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Abstract. Previously, we presented Circus, an integration of Z, CSP, and
Morgan’s refinement calculus, with a semantics based on the unifying the-
ories of programming. Circus provides a basis for development of state-rich
concurrent systems; it has a formal semantics, a refinement theory, and a
development strategy. The design of Circus is our solution to combining data
and behavioural specifications. Here, we further explore this issue in the con-
text of object-oriented features. Concretely, we present an object-oriented
extension of Circus called OhCircus. We present its syntax, describe its se-
mantics, explain the formalisation of method calls, and discuss our approach
to refinement.

1 Introduction

The search for increasing levels of abstraction is a key feature in the history of
Computing, and, particularly, of language design. The consolidated concepts of
abstract data types and classes allow a structured modelling of real-world entities,
capturing both their static and dynamic properties. The notion of process abstracts
from low-level control structures, allowing a system architecture to be decomposed
into cooperative and active components.

Despite the complementary nature of constructs for describing data and control
behaviour, most programming languages focus only on one or the other aspect. For
example, Java [18] offers (abstract) classes, interfaces, and packages; in contrast,
only the low-level notion of threads is available. On the other hand, occam [21]
embodies an elegant notion of process, but neglects abstract data types. There are
exceptions like Ada [20], whose design has clearly addressed abstract data and con-
trol behaviour (with packages and tasks), but even so there are several limitations;
for example, a package is not a first-class value.

The design of specification languages has followed a similar trend, with state-
based and property-oriented formalisms concentrating on high-level data constructs [3],
and process algebras exploring control mechanisms. A current and active research
topic is the integration of notations to achieve the benefits of both abstract data
and control behaviour [13, 31]. Our effort is Circus [36], a combination of Z [38]
and CSP [27], which includes Dijkstra’s language of guarded commands [11] and
specification constructions in the style of Morgan’s refinement calculus [23].

Circus is a unified language of specification, design, and programming, in the
spirit of refinement calculi. In [30, 8], we define notions of refinement, and a simula-
tion technique, which we prove sound. In [9], we propose a refinement strategy that
supports the calculation of concurrent programs from centralised specifications. The
semantic model of Circus [37] is based on the unifying theories of programming of
Hoare and He [19].

In this paper, we are concerned with further investigating the integration of
event and state-based formalisms, particularly within the context of elaborate state
descriptions, possibly involving classes structured using inheritance and dynamic
binding. Inheritance of processes is also investigated. Given our previous experience



with the development of Circus, our ideas are materialised by adding object-oriented
features to Circus, and we call the new notation OhCircus. We provide a uniform
semantic model for classes and processes, based on the unifying theories of pro-
gramming.

Central to our approach is the notion and techniques of refinement: Circus and
OhCircus are languages for refinement. Our aim is to provide a refinement calculus
in the style of Morgan [23] that allows us to reason about concurrent object-oriented
programs.

Our approach to object-orientation is also influenced in many ways by Java, but
it is not our aim to stand up for its particular design. Instead, our decision is justified
by our choice of target programming language: Java itself, with the support of the
JCSP library [35], which implements CSP facilities. The implementation of CSP
operators frees us from having to refine OhCircus specifications into the low-level
notion of Java threads, which involves shared variables, rather than communication
via channels.

Our case studies have shown that this framework is suitable for the implemen-
tation of Circus specifications, and it is of practical interest due to the success of
Java [26]. By including object-oriented facilities in Circus, we hope to be able to
better explore the facilities of Java.

In the next section, we present and justify our approach to modelling states and
events. In Section 3, we introduce OhCircus and provide a small example to illustrate
the combined use of classes and processes. Section 4 describes the semantics of
method calls. The following section discusses a unified strategy for refinement of
processes and classes. Finally, we discuss our results and topics for further research.

2 The Circus approach

The structure of a Circus program is similar to that of a Z specification; a program
in Circus is a sequence of paragraphs: Z paragraphs, process definitions, or channel
definitions. Typically, a system is modelled as a process.

The most basic way to define a process is by explicitly specifying its state,
using a schema as in Z, and its behaviour, using a (main) action. Schemas that
define operations over the state are actions; furthermore, constructors of CSP and
of Morgan’s refinement calculus can also be used to define actions. A main action
is distinguished as the definition of the overall behaviour of the process. A process
can also be defined in terms of existing processes using CSP operators.

As a very simple example, we consider a process that models a buffer with two
positions; it uses channels in and out to input and output integer numbers.

channel in, out : Z

We call our example process TwoPositionBuffer .

process TwoPositionBuffer =̂ begin

The state of the buffer contains components first and second to hold the buffered
numbers, and a component size that determines how many numbers are actually in
the buffer.

state BState

first , second : Z

size : N

size ≤ 2



The invariant states that at most two integers are buffered.

An initialisation schema defines an action that sets the size of the buffer to
0: initially, the buffer is empty.

Init

BState ′

size ′ = 0

This schema is not distinguished from the others. The behaviour of a process does
not necessarily start with an initialisation of the state. Instead, it is defined by the
distinguished main action, which may perform an initialisation; this is the case in
our example, as shown below. In general, operations over the state are executed
only when invoked from the main action of the process.

The first operation that we present inserts a number x? into the empty buffer.

InsertFirst

∆BState

x? : Z

size = 0
first ′ = x?
size ′ = 1

The next operation inserts a second number into a buffer that already holds one
number. The first number is not changed.

InsertSecond

∆BState

x? : Z

size = 1
first ′ = first

second ′ = x?
size ′ = 2

The output of a number is possible only if the buffer is not empty, in which case the
output number is always first . The operation Output updates the state accordingly,
but does not actually produce the output; this is left for the main action.

Output

∆BState

size > 0
first ′ = second

size ′ = size − 1

If the buffer happened to have two numbers, the second number becomes the first ,
and is output in the next request.



All these state operations are auxiliary actions that we use below to specify the
main action of TwoPositionBuffer using CSP operators.

• Init ;
µX • (size < 2) & in?x →

(size = 0) & InsertFirst ; X

2

(size = 1) & InsertSecond ; X

2

(size > 0) & out !first → Output ; X

end

First of all, the state is initialised. In sequence, the process TwoPositionBuffer

recurses (µ), offering the possibility of inputting and outputting numbers depending
on its size. If the buffer is not full, size < 2, then it is possible to input a number x .
An action g & A behaves like A if g holds, and deadlocks otherwise. For an action
c → A, the behaviour is that of A, after the communication c. The communication
in?x is the input of a value x through the channel in. If the buffer is not empty,
then it is also possible to output first ; the communication out !first outputs the
value first through the channel out . In the main action, size < 2 and size > 0 are
used as guards, as are size = 0 and size = 1. After an input, the action InsertFirst

or InsertSecond is executed depending on whether the buffer is empty or not.

Events, which in Circus are communications, and state updates are detached.
In our example, the occurrence of the communication in?x , for instance, does not
trigger a state update. The following action is an external choice (2); depending on
the value of size, either InsertFirst or InsertSecond is going to be used to update
the state.

As opposed to other integrated formalisms, Circus does not identify guards and
preconditions, which have different purposes. The precondition of InsertFirst , for
example, is that the buffer is empty, size = 0. If executed in a state in which size

is 1 or 2, then InsertFirst diverges. In this way, the behaviour of an action defined
by a schema operation is the same as in Z; as a consequence, refinement of schemas
is as expected by Z users. The main action uses size = 0 as a guard to block the
choice to execute InsertFirst , if its precondition does not hold.

In spite of the great flexibility provided by Circus, it is possible to start describing
a system either exclusively with events or exclusively with states. A process may
have no state components, and have its behaviour defined by a main action that
uses only CSP constructs. Such a process is described using a process algebra, with
no explicit state. Later, we can apply data refinement to introduce a state.

As a second option, it is possible to focus on an abstract data type as a system
specification, and later develop the communication and concurrency required for a
distributed implementation. This amounts to writing a Z specification, and using
channels to communicate the inputs and outputs of each operation, because the
state of a process is local. The main action initialises the state and recursively
offers the choice of all operations. For example, a process that models an integer



variable can be specified as follows.

channel rd ,wrt : Z

process Variable =̂ begin

state State =̂ [ x : Z ]
Init =̂ [State ′ | x ′ = 0 ]
Read =̂ [ ΞState; v ! : Z | v ! = x ]
Write =̂ [ ∆State; v? : Z | x ′ = v? ]
• Init ;

µX • var v : Z • Read ; rd !v → X

2

wrt?v → Write; X

end

The state component is the value x of the variable. There are operations Init to
initialise the state, and Read and Write to access and update the variable, which
are defined just as in Z; in Circus they are actions. The action Read has an output
variable v !, which we declare locally as v . After Read is executed, we output v

through the channel rd .
The channels rd and wrt are needed because the state of a Variable process is

encapsulated; the only way of interacting with a process is through channel com-
munication. A process that does not input or output any information is equivalent
to Skip, if it terminates, or is divergent, if it does not, no matter how complex its
state is. If this pure Z style is adopted, the Circus refinement strategy can be used
to introduce a rich system architecture [9].

In summary, even if any of the pure specification styles is adopted, refinement
allows moving to a hybrid description during development. Typically, in code, there
is a complex interplay between events and state updates, just as in programs written
in languages like Java and occam. Even though it is possible, moving between the
pure styles of specification is not the objective when you have coding in mind.

Most often, it is more convenient to adopt a mixture of the two approaches
from the early stages of specification, using parallelism to capture requirements
separately, and using states to abbreviate and simplify descriptions. Such Circus

specifications make an important distinction between the use of events and states
as specification devices and as implementation artifacts.

A temptation that arises from the availability of both Z and CSP constructs is
to introduce too much structure into the specifications. Parallelism, for example, is
useful to combine the components of a design; at the abstract specification level, it
should be used only when there is intrinsic parallelism in the requirements.

In most cases, an abstract Circus specification is composed of a single process
whose definition is structured using the schema calculus and action operators.
Global properties should be captured as invariants in the style of Z. As we progress
with refinement, these properties are distributed throughout the components and
become local invariants interconnected by reactive mechanisms.

Another approach to the combination of CSP and Z is represented by CSP-
Z [14]. The major distinction between CSP-Z and Circus is that, in CSP-Z, reactive
behaviour is defined solely using CSP, with an implicit attachment between an event
in the CSP description and a state transition described as an associated Z operation.
In other words, CSP-Z embeds the second specification style we considered above.

The work in [31] presents CSP||B, a combination of CSP and B [1] that follows
the philosophy of communicating data types. In this work, CSP is used to control
interaction between B machines; a B machine is regarded as a data type, with each
operation triggered by an associated communication.

The fixed architectural model adopted in both CSP-Z and CSP||B for the spec-
ification of data and behavioural aspects of the system has advantages. Firstly, in



the resulting specifications there is a clear separation between the uses of the com-
bined notations. This allows the easy reuse of successful existing tools like FDR [16].
Secondly, the semantics of the language can be defined as an extension of the well-
studied failures-divergences semantics of CSP, with the view of the data types as
processes.

The motivation for the design of Circus and OhCircus, however, is the definition
of a unified language for refinement. In this context, the detachment of an event
occurrence from a state transition seems more appropriate. Potential target pro-
gramming languages like Java, occam, or Handel-C [33] also deal with events and
state update independently.

As already said, the semantics of Circus and OhCircus is based on the unifying
theories of programming. As such, even though it is not a direct extension of the se-
mantics of CSP, it reuses an existing model that encompasses state-based, reactive,
and concurrent constructs. Furthermore, we are currently working on the develop-
ment of a model-checker for Circus based on FDR, and on the mechanisation of the
semantics of Circus using a Z theorem prover: ProofPowerZ.

Our approach to model checking Circus specifications combines standard model
checking techniques with theorem proving. We generalise the successful algorithm
of FDR to handle infinite automata that may arise from the rich state of Circus

specifications. Failures and divergences are handled symbolically, and the outcome
of a model checking attempt depends on a set of proof obligations that need to be
discharged using a theorem prover.

Typically, model checking is used to debug specifications and implementations
through a cycle of checks and amendments. In our approach, an application-oriented
theory is developed for a particular specification during the cycles. As we progress,
this theory should become powerful enough to support automatic theorem proving.

Handling infinite and complex data structures is also an issue when model check-
ing CSP-Z and CSP||B specifications. In the case of CSP-Z [25, 12], data abstraction
is used. In the CSP||B approach, relevant data properties of the B machines are
recorded as assertions in the CSP processes.

In [10], refinement of Object-Z [32] specifications is studied in detail, and a
possible combination of Object-Z and CSP is also considered. In Object-Z, the
precondition of the Z operation schemas are taken as guards for their execution. In
Circus, we keep the philosophy of Z and reflect the generality of programming by
introducing a guard constructor. This has a major impact on refinement, so that
the rules that we need for Circus (and for OhCircus) are different, and are closely
related to those of Z.

The notation CSP-OZ [14] follows design guidelines similar to those of CSP-
Z, but, being a combination of CSP and Object-Z [32], it also includes classes,
inheritance, and other object-oriented features. Besides coupling events and state
transitions, classes and processes are identified in CSP-OZ. There, the main concern
is specification only, and at that level of abstraction such distinctions may not be
really necessary.

In industrial practice, however, class instances (objects) are passive entities,
while processes are active. It seems artificial to force class descriptions that model,
for instance, addresses or employees, to have the status of a process, since the
standard behaviour would be just a recursive choice of all its operations (methods).
Another potential practical inconvenience of regarding data elements as processes
is that method calls have to be expressed as synchronisations involving explicit
communication.

In OhCircus, where refinement is a central issue, we introduce a separate con-
struct for defining classes, and provide a semantics for method calls that is inde-
pendent of communication. Classes support the definition of processes with complex
state spaces. Their introduction raises issues related to the refinement of classes,



but does not interfere with existing results related to the development of processes.
When deriving from an OhCircus specification code written, for example, using
JCSP, it will usually be relevant to distinguish between ordinary classes and active
ones (processes).

The work reported in [22] is an integration of Object-Z and Timed CSP called
TCOZ. Like Circus and OhCircus, TCOZ does not follow the communicating data
type philosophy, and avoids implicit associations between communications and state
updates. Their motivation is the need to specify time restrictions on state opera-
tions; if they are identified with communications, they become instantaneous in the
framework of CSP.

Refinement does not seem to be a concern in that line of work. Indeed, TCOZ
inherits the difficulties related to refinement of Object-Z specifications. For instance,
in Object-Z, method calls can be used as schemas; since the schema calculus opera-
tors are not monotonic with respect to refinement, stepwise refinement of methods
is not immediately available. Furthermore, in Object-Z class inheritance allows re-
naming, redefinition, and cancellation of operations in such a way that a subclass
is not necessarily a refinement or even a subtype of its superclasses.

In OhCircus, the use of schemas, method calls, and the subclassing mechanism is
restricted, so that modular reasoning and stepwise refinement are still possible. This
may lead to more verbose specifications of redefined operations than those written
in CSP-OZ or Object-Z; examples are presented in the next section. It is our view,
however, that the loss of a compositional approach to refinement would be too high
a price to pay. Furthermore, the use of the unifying theories of programming as
a basis for the OhCircus model makes the use of method calls in expressions and
predicates possible, with great improvement in expressive power.

Another issue is that of copy versus reference semantics. Circus and OhCircus

do not allow sharing. The refinement of a specification into target languages like
JCSP [26] or UML-RT [29] preserves the channel based communication model for
processes. Object-oriented program development exploring the use of patterns, pos-
sibly involving sharing, is a suggested topic for further research. Results in the
absence of sharing are reported in [4]. Object-Z and CSP-OZ have a reference se-
mantics. Nevertheless, as already pointed out, there seems to be no proposal of how
to formally refine specifications in those languages into object-oriented programs.
The next section details the rationale for the design of OhCircus.

3 OhCircus

In the same way as Circus, and Z, a program in OhCircus is a sequence of paragraphs.
In Circus they can be Z paragraphs, or process and channel definitions. OhCircus

includes yet another form of paragraph: a class definition. Moreover, in OhCircus we
can define processes using inheritance, and using data types defined as classes.

In Figures 1 and 2, we provide a partial BNF description for the syntax of OhCir-

cus. The syntactic categories Paragraph, Schema-Exp, Expression, and Declaration

contain Z paragraphs, schema expressions, expressions, and declarations. The syn-
tactic categories named ChannelDefinition, ChanSetDefinition, and CSExpression are
those of Circus channel definitions, channel set definitions, and channel set expres-
sions. Finally, the syntactic category N contains the valid names. Terms included in
brackets are optional. Superscript + is used for non-empty comma-separated lists of
elements of the base syntactic category; if the list can be empty, we use superscript
*.

A process definition in OhCircus gives the process name and description, as in
Circus, but can also include an extends clause, which names a superprocess. The
defined process is said to be a subprocess of that named in the extends clause.



Program ::= OhCircusParagraph∗

OhCircusParagraph ::= Paragraph

| ChannelDefinition | ChanSetDefinition

| OhProcessDefinition | ClassDefinition

OhProcessDefinition ::= process N =̂ [extends N] Process

Process ::= begin

PParagraph∗

[state Schema-Exp | Constraint]
PParagraph∗

[• Action]
end

| N | Process; Process

| Process 2 Process | Process u Process

| Process |[CSExpression ]| Process

| Process ||| Process | Process \ CSExpression

OhExpression ::= Expression

| this | null

| new N[(OhExpression+)] constructor
| OhExpression.N attribute selection
| OhExpression.N(OhExpression∗) method call
| super.N attribute selection
| super.N(OhExpression∗) super call
| OhExpression instanceof N type test
| (N)OhExpression type cast

Fig. 1. OhCircus syntax

The state of a subprocess includes all the components of its superprocess. In a
subprocess specification, we have access to all the definitions of the superprocess: state
components, actions, and auxiliary definitions. Furthermore, the main action of the
subprocess is implicitly composed in parallel with the main action of the super-
process. The reason for this is the result on behavioural refinement of processes
presented in [15, 34].

When we declare a subprocess in OhCircus, we raise a proof obligation to show
that the subprocess behaviourally refines its superprocess. In [15], the authors put
forward a behavioural refinement relation that guarantees substitutability in all
contexts. This means that, if a process P1 is behaviourally refined by another process
P2, according to their definition, then uses of P1 can be replaced with uses of P2

in all contexts. Furthermore, in [34], it is indicated that, having the behaviour of
P2 defined by the parallel composition of that of P1 with an additional process is
part of a set of conditions which, together, are sufficient for attaining behavioural
refinement. Therefore, even though this is not enough, by considering that the main
actions of the superprocess and the subprocess are in parallel, we are taking a first
step towards behavioural refinement.

Parallelism of processes is just like in CSP: the parallel processes synchronise
on communications through channels in a given synchronisation set. The states of
the processes are encapsulated and are handled independently. For actions, we need
to identify partitions of the process state to avoid conflict. For example, the action
A1 |[ { x } | {| c|} | { y } ]|A2 is the parallel composition of A1 and A2, synchronising
on communications through c; both A1 and A2 have access to the state components
x and y, but A1 can only change x and A2 can only change y. In the case of the
main action of a subprocess SubP , which is implicitly defined using parallelism, the



ClassDefinition ::= class N =̂ [extends N] begin

CParagraph∗

[state StateSchema | Constraint] CParagraph∗

[initial Schema-Exp] CParagraph∗

end

CParagraph ::= Paragraph | Qualifier N =̂ ParametrisedCommand

Qualifier ::= public | protected | private | logical

ParametrisedCommand ::= Schema-Exp | Command

| ParameterDeclaration • Command

ParameterDeclaration ::= ParameterQualifier Declaration

| ParameterQualifier Declaration; ParameterDeclaration

ParameterQualifier ::= val | res

Command ::= N+ : [Predicate, Predicate ] | N+ := Expression+

| OhExpression.N(OhExpression∗) | super.N(OhExpression∗)
| Command; Command | µ N • Command

| if GuardedCommands fi | var Declaration • Command

GuardedCommands ::= Predicate → Command

| Predicate → Command 2 GuardedCommands

Fig. 2. OhCircus syntax

main action of the superprocess SuperP changes its state components, and the main
action defined in SubP changes only the additional components.

An explicit process description is like in Circus: a sequence of paragraphs and a
main action. The main action is optional in OhCircus, and, if omitted, it is assumed
to be Skip; this is not usually an interesting main action for a Circus process, but it
is perfectly reasonable for an OhCircus subprocess. In this case, the main action of
the subprocess is the parallel composition of the main action A of the superprocess
with Skip: simply A. In effect, if the main action of a subprocess is omitted, that of
the superprocess is inherited as it is. All the Circus process operators are available,
but, for the sake of simplicity, we include only some in Figure 1.

The syntactic category PParagraph is that of Circus process paragraphs. We ex-
tend only the expression notation to include several object-oriented constructs: this,
null, and the new constructor, all in the style of Java, attribute access and method
calls, possibly with target super as in Java, and type tests and casts.

The syntax of class definitions is depicted in Figure 2. It gives a class name, its
superclass in an extends clause, and its attributes and methods delimited by begin

and end. If the optional extends clause is omitted, the superclass is object, which
has no attributes or methods. As with subprocesses, the declaration of a subclass
raises a proof obligation to guarantee that it behaviourally refines the superclass.

To illustrate our notation, we present a bank system inspired by that defined
in [10] using Object-Z. First of all, we have a class Account to model individual
bank accounts. In its specification, we use a given set NUMBER containing all
valid account numbers.

class Account =̂ begin

The definition of the attributes and methods of a class consists basically of a se-
quence of paragraphs. An optional state clause distinguishes a schema expression
or a constraint that defines the state of the class; we sometimes refer to the state
components as attributes. If the state definition is just a constraint, the state com-



ponents are those of the immediate superclass; the constraint strengthens the in-
variant.

The state schema expression may be just as in Z, but it may also include qualifiers
in the declaration of its components. If nothing is said, the attributes are private, but
we may declare them to be protected or public. Protected attributes are visible in the
subclasses, and public attributes are visible in the whole program. For processes, we
do not have this possibility: the state components are always private, as interaction
with a process is possible only through channels.

In our example, the state schema declares two protected attributes: the number

of the account and its balance.

state AcctState

protected number : NUMBER

protected balance : Z

The initial clause introduces a constructor. It defines the meaning of new. The
initialisation schema cannot have outputs and must be a deterministic operation,
to avoid the complexities of nondeterministic expressions [24]. In the bank, the
initialisation takes the number of the account as input.

initial AcctInit

AcctState ′

number? : NUMBER

number ′ = number?
balance ′ = 0

The balance is set to 0 initially.
The methods are distinguished from other paragraphs because they are qualified as
private, protected, public, or logical. The definition of a method is a parametrised
command: a schema expression, a command itself, if there are no parameters, or a
parametrised command in the style of Back [2]. Below, we have a public method
Deposit defined as a schema.

public Deposit

∆AcctState

amount? : N

balance ′ = balance + amount?
number ′ = number

This method takes the amount? to be deposited as input, and updates the balance
accordingly. The definition is just as in Z, or Circus.

The Withdraw method is defined as a parametrised command in the style of
Back. Parameters can be passed by value or result. Here, we have a value parameter
amount ; the body of the parametrised command is a specification statement.

public Withdraw =̂ val amount : N •

balance :

[
amount ≤ balance,
balance ′ = balance − amount

]

The specification describes a program that may change the attribute balance. The
precondition requires that the parameter is an amount available in the account. In
this case, the postcondition defines that the final balance of the account is obtained
by deducting the amount taken as input.



Finally, the method Balance has a result parameter; its body is an assignment.

public Balance =̂ res bal : Z • bal := balance

In the definition of a method as a schema, the input variables are parameters passed
by value, and the output variables are parameters passed by result.

Methods qualified as logical are specification artifacts; they are useful to describe
a specification or design, but do not need to be implemented in the final code. Below,
we define a logical method getNumber , which returns the number of the account
through a result parameter n; it is used in the specification of the bank.

logical getNumber =̂ res n : NUMBER •
n := number

end

Strictly speaking, we do not really need getNumber . In a specification or design,
the visibility of attributes and methods does not need to be respected. In a class
specification, if an attribute of another class is present, direct access to its attributes
may be useful to describe invariants and methods. For example, in the specification
of the bank, we can directly access the number and balance attributes of the ac-
counts. Logical methods, however, are useful as a structuring mechanism when the
information that needs to be accessed is not directly available as an attribute. In
fact, direct accesses to attributes can be viewed as implicit uses of logical get and
set methods. In code, visibility constraints must be respected.

An account that provides some credit can be described as a subclass of Account .

class CreditAccount =̂ extends Account begin

The state of a subclass includes all the attributes of its (direct) superclass. More
specifically, the state schema of the superclass is implicitly included in that of the
subclass. This allows the definition of an invariant that involves the components of
both states. In our example, we have one extra attribute: the credit .

state CAcctState

protected credit : N

balance + credit ≥ 0

The invariant guarantees that the credit is never exceeded; it involves attributes of
both Account and CreditAccount .

The constructor of CreditAccount takes the initial credit as input.

initial CAcctInit =̂
val number : NUMBER; initCred : N •

AcctInit ; credit := initCred

We observe that AcctInit is used as a command in this context. Even though
AcctInit is a constructor, it can be used as a command in the constructor of the
subclass.

Perhaps, a definition that would spring to mind more readily would be the
following.

initial CAcctInit

CAcctState ′

AcctInit

initCred? : N

credit ′ = initCred?



This, however, is not valid in OhCircus, since methods (and constructors) cannot be
used as schemas, even if they are defined by a schema. This is because, as already
said, in general, the schema calculus operators are not monotonic with respect to
refinement. So, if we refined a method, all its uses as a schema would potentially
need to be modified, and certainly would need to be checked. This approach is
not practical. Programming constructors like sequence, on the other hand, are all
monotonic. If we refine AcctInit , for example, we are also refining CAcctInit .

If a method is redefined, there is also no implicit inclusion of the schema that
defines it in the superclass. There is actually no guarantee that it is defined by a
schema in the superclass; even if it is, refinement may transform it into another
construct. If an implicit inclusion were assumed, refinement would require changes
in subclasses.

Methods that are defined by a schema in the superclass, and are not redefined,
are extended to the larger state, implicitly. They are conjoined with a schema that
specifies that the attributes of the subclass do not change. For example, we do not
redefine Deposit , therefore, it is available in this class with the definition below.

public Deposit

∆CAcctState

amount? : N

balance ′ = balance + amount?
number ′ = number

credit ′ = credit

The inclusion of ∆CAcctState puts the attributes in context.
We redefine the method Withdraw ; in the case of a credit account, more can be

withdrawn than simply the balance of the account. The credit is also available.

public Withdraw =̂ val amount : N •

balance :

[
amount ≤ balance + credit ,
balance ′ = balance − amount

]

This definition of Withdraw is a refinement of that in the superclass Account : its
precondition is weaker. A method redefinition must not change its signature: it
needs to have the same parameters, with the same type.

Finally, we also have a new method, which sets the credit of the account.

public SetCredit

∆CAcctState

ΞAcctState

credit? : N

credit ′ = credit?

end

We use the schema ΞAcctState to concisely define that the attributes of the super-
class are not affected by this method.

The bank is modelled as a process. Four channels are declared: open, deposit ,
and balance are used to request that an account is open, that a deposit is made,
and the balance of an account, and out is used to receive balance information.

channel open : Account ; balance : NUMBER;
deposit : NUMBER × N; out : N



In our very simple example, we omit several operations.
The process Bank is a client of the classes Account and CreditAccount . Its state
includes a set of accounts, which can be Account or CreditAccount objects.

process Bank =̂ begin

The state of the bank has one attribute: a set of accounts .

state BState

accounts : P Account

∀ acct : accounts • acct 6= null

∀ acct1, acct2 : accounts | acct1 6= acct2 •
acct1.getNumber() 6= acct2.getNumber()

The invariant guarantees that all accounts are proper instances of Account : they
are not null, and they have different numbers. The (logical) method getNumber of
class Account is used in this definition to access the number attribute of the ac-
counts. Calls to methods like getNumber , which are deterministic and have exactly
one result parameter, can be used as values. Such use of a method, however, gen-
erates a proof obligation to guarantee that it is indeed deterministic. In the case of
getNumber , this is trivial.

Method calls cannot be used in a negative context, like a negation or the an-
tecedent of an implication, otherwise the resulting predicate is not monotonic. This
restriction does not cause too many difficulties in OhCircus, since we are free to
use the names of any attributes directly in a predicate, regardless of visibility con-
straints. As we said before, visibility constraints apply to program code, but not
necessarily to specifications and designs. For example, we can specify the state of
the bank as follows.

state BState

accounts : P Account

∀ acct : accounts • acct 6= null

∀ acct1, acct2 : accounts | acct1 6= acct2 •
acct1.number 6= acct2.number

In this case, we access the attribute number of the accounts directly. The choice of
approach is a matter of style.

The initialisation is very simple. The collection of accounts is initially empty.

BInit =̂ [BState ′ | accounts ′ = ∅ ]

Since Bank is a process, and not a class, this is not a constructor, but an action.
To open a bank account, we give an account as input.

Open

∆BState

acct? : Account

acct? 6= null

∀ acct : account •
acct .getNumber() 6= acct?.getNumber()

accounts ′ = accounts ∪ { acct? }

Some actions are defined in terms methods of Account using the Z promotion tech-
nique. We use a promotion schema that we call Lookup.



Lookup

∆BState

number? : NUMBER

acct , acct ′ : Account

acct ∈ accounts

acct .getNumber() = number?
accounts ′ = (accounts \ { acct }) ∪ { acct ′ }

This schema provides a frame for operations that act over an existing account acct ,
and produce a modified account acct ′. It identifies acct as the account with the
number given as input; it also updates accounts by removing acct and inserting the
updated acct ′.

Apart from the account number, the PDeposit action also takes the amount? to
be deposited as input. Its specification is a call to the Deposit method of Account

with target acct .

private PDeposit

Lookup

amount? : N

acct .Deposit(amount?)

The method call acct .Deposit(amount?) denotes the predicate below, which specifies
the effect of depositing amount? in the account acct .

acct ′.balance = acct .balance + amount? ∧
acct ′.number = acct .number ∧
acct ′.credit = acct .credit

This predicate can be calculated from the specification of Deposit , as explained in
the next section. It is a predicate over acct and acct ′, which are both in scope. The
possibility of using method calls in predicates accounts for clearer and more concise
specifications.

The components acct and acct ′ need to be hidden, as they are used only to
promote the call to Deposit .

Deposit =̂ PDeposit \ ( acct , acct ′ )

For conciseness, we do not consider Withdraw , which can be promoted in a similar
way. Balance is as follows.

PBalance =̂ [Lookup; bal ! : Z | acct .Balance(bal !) ]
Balance =̂ PBalance \ ( acct , acct ′ )

Like PDeposit , the schema PBalance includes Lookup and declares a new compo-
nent; in this case, a result parameter bal !. The result parameter of the account
method Balance defines the value of bal !.



The main action below defines the behaviour of the bank.

• BInit ;
open?acct → Open;
µX • (open?acct → Open

2

deposit?number?amount → Deposit

2

balance?number →
var bal : num •

Balance; out !bal → Skip); X

end

First of all, the state is initialised, and then it is only possible to request that an
account is open. Afterwards, the process recursively offers the possibility of opening
an account, making a deposit, or requesting a balance.

4 Semantics: method calls

This section outlines the basis of OhCircus’s semantics for method calls. In Hoare
and He’s unifying theories, several programming paradigms are given denotational
semantics in the framework of an alphabetised version of Tarski’s relational calculus.
Hoare and He model and establish links between imperative, functional, logical,
parallel, and reactive programming. Programs are captured as predicates over states
containing observations of interest; subtheories are formed by imposing healthiness
conditions.

Circus is based on the combination of the imperative and reactive programming
theories. The observations are the program variables and the variables tr and ref

to record a CSP-style failure, wait to mark a non-termination state, and okay to
denote divergence-freedom. For example, the deadlocked process Stop is represented
by the predicate below.

tr prefix tr ′ ∧ ( okay ⇒ okay ′ ∧ wait ′ ∧
tr ′ = tr ∧ v ′ = v ∧
(wait ⇒ ref ′ = ref ) )

The first conjunct is a healthiness condition for every CSP process: history is never
altered, or rather, the accumulated trace of events tr is unchanged. If Stop is acti-
vated in a divergent state, then okay will be false, and this healthiness condition is
all that we can guarantee about the resulting behaviour. Otherwise, if okay is true,
then Stop does not diverge (okay ′ is true), does not terminate (wait ′ is true), and
does not change tr or the programming variables v . If wait is true, then Stop’s be-
haviour is being considered when some sequential predecessor has not terminated;
in which case, nothing changes, not even the refusal set.

In OhCircus, we use a class semantics based on records; methods are modelled
as higher-order, predicate-valued variables, following the treatment of higher-order
procedures and parameters in [19]. For example, consider the class C below, which
offers an encapsulation of a natural number v with initialisation, increment, and
get methods. The schema S defines the local state of C .

class C =̂ begin

state S =̂ [ v : N ]
initial initC =̂ [S ′ | v ′ = 0 ]
public incC =̂ [ ∆S ; i? : N | v ′ = v + i? ]
public getC =̂ [ ΞS ; o! : N | o! = v ]

end



The meaning of C is a record with three labelled components (like a schema bind-
ing in Z), one for the constructor, and one for each method. These components
contain program texts (unifying theories predicates) that are parametrised to make
the semantics of method invocation convenient. The before and after-values of the
state are abstracted as variable parameters, a new mechanism for handling variable
names; inputs are abstracted as value parameters; and outputs as result parame-
ters. We give the meaning of each of these mechanisms of parameter passing using
lambda notation.
A value parameter declares a local variable that is initialised when the method
is called. The semantics of a parametrised command with a value parameter is
given below: a higher-order function that takes the value of the local variable as its
argument and produces a program text.

(val v : T • c ) =̂ (λ w : T • (var v := w • c) )

The value of w is the argument that is given in a method call.
A result parameter takes as argument the name of a variable with wider scope.

This is the argument in a method call.

( res v : T • c ) =̂ (λ w : N • (var v • c; w := v) )

The parameter w is the name of the variable that takes the result.
The target of a method call is an extra argument, passed by value-result: t .m(a) =̂ m(t , a).

We define value-result parameter passing below. It is not directly available in OhCir-

cus; it is only used to define the semantics of method calls.

(valres v : T • c ) =̂

(λ w : N • (var v := w • c; w := v) )

The parameter of the lambda expression is again a program variable. This is an ab-
straction over two arguments, the before and after values, and our notation enforces
this.

(λ x : N • c )(y) =̂ c[y, y ′/x , x ′]

In this case, the lambda calculus’s rule of β-reduction is augmented in the obvious
way to cope with variable parameters: elements of the syntactic category N.

If P is a predicate that gives the meaning of the body of a method of a class
C , with value parameter i of type I , and result parameter o of type O , then the
meaning of the method is a higher-order function P whose value is given below.

(valres t : C ; val i : I ; res o : O • P )

The parameter t represents the target of a call; its type is the class C , which denotes
the set of bindings of type S , the local state of C . Multiple parameters are handled
by a combination of the above definitions.

If the method is defined by a schema operation using the usual conventions of
Z, the semantics of its body is the promotion of the schema from an anonymous
binding to a named one. For the method incC in our example, we have the following
semantics.

procedure incC := (valres c : C ; val i? : N •

(∃∆S • incC ∧ θS = c ∧ θS ′ = c′ ) )

The parameter c, which stands for the target of a call to incC , is used to determine
the initial value of state; the expression θC denotes a binding whose components



are those of the state S . The final value of c is the final value of the state, which is
defined by incC .

The initialisation determines the semantics of the new expression: the bind-
ing defined by the initialisation schema. This should be uniquely defined. For our
example, we have the following semantics.

new initC := (µ initC )

We use the Z definite description operator µ to determine the unique value defined
by the initialisation.

Finally, methods that do not change the state, and have a unique result parame-
ter, are also expressions, as long as they are deterministic. For example, the method
getC is given a meaning as a function; as mentioned before, there are the usual
proof obligations to show that it is indeed functional.

function getC : N := (val c : C •

(µ o! : N • (∃∆S • getC ∧ θS = c ) ) )

The parameter c is used to determine the initial value of the state for getC . The final
state of getC is irrelevant for the semantics of getC as a function; it is existentially
quantified. The definite description determines the unique output value.

As an example, suppose that d is an object of class C . We can increment d ’s
value by 5 by applying incC to it.

d .incC (5)

= { semantics of method application }

incC (d)(5)

= { semantics of incC }

(valres c : C ; val i? : N •
(∃∆S • incC ∧ θS = c ∧ θS ′ = c′ )

)(d)(5)

= { β-reduction, twice }

∃∆S • incC [i? := 5] ∧ θS = d ∧ θS ′ = d ′

= { definition of incC and substitution of 5 for i? }

∃ v , v ′ : N • v ′ = v + 5 ∧ θS = d ∧ θS ′ = d ′

= { equality of schema tuples }

∃ v , v ′ : N • v ′ = v + 5 ∧ v = d .v ∧ v ′ = d ′.v

= { one-point rule, twice }

d ′.v = d .v + 5

So, the method call on d is the program text that increments d ’s v -component by
5.

Dynamic binding and recursion are resolved in the construction of the records
that define the semantics of each of the classes. The approach follows the line of the
formal semantics presented in [6] for a subset of Java.

5 Refinement

In [9], we propose a refinement strategy for Circus that allows iterated decomposi-
tions of processes; an overview is presented in Figure 3. Refining a Circus program
amounts to refining its processes. A process P1 is refined by a process P2, if the
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main action of P1 is action refined by the main action of P2, with the state com-
ponents taken as local variables. Action refinement corresponds to the standard
notion of refinement in Z and Dijkstra’s language of guarded commands, and to
failures-divergence refinement in CSP. These are both formalised in the unifying
theories of programming as a single notion. Z and CSP refinement laws apply in
the refinement of actions.

In order to decompose a process into, for instance, parallel sub-processes, the
state and the paragraphs of the original process must be organised into two par-
titions: each partition is formed of a subset of the state components and a set of
paragraphs that have access to them. As a result of this decomposition, each parti-
tion is promoted into a component process. The way these processes are combined
is determined by the main action of the original process.

Each iteration of the strategy involves a process decomposition. In practice,
however, before decomposing a process, action refinement is necessary to partition
the internal structure of the process in the way explained above. Typically, if two
actions (belonging to different partitions) share a state element, this shared-variable
communication is transformed into a channel communication; the reason is that the
processes that result from the decomposition are not allowed to share state elements
(as imposed by the design of Circus).

Apart from action refinement, previous to a decomposition, it is often neces-
sary to carry out some change of data representation, so that the development will
progress towards concrete state components whose types are available in the target
implementation platform. The relevant tools here are the laws of process simulation
proposed in [9].

The purpose of this section is to illustrate, through an example, that this strategy
can be conservatively extended to incorporate classes and inheritance as introduced
into OhCircus. The extended strategy includes (possibly iterated) applications of
the following steps:

– class simulation, in addition to process simulation;

– parametrised command refinement, in addition to action refinement;

– class refinement, in addition to process refinement (decomposition);

– behavioural inheritance for both classes and processes.

The concept of iteration is still the same as in the original Circus strategy. It is
marked by an application of a process decomposition; nevertheless, this is now not
confined to yield only processes: a partition may be promoted into a class.

All the other forms of refinement can freely occur inside iterations, typically as
a way of partitioning the internal structure of a process for further decomposition.
Particularly, class refinement can be carried out independently.

Parametrised commands are introduced as a new class paragraph in OhCircus;
therefore action refinement is extended to deal with this new feature. Behavioural
inheritance of classes and processes is inherent to the design of OhCircus, as discussed
in Section 3.

As an example, we develop the design of a hypothetical operating system re-
source scheduler from an initial abstract specification. We first decompose it into a
resource manager and a scheduler using standard process refinement; then, we fur-
ther decompose the scheduler into a concrete scheduler and a class that encapsulates
the collection of tasks to be scheduled. In the final step, we introduce priority by
extending both the concrete scheduler and the task collection through behavioural
inheritance.



5.1 Abstract specification of a resource scheduler

Our resource scheduler is responsible for the management of resources, and schedul-
ing of tasks based on the availability of resources. Tasks can be modelled as a class
with a single attribute: the task identifier.

[Identifier ]

class Task =̂ begin

state TState =̂ [ id : Identifier ]

This identifier is initialised when the task is created and can be publicly accessed
through the method getId .

initial TInit

TState ′

id? : Identifier

id ′ = id?

public getId

ΞTState

id ! : Identifier

id ! = id

end

Resources are abstractly represented using a given set.

[Resource]

The resource scheduler interacts with its environment through several channels with
the following functions: the input of a new task (in); the output of the identifier
of the executing task that has just been scheduled (exec); the indication that a
resource became available (available) or is being demanded (demand , demand ok);
and the indication that the executing task has been destroyed (out).

channel in : Task ; exec : Identifier ;
available, demand : Resource;
out ; demand ok

The channels out and demand ok are used only for synchronisation; no values are
communicated through them, so that their declaration does not give a type.

The way the interactions occur with the environment is captured by the process
ResourceScheduler .

process ResourceScheduler =̂ begin

The state components are the task that is currently executing, a set of ready tasks,
a set of tasks blocked on resources, and a set of free resources.



state RSState

executing : Task

ready : PTask

block : Task 7→ Resource

free : P Resource

ready ∩ dom block = ∅
∀ t1, t2 : ready ∪ dom block ∪ {executing} •

t1 6= t2 ⇒ t1.getId() 6= t2.getId()
{null, executing} ∩ {ready ∪ dom block} = ∅
ran block ∩ free = ∅

The invariant states that the sets of ready and blocked tasks are disjoint; tasks have
distinct identifers; the executing task is neither ready nor blocked; and the set of
free resources is disjoint from the resources on which tasks are blocked.

As an example, we specify the insertion of a new task.

Insert

∆RSState; t? : Task

t? 6= null

∀ t : ready ∪ dom block ∪ {executing} •
t 6= null ⇒ t .getId() 6= t?.getId()

executing ′ = executing

ready ′ = ready ∪ {t?}
block ′ = block ∧ free ′ = free

The new task to be inserted must be a proper (non-null) task, and it must not be
already recorded as ready or executing.

After initialisation, the main action recursively offers insertion of a new ready
task (Insert); inclusion of a free resource, possibly releasing blocked tasks (IncludeOrRelease);
allocation of a free resources (Allocate); blocking the executing task on a demanded
resource which is not free (Block); destruction of the executing task (Destroy); and
scheduling of a random ready task for execution, interrupting the currently exe-
cuting task, if there is one (InterruptAndExecute). The internal choice (u) with
Stop (deadlock) means that the ResourceScheduler decides whether or not to inter-
rupt the currently executing task.

• RSInit ;
µX •

in?t → Insert

2 available?r → IncludeOrRelease

2 executing 6= null &
demand?r →

r ∈ free & demand ok → Allocate

2 r /∈ free & Block

2 out → Destroy

2 ready 6= ∅ &
(var id : Id •

InterruptAndExecute; exec!id → Skip

) u Stop

end

Except for Insert , specified previously, most actions used above are omitted since
the focus of the development is on decomposition of processes, which generates



further processes and classes, and on behavioural inheritance, rather than on action
refinement.

5.2 Resource scheduler internal partitioning

Aiming at decomposing the process ResourceScheduler into a resource manager and
a scheduler, first it is necessary to transform the internal structure of the process
into two partitions. These will then be promoted into the relevant processes, as
explained early in this section.

The sharing of state between the partitions is replaced by explicit channel com-
munications. For instance, the action IncludeOrRelease is described as a cooperation
of the partitions. When the resource manager partition receives from the environ-
ment a resource through the channel available, it recovers the tasks blocked on
that resource and sends them through a channel unblock to the scheduler partition,
which adds them to the set of ready tasks.

channel unblock : PTask

Further, when the scheduler partition receives a demand for a resource, it inter-
acts with the resource manager partition, communicating the currently executing
task and the resource itself, using the new channel request ; as a result, the re-
source manager partition communicates back informing whether the resource is free
(request ok) or not (block).

channel request : Task × Resource;
request ok ; block

chanset RSProtocol =̂
{|block , unblock , request , request ok |}

The identifier RSProtocol is introduced to name the above set of channels; it is an
abbreviation for future convenience.

The interactions between the two partitions are made precise in the refined
version of the ResourceScheduler presented below.

process ResourceScheduler =̂ begin

The state of the process ResourceScheduler is split into two disjoint schemas, so
that the original state is now expressed as the conjunction of these two schemas.
The first schema will become the state of the scheduler and the second one the state
of the resource manager.

SState

executing : Task ; ready : P Task

executing /∈ ready

RMState

block : Task 7→ Resource; free : PResource

ran block ∩ free = ∅

state RSState =̂ SState ∧ RMState

Since the state is partitioned, the part of the invariant which relates elements of the
two states cannot be explicitly stated anymore. Of course, as the partitioning is a



data refinement, the invariant still holds implicitly; the relevant proof obligations
amount to proving that all the operations preserve the invariant. They are omitted
for conciseness.

The initialisation is partitioned in a similar way. Concerning the other actions
(whose behaviour has been briefly described in the previous subsection), Insert ,
Destroy and ExecuteAndInterrupt involve solely scheduling activities; therefore,
they are included in the scheduler partition. On the other hand, Allocate has to
do only with resource managing, and is part of the associated partition.

The actions Block and IncludeOrRelease refer to components of both partitions.
The action Block gives rise to two actions: SBlock , in the scheduler partition, which
assigns null to executing, and RMBlock , in the resource manager partition, which
blocks the executing task on an unavailable resource. The action IncludeOrRelease is
replaced with three actions: Include and Release, in the resource manager partition,
which include a new resource and release tasks blocked on a resource that becomes
free, and Unblock , in the scheduler partition, which includes the liberated tasks in
the set of free tasks.

The main actions of the two partitions formalise each allowed external behaviour,
as well as the interactions between the partitions. They are given as separate actions
below.

SAction =̂
SInit ;
µX •

( in?t → Insert

2 executing 6= null &
demand?r → request !executing!r →

request ok → demand ok → Skip

2

block → Block

2 out → Destroy

2 executing 6= null ∧ ready 6= ∅ &
(var id : Identifier •

InterruptAndExecute; exec!id → Skip

) u Stop

2 unblock?ts → Unblock); X

This is very similar to the main action of ResourceScheduler , except that it interacts
with the action below.

RMAction =̂
RMInit ;
µX •

( available?r →
r /∈ ran block & Include

2 r ∈ ran block &
var ts : PTask •

Release; unblock !ts → Skip

2 request?t?r &
r ∈ free & Allocate; request ok → Skip

2 r /∈ free & block → Block); X

The behaviour of the refined ResourceScheduler process can then be given in terms
of the parallel composition of the above two actions, hiding the new channels intro-



duced for synchronisation between the two partitions.

• (SAction

|[αSState | RSProtocol | αRMState]|
RMAction) \ RSProtocol

end

The syntax of the parallel operator makes explicit that the SAction can modify
only components of SState, whereas RMAction is allowed to change only elements of
RMState. As already mentioned, this extra information is not needed in the parallel
composition of processes, whose states are encapsulated, but is fundamental in the
combination of actions to avoid conflicts in the modification of variables.

The refinement carried out in this subsection is a pure (although elaborate)
action refinement. Formally, it can be justified using the notions and laws presented
in [9], adapted to handle the fact that Task is a class type. This detailed justification
is out of the scope of this paper.

5.3 Decomposition: resource manager and scheduler processes

Once a process is partitioned, like ResourceScheduler was in the previous sub-
section, its partitions can be promoted into processes, as formalised in [9]. Con-
sider that Scheduler is a process with state SState, actions SInit , Insert , Destroy,
ExecuteAndInterrupt , SBlock and Unblock , and main action SAction. Assume also
that ResourceManager is a process with state RMState, actions Allocate, Include,
Release and RMBlock , and main action RMAction. In this case, the process ResourceScheduler

can be redefined as follows.

process ResourceScheduler =̂
(Scheduler

|[αSState | RSProtocol | αRMState]|
ResourceManager) \ RSProtocol

This marks the end of the first iteration of our development.

5.4 Scheduler decomposition: concrete scheduler and task collection

So far we have illustrated refinement steps that can be justified using the strategy
developed for Circus [9]. The remaining steps of our development focus on a more
concrete design of Scheduler , and single out the features introduced in OhCircus: in
particular, classes and inheritance.

In this refinement step the Scheduler process is decomposed into a more concrete
version of the scheduler and a class that encapsulates the collection of tasks to be
scheduled. Analogously to the previous decomposition, before the actual splitting of
the process, the relevant partitions need to be identified and the internal structure of
the process needs to be modified, showing explicitly how these partitions cooperate
to preserve the original behavior.

In the case of decomposing a process into two other processes, the two partitions
are identified simultaneously, and their cooperation is formalised by a process alge-
bra operator (like parallelism, as illustrated in the previous step) used to combine
the corresponding main actions.

Concerning a process decomposition that generates a process and a class, the
partition that will be promoted into a class is identified first, and the class decla-
ration is actually introduced. The original process is then data refined to become a
client of the generated class. Therefore the cooperation between the resulting class



class TaskCollection =̂ begin

state TCState
tasks : P Task

∀ t : tasks • t 6= null

∀ t1, t2 : tasks | t1 6= t2 • t1.getId() 6= t2.getId()

initial TCInit =̂ [TCState ′ | tasks ′ = ∅ ]

public insert
∆TCState
t? : Task

∀ t : tasks • t .getId() 6= t?.getId()
tasks ′ = tasks ∪ {t?}

public remove =̂ [ ∆TCState; t ! : Task | t ! ∈ tasks ∧ tasks ′ = tasks \ {t !} ]

public getTasks =̂ [ ΞTCState; tasks! : PTask | tasks! = tasks ]

end

Fig. 4. Class TaskCollection specification.

and process is established by the clientship relation itself (contrasting with a process
algebra operator, as in the previous case). The idea for decomposing a process into
a process and a class is similar to the well-known refactoring extracting class in the
object-oriented paradigm [17].

In our example, the partition that gives rise to a new class is that formed of the
state component ready (of SState) and the several operations over this component
that appear in the actions of Scheduler . Extracting this partition results in the
class in Figure 4, with a single attribute (a set of tasks) and methods for including
and removing tasks, and for accessing the entire set of tasks. Tasks are randomly
removed; this is a consequence of the fact that scheduling is random in the process
Scheduler , which is the source of this decomposition.

The other product of this decomposition is the Scheduler itself, adjusted to be
a client of the above class. A simple data refinement justifies this transformation.

This concludes the second iteration of our case study.

5.5 Introducing priority tasks

The target scheduler of our development is one which allocates tasks based on
priority. The purpose of this step is to introduce the class PriorityTask , which
inherits from Task and includes a new attribute to record priority.

We also introduce PriorityTaskCollection as a subclass of TaskCollection. In
principle, this should not be necessary, since TaskCollection can store instances of
PriorityTask . Nevertheless, the inherited collection is introduced because it redefines
the remove method responsible for selecting the next element for scheduling: while
in the original collection this choice is totally arbitrary, in the inherited one, the
task with higher priority is returned.

First we introduce constants to fix the maximum priority and define the priority
range.

maxPriority : N1



Priority == 1 . . maxPriority

In the subclass PriorityTask , presented in Figure 5, we extend the class Task

with a new attribute to record priority. Apart from the constructor, set and get
methods are introduced for the new attribute.

The introduction of a new class is a simple refinement step; however, since
PriorityTask is declared as a subclass of Task , a proof obligation to ensure be-
havioural subclassing is generated. The preservation of behaviour is intuitive, since
it involves no method redefinition and the extra methods refer only to the new
attribute.

Analogously, we extend TaskCollection with priorities. Although the intention
is to store in the new collection only instances of PriorityTask , it would not be valid
to enforce this requirement, say as an invariant in the class definition. The reason is
that the original collection allows both the inclusion and deletion of ordinary tasks.
In order to ensure behavioural subclassing, such a behaviour cannot be forbidden.

class PriorityTaskCollection =̂
extends TaskCollection begin

A new attribute is introduced to store the tasks with priority. The invariant states
that this set of priority tasks is a subset of the original set.

state PTCState

priTasks : P PriorityTask

priTasks =
{ t : tasks | t instanceof PriorityTask }

The remove method is redefined to choose one of the tasks with highest priority (1
is considered a higher priority than 2, and so on); this is used as a new scheduling
policy in the scheduler designed in the next section.

public remove

∆PTCState

t ! : Task

t ! ∈ task

tasks ′ = tasks \ { t ! }
priTasks 6= ∅ ⇒

t ! ∈ priTasks ∧
∀ tp : priTasks •

t !.getPriority() ≤ tp.getPriority()

When priTasks is empty, and tasks is not, we have a subtle situation. In this case,
an arbitrary (non-priority) task is chosen, so the redefined method works just as
the original remove method, as should be expected.

The method insert is also redefined.

public insert

∆PTCState

t? : Task

∀ t : tasks • t .getId() 6= t?.getId()
tasks ′ = tasks ∪ {t?}

end



class PriorityTask =̂ extends Task begin

state PTState =̂ [ priority : Priority ]

initial PTInit =̂ val id : Identifier ; initPri : Priority •
TInit ; priority := initPri

public setPriority
∆PTState
ΞTState
priority? : Priority

priority ′ = priority?

public getPriority =̂ [ ΞTState; priority ! : Priority | priority ! = priority ]

end

Fig. 5. Class PriorityTask specification.

The only modification to its original definition is that the redefined version acts on
the extended state (PTCState). If the input task t? happens to be a priority task,
it is included both in tasks (explicitly) and in priTasks (due to the invariant).

Concerning preservation of behaviour, only remove and insert are redefined.
The redefined version of insert , as already explained, updates the component task

exactly as before, and eventually also updates the new attribute priTasks . Con-
sidering the redefinition of remove, it still removes a task from the set tasks , but
eventually one of those with highest priority, in which case it also updates the new
attribute priTasks . Therefore, regarding the original attribute, the redefined version
clearly strengthens the postcondition. This can be discharged by simple predicate
calculation.

5.6 A priority scheduler

A priority scheduler can be designed as a specialisation of the process Scheduler ,
as OhCircus allows inheritance of processes, in addition to class inheritance. In
our example, no action needs to be added, only the invariant is strengthened, as
presented below. If there are no extra components, we can define the state just as
a predicate introduced using `. It is conjoined to the invariant of the state of the
superprocess (or superclass).

process PriorityScheduler =̂ extends Scheduler

begin

state ` tasks instanceof PriorityTaskCollection

end

As tasks can store both ordinary and priority tasks, the executing task might even-
tually be a non-priority one. This is why we do not enforce that the executing

attribute of the PriorityScheduler be an instance of PriorityTask .

As the main action is missing, it is assumed to be Skip. It is put in parallel with
that in the superprocess. In this case, the process inheritance is very simple, and it
is intuitive that the behaviour of the original process is preserved.



6 Conclusions

This paper has presented OhCircus, a language for specification and refinement,
which integrates Z, CSP, refinement calculi constructs, and object-oriented concepts.
We have discussed our approach to its model; it unifies elaborate mechanisms for
defining data (classes) and control behaviour (processes). Using the unifying theories
of programming, it is possible to combine these constructs and still specify and
reason in the resulting formalism without deviating from all we have learned working
with each notation in isolation.

By describing our work, in particular on OhCircus, and in general on Circus, this
paper makes a contribution to the debate on states versus events. Many specification
methods are based either on states or on events; they rely on the fact that these
approaches are equivalent, since an event can be modelled as a state change, and a
state can be modelled as an equivalence class of sequences of actions. These methods
have taken very different formal directions, and they tend to differ in practice.

In fact, neither approach is dominant in Circus. We followed two important prin-
ciples in designing Circus: states and events should be semantically integrated; and
system architecture should be uncommitted. Although Circus combines Z and CSP,
it is not part of the tradition that views this combination as requiring a notion of
communicating abstract data-types. Instead, state transitions and events are decou-
pled, each occurring when they need to, according to the behaviour required. This
allows Circus to encompass a wider variety of programming styles and paradigms.

In the Circus refinement strategy, the starting point is an abstract, and usu-
ally centralised specification that is progressively transformed into a concrete and
distributed architecture, based on laws for process decomposition and (data) re-
finement. During this process, explicit global invariants become implicit distributed
invariants. State-based descriptions become reflected in distributed reactive behav-
iour. The global invariant actually guides the discovery of the reactive design.

Within the context of OhCircus, this strategy is extended to handle the intro-
duction of classes, as a means of further structuring the states of processes. New
definitions and laws are needed to support the extended strategy, but the overall
approach is still valid, as illustrated by the development in the previous section.

Circus and OhCircus include novel specification devices that play a central rôle
in the refinement strategy. For example, the state in a Circus program is carefully
partitioned between processes, which leads to a clean programming model free from
race conditions. For actions, the partitioning of the state is imposed by the operators
for parallelism.

If we want to introduce parallelism by splitting a process into sub-processes, a
natural way to proceed is by stepwise development. Since we allow shared variables
inside a process, we can separate the task of dealing with the event structure (con-
currency and communication) from that of dealing with the state structure (parti-
tioning the variables). During development, we introduce actions that share state.
Next, we shift state components into particular subsets, replacing references to
shared state by event-based communication. This continues until the process struc-
ture emerges. In this way, we use the interplay between states and events to great
advantage during development.

Something similar happens in the treatment of objects in OhCircus: visibility
is a code-level constraint. During development we can refer freely to private and
protected attributes of a class as we construct and refine its clients. The final code,
however, can only rely on method calls to access and update such attributes.

At the level of actions, assertional reasoning is possible since assertions are spe-
cial forms of specification statements. In particular, assertions over state properties
can be used to restrict reactive behaviour. This is possible because Circus allows
the free combination of state operations and events. As such, an extended form of



Hoare logic may be adopted as a reasoning technique, which leads, in the usual way,
to predicate transformers and to refinement calculi.

In [3], a framework called St.Eve is presented with the aim of supporting the
classification of specification languages and techniques with respect to their ap-
proach to the definition of state and behavioural aspects of a system. In the St.Eve
terminology, an OhCircus event is a communication, just as in CSP. A state is a
binding, a mapping of values to state components, just as in Z. A specification is a
sequence of paragraphs, again as in Z; we have, however, new forms of paragraphs
for channel, process, and class definitions. The semantics is a predicative rendering
of alphabetised relations.

More interesting, OhCircus supports three forms of system decomposition policies
or constraints: actions, processes, and classes. Inside a process, actions support
descriptions with shared events and variables; their generality is controlled by the
structure of processes and the parallelism operators. In Circus and OhCircus, the
parallel composition operators for actions require that each of the parallel actions
have update access restricted to a partition of the state; all actions have read access
to the before state, but can change only variables in their own partition. Processes
are based on pure event constraints, since their states are encapsulated. Finally,
classes support a pure state partitioning.

We intend to characterise behavioural refinement for processes and classes in
the semantic framework of OhCircus, independently of the obvious formulation in
terms of forwards simulation. Maybe we will be able to provide simple proof oblig-
ations related to subprocess declarations that do not require that the actions of the
superprocess and the subprocess are executed in parallel. More flexibility may be
of practical use.

As OhCircus has most of the central design elements of notations like Real Time
UML, a refinement strategy for OhCircus is illuminating in the formalisation of
industrial development practices, possibly through a mapping between these lan-
guages. An initial result has been presented in [28].

We have already shown that the calculational style of reasoning is possible for
Circus. In [7, 5], we considered refinement of object-oriented programs. We plan
to bring these results together in a unified framework of programming. The unified
language and model presented in this paper is the basis for all these further research
investigations.
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