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Abstract. We present a refinement strategy for Circus, which is the combination of Z, CSP, and
the refinement calculus in the setting of Hoare & He’s unifying theories of programming. The
strategy unifies the theories of refinement for processes and their constituent actions, and provides
a coherent technique for the stepwise refinement of concurrent and distributed programs involving
rich data structures. This kind of development is carried out using Circus’s refinement calculus,
and we describe some of its laws for the simultaneous refinement of state and control behaviour,
including the splitting of a process into parallel subcomponents. We illustrate the strategy and the
laws using a case study that shows the complete development of a small distributed program.

1 Introduction

The last twenty years have seen the development and application of various formal methods for software
engineering, typified by the state-based and the process algebraic schools. In the state-based approach, a
model is constructed of the desired system, avoiding incidental details and concentrating only on essential
properties; successive models are constructed, in ever-more detail, until an implementation is reached. For
correctness, the models must be related by some well-understood refinement relation. The most prominent
members of this school of development are VDM [15], Z [24, 28], and the refinement calculus [18]. In VDM
and Z, emphasis is on specification and data refinement, whilst in the refinement calculus, emphasis is,
naturally, on calculation. In the process algebraic approach, systems and components are represented by
process behaviour patterns that evolve and interact through atomic events. The most prominent members
of the process algebraic school are CCS [17] and CSP [11, 21]; the latter has a theory of behavioural
refinement.

The two schools started out with complementary objectives: VDM, Z, and the refinement calculus have
been used to understand how to specify and develop sequential programs with complex data structures;
CCS and CSP have been used to understand complex patterns of concurrency and communication, but
with simple data structures. Over the last decade, various attempts have been made to unite the two
schools, and produce a method that is suitable for developing concurrent and distributed systems with
sophisticated data structures. The first attempts involved understanding data refinement in the context
of concurrency and communication [16, 13, 29]. Subsequent attempts focussed on combining particular
notations, such as VDM, Z, CCS, and CSP [6, 7, 23, 25].

Most recently, the Circus language has been proposed; it is a thorough integration of Z, CSP, and
the refinement calculus. The semantics of Circus are given in Hoare & He’s unifying theories of program-
ming [12], resulting in a notation with a single semantics and a single refinement ordering. The objective
was to give a sound basis to the development of concurrent and distributed systems in the calculational
style.

In Circus, systems are characterised by processes, which group constructs that describe data and
control behaviour. Data is defined using mainly the Z notation, and behaviour is characterised by actions,
which are defined using Z, CSP, and guarded command constructs.

In previous work [22, 3], we have dealt, separately, with action and process refinement in Circus. In
that context, we proposed refinement notions and some useful laws. The purpose of this paper is to unify
these results, and provide an accompanying iterative development strategy, involving the application of
simulation, action and, most importantly, process refinement. In this integrated context, we propose a
notion of backwards simulation, in addition to that of forwards simulation provided in [22]. We also
provide some new refinement laws for simulation, actions, and processes. We illustrate the refinement
strategy through a complete development of a case study which has been only partially addressed before.

In Section 2, we describe the specification of a bounded, reactive, buffer as a means of introducing
the Circus notation. In Section 3, we explain the notions of refinement in Circus for processes and their
constituent actions, and the simulation technique; we also describe our strategy for the development



of centralised specifications into distributed implementations. In Section 4, we give laws for piece-wise
data refinement. Sections 5 and 6 contain our algebraic laws for the simultaneous refinement of the state
and control behaviour of processes and of actions. In Section 7, we illustrate our refinement strategy by
showing the complete development of the reactive buffer into a distributed implementation. Finally, in
Section 8, we draw our conclusions and discuss related work.

2 Circus

A Circus program is a list of paragraphs containing process definitions and their ancillary declarations of
channels, types, and global constants. We provide a BNF description of the Circus syntax later on, but
first we introduce Circus through an example: a bounded, reactive buffer. We present a specification for
this buffer here, and in Section 7 we refine it to obtain a distributed design.

The maximum size of the buffer is a strictly positive constant.

maxbuff : N1

It takes its inputs and supplies its outputs on two different typed channels.

channel input , output : N

In Circus we use the Z notation to define the state; the attendant operations are actions, which are
specified using Z, CSP operators, and the guarded command language. In our example, the process
Buffer encapsulates two state components: an ordered list of the contents and the size of this list.

process Buffer =̂ begin

state BufferState =̂ [ buff : seq N; size : 0 . . maxbuff | size = #buff ≤ maxbuff ]

Initially, the buffer is empty; this is specified as a state initialisation action.

BufferInit =̂ [BufferState ′ | buff ′ = 〈〉 ∧ size ′ = 0 ]

We need to describe the behaviour of the process on input and output. The buffer accepts an input
whenever there is space to store the new value; in this case, the element input is appended to the
bounded sequence and the size incremented. First, we specify InputCmd , which describes the effect of
the input on the state; as usual in Z, a schema is used.

InputCmd =̂ [ ∆BufferState; x? : N | size < maxbuff ∧ buff ′ = buff a 〈x?〉 ∧ size ′ = size + 1 ]

The following action, Input , describes the constraint on the communication over the channel input , and
uses the schema action InputCmd to specify the state changes.

Input =̂ size < maxbuff & input?x → InputCmd

This action is guarded by size < maxbuff : if this condition does not hold, Input deadlocks. In contrast,
if a precondition of a schema action is not satisfied, its execution diverges (aborts), as usual in Z.

The action input?x → InputCmd is a prefixing in the style of CSP. A new input variable x is
introduced, and a value input through the channel input is assigned to it. Afterwards, the action InputCmd
is executed.

The Output action is enabled when the buffer contains something; it outputs the head of the buffer,
and updates the size accordingly.

OutputCmd =̂ [ ∆BufferState | size > 0 ∧ buff ′ = tail buff ∧ size ′ = size − 1 ]

Output =̂ size > 0 & output !(head buff ) → OutputCmd

An unnamed main action at the end of a process description defines its extensional behaviour as a protocol
in terms of the actions over the state. In our example, the main action initialises the buffer and repeatedly
offers the choice of input and output.

• BufferInit ; (µX • ( Input 2 Output ); X )



| maxbuff : N1

channel input , output : N

process Buffer =̂ begin

state BufferState =̂ [ buff : seq N; size : 0 . . maxbuff | size = #buff ≤ maxbuff ]

BufferInit =̂ [BufferState ′ | buff ′ = 〈〉 ∧ size ′ = 0 ]

InputCmd =̂ [ ∆BufferState; x? : N | size < maxbuff ∧ buff ′ = buff a 〈x?〉 ∧ size ′ = size + 1 ]

Input =̂ size < maxbuff & input?x → InputCmd

OutputCmd =̂ [ ∆BufferState | size > 0 ∧ buff ′ = tail buff ∧ size ′ = size − 1 ]

Output =̂ size > 0 & output !(head buff ) → OutputCmd

• BufferInit ; ( µX • ( Input 2 Output ); X )

end

Fig. 1. Buffer process specification.

end

We summarise the complete specification of the buffer process in Figure 1.
In Figure 2 we present the BNF description of the syntax of Circus. CircusPar∗ is a possibly empty

list of elements of the syntactic category CircusPar of Circus paragraphs; similarly for PPar∗ (process
paragraphs). We use N+ for a comma-separated list of Z identifiers (elements of N), and similarly for
Exp+. The syntactic categories Par, Schema-Exp, Exp, Pred, and Decl include the Z paragraphs, schema
expressions, expressions, predicates, and declarations defined in [24]. The syntactic category CSExp of
channel set expressions contains the empty set {| |}, channel enumerations enclosed in {| and |}, and
expressions involving the usual set operators. Similarly, NSExp contains sets of state components; in this
case the delimiters are ordinary braces.

The Buffer example has shown how processes are constructed from actions, but processes may them-
selves be combined with CSP operators, such as (alphabetised) parallel composition. The meaning of
a new process constructed in this way is obtained from the conjunction of the state of the constituent
processes and the parallel combination of their main actions.

A perhaps unusual operator available in Circus is indexing: a process such as i : T � P behaves like
P , but uses different channels. For each channel c of P , we have a fresh channel c i that communicates
pairs of values: the first element is the index, a value of type T , and the second element is the value
originally communicated through c. The instantiation (i : T �P)bec behaves like P , but the first element
of the pairs communicated is the value of the index expression e. We also have a renaming operator in
Circus. For example, in P [c1 := c2], the communications of P through channel c1 are done through the
channel c2 instead. An example of the use of the indexing and renaming operators is found in our case
study (Section 7).

Parametrised processes are also available in Circus. In the process x : T • P , for instance, x is a
parameter that can be used in the specification of P as a value of type T . To use this process, we must
instantiate it by providing a value for x , as in (x : T • P)(v), where v is a value of type T .

At the level of actions, the Circus parallel operator is slightly different from that of CSP. Instead
of having simply a synchronisation channel set, we also have two sets that partition all the variables in
scope: the state components, and the input and local variables. For instance, we write A1 |[ns1 | C | ns2]|A2

for the parallel composition of A1 and A2 synchronising on the channels in the set C , so that A1 can
modify only the variables in ns1 and, similarly, A2 can modify just the variables in ns2; both A1 and
A2 have access to the initial value of the variables in ns1 and ns2. Examples are presented in our case
study (Section 7). Sets containing names of state components can be defined to shorten the definition of
parallel compositions of actions. The interleaving operator also requires state partitioning sets.

We also have iterated versions of the process and action operators. For example, if P is an indexed
process, then ||| i : T � Pbic is the process defined by interleaving each of the processes Pbvc formed
by instantiating P with a value v of T . Except for sequence, all the above operators are commutative



Program ::= CircusPar∗

CircusPar ::= Par | channel CDecl | chanset N == CSExp | process N =̂ Proc

CDecl ::= SimpleCDecl | SimpleCDecl; CDecl

SimpleCDecl ::= N+ | N+ : Exp | Schema-Exp

CSExp ::= {| |} | {| N+ |} | N | CSExp ∪ CSExp | CSExp ∩ CSExp | CSExp \ CSExp

Proc ::= begin PPar∗ state Schema-Exp PPar∗ • Action end | N

| Proc; Proc | Proc 2 Proc | Proc u Proc

| Proc |[CSExp ]| Proc | Proc ||| Proc | Proc \ CSExp

| Decl � Proc | ProcbExp+c | Proc[N+ := N+]

| o
9

Decl � Proc | 2Decl � Proc | uDecl � Proc

| ‖Decl |[CSExp ]| �Proc | |||Decl � Proc

| Decl • Proc | Proc(Exp+)

| o
9

Decl • Proc | 2Decl • Proc | uDecl • Proc

| ‖Decl |[CSExp]| • Proc | |||Decl • Proc

NSExp ::= { } | {N+} | N | NSExp ∪ NSExp | NSExp ∩ NSExp | NSExp \ NSExp

PPar ::= Par | N =̂ Action

Action ::= Schema-Exp | CSPAction | Command | nameset N == NSExp

CSPAction ::= Skip | Stop | Chaos | Comm → Action | Pred & Action

| Action; Action | Action 2 Action | Action u Action

| Action |[NSExp | CSExp | NSExp ]| Action | Action ||[NSExp | NSExp]|| Action

| Action \ CSExp | µ N • Action | Decl • Action | Action(Exp+)

| o
9

Decl • Action | 2Decl • Action |uDecl • Action

| ‖Decl |[NSExp | CSExp | NSExp]| • Action | |||Decl ||[NSExp | NSExp]||• Action

Comm ::= N CParameter∗

CParameter ::= ? N | ?N : Predicate | !Expression | . Expression

Command ::= N+ : [Pred, Pred ] | N+ := Exp+ | if GActions fi | var Decl • Action

GActions ::= Pred → Action | Pred → Action 2 GActions

Fig. 2. Circus syntax



and associative, so there is no concern about the order of the elements of T or about the grouping of
the processes. For the sequence operator, we require T to be a sequence and define ; i : T � Pbic to be
the sequence of the processes Pbvc, with v taken from T in the order that they appear. For the indexed
parallel and interleave operators, we also need to provide the list of synchronising channels, and state
partitioning sets.

The semantics of Circus [27, 26] is based on Hoare & He’s unifying theories of programming [12]: an
alphabetised relational model for imperative programming, concurrency, and communication. In this
model, distinguished variables are used to describe relevant observations and the relations are defined by
predicates over these variables. Decorations are used to differentiate references to the initial value of the
variables from those in subsequent observations. As in most refinement theories, the same model is used
for specifications and programming constructs, which can be mixed during development.

Refinement is a central notion in the unifying theories of programming, where it is defined as (reverse)
implication: if an implementation is to behave satisfactorily, then every observation that we make of it
must be permitted by the specification. Formally, a mechanism modelled as a predicate P satisfies a
specification S , another predicate, providing that [P ⇒ S ], where the square brackets denote universal
quantification over all observation variables. The set of observation variables must be the same for both
P and S .

In our work, Z is used as the concrete syntax for the relational model, so that a Circus program
denotes a Z specification. Each process corresponds to a part of that specification characterised by a state
definition. Actions are modelled as operations over this state. The state components are the observation
variables, which include the components of the process state and components to model behaviour: stability
from divergence (okay), termination (wait), a history of interaction with the environment (tr), and a set
of events that can be refused (ref ). This is a state-based, failures-divergences model, with embedded
imperative features.

3 Refinement notions and strategy

The basic notion of refinement in Circus is that of action refinement; refinement of processes is defined
in terms of refinement of main actions. The definition of the relation vA of action refinement is shown
below. For simplicity, we identify a Circus action with its semantics: a schema specifying a change on
the state formed by the components of the state of the process where the action occurs, and the extra
observation variables okay, wait , tr , and ref . We say that, together, these variables compose the state
space of the action.

Definition 1 (Action refinement). For actions A1 and A2 on the same state space, we define A1 vA A2

if, and only if, [A2 ⇒ A1 ]. 2

This relation is a partial order, and the action constructors are monotonic with respect to it. Therefore,
we can adopt a piecewise and stepwise refinement technique. Typically, we use the action refinement
relation to compare actions of the same process, which, of course, act on the same state space.

Refinement of processes must consider their state and behaviour. Since the main action of a process
defines its behaviour, roughly, a process P1 is refined by a process P2 if the main action of P1 is refined
by that of P2. These actions, however, may act on different state spaces, and so may not be comparable.
Since the states are encapsulated, we are to compare the actions we obtain by hiding the components of
the state of P1 and P2, as if they were declared locally in a variable block. Process refinement (vP) is,
therefore, defined in terms of action refinement of local blocks, whose semantics is given by existential
quantification. In the following, we use P .st and P .act to denote the local state and main action of a
process P .

Definition 2 (Process refinement). We define P1 vP P2 if, and only if,

(∃P1.st ; P1.st
′ • P1.act ) vA (∃P2.st ; P2.st

′ • P2.act ) 2

When we hide the local states of the processes, we are left with two actions on the same state space,
which contains only okay, wait , tr , and ref as components.

Because the state of a process is private, we may change its components and their types during
refinement, in much the same way as we can data refine variable blocks and modules in imperative
programs [19]. In those contexts, forwards and backwards simulation are well-known techniques of data
refinement [10, 14]. Here, we adapt the standard techniques used in Z [28] to handle processes and actions.



In Circus, a simulation is a relation between the states of two processes that satisfies a number of
properties. For example, in our case study presented in Section 7, the first step is the refinement of the
Buffer process to introduce a cache and a ring to represent the internal state. When the buffer is non-
empty, the cache stores the head of the buffer. The ring is a circular array, modelled as a sequence whose
two ends are considered to be joined. We maintain two indices into this array: a bottom and a top, to
delimit the relevant values. This part of the array is a concrete representation of the tail of the original
bounded buffer. Modulo arithmetic is used to increment bot and top; in Z sequence indices start at 1.
The constant maxring, defined as maxbuff −1, gives the bound for the ring. In the new process, the state
is defined as follows.

CBufferState
size : 0 . . maxbuff ; ringsize : 0 . . maxring
cache : N; ring : seq N

top, bot : 1 . . maxring

ringsize mod maxring = (top − bot) mod maxring
ringsize = max{0, size − 1}
#ring = maxring

There is a subtle situation when the bottom and the top indices coincide; in this case it is not possible
to distinguish whether the ring has reached its maximum storage capacity or whether it is empty. As a
consequence, we need to keep a separate record of the number ringsize of values stored in the ring.

With this new state, all the actions of the original abstract Buffer process need to be changed ac-
cordingly. In order to justify the refinement, we provide a simulation between the state of the original
buffer and the new state, much in the same way as we do when we data refine Z specifications. In our
example, the simulation (or retrieve) relation is as follows. We use a shift operator: n � a shifts the
(circular) array a by n positions. For the sake of conciseness, we omit the simple inductive definition of
this operator.

RetrBuffer =̂ [BufferState; CBufferState | buff = (1 . . size) C (〈cache〉 a ((bot − 1) � ring)) ]

If we shift the ring so that the oldest element at bot occurs at position 1, concatenate the cache at the
front of the resulting array, and restrict everything to the first size elements, then we have the abstract
buffer.

To prove that RetrBuffer is indeed a simulation, we have to show that it satisfies a few properties.
We define below the restrictions for actions and processes. We actually consider a relation that involves,
besides the states of the processes, a local state that can include input and local variables in scope, and
any additional information inferred from guards and conditionals in context.

This context is easily defined by induction on the structure of the actions. For example, the context
for actions like Skip and Stop is a schema with an empty declaration and predicate true. For a schema
expression, the context contains the declaration of the input and output variables, if any. For a guarded
action, the context is enriched by conjoining the guard to its predicate. We omit further discussion of
contexts in this paper, for the sake of simplicity.

Definition 3 (Forwards simulation). A forwards simulation between actions A1 and A2 of processes
P1 and P2, with local state L, is a relation R between P1.st, P2.st, and L, satisfying

1. (feasibility) ∀P2.st ; L • (∃P1.st • R )
2. (correctness) ∀P1.st ; P2.st ; P2.st

′; L • R ∧ A2 ⇒ (∃P1.st
′; L′ • R′ ∧ A1 )

In this case, we write A1 �P1,P2,R,L A2 and say that the action A2 simulates the action A1, according to
the simulation R, and in a state extended by L. When clear from the context, we omit the subscripts. A
forwards simulation between P1 and P2 is a forwards simulation between their main actions. 2

In this definition, there is no applicability requirement concerning preconditions, as would usually be found
in the definition of forwards simulation; this is because actions are total. An action that is executed
outside its preconditions diverges, but this does not mean that its behaviour is arbitrary. Implicitly,
it is guaranteed that the state invariant is maintained, and that arbitrary new synchronisations and
communications can be observed, but no past observations are affected.



Another possibly surprising aspect of Definition 3 is the fact that we do not impose any specific
conditions on the initialisation. It is not necessarily the case that there is a separate initialisation action
and, even if there is, it has to be explicitly included in the main action, as illustrated in Figure 1.

A theorem reproduced below and proved in [22] ensures that, if we provide a forwards simulation
between processes P1 and P2, then we can substitute P2 for P1 in a program.

Theorem 1 (Forwards simulation is sound). When a forwards simulation exists between two processes
P1 and P2, we also have that P1 vP P2. 2

In the next section we present laws that support the refinement of a process using simulation.
For backwards simulation, we have similar definitions and results; first, we present the definition.

Definition 4 (Backwards simulation). A backwards simulation between actions A1 and A2 of processes
P1 and P2, with local state L, is a relation R between P1.st, P2.st, and L, satisfying

1. (feasibility) ∀P2.st ; L • (∃P1.st • R )
2. (correctness) ∀P1.st

′; P2.st ; P2.st
′; L′ • R′ ∧ A2 ⇒ (∃P1.st ; L • R ∧ A1 )

A backwards simulation between P1 and P2 is a backwards simulation between their main actions. 2

A soundness theorem can be proved in much the same way as in the case of forwards simulation; the
challenge is to realise the need for the feasibility restriction, which is the same for both forms of simulation.

Although we have notions of forwards and backwards simulation, we do not have a completeness result
due to the presence of unbounded nondeterminism. The technical difficulties involved are discussed in [9].

The refinement notions support the transformation of Circus processes for several purposes, such as
to show the equivalence or refinement of processes, to carry out optimisations, or to justify change of
data representation. Here, we are interested in a development strategy that we discuss in the sequel. The
strategy is based on laws of simulation, and action and process refinement, which we present in Sections 4
to 6.

The strategy includes (possibly several iterations) of the following steps (see Figure 3):

• use of simulation to introduce the elements of the concrete system state;
• algorithmic refinement of actions for partitioning the process state space and actions; and
• process refinement (decomposition).

Although simple, the iterated application of these steps can effectively serve as a tool to guide and
transform an abstract, and usually centralised, specification into a concrete distributed solution of the
system.

Assuming a centralised process specification as the starting point of the development, the first two
steps of the strategy are used to reorganise the internal structure of the process. In Figure 3, the first
specification is a centralised process with state components a1, . . . , an, actions ActA1, . . . ,ActAk , and
main action ActA. Simulation lays the ground for the introduction of concrete state elements c1, . . . , cn,
which compose the state of the second process in Figure 3. The actions are also changed to operate on
the modified state.

Action refinement allows the partitioning of the state space and the accompanying actions, in such a
way that each partition groups some state elements and the actions which access (read or update) these
elements. The resulting structure clearly reflects the fact that each partition will become an independent
process. The third process in Figure 3 illustrates this partitioning. The state Sc is defined by the con-
junction of two state schemas Sc1 and Sc2; sets of actions that operate independently on Sc1 and on Sc2
can be clearly identified; and the main action is defined as a combination of two of these independent
actions: Act1C and Act2C . In the next step, these become the main actions of the partitioned processes.

The upgrade of a partition into a process is precisely captured in the third step of the strategy. The
resulting processes are combined in the same way as their main actions were in the previous process.

It is worth emphasising that several iterations might be necessary, even in a medium-sized devel-
opment, since a process resulting from one decomposition can itself be further decomposed into other
processes, and so on. An interesting issue is that the development of a distributed system does not nec-
essarily start with a centralised specification. Nonetheless, even in such a more pragmatic scenario, some
process decomposition is usually essential in order to progress towards the final implementation, which
needs to satisfy non-functional requirements like efficiency. Therefore, the strategy can be applied to every
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Fig. 3. Iteration of the refinement strategy



process that needs decomposing, just like it is applicable when the starting point is a centralised process
specification.

An iteration of the strategy does not need to follow the above sequence of steps strictly. For example,
a simulation step can subsume some action refinement. On the other hand, several applications of a given
step (like data or action refinement) might be convenient for modularising the development. It might be
even the case that a given process is ready for decomposition from start, when its internal structure is
already partitioned. In this case, only the third step of the strategy would be necessary. An iteration of
the strategy is characterised by one application of the process refinement step: whether several, one, or
no application of simulation and action refinement is needed depends on the particular development at
hand.

4 Laws of simulation

Although the definition of simulation and its soundness property give us the basis for a data refinement
technique, in practice, we need laws to carry out data refinement in a stepwise way. The laws in the
sequel provide support to prove that a relation R is indeed a forwards simulation. Using these laws, we
can justify proving simulation for schema actions, in much the same way as we do in Z. Moreover, we
are able to preserve the structure of the actions of the original process P1 in the definition of the new
process P2.

The primitive actions Skip, Stop, and Chaos are not affected by forwards simulation. For instance
Skip � Skip, for any P1, P2, R, and L, which we omit. For schema actions, the provisos are those in the
standard Z rule, which is a rather pleasing result in terms of using well-established techniques.

Law 41 (Schema Expressions)

ASExp � CSExp

provided

• ∀P1.st ; P2.st ; L • R ∧ pre ASExp ⇒ pre CSExp
• ∀P1.st ; P2.st ; P2.st

′; L • R ∧ pre ASExp ∧ CSExp ⇒ (∃P1.st
′; L′ • R′ ∧ ASExp) 2

We refrain from presenting the particular case of initialisation operations and functional data refinement.
Since the more generic rule presented above holds, the usual results follow.

This law includes an applicability condition, which does not appear in the definition of forwards
simulation. This is because the definition is concerned with the semantics of actions, which are total
operations on the state that includes the extra observation variables okay, wait , tr , and ref . An action
described by a schema expression is an operation over the process state and it is not necessarily total.
The proof of soundness for this and several other laws presented here can be found in [22, 3].

As already mentioned, forwards simulation distributes through the other constructs. Below, we present
the rule for an input prefix.

Law 42 (Input prefix distribution)

c?x → A1 � c?x → A2

provided A1 � A2 2

For output prefixing, we need to relate the abstract and concrete expressions defining the output value.

Law 43 (Output prefix distribution)

c!ae → A1 � c!ce → A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ ae = ce
• A1 � A2 2



The concrete and abstract values have to be equal, with respect to the retrieve relation. As far as we
know, this characterisation of equality for expressions modulo a retrieve relation is original. For guarded
actions, we also need to relate the abstract and the concrete predicates that define the guard.

Law 44 (Guard distribution)

ag & A1 � cg & A2

provided

• ∀P1.st ; P2.st ; L • R ⇒ (ag ⇔ cg)
• A1 � A2 2

The proviso is similar to that of Law 43.
For the other constructs, we have straightforward distribution laws.

Law 45 (Sequence distribution)

A1; A2 � B1; B2

provided

• A1 � B1

• A2 � B2 2

Law 46 (External choice distribution)

A1 2 A2 � B1 2 B2

provided

• A1 � B1

• A2 � B2 2

The law for parallelism uses the fact that the actions affect disjoint parts of the state; there is no
interference.

Law 47 (Parallelism distribution)

A1 |[ns1 | cs | ns2 ]| A2 � B1 |[ns1 | cs | ns2 ]| B2

provided

• A1 � B1

• A2 � B2 2

The fact that ns1 and ns2 partition the state is a well-formedness condition for the parallel operator. For
recursion, we also have a simple result.

Law 48 (Recursion distribution)

µX • F (A) � µX • F (B)

provided A � B 2

We use F to stand for a context: a function on actions that determines the body of the recursion.
Based on this set of laws, we can conclude that forwards simulation distributes through the structure

of arbitrary actions. Our case study (Section 7) illustrates the use of these laws; we give a new action on
the state defined by ControllerState and deduce, from applications of Law 41 to the schema expressions,
that the whole action simulates the original main action of Buffer according to RetrBuffer . Simulation
is also used in a later stage of the development.

The laws for backwards simulation are very similar to those above, consequently, we present below
only the law for schema expressions.



Law 49 (Schema Expressions)

ASExp � CSExp

provided

• ∀P2.st ; L • (∀P1.st • R ⇒ pre ASExp) ⇒ pre CSExp
• ∀P2.st ; L • (∀P1.st • R ⇒ pre ASExp) ⇒

(∀P1.st
′; P2.st

′; L′ • CSExp ∧ R′ ⇒ (∃P1.st • R ∧ ASExp)) 2

Again, we have proof obligations similar to those needed for establishing refinement of Z specifications.

5 Process Refinement

In this section we propose refinement laws for processes. These laws deal simultaneously with state and
control behaviour. As further discussed in Section 7, our approach to the refinement of Circus specifica-
tions is guided by the progressive and incremental distribution of a specification originally centralised.
Surprisingly, perhaps, such a strategy can be supported by simple laws that allow the partitioning of
processes.

We present two families of refinement laws, but beforehand we state a basic law that allows the
introduction of a new process declaration pd as part of the sequence of paragraphs of a Circus program
cp.

Law 51 (Process declaration introduction)

cp = pd cp

provided the process declared in pd is not referenced in cp. 2

This law can be justified in much the same way as the introduction of fresh variables and procedure
declarations in an imperative program, or new class declarations in an object-oriented program. As the
declared process is assumed to be unused, its introduction has no effect whatsoever. The importance of
this apparently innocuous law becomes evident in the sequel.

5.1 Process splitting

The first family of process partitioning laws, called process splitting, apply to processes whose state
components can be partitioned in such a way that each partition has its own set of process paragraphs.
The result is three processes: each of the first two includes a partition of the state and the corresponding
paragraphs, and the third process, defined in terms of the first two, has the same behaviour as the original
one.

In what follows, we assume that pd stands for the process declaration below, where we use Q .pps and
R.pps to stand for the process paragraphs of the processes Q and R; and F for an action context which
must also make sense as a function on processes, according to the Circus syntax.

process P =̂ begin
state State =̂ Q .st ∧ R.st
Q .pps ↑ R.st
R.pps ↑ Q .st
• F (Q .act ,R.act)

end

The state of P is defined as the conjunction of two other state schemas: Q .st and R.st . The actions of P
are Q .pps ↑ R.st and R.pps ↑ Q .st , which handle the partitions of the state separately. In Q .pps ↑ R.st ,
each schema expression in Q .pps is conjoined with ΞR.st . This means that these process paragraphs do
not change the state components of R.st ; similarly for R.pps ↑ Q .st .

We say that a process with the above internal structure is partitioned. We call a partition a group
of paragraphs formed by a schema declaring a subset of the state components, together with the actions
that use or constrain only these state components. For example, in P above, Q .st and Q .pps ↑ R.st form
a partition; and so does R.st together with R.pps ↑ Q .st . The law below applies to a partitioned process.



Law 52 (Process splitting)
Let qd and rd stand for the declarations of the processes Q and R, determined by Q .st , Q .pps , and

Q .act , and R.st , R.pps , and R.act , respectively, and pd stand for the process declaration above. Then

pd = (qd rd process P =̂ F (Q ,R) )

provided Q .pps and R.pps are disjoint with respect to R.st and Q .st . 2

Two sets of process paragraphs pps1 and pps2 are disjoint with respect to states s1 and s2 if, and only
if, no command nor CSP action expression in pps1 refers to components of s2 or to paragraph names in
pps2; similarly, for pps2 and components of s1.

This law can be informally justified by first adding the declarations qd and rd to the left-hand side (as
stated by Law 51), and then promoting the context F from main actions to the corresponding processes.

5.2 Process indexing

The second family of laws applies to processes defined using Z’s promotion technique. It is based on
defining the specification of an abstract data type with its operations and then using this as the type
of the elements of a more elaborate data structure like, for instance, a set, a sequence, or a map. For
example, one can specify a bank account with its operations and then specify the bank itself as a collection
of accounts. Promotion allows an elegant specification of such patterns. The name of the technique comes
from the fact that the operations on the collection are defined in terms of those on the element type and
a promotion schema.

By convention, the element type is referred to as local, whereas the collection is called global. When
the local type is completely encapsulated in the global type, we say that the promotion is free; otherwise
it is called constrained [28]. Here we are concerned solely with free promotions.

The proposed family of laws refines a specification structured using a free promotion to an indexed
family of processes, each one representing an element of the local type. Considering the bank account
example, the law would transform each account into an individual process, and the bank itself into an
indexed family of such processes, combined using the interleaving operator.

One of the contributions of this work is to extend Z’s promotion technique to Circus actions. Below
we give an inductive definition of the relevant patterns; L stands for the local process, G for the global
process, and Promotion for the promotion schema. We observe that we are promoting a process and not
a simple abstract data type as in Z; however, we adopt the standard terminology and refer to local and
global processes.

For simplicity, we assume that the global state is a function f from elements of an arbitrary type
Range to elements of the local state; so, a local element is identified in the global state as f i . Promotion
of schema expressions is as in Z.

promote(SExp) =̂ ∃∆L.st • SExp ∧ Promotion

The promotion of Skip, Stop, and Chaos leaves them unchanged.

promote(A) =̂ A, for A ∈ { Skip,Stop,Chaos }

To promote a communication c.e, where e is a reference to an element of the local state, we need to
receive an extra value: the position i of e in the collection. Therefore, for each channel c, there is a
corresponding promoted channel pc that communicates a pair formed by the identifier and the value.

promote(c.e → A) =̂ pc?i .promote(e) → promote(A) provided e is a component ofL.st

To promote any other communication, we only promote the communicated expression.

promote(c.e → A) =̂ c.promote(e) → promote(A) provided e is not a component ofL.st

Promotion for expressions is defined below; for the other forms of prefixing, the definition is similar.
Promotion distributes through the other action operators. For a guarded action, we need to promote
the guard. Promotion of predicates has an inductive definition based on promotion of expressions. For
parallelism and hiding, the channels are replaced with corresponding promoted channels.



If a variable x is not a local state component, it does not need to be changed.

promote(x ) =̂ x , provided x is not a component ofL.st

If it is, then we need to access it through the global state. We assume that the position of x in the
collection is given by i . This information is received as input, and can be regarded as an extra parameter
for promote, which we omit for simplicity.

promote(x ) =̂ (f i).x , if x is a component ofL.st

Finally, promotion distributes through the expression operators; the simple but lengthy definition is
omitted. If the local state includes components x , y, and z , for instance, a promoted assignment like
(f i).x := e is an abbreviation for f := f ⊕ {l : L.st | l .x = e ∧ l .y = (f i).y ∧ l .z = (f i).z • i 7→ l}.

Promotion of multiple assignments may lead to aliasing if more than one component of the local state
is being updated. For example, promotion of x , y := 2, 3 leads to (f i).x , (f i).y := 2, 3. A specification
statement with a frame containing x and y is also problematic, as promotion leads to restrictions on
(f i).x and (f i).y (and (f ′ i).x and (f ′ i).y), and we need to promote these restrictions to f (and f ′).
We assume that actions like these are not used.

In the sequel, we assume that gd stands for the following process declaration. The family of process
indexing laws applies to processes of this form.

process G =̂ begin

state State =̂ [ f : Range 7→ L.st | pred ]

L.actionk ↑ State

L.act =̂ µX • F (L.actionk ); X

Promotion =̂ [ ∆L.st ; ∆State; i? : Range | i? ∈ dom f ∧ θL.st = f i? ∧ f ′ = f ⊕ {i? 7→ θL.st ′} ]

actionk =̂ promote(L.actionk )

• (µX • F (actionk ); X )

end

As discussed before, the global state component is assumed to be a function from Range to a local state
L.st . Actions L.actionk over the local state do not affect the global state. The main local action L.act is
defined recursively, as is the main global action. Both have the same structure, but the former uses the
actions L.actionk on the local states, and the latter, the corresponding promoted actions actionk . There
is a promoted action actionk for every local action L.actionk . We note that for each channel c used by
the actionk , the corresponding promoted action uses a corresponding promoted channel pc. A topic for
further work is the generalisation of the process indexing family of laws in terms of the data structure
used in the global state and the main action of both the local and the global states.

We also consider the declaration ild below of the indexed process IL.

process IL =̂ i : Range � L[c i := pc]

The process i : Range �L acts on indexed channels c i , where L acts on a channel c. Like the promoted
channels pc used in P , they communicate pairs of values: the index and the original value. Above, we
rename each channel c i to pc. In this way, we can use IL in the refinement of P .

The family of laws for process indexing is as follows. We use the iterated interleaving operator; the
iteration index i , whose value ranges in the set Range, is used to instantiate the IL process. In this way,
we interleave several copies of the IL process, with each copy communicating a different index in Range.

Law 53 (Process indexing)
Let gd and ild be the process declarations above, and let ld be the declaration of the process L. Then,

gd = ld ild process G =̂ ||| i : Range � ILbic

provided L.pps and G.pps are disjoint with respect to L.st and G.st . 2

The local state is available through the indexed processes IL. Due to interleaving, there is no interference
among the individual elements of the collection.



6 Action Refinement

Apart from data refining processes, we are also interested in algorithmically refining actions. The result
below justifies the use of action refinement (Definition 1).

Theorem 2 (Soundness of action refinement). Suppose we have a process P with actions A1 and
A2. If A1 vA A2, then the identity is a forwards simulation between A1 and A2. 2

This theorem is proved in [22]. It is a consequence of this theorem that we can refine a process by refining
its actions. With this result, laws of CSP and Z, for which we have a calculus called ZRC [4], are relevant.

We concentrate here, however, on the laws that relate Z, guarded commands, and CSP constructs,
which are novel. In the sequel, we present a few of them; others are listed in Appendix A. As the laws
available in the literature for CSP are mostly aimed at characterising its algebraic semantics, we also
need new laws of CSP; some are included in Appendix A.

The first set of laws that we present are related to guarded commands. The first law allows us to use a
property assured by an assumption as a guard. An assumption { pre } is a special specification statement
: [ pre, true ]. This command does nothing if pre holds, and aborts, otherwise.

Law 61 (Guard Introduction—Assumption)

{ g }; A = { g }; g & A 2

If g does not hold, both commands above abort; if g does hold, then its introduction as a guard of A has
no effect. In other words, as g is already guaranteed to hold by the assumption, we can introduce it as a
guard, as no extra possibility of deadlock is introduced.

Our second law allows us to eliminate a guard, in the presence of an assumption.

Law 62 (Assumption/Guard—Elimination 1)

{ g1 }; (g2 & A) v { g1 }; A

provided g1 ⇒ g2 2

If g1 is such that its validity guarantees that the guard holds, then we can eliminate the guard. Other
laws presented in Appendix A (Laws A12 and A13) consider the case in which the assumption guarantees
that the guard does not hold, and the possibility of modifying a guard in the presence of an assumption.

We also have new laws that handle guarded actions. The first of these laws introduces a choice of
guarded actions from a schema expression SExp.

Law 63 (Guard Introduction—Schema Expression)

SExp v 2 i • gi & SExp ∧ [State | gi ]

provided pre SExp ⇒
∨

i • gi 2

The proviso guarantees that, if the precondition of SExp holds, then at least one of the guards is enabled.
In this case, an action associated with one of the enabled guards gi is arbitrarily chosen for execution. The
behaviour of this action is given by SExp itself, and so we know that the original behaviour is attained;
however, we conjoin SExp with a schema that records that gi holds. This may be useful in further refining
SExp. If the precondition of SExp does not hold, SExp diverges and 2 i • gi & SExp ∧ [State | gi ] may
block. Therefore, we have a refinement as well.

If a schema action is expressed as a disjunction, and it is guarded by the precondition of one of the
disjuncts, then the other disjunct can be eliminated.

Law 64 (Schema Disjunction Elimination)

pre SExp1 & (SExp1 ∨ SExp2) v pre SExp1 & SExp1 2

This law is a refinement because, in general, SExp1 ∨ SExp2 allows more nondeterminism than its disjunct
SExp1. In Appendix A there are a number of laws for manipulating guards: combining, distributing, and
eliminating them.

We also have laws to handle assumptions. First, they distribute over external choice.

Law 65 (Assumption/External Choice—Distribution)

{p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2) 2



They also distribute over internal choice, parallelism, and interleaving. Other laws are already listed as
part of ZRC. Two laws used in our case study to introduce and eliminate assumptions are in Appendix A.

A refinement calculus needs to provide a way of introducing programming constructs from specifica-
tions. ZRC includes laws to introduce guarded command constructs from schema expressions. Law 63
gives a way of introducing a guarded external choice. The following two laws are concerned with the
introduction of sequence and parallelism. In the provisos, we use new notation. The function α gives the
set of components of a given schema; it can also be applied to a declaration. The function FV defines
the set of free variables of a predicate or expression; DFV determines the set of dashed free variables of
a given predicate; finally, UDFV gives the set of undashed free variables of a predicate.

Law 66 (Sequence Introduction—Schema Expression)

[∆S1; ∆S2; i? : T | preS1 ∧ preS2 ∧ CS1 ∧ CS2]
=

[∆S1; ΞS2; i? : T | preS1 ∧ CS1]; [ΞS1; ∆S2; i? : T | preS2 ∧ CS2]

syntactic restrictions

• α(S1) ∩ α(S2) = ∅;
• FV (preS1) ⊆ α(S1) ∪ {i?};
• FV (preS2) ⊆ α(S2) ∪ {i?};
• DFV (CS1) ⊆ α(S ′

1);
• DFV (CS2) ⊆ α(S ′

2);
• UDFV (CS2) ∩DFV (CS1) = ∅. 2

This law applies to a schema action over a state composed of two disjoint sets of components specified in
the schemas S1 and S2. The precondition of the action can be expressed as the conjunction of conditions
preS1 and preS2 over the different parts of the state and the input variable(s). Also, the updates on the
state are expressed as a conjunction of conditions CS1 and CS2 over the final values of the disjoint parts
of the state.

The application of this law introduces a sequence of schema actions that update the disjoint parts of
the state separately. An extra restriction is required: the final values of the state components of S2 do
not depend on the initial values of those of S1, as these are potentially changed by the first action in the
sequence.

There are no output variables. If we include them, we have to distinguish their specification and
determine which action in the sequence is going to produce the output.

ZRC already includes laws to introduce sequences from specifications. This new law is needed in the
context of the development of Circus programs because it supports the partitioning of the state space of
actions. It introduces actions that update disjoint parts of the state.

The next law is concerned with the introduction of parallelism, again from a schema expression. It
may seem slightly artificial to introduce communication between schema actions. We must have in mind,
however, that these laws are used in stepwise developments, were the schemas are further developed and
processes are split. So, the introduction of communication is an interesting step towards a more elaborate
structure. This point is illustrated in examples, in the next section.

Law 67 (Parallelism Introduction—Schema Expression)



[∆S1; ∆S2; i? : T | CS1(i?, s2) ∧ CS2]
=

(c?j?s → [∆S1; ∆S2; j? : T ; s? : U | CS1(j?, s?)]
|[α(S1) | {|c|} | α(S2)]|

c!i !s2 → [∆S1; ∆S2 | CS2]) \ {|c|}

syntactic restrictions

• α(S1) ∩ α(S2) = ∅;
• i is an input variable in scope;

• s2 ∈ α(S2) and s2 has type U ;

• FV (CS1) ⊆ α(∆S1) ∪ {i?, s2};
• FV (CS2) ⊆ α(∆S2);
• c is a valid channel of type T × U . 2

Like Law 66, this law applies to a schema action over states composed by the conjunction of state schemas
S1 and S2 with disjoint sets of components. This action takes an input i? used to update the state S1,
but not S2. The updates of the state are given by the conjunction of CS1 and CS2; the former defines
the updates on S1 and the latter, those on S2. The updates on S1 depend on the component s2 of S2, but
the updates on S2 do not depend on S1. We use the notation P(e1) for a predicate P that potentially
includes occurrences of an expression e1; later references to P(e2) denote the result of replacing e1 with
e2 in P .

With the application of the law above, we introduce a parallel composition, in which the disjoint parts
of the state are updated separately by different schema actions, each restricted to the relevant part of the
state. The hidden channel c is used to communicate the input value from one action to another, as well
as the state component s2 that CS1 uses from S2. The channel c, of course, needs to have been previously
declared and have the appropriate type.

The value of the input variable i and of s2 is sent by the second action to the first one using channel
c. This communication introduces new input variables j and s , that are used by the first action, instead
of i? and s2. Since the second action does not make use of i?, it is not in its declaration part.

An important concern in the development of Circus programs is the parallelisation of actions and,
as a consequence, processes. We present next a law that transforms a sequence into a parallelism. The
interesting point about this law is that we have to make sure the transformation does not affect either
state transformations or communications.

In the following we use some new notation. The function usedC gives the set of channels referred in a
given action. The function usedV gives the set of used variables: read, but not written. The function wrtV
gives the set of variables written by a given action. In the case of a schema expression, wrtV actually
gives the set of variables constrained by the schema. The definition is as follows.

wrtV (SExp) = {v ′ : DFV (SExp) | SExp 6= (∃ v ′ : T • SExp) ∧ [v , v ′ : T | v ′ = v ] • v}

We use v ′ to denote the list v ′
1, . . . , v

′
n

of dashed free variables in SExp, and v to denote the corresponding
list of undecorated variables v1, . . . , vn . The notation v ′ : T stands for the declaration v1 : T1; . . . ; vn : Tn

of each of the variables in v ′ with the corresponding types as defined in SExp. Informally, if we hide v ′

in SExp and include it back in the signature, we obtain a different schema. This means exactly that the
final value of v is changed by SExp.

It is unfortunate that wrtV is not a purely syntactic function, as its calculation for schema expressions
involves theorem proving. On the other hand, a tool can take the pragmatic approach of considering the
whole of the state components as the set of written variables of a schema action, and request help from
the user only if this worst-view approach fails.

Law 68 (Parallelism Introduction—Sequence 1)



A1; A2(e) v ((A1; c!e → Skip) |[wrtV (A2) | {|c|} | wrtV (A2) ]| c?y → A2(y)) \ {|c|}

syntactic restrictions

• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);
• y /∈ FV (A2).

provided

• wrtV (A1) ∩ usedV (A2) = ∅;
• FV (e) ∩ wrtV (A2 before e) = ∅. 2

To preserve the execution order, this law introduces a communication through a new hidden channel c
with a new input variable y. This communication removes direct access of A2 to the expression e. Even
though the order of execution is preserved, in a parallelism both actions have access to the initial value
of the variables. Therefore, a proviso is needed: the variables changed by the first action are not used by
the second one.

This is strictly a refinement law, not an equality. To understand the reason, suppose A1 is a schema
action that leaves the value of a state component v unconstrained, and that A2 uses this value. In the
sequence, A2 uses the arbitrary value of v , and in the parallelism, A2 takes the initial value of v .

The sets of partition variables are defined as wrtV (A2) and wrtV (A2), where the first is the set of all
state components that are not written by A2. We observe that wrtV (A1) and wrtV (A2) are not adequate,
as we need to ensure coverage of the whole set of state components. Also, wrtV (A1) and wrtV (A1) are
not appropriate because A2 has to be given priority to change the value of the variables it modifies. As
an example, suppose A1 changes a state component x to 1, and A2 changes it to 2; the final value of x
has to be 2. The proviso guarantees that A2 does not use the variable x , but it may update it.

Finally, we need to guarantee that the value of e is not changed by A2 before it is actually used.
The function before gives an action that captures the behaviour of its action argument before it has to
evaluate the given expression. A worst case view is taken in the definition of before, which is defined by
recursion on the structure of actions. For example, using the notation SExp[e] to represent the fact that
the expression e occurs in the (predicate part of the) schema expression SExp, we have the definition
below. We use similar notation for expressions, predicates, actions in general, and others.

SExp[e] before e = Skip

If the expression e occurs in the schema, the resulting action is Skip: the action that occurs before e and
has to be evaluated is Skip.

In general, for any action A, if e does not occur in it, the result is A itself.

A before e = A, if e does not occur in A

This covers the actions Skip, Stop, and Chaos , for example.
For prefixing, the definition is as follows.

(c?x → A) before e = c?x → A, if x ∈ FV (e)
(c?x → A) before e = c?x → (A before e), otherwise

If a free variable x of e is reintroduced locally as an input variable, e cannot occur in its scope, since
occurrences of x there are references to the input variable, and not to the same variable mentioned in e.
If the input variable is not free in e, we proceed to the prefixed action A.

The definition for the other constructs is not very illuminating, except, perhaps, for sequence.

(A1[e]; A2) before e = A1[e] before e
(A1; A2) before e = A1; (A2 before e), if e does not occur in A1

If e occurs in the first action, the second one does not need to be considered.
Typically, with the application of Law 68 we want to avoid direct access of A2 to a state component.

So, we consider in Law A20 in Appendix A the particular case in which e is a variable. However, the



generality above is necessary, because we work with structured variables, like sequences, and we do not
want to communicate the entire component. If we have just a variable, we can have less restrictive provisos.

As we split and combine processes, it is often useful to manipulate channels accordingly. The following
law allows us to combine channels: if all communications between two actions occur sequentially through
channels c1 and c2, we can use only one channel c3 to communicate the same values.

Law 69 (Channel Combination)

(A1[c1.com1 → c2.com2 → B1] |[ns1 | {|c1, c2|} | ns2 ]| A2[c1.com3 → c2.com4 → B2]) \ {|c1, c2|}
=

(A1[c3.com1.com2 → B1] |[ns1 | {|c3|} | ns2 ]| A2[c3.com3.com4 → B2]) \ {|c3|}

syntactic restrictions

• all occurrences of c1 and c2 in A1 and A2 are as explicitly stated;

• c3 is a valid channel of the appropriate type. 2

Obviously, the new channel has to have the appropriate type to communicate pairs of values: the first
element is the value originally communicated by c1, and the second, the value communicated by c2.

The next laws allow the extension and reduction of channel synchronisation sets.

Law 610 (Channel Extension 1)

A1 |[ns1 | cs | ns2 ]| A2 = A1 |[ns1 | cs ∪ {|c|} | ns2 ]| A2

provided c /∈ usedC (A1) ∪ usedC (A2) 2

The channel has to be new, in the sense that it is not used in the actions in parallel. Applied from right
to left, this law can also be used to reduce channel sets.

The next law is more elaborate: it extends the synchronisation set and uses the new channel to
communicate a value e from one of the parallel actions to the other.

Law 611 (Channel Extension 2)

A1 |[ns1 | cs | ns2 ]| A2(e) = (c!e → A1 |[ns1 | cs ∪ {|c|} | ns2 ]| c?x → A2(x )) \ {|c|}

syntactic restrictions

• c is a valid channel of the appropriate type;

• c /∈ usedC (A1) ∪ usedC (A2);
• x /∈ FV (A2).

provided FV (e) ∩ wrtV (A2 before e) = ∅ 2

The idea is that the access of A2 to e is removed. As in Law 68, we have to make sure that the value of
e is not changed before it is actually used in A2.

The following law eliminates unnecessary extra synchronisation between two parallel actions.

Law 612 (Synchronisation Elimination)

(2 i • gi & ci .ccomi → di .acomi → Ai)
|[ns1 | cs ∪ {|i • ci |} | ns2]|

(2 i • gi & ci .ccomi → di .bcomi → Bi)
=

(2 i • di .acomi → Ai) |[ns1 | cs | ns2 ]| (2 i • gi & ci .ccomi → di .bcomi → Bi )

provided {i • ci} ∩ usedC (Ai) ∪ usedC (Bi ) = ∅ 2

It is not necessary for parallel actions to synchronise in sequence on ci and di . Just one of the synchroni-
sations is necessary to ensure the order of execution of the actions. An important point, of course, is that
the communication parameter ccomi of c is common to both actions. This means that the communication
between them is always possible; any restrictions are imposed by their environment. In other words, even
though the channels ci are used to communicate values, from the point of view of the parallel actions,



they are just extra synchronisation points. At the same time we eliminate the communications, we can
also eliminate the associated guards. If they are false, the guarded action blocks, the communication does
not occur, and the matching actions di .acomi → Ai cannot proceed either.

As already mentioned, laws of CSP are also relevant for Circus. In our case study, we use some, which
are listed in Appendix A. We include laws for prefixing that relate this construct to sequence, choice,
parallelism, and interleaving. In those laws, the function α is applied to a communication; it gives the
input variables the communication introduces. These are the variables declared by the communication,
which are in scope for the action that follows the communication in a prefixing.

We also have laws for external choice and parallelism. The following is a kind of step law for parallelism,
where one of the actions put in parallel is a sequence. The law determines conditions in which the first
step is the first action of the sequence.

Law 613 (Parallelism/Sequence—Step)

(A1; A2) |[ns1 | cs | ns2 ]| A3 = A1; (A2 |[ns1 | cs | ns2 ]| A3)

provided

• initials(A3) ⊆ cs ;
• cs ∩ usedC (A1) = ∅;
• wrtV (A1) ∩ usedV (A3) = ∅ 2

The functions initials gives the set of channels through which a given action may communicate first. The
definition of this function is similar to that given in the CSP operational semantics presented in [21].

The above law requires that the set of channels through which A3 is initially prepared to communi-
cate is included in the synchronisation set. Therefore, A3 cannot proceed independently. On the other
hand, A1 does not communicate through channels in the synchronisation set. Therefore, it can proceed
independently and necessarily goes first. We need, however, to impose a further restriction related to the
state changes. The set of variables written by A1 and used by A3 cannot overlap, since in the parallel
composition A3 acts on the initial value of the variables, and in the sequence, it acts on the values assigned
by A1.

An interesting law that relates parallelism and external choice is presented below. This is an exchange
law that allows us to rearrange parallel actions; it is an important support for the task of splitting
processes.

Law 614 (Parallelism/External Choice—Exchange)

(A1 |[ cs ]| A2) 2 (B1 |[ cs ]| B2) = (A1 2 B1) |[ cs ]| (A2 2 B2)

provided A1 |[ cs ]| B1 = A2 |[ cs ]| B1 = Stop 2

The choice on the left-hand action is for the parallel execution of A1 and A2, or B1 and B2. On the
right-hand action, there is also the possibility of parallel execution of A1 and B2, or B1 and A2. The
proviso, however, ensures that these choices lead to deadlock, so they are not a possibility.

In our case study, we also use well-known laws of hiding and recursion. Finally, we make use of some
very simple unit and zero laws. These are all listed in Appendix A.

7 Case study

To illustrate our refinement strategy, we develop an implementation for the bounded, reactive, buffer
introduced in Section 2 using the laws presented previously. The structure of the final implementation is
a ring of cells with a central controller and a cached head. The entire development exercises two iterations
of the strategy described in Section 3.

First, by data refinement, the bounded sequence is replaced by a cache that stores the head of the
buffer when it is not empty, and a ring (circular array) that stores the tail of the original bounded buffer.
The simulation relation was presented in Section 3. Next, the state changes associated with the input and
output actions are decomposed into small units to deal with the cases in which the cache is updated and
those in which the ring is updated. This is a first step towards isolating access to the ring. Afterwards,
action refinements are carried out to separate those actions that access the ring from those that access the



other state components. Next, we decompose the original process into two: a controller and a centralised
ring. This completes a first iteration of the strategy.

Through a second data refinement step, the centralised ring process is redesigned as a promotion of
individual ring cells. In this case, no additional action refinement is necessary. Finally, we decompose the
ring process into the interleaving of ring cell processes, each one storing a single value. This concludes
the second iteration of the proposed strategy and the development of the entire case study. The following
sections present the development in detail.

7.1 Data refinement: a centralised ring buffer

Our first step is a data refinement, in which we introduce a cache and a ring to represent the internal
state of the process Buffer . In Section 3 we presented the new concrete state, which we reproduce below.

process Buffer =̂ begin
state

CBufferState
size : 0 . . maxbuff ; ringsize : 0 . . maxring
cache : N; ring : seq N

top, bot : 1 . . maxring

ringsize mod maxring = (top − bot) mod maxring
ringsize = max{0, size − 1}
#ring = maxring

This new state requires a new description for the main action. To establish that our new Buffer is a
refinement of that presented in Section 2, we prove that the new main action is related to that of the
original process by a forwards simulation (Theorem 1). The retrieve relation RetrBuffer from Section 3
is reproduced below.

RetrBuffer =̂ [BufferState; CBufferState | buff = (1 . . size) C (〈cache〉 a ((bot − 1) � ring)) ]

Instead of proposing a new action from scratch, we consider the schema actions and rely on the fact that
forwards simulation distributes through the action constructors (laws of Section 4). The new actions have
the same structure as the original ones, but use the new schema actions.

The first schema action is the initialisation BufferInit . Initially, the buffer is empty and so has size
zero; for the concrete initialisation, we choose some suitable values for top and bot .

CBufferInit =̂ [CBufferState ′ | size ′ = 0 ∧ bot ′ = 1 ∧ top′ = 1 ]

To prove that this new initialisation is related to BufferInit by forwards simulation, we need to apply
Law 41, which considers schema actions. In this case, however, the provisos are simplified because ini-
tialisation schemas do not include the state components that represent the before state and have true as
precondition. We actually obtain the standard proviso for refinement of initialisations in Z. All we have
to prove is that

∀BufferState; CBufferState; CBufferState ′ •
RetrBuffer ∧ CBufferInit ⇒ (∃BufferState ′ • RetrBuffer ′ ∧ BufferInit)

This is a simple proof: the one-point rule, and the fact that (∅ C s) = 〈〉 for any sequence s , can be used
to reduce ∃CBufferState ′ • RetrBuffer ′ ∧ BufferInit to true. As this is on the right-hand side of the
implication above, the proof-obligation is discharged.

The concrete input action corresponding to InputCmd has to consider whether the buffer is empty or
not. If it is empty, then the input must be kept in the cache; if it is non-empty, then it must be passed
on to the appropriate ring cell. When the input is cached, the top and bot indices do not change.

CacheInput =̂ [ ∆CBufferState; x? : N | size = 0 ∧ size ′ = 1 ∧ cache ′ = x? ∧ bot ′ = bot ∧ top′ = top ]

When the input is passed on to the ring, the corresponding value is stored and the top index advances.



StoreInput
∆CBufferState
x? : N

0 < size < maxbuff
size ′ = size + 1 ∧ cache ′ = cache
bot ′ = bot ∧ top′ = (top mod maxring) + 1
ring ′ = ring ⊕ {top 7→ x?}

The overall state change caused by an input to the buffer can be captured by the disjunction below.

CInputCmd =̂ CacheInput ∨ StoreInput

Again, we can justify this step with an application of Law 41. The proof-obligations are simple, if long;
this is standard Z data refinement. We observe that the precondition of CInputCmd is the disjunction of
the preconditions of CacheInput and StoreInput , and amounts to size < maxbuff .

Since CInputCmd simulates InputCmd , we can apply Laws 44 and 42 to obtain the following simulation
of Input . The structure of Input is preserved and InputCmd is replaced with CInputCmd .

CInput0 =̂ size < maxbuff & input?x → CInputCmd

In this case, the guard is not changed and the first proviso of Law 44 is trivial. In the next development
step (Section 7.2) this action is refined to refer directly to the CacheInput and StoreInput operations.

The refinement of Output is similar; as for the input, there is a case analysis. The output always comes
from the cache, which must be replaced if the ring is non-empty. If the ring is empty, we have size = 1;
in this case size is reset and nothing else changes.

NoNewCache
∆CBufferState

size = 1
size ′ = 0 ∧ cache ′ = cache
bot ′ = bot ∧ top′ = top ∧ ring ′ = ring

If the ring is non-empty, then an element obtained from the ring is stored in the cache; the index bot is
advanced, and the index top is unchanged.

StoreNewCache
∆CBufferState

size > 1
size ′ = size − 1 ∧ cache ′ = ring bot
bot ′ = (bot mod maxring) + 1 ∧ top′ = top
ring ′ = ring

The overall state change caused by an output from the buffer can be captured by the disjunction below.

COutputCmd =̂ NoNewCache ∨ StoreNewCache

Law 41 can be used to justify that COutputCmd simulates OutputCmd . Laws 44 and 43 justify that
COutput0 below simulates Output .

COutput0 =̂ size > 0 & output !(cache) → COutputCmd

The output expression head buff is replaced with cache. This is justified by RetrBuffer , which amounts
to buff = (1 . . size) C (〈cache〉 a ((bot − 1) � ring)), which implies that head buff is cache, since, in the
context of the communication, size > 0.

Finally, the main action of the centralised ring buffer also has the same structure of that of the original
Buffer . We simply replace the original input and output actions with those presented above.

• CBufferInit ; µX • (CInput0 2 COutput0); X

end

This step can be justified applying Laws 45 and 48.



7.2 Action refinement: decompose input and output actions

In the previous step, we have structured the state change resulting from an input to, or output from,
the buffer in terms of separate operation schemas. This reflected a case analysis on whether the ring
or just the cache needed to be accessed. Nevertheless, the CInput0 as well as the COutput0 actions still
refer to the compound operation which combines the two cases. This was intentional: we kept an explicit
correspondence between the abstract and concrete operations in order to allow a simpler justification of
the data refinement.

We perform a simple design step to promote the case analysis from the operations on the state to the
actions. We show only the refined actions and, afterwards, give Lemma 1 that justifies the refinement.

Input is enabled when the buffer is not full; in that case, the behaviour depends on whether the buffer
is empty or not. If the buffer is empty, the corresponding state change is captured by CacheInput ; if it is
not, the behaviour is captured by StoreInput .

CInput =̂ size < maxbuff & input?x → (size = 0 & CacheInput 2 size > 0 & StoreInput)

The output action is enabled when there is something in the buffer; the subsequent behaviour depends
on whether the ring is empty or not.

COutput =̂ size > 0 & output !cache → (size > 1 & StoreNewCache 2 size = 1 & NoNewCache)

The following lemma formalises the refinement of the input action.

Lemma 1 (Refinement of CInput0). CInput0 vA CInput

Proof

LHS

vA size < maxbuff & input?x → size = 0 & CInputCmd ∧ [CBufferState | size = 0 ]
2 size > 0 & CInputCmd ∧ [CBufferState | size > 0 ]

[Law 63]

vA RHS [schema and predicate calculus]

2

The refinement of COutput0 is analogous; its proof follows from the same laws above.

7.3 Action refinement: controller and ring partitions

The purpose of this refinement step is to reorganise the internal structure of the Buffer with the aim of
obtaining two independent sets of paragraphs (partitions). One set of paragraphs accesses exclusively the
ring and is, in the next step, promoted into an independent process. The other set of paragraphs accesses
the remaining components, and is, also in the next step, turned into a controller process that remains
unchanged up to the end of the development.

In some circumstances, this partitioning of the state space is not direct. For example, the StoreInput
operation updates both top and ring. Splitting it into two operations is not immediate, because the
operation that is concerned with updating the ring needs the input value (x?) and the current value of
top. The main design tool to solve such data dependencies is introduction of communication. We need
two new channels, which are used to exchange information between the ring and the controller processes.

channel write, read : (1 . . maxring) × N

These channels are hidden in the Buffer design and implementation. These declarations allow multi-part
communication; we use write and read to communicate pairs of values, as in write.i?x .

We decompose the state of the buffer into two separate schemas, each one is a state space for a set of
process paragraphs.

ControllerState
size : 0 . . maxbuff ; ringsize : 0 . . maxring
cache : N

top, bot : 1 . . maxring

ringsize = max{0, size − 1}
ringsize mod maxring = (top − bot) mod maxring



RingState =̂ [ ring : seq N | #ring = maxring ]

state CBufferState =̂ ControllerState ∧ RingState

The first set of paragraphs has ControllerState as its state space, whilst not constraining RingState. The
initialisation is for an empty buffer.

ControllerInit =̂ [ControllerState ′; RingState ′ | size ′ = 0 ∧ bot ′ = 1 ∧ top′ = 1 ]

In the case the buffer is empty, an input is cached. The ring indices do not change and the buffer now
contains a single item.

CacheInput
∆ControllerState
ΞRingState
x? : N

size = 0
cache ′ = x? ∧ size ′ = 1
bot ′ = bot ∧ top′ = top

If the buffer is not empty, the cache is not changed; the indices and the size of the ring are updated, but
the ring itself is not changed.

StoreInputController
∆ControllerState
ΞRingState

0 < size < maxbuff
size ′ = size + 1 ∧ cache ′ = cache ∧ bot ′ = bot ∧ top′ = (top mod maxring) + 1

The action below gets the new input and, if necessary, sends it to the ring along with the position top in
which the input is to be stored. This communication is through the channel write.

InputController =̂
size < maxbuff & input?x → size = 0 & CacheInput

2

size > 0 & write.top!x → StoreInputController

Concerning output, the value in the cache is always the one which is communicated. If the buffer has a
single element, communicating this element is the only relevant action.

NoNewCache
∆ControllerState
ΞRingState

size = 1
size ′ = 0 ∧ cache ′ = cache ∧ bot ′ = bot ∧ top′ = top

Nevertheless, if there are elements stored in the ring, the value x? at position bot must be recovered. In
this case, the cache is updated with this value and bot is incremented.

StoreNewCacheController
∆ControllerState
ΞRingState
x? : N

size > 1
size ′ = size − 1 ∧ cache ′ = x? ∧ bot ′ = (bot mod maxring) + 1 ∧ top′ = top



The following action captures the necessary case analysis for output. The channel read is used to recover
the element x? at position bot in the ring.

OutputController =̂
size > 0 & output !cache → size > 1 & read .bot?x → StoreNewCacheController

2

size = 1 & NoNewCache

The behaviour of the controller is as follows.

ControllerAction =̂ ControllerInit ; µX • (InputController 2 OutputController); X

After initialisation, inputs and outputs are offered repeatedly, whenever possible.
The second set of paragraphs has as its state space RingState, whilst preserving ControllerState. The

next action stores a value in the ring.

StoreRingCmd
∆RingState
ΞControllerState
i? : 1 . . maxring; x? : N

ring ′ = ring ⊕ {i? 7→ x?}

Although all state components are in scope, we restrict direct access to RingSate and receive the current
value of top through the write channel.

StoreRing =̂ write?i?x → StoreRingCmd

To send the value stored at a given position of the ring requires no state change.

NewCacheRing =̂ read?i !(ring i) → Skip

In a multi-part communication as read?i !(ring i), it is possible to use the input value i to express the
output value ring i , since i is immediately in scope after the input.
The ring repeatedly offers the external choice between StoreRing and NewCacheRing actions.

RingAction =̂ µX • (StoreRing 2 NewCacheRing); X

The control behaviour of the process Buffer is given by the parallel execution of the controller and the
ring, hiding the internal channels.

• (ControllerAction |[ α(ControllerState) | {| write, read , |} | α(RingState) ]| RingAction) \ {| write, read |}

end

This is actually a significant refinement step, but it involves no change of data representation. To prove
that it is valid, we need to compare the above main action to that of the data refined buffer. The relevant
tools are the action refinement laws.

We start carrying out some refinement steps in the actions CInput and COutput . The purpose is to
linearise guards and prefixes (through their distribution over external choice) and parallelise the state
update to separate the controller from the ring components. These transformations are captured by the
following lemmas, which are used in Theorem 3 to justify this refinement step. Their proofs illustrate the
application of the laws for introducing parallelism. We also reference some simple laws of CSP which are
presented in Appendix A. From the identification of each law that justifies a refinement step, it is clear
whether it is presented in Section 6 or in Appendix A.

Lemma 2 (Refinement of CInput).

CInput vA size = 0 & input?x → CacheInput
2

0 < size < maxbuff & input?x →
(write?i?y → StoreRingCmd

|[α(RingState) | {| write |} | α(ControllerState)]|
write.top!x → StoreInputController) \ {| write |}



Proof

LHS

vA size < maxbuff & (size = 0 & input?x → CacheInput 2 size > 0 & input?x → StoreInput)

[Law A22]

vA size = 0 & input?x → CacheInput 2 0 < size < maxbuff & input?x → StoreInput [Laws A3, A1]

vA RHS [Law 67 and schema refinement]

2

We proceed in much the same way for the output action.

Lemma 3 (Refinement of COutput).

COutput vA size > 1 & output !cache →
(read?i !(ring i) → Skip

|[α(RingState) | {| read |} | α(ControllerState)]|
read !bot?x → StoreNewCacheController) \ {| read |}

2

size = 1 & output !cache → NoNewCache

Proof In this proof we make use of intermediate channels that need to be declared.

channel read1 : 1 . . maxring; read2 : N;

The communications over these channels are later combined so that read is used instead of read1 and
read2. Unused channel declarations can be introduced and removed from a program, as much as processes
can (see Law 51). When the uses of read1 and read2 are eliminated, their declaration can be eliminated.
This use of channels for development purposes only is similar to that of logical constants in [18, 4].

LHS

vA size > 0 & (size > 1 & output !cache → StoreNewCache 2 size = 1 & output !cache → NoNewCache)

[Law A22]

vA size > 1 & output !cache → StoreNewCache 2 size = 1 & output !cache → NoNewCache

[Laws A3 and A1]

vA size > 1 & output !cache → (Skip; read2!(ring bot) → Skip
|[α(RingState) | {| read2 |} | α(ControllerState)]|

read2?x → StoreNewCacheController) \ {| read2 |}
2

size = 1 & output !cache → NoNewCache

[Laws A32 and 68]

vA size > 1 & output !cache →
((read1?i → read2!(ring i) → Skip

|[α(RingState) | {| read1, read2 |} | α(ControllerState)]|
read1!bot → read2?x → StoreNewCacheController) \ {| read1 |}) \ {| read2 |})

2

size = 1 & output !cache → NoNewCache

[Laws A32, 611]

vA RHS [Laws A28, 69]

2

The initialisation of the controller (ControllerInit) refines the initialisation of the buffer (CBufferInit),
since all the state elements are initialised with the same values, except for the ring, which can take an
arbitrary value upon initialisation; but this is the case in both schemas. The following lemma records this
refinement.

Lemma 4 (Initialisation).

CBufferInit vA ControllerInit 2



We proceed to justify the proof obligation for this development step. In the development below, all
occurrences of the parallel operator are of the form A1 |[ α(RingState) | {| cs |} | α(ControllerState) ]| A2,
for actions A1 and A2, and synchronisation set cs . For conciseness, we omit the alphabets on both sides
and write simply A1 |[ {| cs |} ]| A2.

Theorem 3 (Refinement of the centralised buffer action).

CBufferInit ; µX • (CInput 2 COutput); X
vA

(ControllerAction |[ {| write, read |} ]| RingAction) \ {| write, read |}

Proof The first step of the proof applies the previous lemmas to introduce parallelism in the CInput and
in the COutput actions, as well as to replace the initialisation of the buffer with that of the controller.

LHS

vA ControllerInit ;
µX • (size = 0 & input?x → CacheInput

2

0 < size < maxbuff & input?x → (write?i?y → StoreRingCmd
|[{| write |}]|

write.top!x → StoreInputController) \ {| write |}
2

size > 1 & output !cache → (read?i !(ring i) → Skip
|[{| read |}]|

read !bot?x → StoreNewCacheController) \ {| read |}
2

size = 1 & output !cache → NoNewCache); X

[Lemmas 2, 3, and 4.]

The second step distributes guards and prefixes over parallelism; for that, first the scopes of the hidings
have to be extended to encompass the prefixes and the guards.

vA ControllerInit ;
µX • (size = 0 & input?x → CacheInput

2

(0 < size < maxbuff & input?x → write?i?y → StoreRingCmd
|[{| write, input |}]|

0 < size < maxbuff & input?x → write.top!x → StoreInputController) \ {| write |}
2

(size > 1 & output !cache → read?i !(ring i) → Skip
|[{| read |}]|

size > 1 & output !cache → read !bot?x → StoreNewCacheController) \ {| read |}
2

size = 1 & output !cache → NoNewCache); X

[Laws A29, A24, A5]

The following two steps further extend the hiding and unify the synchronisation sets.

vA ControllerInit ;
µX • ((size = 0 & input?x → CacheInput

2

(0 < size < maxbuff & input?x → write?i?y → StoreRingCmd
|[{| write, input |}]|

0 < size < maxbuff & input?x → write.top!x → StoreInputController)
2

(size > 1 & output !cache → read?i !(ring i) → Skip
|[{| read , output |}]|

size > 1 & output !cache → read !bot?x → StoreNewCacheController)
2

size = 1 & output !cache → NoNewCache); X ) \ {| read ,write |}

[Laws A29, A28]



vA ControllerInit ;
µX • ((size = 0 & input?x → CacheInput

2

(0 < size < maxbuff & input?x → write?i?y → StoreRingCmd
|[{| write, input , read , output |}]|

0 < size < maxbuff & input?x → write.top!x → StoreInputController)
2

(size > 1 & output !cache → read?i !(ring i) → Skip
|[{| write, input , read , output |}]|

size > 1 & output !cache → read !bot?x → StoreNewCacheController)
2

size = 1 & output !cache → NoNewCache); X ) \ {| read ,write |}

[Law 610]

Now we are ready to apply a law that allows exchanging parallelism and external choice.

vA ControllerInit ;
µX • ((size = 0 & input?x → CacheInput

2

((0 < size < maxbuff & input?x → write?i?y → StoreRingCmd
2

size > 1 & output !cache → read?i !(ring i) → Skip)
|[{| write, input , read , output |}]|

(0 < size < maxbuff & input?x → write.top!x → StoreInputController)
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController))
2

size = 1 & output !cache → NoNewCache); X ) \ {| read ,write |}

[Law 614]

The next transformation eliminates the unnecessary synchronisation on the channels input and output
and the corresponding guards. The synchronisation set is reduced to {|write, read |}.

vA ControllerInit ;
µX • ((size = 0 & input?x → CacheInput

2

((write?i?y → StoreRingCmd 2 read?i !(ring i) → Skip)
|[{| write, read |}]|

(0 < size < maxbuff & input?x → write.top!x → StoreInputController
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController))
2

size = 1 & output !cache → NoNewCache); X ) \ {| read ,write |}

[Law 612]

The following step is justified by a lemma which is itself derived by simple symbolic execution and fixed
point calculation; this lemma and a sketch of its proof can be found in Appendix B. It guarantees that, in
this particular context, it is possible to obtain some sort of distribution of recursion over parallelism.

vA ControllerInit ;
((µX • (write?i?y → StoreRingCmd 2 read?i !(ring i) → Skip); X )

|[{| write, read |}]|
(µX • (size = 0 & input?x → CacheInput

2

0 < size < maxbuff & input?x → write.top!x → StoreInputController
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController
2

size = 1 & output !cache → NoNewCache); X )) \ {| read ,write |}

[Lemma 5]



The next step moves the initialisation close to the controller action; the final step restructures the guards.

vA ((µX • (write?i?y → StoreRingCmd 2 read?i !(ring i) → Skip); X )
|[{| write, read |}]|

(ControllerInit ;
µX • (size = 0 & input?x → CacheInput

2

0 < size < maxbuff & input?x → write.top!x → StoreInputController
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController
2

size = 1 & output !cache → NoNewCache); X )) \ {| read ,write |}

[Laws A29, 613]

vA RHS [Laws A1, A3, A22]

2

This completes the current development step.

7.4 Process refinement: split centralised buffer into a controller and a ring

As a result of the previous development step, the process Buffer is partitioned: it has two disjoint sets
of paragraphs with respect to ControllerState and RingState. Therefore, with an application of Law 52,
Buffer can be split into two independent processes: a controller and a ring process.

Figure 4 gives the description of the Controller process, and Figure 5 specifies the Ring. The buffer
process becomes the parallel composition of the Ring and the Controller .

process Buffer =̂ (Controller |[ {| write, read |} ]| Ring) \ {| write, read |}

This step is a direct application of Law 52, and concludes the first iteration of our development. As
mentioned before, the Controller remains unchanged up to the end of the development, whereas the Ring
is further refined into an indexed interleaving of ring cells.

7.5 Data refinement: the ring process as a promotion of ring cells

This is the first step of our second development iteration, which aims at partitioning the Ring process.
In this step, we introduce the concept of a ring cell as an abstract data type and restructure the process
Ring as a promotion of ring cells that communicate over channels rd and wrt .

channel rd ,wrt : N

Later, we use indexing to introduce channels that communicate the position of the cell in the ring, as
well as the value of the cell, as rd and wrt do.
A ring cell is required to store only a natural number.

process Ring =̂ begin

CellState =̂ [ val : N ]

There are two actions on the ring cell state. Read merely outputs val .

Read =̂ rd !val → Skip

The Write action updates val .

CellWrite =̂ [ ∆CellState; x? : N | val ′ = x? ]

Write =̂ wrt?x → CellWrite

The ring cell allows either Read or Write actions.

RingCellController =̂ µX • (Read 2 Write); X



process Controller =̂ begin

state

ControllerState
size : 0 . . maxbuff ; ringsize : 0 . . maxring
cache : N; top, bot : 1 . . maxring

ringsize = max{0, size − 1}
ringsize mod maxring = (top − bot) mod maxring

ControllerInit =̂ [ControllerState ′ | size ′ = 0 ∧ bot ′ = 1 ∧ top′ = 1 ]

CacheInput
∆ControllerState; x? : N

size = 0 ∧ size ′ = 1 ∧ cache ′ = x? ∧ bot ′ = bot ∧ top′ = top

StoreInputController
∆ControllerState

0 < size < maxbuff
size ′ = size + 1 ∧ cache ′ = cache
bot ′ = bot ∧ top′ = (top mod maxring) + 1

InputController =̂ size < maxbuff & input?x → size = 0 & CacheInput
2

size > 0 & write.top!x → StoreInputController

NoNewCache =̂ [ ∆ControllerState | size = 1 ∧ size ′ = 0 ∧ cache ′ = cache ∧ bot ′ = bot ∧ top′ = top ]

StoreNewCacheController
∆ControllerState; x? : N

size > 1 ∧ size ′ = size − 1 ∧ cache ′ = x? ∧ bot ′ = (bot mod maxring) + 1 ∧ top′ = top

OutputController =̂ size > 0 & output !cache → size > 1 & read .bot?x → StoreNewCacheController
2

size = 1 & NoNewCache

• ControllerInit ; µX • (InputController 2 OutputController); X

end

Fig. 4. Controller process specification.



process Ring =̂ begin

state RingState =̂ [ ring : seq N | #ring = maxring ]

StoreRingCmd =̂ [ ∆RingState; i? : 1 . . maxring ; x? : N | ring ′ = ring ⊕ {i? 7→ x?} ]

StoreRing =̂ write?i?x → StoreRingCmd

NewCacheRing =̂ read?i !(ring i) → Skip

RingAction =̂ µX • (StoreRing 2 NewCacheRing); X

• RingAction

end

Fig. 5. Ring process specification.

In this context, RingCellController is like any other action, but it does characterise the behaviour of a
ring cell, and, in the next step, becomes the main action of the process that describes a cell.

The ring is simply a sequence of cells.

state RingStateP =̂ [ ringP : seqCellState | #ring = maxring ]

The promotion schema relates the local state of ring cells to the sequence of cells. The relevant ring cell
in the collection is that indexed by i?.

Promotion
∆CellState
∆RingStateP
i? : 1 . . maxring

θCellState = ringP i?
ringP ′ = ringP ⊕ { i? 7→ θCellState ′ }

StoreRingCmd is defined as a promotion of CellWrite, in a standard way.

StoreRingCmdP =̂ ∃∆CellState • CellWrite ∧ Promotion

The StoreRing action is not touched, except that it now uses StoreRingCmdP , instead of StoreRingCmd .

StoreRingP =̂ write?i?x → StoreRingCmdP

If we consider that the promotion of the channel wrt is the channel write, then StoreRingP is the result
of promoting Write.
The NewCacheRing action is defined by promoting Read in a similar way.

NewCacheRingP =̂ read?i !(ringP i).val → Skip

The promotion of rd is read . Promoting val we get (ringP i).val .
The main action of the promoted ring is defined by the same CSP expression as the original process.

RingAction =̂ µX • (StoreRingP 2 NewCacheRingP); X

• RingAction

The actions involved, however, have been promoted.

end



This step can be justified by a simulation relating the sequence of cells to the sequence of natural numbers.
The retrieve relation is as follows.

RetrRing =̂ [RingState; RingStateP | ring = { i : 1 . . maxring • i 7→ (ringP i).val } ]

The sequence ring of integers is obtained from the sequence ringP of cells by extracting the val of each
cell.

We have to prove that RetrRing is a simulation between the original and the new main actions. We
proceed compositionally, based on Laws 46, 45, and 48. So, we focus on StoreRingP and NewCacheRingP .

For NewCacheRingP , we use Law 43. We have to prove the property below.

∀RingState; RingStateP ; i : N • RetrRing ⇒ ring i = (ringP i).val

This follows directly from the definition of RetrRing.
For StoreRingP , we can apply Law 42, if we can prove that StoreRingCmdP simulates StoreRingCmd ,

for which we apply Law 41. Since the preconditions of these schemas are both true, the first proof
obligation is trivial. The second proof obligation is as follows.

∀RingState; RingStateP ; RingStateP ′ • RetrRing ∧ StoreRingCmdP ⇒
(∃RingState ′ • RetrRing ′ ∧ StoreRingCmd)

This can be discharged with a few applications of the one-point rules.

7.6 Process refinement: a distributed cached-head ring buffer

This is the final step of our second iteration and of the development process as a whole. Each ring cell
is implemented as an independent Circus process as the result of an application of Law 53 to Ring. We
observe that a sequence is a special case of a partial function, which is the kind of global component
actually considered in the presentation of Law 53.

The process that represents a ring cell is defined as follows.

process RingCell =̂ begin

state CellState =̂ [ val : N ]

Read =̂ rd !val → Skip

CellWrite =̂ [ ∆CellState; x? : N | val ′ = x? ]

Write =̂ wrt?x → CellWrite

• µX • (Read 2 Write); X

end

The indexed ring cell is defined as follows.

process IRCell =̂ (i : 1 . . maxring � RingCell)[rd i ,wrt i := read ,write]

The indexed process operates on the channels rd i and wrt i , which have type (1 . . maxring) × N. We
rename them to read and write, which are the promoted channels. The indexed ring cell behaves like a
ring cell, except that the communications rd !val and wrt?x are replaced by read .i !val and write.i?x .
The ring is constructed by interleaving the indexed ring cells.

process Ring =̂ ||| i : 1 . . maxring � IRCellbic

There is no interaction between the ring cells, so the definition is appropriate as a refinement of a sequence.
This results from an application of Law 53. ZRC can now be used to refine the schema actions to code.

This design is just one of the possible implementations of the buffer. For example, we could have a
fully distributed implementation, without a cached head; this involves a more complicated ring protocol.



8 Conclusions and related work

In the course of linking theories, methods, and techniques to support the development of concurrent
systems, we have proposed a refinement strategy for Circus, based on existing approaches to refinement
for Z, CSP, and the refinement calculus. As a consequence of the orthogonal design of Circus, the reuse of
existing refinement laws is immediate. Notwithstanding, novel refinement concepts, laws, and techniques
are needed and have been presented here.

A Circus process encapsulates a state in the style of Z, and has a behaviour given by an action
described in a mixture of CSP, Z, and guarded commands. In this context, notions of process refinement,
and forwards and backwards simulation have been introduced. Among the refinement laws, we single
out those of processes, and the laws of actions which relate schema expressions with CSP operators like
parallelism and choice; as far as we know, these are novel. The Z technique of promotion has also been
generalised from ordinary data types to processes. All these have been linked together under a strategy
which gives some guidance to conducting refinement in Circus, as illustrated by the complete development
of our buffer case study.

The work that is most closely related to Circus is that of action systems. An action system consists of a
state and a program described as a simple set of guarded commands. The behaviour of the action system
is given by a simple interpreter for the program that repeatedly selects an enabled action and executes
it. Action systems describe a general model for parallelism, where a process is reduced to the sequential
interleaving of atomic steps. A model for concurrency with shared variables is obtained by partitioning
the actions amongst different processes; a model for distributed systems is obtained by partitioning the
variables amongst the processes. The emphasis is on the state of an action system, with interaction
described through the interference of shared variables.

Back and Sere [1] describe the combination of the refinement calculus and action systems in the
derivation of parallel and distributed algorithms. They start from a purely sequential algorithm and
proceed by stepwise refinement until an efficient parallel program is derived. Most steps are accomplished
as sequential refinements, with parallelism being introduced only through the decomposition of atomic
actions.

The main difference between the action system approach and Circus is due to the very basic nature
of the action system formalism in comparison with process algebra. Control flow in an action system
is simple: select an enabled guard; execute it; repeat. This gives a very flat structure, where auxiliary
variables simulating program counters are needed to guarantee the proper sequencing of actions. In Circus,
control flow is described using the process algebraic operators of CSP and, as a result, a rich set of laws
are available for process and action refinement that have no direct correspondence in action systems.
The two approaches are formally linked: Woodcock and Morgan [29] show how to calculate the failures-
divergences semantics of an action system, and they provide sound and complete techniques for data
refinement without unbounded nondeterminism. Butler [2] extends this work to include internal actions
and unbounded nondeterminism. With these links, we may be able to take inspiration from the rules
related to decomposition in Back and Sere’s work to propose further laws for Circus.

Olderog [20] introduces a design calculus for occam-like communicating programs that allows for
the stepwise development of correct programs. The programs are given an imperative trace-readiness
semantics, and specifications are given in terms of assertions. The program and specification semantics
are uniformly presented in a predicative style similar in spirit to that of unifying theories of programming.
In fact, both works have roots in the Esprit ProCoS project. The design rules of [20] can be another
source of inspiration for further refinement laws for Circus actions.

We are conducting a series of formal developments of concurrent programs using Circus, both in
academia, as case studies, and in industry, as part of a commercial project. The verification of the laws
of Circus is a major task. We have recently completed a mechanisation of a major part of the semantic
metalanguage in both Z/Eves and ProofPowerZ. This provides the possibility of machine-checking the
proofs, although such an exercise is very labour-intensive.

We have also recently started work on tools for Circus. A parser is complete, and we are now working
on a type-checker and a model-checker for Circus refinement. A tool to support the application of the
laws presented here and the others that are to come is also in our plans.

In [5] we give an alternative semantics for actions, based on weakest preconditions. In the spirit of the
unifying theories of programming, we calculate the new semantics from the relational definition. The new
formulation of the action semantics is more adequate as a basis for verification techniques. Our refinement
laws are, of course, laws of both models.



In some sense, we can relate our development strategy for Circus to refactoring in the object-oriented
literature. Our process splitting laws allow partitioning of a process in a way similar to a refactoring
known as extracting class [8]. Our law that deals with promotion (Law 53) captures a more elaborate
transformation in that the result is an indexed interleaving of processes. The addition of object-oriented
constructs to Circus, however, is left as future work.
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A Action Refinement Laws

Here we introduce some additional laws of actions.

A.1 Guards

Law A1 (Guard combination)

g1 & (g2 & A) = (g1 ∧ g2) & A 2

Law A2 (Guard/Sequence—Association)

(g & A1); A2 = g & (A1; A2) 2

Law A3 (Guard/External choice—Distribution)

g & (A1 2 A2) = (g & A1) 2 (g & A2) 2

Law A4 (Guard/Internal choice—Distribution)

g & (A1 u A2) = (g & A1) u (g & A2) 2

Law A5 (Guard/Parallelism—Distribution 1)

g & (A1 |[ns1 | cs | ns2 ]| A2) = (g & A1) |[ns1 | cs | ns2 ]| (g & A2) 2

Law A6 (Guard/Parallelism—Distribution 2)

(g1 & A1) |[ns1 | cs | ns2 ]| (g2 & A2) = (g1 ∨ g2) & ((g1 & A1) |[ns1 | cs | ns2 ]| (g2 & A2)) 2

Law A7 (Guard/Interleaving—Distribution 1)

g & (A1 ||[ns1 | ns2]|| A2) = (g & A1) ||[ns1 | ns2]|| (g & A2) 2

Law A8 (Guard/Interleaving—Distribution 2)

(g1 & A1) ||[ns1 | ns2]|| (g2 & A2) = (g1 ∨ g2) & ((g1 & A1) ||[ns1 | ns2]|| (g2 & A2)) 2

Law A9 (True Guard)

true & A = A 2

Law A10 (False Guard)

false & A = Stop 2

Law A11 (Guarded Stop)

g & Stop = Stop 2



A.2 Assumptions

Law A12 (Assumption/Guard—Elimination 2)

{ g1 }; (g2 & A) = { g1 }; Stop

provided g1 ⇒ ¬ g2 2

Law A13 (Assumption/Guard—Replacement)

{ g1 }; (g2 & A) = { g1 }; (g3 & A)

provided g1 ⇒ (g2 ⇔ g3) 2

Law A14 (Assumption/Internal Choice—Distribution)

{p}; (A1 2 A2) = ({p}; A1) 2 ({p}; A2) 2

Law A15 (Assumption/Parallelism—Distribution)

{p}; (A1 |[ns1 | cs | ns2 ]| A2) = ({p}; A1) |[ cs ]| ({p}; A2) 2

Law A16 (Assumption/Interleaving—Distribution)

{p}; (A1 ||[ns1 | ns2]|| A2) = ({p}; A1) ||[ns1 | ns2]|| ({p}; A2) 2

In the following law we refer to a predicate assump′. In general, for any predicate p, the predicate p′ is
formed by dashing all its free undecorated variables.

Law A17 (Assumption Introduction—Schema Expression)

[∆State; i? : Ti ; o! : To | p ∧ assump′] = [∆State; i? : Ti ; o! : To | p ∧ assump′]; {assump} 2

The schema in this law is an arbitrary schema that specifies an action in Circus: it acts on a state schema
State and, optionally, has input variables i? of type Ti , and output variables o! of type To .

Law A18 (Assumption Elimination)

{p} v Skip 2

A.3 Parallelisation

Law A19 (Parallelism Introduction—Sequence 2)

A1(x ); A2(x ) = (c!x → A1(x ) |[wrtV (A2) | {|c|} | wrtV (A2) ]| c?y → A2(y)) \ {|c|}

syntactic restrictions

• wrtV (A1) ∩ usedV (A2) = ∅;
• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);
• y /∈ FV (A2). 2

Law A20 (Parallelism Introduction—Sequence 3)

A1(x ); A2(x ) v ((A1(x ); c!x → Skip) |[wrtV (A2) | {|c|} | wrtV (A2) ]| (c?y → A2(y))) \ {|c|}

syntactic restrictions

• c is a valid channel of type T ;

• c /∈ usedC (A1) ∪ usedC (A2);
• y /∈ FV (A2).

provided wrtV (A1) ∩ usedV (A2) = {x} 2



A.4 Prefixing

Law A21 (Prefix/Sequential Composition—Association)

c → (A1; A2) = (c → A1); A2

syntactic restriction FV (A2) ∩ α(c) = ∅ 2

The following are laws for distribution.

Law A22 (Prefix/External choice—Distribution)

c → 2 i • gi & Ai = 2 i • gi & c → Ai

provided ∨ i • gi

syntactic restriction FV (gi) ∩ α(c) = ∅, for all i 2

The proviso is needed to ensure that at least one guard is valid, so that in the right-hand side action the
communication does take place.

Law A23 (Prefix/Internal choice—Distribution)

c → (A1 u A2) = (c → A1) u (c → A2) 2

Law A24 (Prefix/Parallelism—Distribution)

c → (A1 |[ cs ]| A2) = (c → A1) |[ns1 | cs ∪ {|c|} | ns2 ]| (c → A2)

syntactic restriction c /∈ usedC (A1) ∪ usedC (A2) or c ∈ cs 2

A.5 External choice

Law A25 (External choice/Sequence—Distribution)

(2 i • gi & ci → Ai); B = 2 i • gi & ci → Ai ; B 2

A.6 Parallelism

Law A26 (Parallelism/External Choice - Distribution)

A1 |[ cs ]| (A2 2 A3) = (A1 |[ cs ]| A2) 2 (A1 |[ cs ]| A3)

provided

• usedC (A1) ⊆ cs ;
• A1 is deterministic.

2

Law A27 (Parallelism Deadlock)

g1 & c1 → A1 |[ns1 | cs ∪ {|c1, c2|} | ns2 ]| g2 & c2 → A2 = Stop

provided c1 6= c2 2



A.7 Hiding

Law A28 (Hide combination)

(A \ cs1) \ cs2 = A \ (cs1 ∪ cs2) 2

Law A29 (Hide expansion)

F (A \ cs) = F (A) \ cs

provided cs ∩ usedC (F ( )) = ∅ 2

A.8 Recursion

Law A30 (Recursion Unfold)

µX • F (X ) = F (µX • F (X )) 2

Law A31 (Recursion—Least Fixed Point)

F (Y ) v Y ⇒ µX • F (X ) v Y 2

A.9 Unit and Zero Laws

Law A32 (Sequence—Unit)

Skip; A = A = A; Skip 2

Law A33 (External Choice—Unit)

Stop 2 A = A 2

Law A34 (Sequence—Zero)

Stop; A = Stop 2

Law A35 (Parallelism—Zero)

A |[ cs ]| Stop = Stop 2

B Some fixed point calculation for the case study

In the case study (see Section 7.3), it is necessary to split a single recursion (whose body is the par-
allel composition of ring and controller actions) into the parallel combination of two recursive actions:
one concerned with the behaviour of the ring and the other with the behaviour of the controller. This
transformation is captured by the following lemma.



Lemma 5 (Fixed point calculation).

µX •
((size = 0 & input?x → CacheInput

2

((write?i?y → StoreRingCmd 2 read?i !ring[i ] → Skip)
|[{| write, read |}]|

(0 < size < maxbuff & input?x → write.top!x → StoreInputController
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController))
2

size = 1 & output !cache → NoNewCache); X ) \ {| read ,write |}

vA

((µ X • (write?i?y → StoreRingCmd 2 read?i !ring[i ] → Skip); X )
|[{| write, read |}]|

(µ X •
(size = 0 & input?x → CacheInput
2

0 < size < maxbuff & input?x → write.top!x → StoreInputController
2

size > 1 & output !cache → read !bot?x → StoreNewCacheController
2

size = 1 & output !cache → NoNewCache); X )) \ {| read ,write |}
2

It is well-known that recursion does not distribute through parallelism in general. The proof of the above
lemma is derived by simple, although lengthy, fixed point calculation. We omit the detailed proof, but
discuss some of the more relevant steps, pointing to the laws which are necessary to conduct the proof.

Starting with the right-hand side of the lemma, we unfold the second recursion (Law A30). Afterwards,
we distribute the entire recursion through each of the choices inside of the recursion body (Law A25).
We then combine, in parallel, the first recursive program with each of the branches of the second recur-
sion (Law A26).

The strategy is then to show that each of these branches can be transformed into a branch of the
recursion on the left-hand side of the lemma, followed by the entire right-hand side itself. For these we
use a step law for parallelism (Law 613), recursion unfold (Law A30), and distribution of external choice
through sequential composition (Law A25).

This results in a program which coincides with the body of the recursion on the left-hand side of the
lemma, except that in place of the recursive call we have the right-hand side itself. Therefore we apply
the least fixed point law (Law A31) to conclude the proof.


