig. 1. Circus syntax

channel out the weighted sum of its current and previous input.

channel in, out : N;

The weights are defined as constants, using the Z notation.

a, b : N

The state S records its previous input last and the value to be output val .

process WSum =̂ begin

S =̂ [ last , val : N ]

e present the action Compute, which takes an input x? and updates the state
accordingly.

Compute

∆S

x? : N

val ′ = a ∗ last + b ∗ x?
last ′ = x?

There is a nameless action at the end of a process description, which defines its
behaviour; we refer to this action as the main action of the process. In our example,
it is as follows.

• (µX • in?x → Compute; out !val → X )
end



We use the prefixing, sequence, and recursion constructs of CSP. First the input is
taken through the channel in and into the input variable x . Afterwards, the schema
action previously defined is used to update the state. In sequence, the val component
of the state is output through out and the process recurses. We explain the other
action operators below through a more substantial example, and in Section 4, as we
present their semantics.

The CSP operators can also be used to combine processes: their states are con-
joined and their main actions are combined using the CSP operator applied. The
weakest precondition of a process is that of its main action. The following exam-
ple, inspired by the Sieve of Eratosthenes presented in [10], illustrates the use of
processes.

Example The objective of the Sieve of Eratosthenes is to produce the list of prime
numbers. In our example, the list is output through the channel out .

channel out : N

We use the set primes that contains all the prime numbers. Its Z specification is as
follows.

primes ==
{ n : N | (∀m : N • m divides n ⇒ m = 1 ∨ m = n)}

In this definition, we use the function divides , with the obvious meaning: m divides n

if and only if n is a multiple of m. The definition of this function in Z is simple and
omitted. So, a number is prime if its only divisors are 1 and itself.

The specification is a parametrised process, Primes . Its parameter l limits the
size of the list of prime numbers: we are interested only in those primes less than
or equal to l .

process Primes =̂ l : N • begin

PrimesState =̂ [ s : F N ]

PrimesInit =̂ [PrimesState ′ | s ′ = (2 . . l) ∩ primes ]

Output

DeltaPrimesState

m! : N

s 6= ∅
m! = min s

s ′ = s \ {m! }

• PrimesInit ;
µX • if s = ∅ → Skip

[] s 6= ∅ → var m : N • Output ; out !m → X

fi

end

The only state component, specified in PrimesState, is a finite set s of natural
numbers. The main action describes the behaviour of the process: first it initialises
the state with PrimesInit ; then it recursively executes a conditional action. The
notation that we use is that of Dijkstra’s guarded commands [5].



The initialisation sets s to the set of numbers that are both between 2 and l and
also prime. The recursive action then outputs these numbers in ascending order. If s

is empty, then the task is finished, and the recursion terminates. Otherwise, a local
variable m is declared to hold the next output, which is selected by the operation
Output . The schema Output requires that s must not be empty, and the after-value
of m—here denoted by m! to emphasise that it is a result of the operation—is set
to the minimum value in s ; m! is then removed from s to form the after-value of
the state, s ′.

Primes is refined to the process Eratosthenes , defined below, which specifies a
concurrent implementation of the Sieve of Eratosthenes algorithm. It is defined as
the parallel composition of other processes, in the manner of a systolic array.

The first process, which we call Start , outputs 2, which is the first prime, through
out . Afterwards, it outputs the list of odd numbers, or rather, the numbers that are
not multiples of 2, through a channel sievein.

channel sievein : N

process Start =̂ begin

StartState =̂ [n : N ]

• out !2 → n := 3; (µX • sievein!n → n := n + 2; X )

end

The second process is a Filter . It takes a prime p through the channel sievein,
outputs it, and then outputs the list of numbers that are not multiples of p, through
a channel sieveout .

channel sieveout : N

process Filter =̂ begin •
sievein?p → out !p →
µX • sievein?m →

if p divides m → X

[] ¬ (p divides m) → sieveout !m → X

fi

end

The idea is that Start sends through sievein the number 3, which is the next prime
after 2, and all the odd numbers. Filter outputs 3 and filters out from sievein the
multiples of 3. The multiples of 2 have already been removed by Start , so we are left
only with numbers that are neither a multiple of 2 nor 3. The list of such numbers
are output through sieveout .

We use a piping operator to take the list output through sieveout as input to
Filter again. This operator takes the form [c1 ↔ c2] n • P , and we define it as
follows, for n > 0, and for a channel m not used in P .

[c1 ↔ c2] n • P =̂
var v : N • v := n;
µX • if v = 1 → P

[] v > 1 →
v := v − 1;
(P [m/c1] |[ {| m |} ]| X [m/c2] ) \ {| m |}

fi

The operator forms n copies of P , and links them together by connecting the c1

channel of the i-th process to the c2 channel of the (i +1)-th process. The definition



achieves this by recursion, limited by the local variable v . On every recursive step,
except the last, a copy of P is connected to its right neighbour. The copy has its c1

channel renamed to m; the neighbour (the recursive call of X ) has its c2 channel also
renamed to m. They are then composed in parallel, communicating only through
m, which is hidden to prevent interference. The result is a process with a single c2

channel on the left and a single c1 channel on the right. Its internal structure is a
linear sequence of processes communicating pairwise on private channels. Of course,
P may have other channels, and they are not linked in any way by this operator.

For example, COPY (taken from [11]) is a one-place buffer that repeatedly
copies its inputs from the left channel and outputs them on the right channel:

channel left , right : N

process COPY =̂
begin • (µX • left?x → right !x → X ) end

The process [right ↔ left ] 3 • COPY defines a three-place buffer. Once the recursion
has been completely unfolded, v is irrelevant, so the process is equivalent to the
expression:

(COPY [m/right ]
|[{| m |}]|
( (COPY [m/right ]

|[{| m |}]|
COPY [m/left ] ) \ {| m |} )[m/left ]

) \ {| m |}

This three-place buffer has two external channels, left and right , and two internal
ones. Data arrives on the left channel, makes its way via the two internal channels,
and finally appears on the right channel. The result is a pipeline of replicated
components, like a systolic array. In a similar way, we construct our sieve as a
pipeline from a series of l filters.

process Sieve =̂ l : N • ( [sieveout ↔ sievein] l • Filter )

At the far end of the pipeline we have the process Finish, which simply takes a
value through sieveout and outputs it.

process Finish =̂
begin • sieveout?n → out !n → Skip end

Now we can connect together our components to form the implementation.

process Eratosthenes =̂ l : N •
(Start |[ {|sievein|} ]| Sieve(l) |[ {|sieveout |} ]| Finish

) \ {|sievein, sieveout |}

The out channel is not in the synchronisation set of the parallel composition, and
so communications from the pipeline’s components through this channel occur in-
dependently: the results are interleaved. In fact, in spite of this interleaving, the
ascending order required by Primes is preserved. Each filter stage of the pipeline
outputs on out only after it has received its first communication from its predeces-
sor, but before its first communication to its successor. Together with the initial
and final behaviours of Start and Finish, this forces the strict sequencing of the
output. Interference on state components is not a problem in the above parallel
compositions, since the state of a process is encapsulated.

Proving that Primes is refined by Eratosthenes is not within the scope of this
paper. Nonetheless, the technique put forward in [26, 3] can be used to calculate
Eratosthenes ’ behaviour from Primes in the refinement calculus style. The semantics
presented in this paper is a foundation for that technique.



3 Unifying theories of programming

The semantics of Circus [31, 29] is based on the unifying theory, but with the Z no-
tation used as the concrete syntax for the relational calculus; thus, a Circus program
denotes a Z specification. The use of Z is not essential to our approach, but it is
convenient as Z is well-suited to the definition of relations, has a precise semantics,
and has supporting tools.

In the unifying theory, Tarski’s relational calculus is used to give a denotational
semantics to constructs taken from different programming paradigms. This com-
mon framework allows connections to be established between different paradigms
and between a theory and its implementable subtheories. Specifications, designs,
and programs are all interpreted as relations between an initial and a subsequent
observation of a computing device. Distinguished variables are used to describe
relevant observations. The relations are defined as predicates over observational
variables and their dashed counterparts; they represent the corresponding values
before and after the observation.

In accordance with the philosophy of the unifying theory, Circus brings together
Z, CSP, and the refinement calculus in a language with a single, coherent semantics.
The observational variables describe stability from divergence (okay), termination
(wait), a history of interaction with the environment (tr), and a set of refused
events (ref ). Together with program variables, these observational variables and
their associated healthiness conditions define the subtheory of imperative, commu-
nicating, sequential processes and designs. The result is a state-based expression of
the failures-divergences model with embedded imperative features.

Because their semantics are so close, Circus can be used as a development method
for occam programs. Hoare and Roscoe use a style similar to the unifying theory
in their semantics for occam [13]: the meaning of a program is given as a predicate
over the values of computations, traces, refusals, and a state variable that records
termination and divergence in a similar way to our okay and wait variables.

The unifying theory includes a relational definition of the weakest precondition
of a sequential mechanism; that definition, however, is not valid for reactive systems.
This is actually not surprising, since in the context of sequential programs, weakest
preconditions are concerned with final and initial states only, but in a reactive
system, intermediate states are also relevant. It is in these intermediate states that
a reactive process is waiting for interaction with its environment. This motivates
our generalisation; the same sort of issue is also discussed by Lamport [16].

In the next section, we propose the weakest reactive precondition of a relation
in the subtheory used to model Circus. This characterises the weakest precondition
that guarantees that a given condition holds in every observable state: either final or
not. Refinement in terms of weakest reactive preconditions is as usual for predicate
transformers, and is equivalent to that in the unifying theory.

4 Weakest reactive precondition semantics

The set of channels in scope is relevant to the semantics of the actions. We record
them in a channel environment defined as follows.

ChanEnv == ChanName 7 7→ Expression

As already mentioned, as a meta-language, we use Z with a few extensions that we
explain as they arise. A channel environment associates a channel name, an element
of the given set ChanName, to a Z expression that gives its type.

The relational semantics of actions is given by the function [[ ]]
A

.

[[ ]]
A

: Action 7→ ChanEnv 7→ N 7→ Schema-Exp



It takes as extra parameters a channel environment and the name of the schema that
defines the user state. It gives as result a schema over the observational variables: the
components of the process and the user states.

The process state is defined as follows.

ProcessState

tr : seqEvent

ref : PEvent

okay,wait : Bool

Event is a free type determined by the channels in scope: for each such channel c,
we have a constructor c that takes a value of the type of c to an Event . We also use
a free type Bool to model true and false; boolean variables as used as predicates,
for simplicity.

Changes over the state can only increase the trace.

ProcStateObs =̂ [∆ProcessState | tr prefix tr ′ ]

Other restrictions over the state are more conveniently enforced by the semantic
definitions and are discussed later in this section.

The semantics of actions are operations over a state that also includes the com-
ponents of the user state in the process description.

State =̂ UserState ∧ ProcessState

Here, we assume that the user state is UserState. A change in State is a process
observation.

ProcObs =̂ ∆UserState ∧ ProcStateObs

Both the restriction above on changes to the process state and any existing restric-
tions on changes to the user state are enforced.

Actually, we consider families of schemas ProcObs(USt) and State(USt): one
for each user state USt . We need this generalisation because the user state can be
extended by input and local variables, and by parameter declarations.
The definition of [[ ]]

A
is as follows.

Definition 1.

[[A]]
A
γ USt = [[A]]

AN γ USt ∨ Diverge(USt) ∨ Wait(USt)

The behaviour of A in the situation where the previous operation has not diverged
and has not terminated, or rather, in a state where okay and ¬ wait hold, is char-
acterised by [[ ]]AN . This function takes the same arguments as [[ ]]A, and also gives
a schema as result. It is further discussed later in this section.

The family of schemas Diverge(USt) gives the semantics when okay is false.

Diverge(USt) =̂ [ProcObs(USt) | ¬ okay ]

In this case, there are no guarantees as the previous operation diverged.
Finally, if the previous operation has not finished, A behaves as follows.

Wait(USt) =̂ [ΞState(USt) | okay ∧ wait ]

The state is not changed by A, because its execution has not started yet.
In this work, we present a new semantic function [[A]]

WP
for actions A.



Definition 2.

[[A]]
WP

: ChanEnv 7→ N 7→ Schema-Exp → Schema-Exp

[[A]]
WP

γ USt ϕ =̂ [State(USt); Inp | wrpUSt .[[A]]
A
.ϕ ]

where

wrpUSt .p.ψ =̂ ∀State(USt)′ • p ⇒ ψ

and Inp is the declaration of any input variables in scope for A.

This function gives the weakest reactive precondition of A, with conditions expressed
using schemas. It takes a channel environment γ and a user state name USt as ar-
guments. It also takes a schema ϕ to yield another schema expressing the situations
in which ϕ holds in all subsequent states of A: both intermediate and final. The first
schema is a relation on ProcObs , and the second defines a restriction on State(USt)
and any input variables Inp in scope.

The predicate in the schema [[A]]
WP

γ USt ψ is an application of the function

wrpUSt to the relational model [[A]]
A

of A and φ. For historical reasons, we use the
dot notation for application of the wrp function, rather than the relational notation
used in the unifying theories work or the Z notation. In the sequel, for brevity, we
omit the parameter USt when it is clear from the context.

The function wrp takes two predicates as arguments; in Definition 2, we are using
the schemas [[A]]

A
and ϕ as predicates, a usual practice in Z. For predicates p and

ψ, the weakest reactive precondition for p to establish ψ, or rather wrp.p.ψ, is that,
in all subsequent states, which are characterised by the dashed state components,
if p holds, so does ψ.

We can deduce the following from Definitions 2 and 1.

Theorem 1.

wrp.[[A]]Aγ USt .ψ =

wrp.[[A]]
AN γ USt .ψ ∧ wrp.Diverge.ψ ∧ wrp.Wait .ψ

This means that we provide a weakest reactive precondition model for an action
A by considering the weakest reactive precondition of Diverge, of Wait , and of the
relational model [[A]]

AN of A separately. For Diverge, we have the following.

Theorem 2.

wrp.Diverge.ψ = (¬ okay ⇒ ∀State ′ • tr prefix tr ′ ⇒ ψ )

This means that, in the presence of divergence, ¬ okay, whatever property ψ we
want to ensure has to be valid under only the assumption that the trace is ex-
tended: tr prefix tr ′.

For Wait , the result is as follows. The function α gives the set of components
of a given schema. Below, we make use of a slight abuse of notation and write
ψ[αState/αState ′] to mean substitution in ψ of every state component for the cor-
responding dashed one.

Theorem 3.

wrp.Wait .ψ = ( okay ∧ wait ⇒ ψ[αState/αState ′] )



If the previous operation has not finished, okay ∧ wait , A cannot establish any
property that does not already hold, as it cannot start.

The theorem below provides a way of calculating wrp.p.ψ, for an arbitrary ψ,
in such a way that wrp.p is actually applied to a predicate that does not involve
undashed variables.

Theorem 4. For a list cl of fresh constants,

wrp.p.ψ = (wrp.p.ψ[cl/αState])[αState/cl ]

First, the undashed variables of ψ are replaced with fresh constants cl ; next wrp.p
is calculated for this new predicate ψ[cl/αState]; and afterwards, the undashed

variables are restored. Based on this theorem, we calculate wrp.[[A]]
AN γ USt .ψ only

for predicates ψ that do not involve undashed variables; we call these predicates
conditions. The proof of this theorem is a simple application of predicate calculus
and substitution properties.

In the definition of [[A]]AN γ USt , we use the family of schemas below, which
characterises the situation in which the previous action has not diverged and has
finished, okay ∧ ¬ wait , and so A can proceed.

Normal(USt) =̂ [ProcObs(USt) | okay ∧ ¬ wait ]

For the calculation of wrp.[[A]]
AN γ USt .ψ, it is useful to define wrpn, the weak-

est reactive precondition that guarantees that p establishes a condition when it is
actually activated.

Definition 3.

wrpnUSt .p.ψ =̂ wrpUSt .Normal(USt) ∧ p.ψ

We are using Normal(USt) above as a predicate.
A simple calculation lets us obtain the following result.

Theorem 5.

wrpn.p.ψ = okay ∧ ¬ wait ⇒ wrp.tr prefix tr ′ ∧ p.ψ

In words, if p can proceed, then ψ has to hold whenever the trace is extended in
the way prescribed by p.

4.1 Schema expressions

The relational semantics of a schema expression is defined as follows.

Definition 4.

[[SExp]]
AN γ USt = SExp ∧ OpNormal ∨ OpDiverge

OpNormal =̂ [Normal(USt) | tr ′ = tr ∧ okay ′ ∧ ¬ wait ′ ]

OpDiverge =̂ [Normal(USt); SExp ∨ ¬ SExp | ¬ pre SExp ]

When a schema action SExp is activated, if its precondition does not hold, then it
diverges: no conditions are guaranteed; this is characterised by OpDiverge above.
In that schema, the inclusion of SExp ∨ ¬ SExp has the sole purpose of bringing
any input variables into scope. If, on the other hand, the precondition holds, then
the action changes the user state as prescribed in SExp and terminates successfully
without changing the trace. This is captured by the schema OpNormal .



The theorem below gives the weakest reactive precondition of SExp. If the pre-
condition does not hold, SExp diverges and the required condition ψ has to hold
with the only assumption that the trace is increased. If the precondition of SExp

holds, then ψ has to hold when the trace is not changed, okay ′ is true and wait ′ is
false, as SExp does not communicate any values and terminates. The quantification
over ref ′ means that no restrictions on refusals are guaranteed: SExp refuses all
communications.

Theorem 6.

wrp.[[SExp]]AN γ USt .ψ =
okay ∧ ¬ wait ⇒

(¬ pre SExp ⇒ (∀State ′ • tr prefix tr ′ ⇒ ψ) ) ∧
(∀ ref ′ : P Event ; USt ′ • SExp ⇒
ψ[tr , true, false/tr ′, okay ′,wait ′] )

Proof

wrp.[[SExp]]
AN γ USt .ψ

= wrp.(SExp ∧ OpNormal ∨ OpDiverge).ψ [Definition 4]

= wrp.SExp ∧ OpNormal .ψ ∧ wrp.OpDiverge.ψ

[property of wrp]

= wrpn.SExp ∧ tr ′ = tr ∧ okay ′ ∧

¬ wait ′.ψ ∧ wrpn.¬ pre SExp.ψ

[definitions of wrpn, OpNormal , and OpDiverge]

= (okay ∧ ¬ wait ⇒

∀ ref ′ : P Event ; USt ′ • SExp ⇒
ψ[tr , true, false/tr ′, okay ′,wait ′]) ∧

(okay ∧ ¬ wait ⇒
¬ pre SExp ⇒ ∀State ′ • tr prefix tr ′ ⇒ ψ)

[definitions of wrpn and wrp, and predicate calculus]

= okay ∧ ¬ wait ⇒

(¬ pre SExp ⇒ (∀State ′ • tr prefix tr ′ ⇒ ψ) ) ∧
(∀ ref ′ : PEvent ; USt ′ • SExp ⇒
ψ[tr , true, false/tr ′, okay ′,wait ′] )

[predicate calculus]

2

In the sequel, we omit simple proofs for conciseness.

Example We consider again the process WSum presented in Section 2. It includes
the schema action Compute reproduced below.

Compute

∆S

x? : N

val ′ = a ∗ last + b ∗ x?
last ′ = x?



This action updates val , so that it records the weighted sum of the input x? and
last with weights a and b, and updates last to record the value of the input.

The weakest reactive precondition for Compute to finish and record as output
the value 2 is calculated in the sequel. The postcondition is defined as follows.

ψ =̂ [∆S | okay ′ ∧ ¬ wait ′ ∧ val ′ = 2 ]

By definition of [[ ]]
WP

, we have the following.

[[Compute]]WPγ S .ψ = [S ; x? : N | wrp.[[Compute]]A.ψ ]

Using Theorem 1, we calculate wrp.[[Compute]]
A
.ψ in terms of the weakest reactive

precondition for [[Compute]]
AN , for Diverge, and for Wait . We start with Diverge.

wrp.Diverge.ψ

= ¬ okay ⇒

∀State ′ • tr prefix tr ′ ⇒ okay ′ ∧ ¬ wait ′ ∧ val ′ = 2

[Theorem 2]

= ¬ okay ⇒ false [predicate calculus]

= okay [predicate calculus]

This means that Diverge, which is characterised by ¬ okay, can only establish ψ if
okay; therefore, Diverge cannot establish ψ and has to be avoided.

For Wait , we proceed as follows.

wrp.Wait .ψ

= okay ∧ wait ⇒ okay ∧ ¬ wait ∧ val = 2 [Theorem 3]

= ¬ okay ∨ ¬ wait ∨ (okay ∧ ¬ wait ∧ val = 2)

[predicate calculus]

= ¬ (okay ∧ wait) [predicate calculus]

Even though Wait can establish val ′ = 2, if val is already 2, Wait cannot terminate,
and ψ requires that it does; so, we also have to avoid okay ∧ wait to obtain ψ.

Finally, we consider [[Compute]]
AN . We observe that pre Compute = true.

wrp.[[Compute]]
AN .ψ

= okay ∧ ¬ wait ⇒

(¬ true ⇒ ∀State ′ • tr prefix tr ′ ⇒ ψ ) ∧
(∀ ref ′ : PEvent ; S ′ •

val ′ = a ∗ last + b ∗ x? ∧ last ′ = x? ⇒ val ′ = 2 )

[Theorem 6]

= okay ∧ ¬ wait ⇒ a ∗ last + b ∗ x? = 2

[predicate calculus]

In summary, based on Theorem 1, we have the following.

wrp.[[Compute]]A.ψ

= okay ∧ ¬ (okay ∧ wait) ∧



(okay ∧ ¬ wait ⇒ a ∗ last + b ∗ x? = 2) [from above]

= okay ∧ ¬ wait ∧ (okay ∧ ¬ wait ⇒ a ∗ last + b ∗ x? = 2)

[predicate calculus]

= okay ∧ ¬ wait ∧ a ∗ last + b ∗ x? = 2 [predicate calculus]

To establish ψ, the action Compute must be able to start (okay and ¬ wait), and
last and x? have to be adequate (a ∗ last + b ∗ x? = 2).

4.2 CSP expressions

The weakest reactive precondition of the CSP processes Skip, Stop, and Chaos are
as follows.

Theorem 7. For a condition ψ,

wrp.[[Skip]]AN γ USt .ψ =
okay ∧ ¬ wait ⇒ ∀ ref ′ : PEvent •
ψ[tr , true, false,USt/tr ′, okay ′,wait ′,USt ′]

wrp.[[Stop]]
AN γ USt .ψ =

okay ∧ ¬ wait ⇒ ∀ ref ′ : PEvent •
ψ[tr , true, true,USt/tr ′, okay ′,wait ′,USt ′]

wrp.[[Chaos ]]
AN γ USt .ψ =

( okay ∧ ¬ wait ⇒ ∀State ′ • tr prefix tr ′ ⇒ ψ )

Skip is the process that terminates successfully, immediately. The required condition
ψ has to hold when the trace and the user state are not changed, and okay ′ is
true and wait ′ is false. All communications are refused, and so ref ′ is universally
quantified.

For example, for any event e, the weakest reactive precondition of Skip with
respect to tr ′ = tr a〈e〉 is false. We also obtain precondition false for the conditions
¬ okay ′ and wait ′, because Skip cannot change the trace, diverge, or deadlock.
On the other hand, the weakest reactive precondition with respect to val ′ = 2 is
okay ∧ ¬ wait ⇒ val = 2, since Skip does not change the state.

For Stop, which deadlocks immediately, the difference is that the condition has
to hold when wait ′ is true. Finally, the definition for Chaos , which diverges imme-
diately, is similar to that for the case when the precondition of a schema expression
action does not hold.

For sequences, we have the following result.

Theorem 8. For a condition ψ,

wrp.[[A; B ]]
AN γ USt .ψ =

wrp.[[A]]AN γ USt .

(ψ ∧ (okay ′ ∧ ¬ wait ′ ⇒ (wrp.[[B ]]
A
γ USt .ψ)′))

Usually, in weakest precondition semantics, the semantics of sequence is functional
composition, so that the weakest precondition for a sequence to establish a postcon-
dition is the weakest precondition for the first component to establish the weakest
precondition for the second component to establish the postcondition.

For weakest reactive preconditions, however, not only the final state is rele-
vant: all intermediate states, including those of A, are relevant. Theorem 8 requires
that ψ holds during the execution of A. Moreover, if A finishes (okay ′ ∧ ¬ wait ′),



then the weakest reactive precondition of B with respect to ψ also has to hold.
Since conditions are given in terms of dashed variables and preconditions in terms
of undashed variables, the free variables of wrp.[[B ]]

AN γ USt .ψ need to be dashed.
For a predicate p, we define p′ to be the predicate obtained by dashing the free
occurrences of undashed observational variables in p.

A relational definition for the prefixing operator is presented below: sequential
composition of a communication with the prefixed action. The communication can
be observed before it actually takes place, and afterwards. These observations are
described in the sequel by CWaiting(USt) and CDone(USt). The communication
itself, Comm(USt), is described by the disjunction of these schemas.

A communication takes as input the set accE? of acceptable events. Before the
communication takes place, the state and the trace do not change, the acceptable
events cannot be refused, and the action does not diverge or terminate. After the
communication, the trace is augmented by one of the acceptable events and the
action terminates successfully. The state is still not changed.

In the definition of the semantics of prefixing, we use a substitution notation for
schemas not directly available in Standard Z, although it is in Z/Eves [17]. For a
schema S , with a component v of type T , and an expression e of the same type,
we denote by S [v := e] the schema ∃ v : T • [ v = e ] ∧ S .

For an output prefixing, the set of acceptable events of the communication con-
tains only the event obtained by applying the channel, which is an event constructor,
to the output value. For an input prefixing, this is the set of events resulting from
applying the channel to all the values of its type, obtained from the channel envi-
ronment γ.

A communication also outputs the value e! communicated. For an output prefix-
ing, this information is ignored by hiding. For an input prefixing, this information
is used to initialise the input variable. Input variables are modelled as extensions to
the state; they are local to the prefixing, and so they and their dashed counterparts
are quantified.

Definition 5.

CWaiting(USt)
Normal(USt)
accE? : PEvent

ΞUSt

tr ′ = tr ∧ accE? ∩ ref ′ = ∅
okay ′ ∧ wait ′

CDone(USt)
Normal(USt)
accE? : PEvent

e! : Event

ΞUSt

e! ∈ accE?
tr ′ = tr a 〈e!〉
okay ′ ∧ ¬ wait ′

Comm(USt) =̂ CWaiting(USt) ∨ CDone(USt)

[[c!e → A]]AN γ USt =̂

(Comm(USt)[accE? := {c(e)}] \ e!) o
9 [[A]]

A
γ USt



[[c?x → A]]AN γ USt =̂ ∃ x , x ′ : γ c •
Comm(USt)[accE?, e! := {y : γ c • c(y)}, c(x ′)] o

9

[[A]]Aγ USt

The weakest reactive precondition of the output prefixing operator is given below.

Theorem 9. For a condition ψ,

wrp.[[c!e → A]]AN γ USt .ψ =
wrp.CWaiting[accE? := {c(e)}].ψ ∧
wrp.CDone[accE? := {c(e)}] \ e!.

(ψ ∧ (wrp.[[A]]
A
γ USt .ψ)′)

The condition has to hold before the communication takes place, after it takes place,
and during A, as well. For input prefixing, we have a similar result, but since the
input is a local variable, it is universally quantified as usual in weakest precondition
semantics.

Example We consider the action out !val → Skip, in the context of the process
WSum, and calculate its weakest reactive precondition with respect to tr ′ = tr .

wrp.[[out !val → Skip]]AN γ USt .tr ′ = tr

= (wrp.CWaiting[accE? := {out(val)}].tr ′ = tr0 ∧
wrp.CDone[accE? := {out(val)}] \ e!.

(tr ′ = tr0 ∧ (wrp.[[Skip]]Aγ USt .tr ′ = tr0)
′)

)[tr/tr0] [Theorems 4 and 9]

We use a fresh constant tr0 to replace the occurrences of tr in ψ. We calculate the
weakest reactive precondition of Skip with respect to tr ′ = tr0 separately.

wrp.[[Skip]]Aγ USt .tr ′ = tr0

= wrp.[[Skip]]
AN γ USt .tr ′ = tr0 ∧

wrp.Diverge.tr ′ = tr0 ∧ wrp.Wait .tr ′ = tr0 [Theorem 1]

= (okay ∧ ¬ wait ⇒ tr = tr0) ∧ okay ∧

(okay ∧ wait ⇒ tr = tr0) [Theorems 7,2, and 3]

= okay ∧ tr = tr0 [predicate calculus]

This means that the previous operation must not diverge and the trace has to be
already tr0 for Skip to guarantee tr ′ = tr0.

For the weakest reactive precondition of CWaiting, we have the following result.

wrp.CWaiting[accE? := {out(val)}].tr ′ = tr0

= ∀State ′ •

Normal ∧ USt ′ = USt ∧ tr ′ = tr ∧
{out(val)} ∩ ref ′ = ∅ ∧ okay ′ ∧ wait ′ ⇒ tr ′ = tr0

[definitions of wrp and CWaiting]

= okay ∧ ¬ wait ⇒

∀ ref ′ : P Event • {out(val)} ∩ ref ′ = ∅ ⇒ tr = tr0

[predicate calculus]

= okay ∧ ¬ wait ⇒



((∃ ref ′ : P Event • {out(val)} ∩ ref ′ = ∅) ⇒ tr = tr0)

[predicate calculus]

= okay ∧ ¬ wait ⇒ tr = tr0 [predicate calculus]

Intuitively, the trace has to be already tr0 for CWaiting to establish the condition;
CWaiting cannot change the trace.

Finally, the weakest reactive precondition of CDone can be calculated as follows.

wrp.CDone[accE? := {out(val)}] \ e!.(tr ′ = tr0 ∧ okay ′)

= ∀State ′ •
Normal ∧ USt ′ = USt ∧
tr ′ = tr a 〈out(val)〉 ∧ okay ′ ∧ ¬ wait ′ ⇒

tr ′ = tr0 ∧ okay ′

[definitions of wrp and CDone]

= okay ∧ ¬ wait ⇒ tr a 〈out(val)〉 = tr0

[predicate calculus]

In words, for CDone to guarantee tr ′ = tr0, we need that tr0 differs from tr just by
an extra element: the output.

The calculation of the weakest reactive precondition of out !val → Skip can
proceed as shown below.

wrp.[[out !val → Skip]]
AN γ USt .tr ′ = tr

= ((okay ∧ ¬ wait ⇒ tr = tr0) ∧

(okay ∧ ¬ wait ′ ⇒ tr a 〈out(val)〉 = tr0))[tr/tr0]

[by the calculations above]

= ¬ (okay ∧ ¬ wait) [predicate calculus]

In summary, if the output prefixing starts, we cannot guarantee that the trace is
not changed, as should be expected.

The weakest reactive precondition semantics of a guarded action is rather intu-
itive.

Theorem 10.

wrp.[[p & A]]
AN γ USt .ψ =

( p ⇒ wrpn.[[A]]AN γ USt .ψ ) ∧

(¬ p ⇒ wrp.[[Stop]]
AN γ USt .ψ )

If the guard p holds, then p & A behaves as A. Otherwise, it behaves like Stop.
The behaviour of a parametrised action D • A is that of A taken in an extended

state DUSt that includes the components declared in D . Instantiation fixes the
value of these components.

Theorem 11.

wrpUSt .[[D • A]]
AN γ USt .ψ = wrpDUSt .[[A]]

AN γ USt .ψ

wrpUSt .[[A(e)]]
AN γ USt .ψ =

(wrpUSt .[[A]]AN γ USt .ψ)[e/αD ]

The function α extracts from a declaration the set of variables it introduces. In
A(e), we assume that the parameters of A are given by D . The correspondence
between the parameters and the arguments e is positional: in the substitution we
use the set αD as the list of the parameters in the order they are declared.



4.3 Commands

The weakest reactive precondition of a specification statement x : [ pre, post ] does
not insist on termination. The list αUSt \ x includes the variables of the user state
other than x . Similarly, αUSt ′ \ x ′ lists their dashed counterparts.

Theorem 12.

wrp.[[x : [pre, post ]]]AN γ USt .ψ = okay ∧ ¬ wait ⇒
(pre ∧ (∀ ref ′ : P Event ; x ′ : X • post ⇒
ψ[tr , true, false, (USt \ x )/tr ′, okay ′,wait ′, (USt ′ \ x ′)]

)) ∨
(¬ pre ∧ ∀State ′ • tr prefix tr ′ ⇒ ψ)

where X is the type of x .

Roughly, if the precondition holds, then for all final values of x that satisfy the post-
condition, ψ is required to hold. This is the usual weakest precondition semantics of
specification statements. There are, however, a few extra issues. First, no restriction
on refusals are guaranteed, since the specification statement terminates. Second, ψ
cannot require changes to the trace or to state components other than x ; nor can
it require divergence or nontermination. Finally, if the precondition does not hold,
ψ has to hold under only the assumption that tr prefix tr ′.

The weakest reactive precondition for the miraculous x : [true, false] to establish
any condition ψ is true, as expected. For abort, which is actually the specification
statement x : [false, true], we have the following weakest precondition.

okay ∧ ¬ wait ⇒ (∀State ′ • tr prefix tr ′ ⇒ ψ )

This is the same we obtained for Chaos . In other words, the semantics of Chaos

and abort is the same, as should be expected.
The semantics of an assignment x := e is given by substitution as usual.

Theorem 13.

wrp.[[x := e]]AN γ USt .ψ =
okay ∧ ¬ wait ⇒

∀ ref ′ : P Event •
ψ[tr , true, false, e ′, (αUSt \ sx )/

tr ′, okay ′,wait ′, x ′, (αUSt ′ \ x ′)]

As with specification statements, an assignment refuses all communications, does
not change the trace, terminates immediately, and changes no variables other than
x .

The semantics of conditionals is as follows.

Theorem 14.

wrp.[[if 2 i • gi → Ai fi]]
A
γ USt =

(¬ (∨ i • gi) ⇒ wrp.[[Chaos ]]AN γ USt .ψ) ∧

(∧ i • gi ⇒ wrpn.[[Ai ]]
A
γ USt .ψ)

If none of the guards is valid, then the conditional aborts: it behaves like Chaos .
Otherwise, any of the valid guards can be chosen, and so the condition has to be
guaranteed for each of the associated actions.

For blocks, we have a standard definition.



Theorem 15.

wrpUSt .[[var x : T • A]]
AN γ USt =

∀ x : T • wrpnxUST .[[A]]AN γ USt .ψ

The weakest reactive precondition of the body of the block is taken in an extended
state xUSt that includes the declared variable.

5 Conclusions

The refinement calculus [18, 4] has been influential in understanding the develop-
ment of sequential programs from their formal specifications. One of the aims of
the Circus project [28, 30, 31] is to extend this calculational approach to reactive
programs.

Since the sequential refinement calculus is based on weakest precondition seman-
tics, in this paper, we have presented a new notion of weakest reactive precondition,
wrp, to reason about concurrent programs in a similar manner. Based on this new
notion and on a relational semantics for Circus, we have calculated a weakest reac-
tive precondition semantics for a subset of this language. The notion of refinement
in the predicate transformer model is equivalent to that in the unifying theory: the
basis of our relational model.

A weakest precondition is an extreme solution to a Hoare triple with one un-
known: the precondition. The idea of extending Hoare logic, weakest precondition
semantics, and even the refinement calculus to the development of parallel programs
has a long pedigree.

The work of Owicki and Gries [20–22, 6, 8] marks the first significant attempt to
extend Hoare logic. Their theory extends Hoare’s deductive system for proving the
partial correctness of sequential programs [9] by adding parallelism in the form of
co-blocks, synchronisation, mutual exclusion, and wait statements.

In their method, parallel processes are considered in isolation and a proof of
sequential correctness is obtained. These proofs must then be shown to be free
from interference: no wait statement or assignment outside a wait statement in
one process interferes with the proof of any other. The specification of the paral-
lel program is then the conjunction of the preconditions and the postconditions of
the individual components. An important point is that this method is not compo-
sitional, since the verification of each process P requires an interference-freedom
proof involving information not in P ’s specification.

Lamport also generalised Hoare logic for concurrent programs [15]. The Hoare
triple P { S }Q means that if P is true before the execution of S , and S terminates,
then Q holds. Lamport changed this meaning in the presence of concurrency: if
execution is begun anywhere within S with P true, then P remains true until S

terminates, whereupon Q is true. In this way, Lamport suggests that a program
is better thought of as an invariance maintainer, rather than as a predicate trans-
former. Although this technique is compositional, it requires a global invariant, and
parallel processes must each have this as their specification. Some independence is
gained from structuring this invariant with auxiliary control-flow predicates, but
the logic is awkward to use as a method of specifying module interfaces.

In [16], Lamport generalises the weakest liberal precondition and the strongest
postcondition to the weakest and the strongest invariant. The method allows the
verification of a concurrent program to proceed without knowing the granularity of
atomicity of operations, and behavioural arguments to be replaced by assertional
reasoning. The difference between those predicate transformers and wrp lies in the
set of observable states. In our semantics, we consider the relationship between the



initial state of a process and any subsequent state, whereas Lamport considers the
relationship between any state in which execution is resumed and the subsequent
state in which it is suspended.

Back [2] applies the refinement calculus to the stepwise refinement of parallel
and reactive programs. Action systems are used as the basic program model: they
are sequential programs that can be implemented in a parallel fashion. Reactive
programs are data refined using techniques originally developed for the sequential
refinement calculus. The main difference between our approach and Back’s arises
from the fact that Circus is based partly on a process algebra, not on an action
system. In an action system, control flow is encoded in state information, with
variables playing the rôle of program counters; in a process algebra, control flow
is described using the process combinators of the algebra. Therefore, our predicate
transformers and refinement calculus deals with these combinators.

In our work, we have derived our weakest precondition semantics from an existing
relational semantics. As a result, our weakest reactive precondition calculator is
very close in spirit to predicate transformers for sequential programs. Moreover,
since our model includes refusal sets (the ref observational variable), we can reason
about liveness as well as safety properties. We are currently seeking to extend our
calculations to obtain compositional definitions for some of the operators.

We plan to use this semantic model to justify fully the refinement calculus
presented in [26, 3]. We are also starting an effort to propose rules for verification-
condition generation based on this work. We plan to develop a series of examples
and case studies in the use of wrp. Our confidence in the semantics of Circus has
been greatly increased as a consequence of our effort.

In the unifying theory, the model of reactive programs is further constrained by
a number of healthiness conditions to obtain theories for particular mechanisms of
synchronisation and communication. We expect that the wrp models corresponding
to these restricted theories also satisfy a number of healthiness conditions of their
own. It is also our intent to further explore these relationships.
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