
Local Livelock Analysis of Component-Based
Models

M. S. Conserva Filho1, M. V. M. Oliveira1, A. Sampaio2, and Ana Cavalcanti3

1 Universidade Federal do Rio Grande do Norte – Brazil
madiel@ppgsc.ufrn.br, marcel@dimap.ufrn.br
2 Universidade Federal de Pernambuco – Brazil,

3 University of York – UK

Abstract. In previous work we have proposed a correct-by-construction
approach for building deadlock-free CSP models. It contains a compre-
hensive set of composition rules that capture safe steps in the devel-
opment of concurrent systems. In this paper, we extend that work by
proposing and implementing a strategy for establishing livelock freedom
based on constructive rules similar to those that ensure the absence of
deadlock. Our method is based solely on the local analysis of the min-
imum sequences that lead the CSP model back to its initial state. The
effectiveness of our livelock-analysis technique is demonstrated via three
case studies. We compare the performance of our approach with that of
two other techniques for livelock freedom verification: FDR2 and SLAP.

Keywords: Component-Based Systems, Local Analysis, Livelock.

1 Introduction

Component-based System Development (CBSD) has been used to deal with the
increasing complexity of software. It focuses on the construction of systems from
reusable and independent components [1]. Its correct application, however, relies
on the trust in the behaviour of the components and in the emergent behaviour
of the composed components because failures may arise if the composition does
not preserve essential properties, especially in concurrent systems.

In [9], we have proposed a systematic design of CBSD that integrates compo-
nents via asynchronous compositions, mediated by buffers, considering a grey-
box style of composition [2], in which services that cannot be accessed by other
components remain visible to the environment. This strategy is based on safe
composition rules that guarantee, by construction, deadlock freedom. The ab-
sence of livelock is trivially ensured since the basic components are, by definition,
livelock-free, and no operator that may introduce such a behaviour is used. The
approach is underpinned by the process algebra CSP [4, 10], a well established
formal notation for modelling and verifying concurrent systems. We provided
a component model, BRIC, that imposes constraints on the components and
their interactions. Each component is represented by a tuple, where one of the
elements is the behaviour of the system described as a CSP process.

This paper focuses on livelock analysis for asynchronous CSP models that
perform black-box compositions. It defines a component notion that seems better
aligned to CBSD, in which the internal services of components are hidden from
its environment. This, however, may introduce livelock, a clearly undesirable
behaviour. A system is livelock-free if there exists no state from which it may
perform an infinite sequence of internal actions. The traditional livelock analysis
performs a global analysis of an internal representation of a model as a labelled
transition system, in order to verify that such a state cannot be reached [10]. This
strategy is fully automated, for instance, in FDR2 [5]. One alternative is to make
a static analysis of the syntactic structure of a system, proposing syntactic rules
either to classify CSP systems as livelock-free or to report an inconclusive result.
This strategy is implemented in SLAP [7]. Another promising strategy, which
is the basis of compositional approaches, performs a local analysis that verifies
only some parts of the system. It can identify problems before compositions,
predicting, by construction, global properties based on known local properties
of the composing components. Locality provides an alternative to circumvent
the state explosion generated by the interaction of components and allows us to
identify livelock before composition.

In this paper, we present a technique for constructing livelock free systems in
BRIC using local analysis. We consider livelock freedom of BRIC components
in the context of black-boxes rather than grey-boxes compositions adopted in [9].
We introduce side conditions that guarantee, by-construction, that the BRIC
composition rules, which ensure deadlock freedom, also ensure livelock freedom.
The verification of these conditions uses metadata that allow us to record partial
results of verification, decreasing the overall analysis effort. Our strategy sup-
ports a systematic development that rules out designs with livelock. We consider
two versions of BRIC: BRIC∗, in which asynchronicity is achieved using finite
buffers, and BRIC∞, which uses infinite buffers. The possibility of introduc-
ing livelock is directly related to the finiteness of the buffer. We also present a
comparative analysis of the performance of our strategy with respect to those
implemented in FDR2 and in SLAP, based on three case studies.

In the next section, we introduce CSP. Section 3 presents the component
model BRIC that defines the building blocks of our systematic development
approach. In Section 4, we introduce our approach for livelock-free composition
in BRIC based on local analysis. Its performance is evaluated in Section 5.
Finally, we draw our conclusions, and discuss future work in Section 6.

2 CSP

CSP is one of the most important formalisms for modelling and verifying concur-
rent reactive systems. This process algebra can be used to describe systems as
interacting components: independent entities called processes that interact with
each other exchanging atomic, instantaneous and synchronous messages, repre-
sented by events. The main CSP constructs used in this paper are presented
below. Further information can be found in [4, 10].

There are two basic CSP processes: SKIP and STOP . The former represents
the terminating process, and the latter deadlocks. The prefixing c → P is initially
able to perform only the simple event c, and behaves like process P after that.
Events may also be compound. For instance, c.n is composed by the channel c
and the value n. If we assume that the type of c is the set {1, 2}, the production
{| c |} returns the set of all events on c, {c.1, c.2}. Communications may be
considered as outputs and inputs: c!x represents an output on some channel c,
and c?x is the syntax for an input. The process g & P behaves as P if the
predicate g is true. Otherwise, it behaves like STOP .

The process P 2 Q is an external choice between process P and Q : the
environment needs to make the choice by communicating an initial event to one
of the processes. When the environment has no control over the choice, we have
an internal choice P u Q . The process P ; Q combines the processes P and Q
in sequence. The process if b then P else Q behaves as P if b holds and as
Q otherwise. The parallel composition P ‖X Q synchronises P and Q on the
events in the set X ; events that are not listed in X occur independently. The
interleaving P ||| Q runs the processes independently.

The process P [[a ← b]] behaves like P except that all occurrences of a in P
are replaced by b. The hiding process P \ X behaves like P , but all events in
the set X are hidden and turned into internal actions, which are not visible to
the environment. For example, P = (a → P) \ {a} is a divergent process that
indefinitely performs the event a without communicating with its environment.

In order to illustrate some CSP constructs, we use a classical example of a
concurrent system, the dining philosophers [10], which is used throughout this
paper. It consists of philosophers that try to acquire a pair of shared forks in
order to eat. The philosophers are sat at a table and there is a fork between each
pair of philosophers. Each philosopher must pick up both forks before eating.

datatype EV = up | down
datatype LF = thinks | eats
channel fk1, fk2, pfk1, pfk2 : EV
channel life : LF
Fork = (fk1.up → fk1.down → Fork) 2 (fk2.up → fk2.down → Fork)
Phil = life.thinks → pfk1.up → pfk2.up → life.eats →

pfk1.down → pfk2.down → Phil

The process Fork ensures that two philosophers cannot hold a fork simulta-
neously. It offers a deterministic choice between the events fk1.up and fk2.up,
where fk1 and fk2 are channels of type EV . The process Phil represents the life
cycle of a philosopher: before eating, the philosopher thinks and picks the forks
up. After eating, the philosopher puts the forks down.

There are three well-established semantic models of CSP: traces (T), stable
failures (F), and failures-divergences (FD) [10]. The set traces(P) contains all
possible sequences of events in which P can engage. The set failures(P) contains
all the failures of P , that is, pairs (s,X), where s is a trace of P and X is a set
of events which P may refuse after performing s. The failures-divergences is the

most satisfactory model for analysing liveness properties of a CSP process. In
FD, a process P is represented by the pair (failures⊥(P), divergences(P)). The
set failures⊥(P) contains all failures of P , and additional failures that record
that P can refuse anything after diverging. The set divergences(P) contains all
traces of P that lead it to a divergent behaviour and all extensions of those
traces. A process P is divergence-free if, and only if, divergences(P) = ∅.

3 BRIC

The BRIC component model [9] has been originally proposed to ensure, by con-
struction, the absence of deadlock. It is an algebra that has contracts as operands
and composition rules as operators. A component contract, whose definition is
presented below, is a tuple and encapsulates a component in BRIC.

Definition 1 (Component contract). A component contract Ctr : 〈B,R, I, C〉
comprises its behaviour B, which is described as a restricted form of CSP pro-
cess, I/O process, described below, a set of channels C, a set of data types I, and
a total function R : C → I from channels to their types.

We use BCtr , RCtr , ICtr and CCtr to denote the elements of the contract Ctr .
The behaviour BCtr is represented by an I/O process, which is defined as follows,
where we use αP to denote the set of events that P can communicate.

Definition 2 (I/O Process). We say a CSP process P is an I/O process if:

– whenever c.x ∈ αP , then c is either an input or an output channel;
– P has infinite traces (but finite state space);
– P is divergence free;
– P is input deterministic, that is, after every trace of P, if a set of input

events of P may be offered to the environment, they may not be refused by
P after the same trace;

– P is strongly output decisive, that is, all choices (if any) among output events
on a given channel in P are internal.

All channels of an I/O process are either input or output channels. I/O processes
are also non-terminating processes but, for practical purposes in model checking,
they have finite state spaces, and are divergence free. Input determinism and
strong output decisiveness are not relevant in the context of livelock analysis.
For this reason, we omit their formal definitions, which can be found in [8].

We illustrate the compositional development of BRIC with the construction
of an asymmetric dining table with 2 philosophers and 2 forks. The behaviour of
each philosopher and each fork is represented as a process Phili or Forki , where
i ∈ {1, 2}. The channels fk , pfk , both of type ID .ID .EV , and lf of type ID .LF ,
where ID : {1, 2}, distinguish each philosopher and each fork, whose behaviours
are described as an instantiation of Phil and Fork described in Section 2.

Fork1 = Fork [[fk1← fk .1.1, fk2← fk .1.2]]
Fork2 = Fork [[fk1← fk .2.2, fk2← fk .2.1]]
Phil1 = Phil [[life ← lf .1, pfk1← pfk .1.1, pfk2← pfk .2.1]]
Phil2 = Phil [[life ← lf .2, pfk1← pfk .2.2, pfk2← pfk .1.2]]

As all forks and philosophers are represented by one process with indices on its
channels, there is a separate definition for each component contract. For example,
the contracts CtrFork1 and CtrPhil1 are:

CtrFork1 = 〈Fork1, {fk .1.1→ EV , fk .1.2→ EV }, {EV }, {fk .1.1, fk .1.2}〉
CtrPhil1 = 〈Phil1, {lf .1→ LF , pfk .1.1→ EV , pfk .2.1→ EV }, {LF ,EV },

{lf .1, pfk .1.1, pfk .2.1}〉

The contract CtrFork1 has a behaviour defined by Fork1, and two channels: fk .1.1
and fk .1.2, both of type EV . The behaviour of the contract CtrPhil1 is Phil1. This
contract has three channels, lf .1 of type LF , and pfk .1.1 and pfk .2.1 of type EV .

In BRIC, we have two types of component composition: binary composition
and unary composition. The former is defined below. It provides an asynchronous
interaction on channels ic and oc between two contracts Ctr1 and Ctr2 mediated
by a (possibly infinite) bi-directional buffer (BUFFIO).

Definition 3 (Asynchronous Binary Composition). Let Ctr1 and Ctr2 be
two distinct component contracts with disjoint sets of channels (CCtr1 ∩ CCtr2 =
∅), and ic and oc be channels within CCtr1 and CCtr2 , respectively. The asyn-
chronous binary composition of Ctr1 and Ctr2 is given by:

Ctr1〈ic〉 � 〈oc〉Ctr2 = 〈((BCtr1 ||| BCtr2) ‖{|ic,oc|} BUFFIO),RCtr3 , ICtr3 , CCtr3〉

where CCtr3 = (CCtr1 ∪ CCtr2) \ {ic, oc}, RCtr3 = CCtr3 C (RCtr1 ∪ RCtr2), and
ICtr3 = ran(RCtr3).

The behaviour of a binary composition is defined as the synchronisation of the
behaviour of Ctr1 and Ctr2 via a (possibly infinite) bi-directional buffer. The
channels used in the composition are not offered to the environment in further
compositions (CCtr3). The operator C stands for domain restriction and is used
to restrict the mapping from channels to interfaces (RCtr3) and, furthermore, to
restrict the set of interfaces of the resulting contract (ICtr3).

Unary compositions are used to assemble channels of a single component Ctr .

Definition 4 (Asynchronous Unary Composition). Let Ctr be a compo-
nent contract, and ic and oc be two distinct channels within CCtr . The asyn-
chronous unary composition of Ctr is defined as:

Ctr �
∣∣〈oc〉
〈ic〉 = 〈(BCtr ‖{|ic,oc|} BUFFIO),RCtr , ICtr , CCtr 〉

where CCtr = (CCtr \ {ic, oc}), RCtr = CCtr CRCtr , and ICtr = ranRCtr .

The BRIC composition rules proposed to ensure deadlock freedom by con-
struction are: interleave, communication, feedback and reflexive. The interleave
composition aggregates two independent contracts such that, after composition,
they do not communicate with each other.

Definition 5 (Interleave composition). Let Ctr1 and Ctr2 be two component
contracts, such that CCtr1 ∩ CCtr2 = ∅. The interleave composition of Ctr1 and
Ctr2 is given by Ctr1 [|||] Ctr2 = Ctr1〈〉 � 〈〉Ctr2.

In this composition, components do not share any channel and no synchro-
nisation is enforced. It is a particular kind of composition that involves no
communication. In our example, philosophers and forks can be interleaved sep-
arately: Forks = CtrFork1 [|||] CtrFork2 and Phils = CtrPhil1 [|||] CtrPhil2 . These
compositions are valid since the contracts have disjoint channels.

The second rule is based on the traditional way to compose two components,
attaching two components connecting two channels, one from each component.
Here, Σ is the finite set of all events and P � X = P \ (Σ \ X) restricts the
behaviour of P to a set of events X by hiding all events but those in X .

Definition 6 (Communication composition). Let Ctr1 and Ctr2 be two
component contracts, and ic and oc two channels, such that ic ∈ CCtr1 and
oc ∈ CCtr2 , CCtr1 ∩ CCtr2 = ∅, and BCtr1 � {ic} and BCtr2 � {oc} are strong
compatible. The communication composition of Ctr1 and Ctr2 is defined as

Ctr1[ic ↔ oc]Ctr2 = Ctr1〈ic〉 � 〈oc〉Ctr2

The proviso of strong compatibility ensures that the outputs of each process
are always accepted by the other process. Formally, considering that I s

P and Os
P

denote the inputs and outputs of a process P after a trace s, respectively, P and
Q are strong compatible if, and only if:

∀ s : traces(P) ∩ traces(Q) • (Os
P 6= ∅ ∨ Os

Q 6= ∅) ∧ Os
P ⊆ I s

Q ∧ Os
Q ⊆ I s

P

In our example, we are able to compose the contracts Forks and Phils using
the communication composition: PComm = Forks[fk .1.1 ↔ pfk .1.1]Phils. The
resulting contract includes all philosophers and forks. The remaining connec-
tions that are needed to complete the dining table require the connection of two
channels of the same component. For this reason, BRIC also provides unary
compositions that can be used for such connections and enables the construc-
tion of systems with cyclic topologies. Due to the existence of possible cycles,
however, new conditions are required to preserve deadlock freedom.

The unary composition rules are feedback and reflexive. The feedback com-
position represents the simpler unary composition case, where two channels of
the same component are assembled, but do not introduce a new cycle [9]. The
requirement on the independence of the channels guarantees that no cycles are
introduced. A channel c1 is independent of a channel c2 in a process when any
communication on c1 does not interfere with the communications on c2, and
vice-versa; hence, both channels are independently offered to the environment.

Definition 7 (Feedback composition). Let Ctr be a component contract,
and ic and oc two communication channels from CCtr that are independent in
BCtr , and such that BCtr � ic and BCtr � oc are strong compatible. The feedback

composition of Ctr hooking oc to ic is defined as Ctr [oc ↪→ ic] = Ctr �
∣∣〈ic〉
〈oc〉.

The contract PComm contains all forks and philosophers. The channels fk .2.2
and pfk .1.2, however, are independent in PComm because they occur in the
interleaved sub-components Forks and Phils, respectively. We may, therefore,
connect these channels using feedback: PFeed1 = PComm[pfk .1.2 ↪→ fk .2.2].
The channels fk .2.1 and pfk .2.1 are also independent in PFeed1. Intuitively, their
connection do not introduce a cycle; we may, therefore, connect these channels
using the feedback composition: PFeed2 = PFeed1[pfk .2.1 ↪→ fk .2.1].

The reflexive composition deals with more complex compositions that intro-
duce cycles of dependencies in the topology of the system structure, some of
which may be undesirable because they introduce divergence.

Definition 8 (Reflexive composition). Let Ctr be a component contract,
and ic and oc two communication channels from CCtr such that BCtr � {ic, oc}
is buffering self-injection compatible. The reflexive composition is defined as

Ctr [ic ¯↪→ oc] = Ctr �
∣∣〈ic〉
〈oc〉.

The definition of the reflexive composition is similar to that of the feedback
composition. It, however, has a stronger proviso that requires buffering self-
injection compatibility, which allows one to assembly two dependent channels of
a process via a buffer, without introducing deadlocks. This property is similar to
the notion of strong compatibility, except for the fact that two distinct channels
of the same process must be compatible. Its formalisation can be found in [8].

In our example, we conclude the design of our system using the reflexive
composition to connect channels fk .1.2 and pfk .2.2.

PSystem = PFeed2[fk .1.2 ¯↪→ pfk .2.2]

This connection could not be achieved using feedback because the two channels
are not independent in PFeed2. Intuitively, their connection introduces a cycle
that causes the dependence between these channels.

4 Livelock Analysis for BRIC

In the BRIC approach livelock is not an issue because the rules do not hide
the composed channels in the CSP behaviour of the resulting contract; they are
just removed from the communication channel set, preventing further composi-
tions on them. This gives us a grey-box style of abstraction [2]. We extend the
possibilities of performing compositions in BRIC, providing a constructive strat-
egy to perform black-box compositions [11], where the components encapsulate
functionality, increasing the abstraction level of the system.

In [9], the concept of livelock is not defined at the component contract level.
We define the notion of livelock-free component contract that considers BRIC
components as black-boxes. For that, we consider the component behaviour and
the communication channels that are in the component set of visible channels,
which are eligible for future compositions. As a result, a component contract Ctr
is livelock-free if the CSP process resulting from hiding all channels that are not
in the set CCtr in the behaviour BCtr is divergence free.

Definition 9 (Livelock-free Component Contract). A component contract
Ctr = 〈B,R, I, C〉 is livelock-free if, and only if, divergences(BCtr � CCtr) = ∅.

In what follows, we present the definitions used in our livelock analysis tech-
nique and describe the local conditions that guarantee livelock-free BRIC com-
positions at the component contract level. We make a clear distinction of asyn-
chronous compositions via finite and infinite buffers because the finiteness of the
buffer is relevant for detecting the possibility of livelock in asynchronous sys-
tems. We consider BRIC∗, which achieves asynchronous compositions via finite
buffers, and BRIC∞, in which asynchronicity is achieved using infinite buffers.

4.1 Basic Definitions

A livelock-free contract never performs an infinite sequence of internal events
without communicating with its environment. Hence, reasoning about diver-
gences requires reasoning about infinite behaviours. Therefore, the first step of
our approach identifies the infinite behaviours of a given component. The func-
tion IP(P) returns the traces that lead a given process P to a recursion.

Definition 10 (Interaction Patterns). Let P be a CSP process. The set of
interaction patterns is defined as: IP(P) = {t : traces(P) | P ≡FD (P/t)}.

The process P/t (pronounced P after t) represents the behaviour of P after the
trace t is performed. The set IP(P) contains all traces of P after which the
process (P/t) has the same failures and divergences of P : they are equivalent in
the failures-divergences model. Hence, IP(P) gives an infinite set of traces that
leads the process P back to its initial state. In our example, the set of interaction
patterns of IP(Fork1) contains the traces that lead this fork to a recursion:

{〈fk .1.1.up, fk .1.1.down〉, 〈fk .1.2.up, fk .1.2.down〉,
〈fk .1.1.up, fk .1.1.down, fk .1.1.up, fk .1.1.down〉, . . .}

This set is infinite. Our strategy, however, only needs the set of minimal inter-
action patterns, which only contains the traces that lead the process to its first
recursion. In what follows, we use the function S◦, which, given a set of traces
S (in our case, interaction patterns), returns the concatenation closure on S ,
i.e., the set of all sequences we can obtain by taking any subset of traces from
the original S and concatenating them together (possibly with repetitions).

S◦ = {t : Σ∗ | (∃ ss : seq(Σ∗) • ran(ss) ⊆ S ∧ t = a/ ss)}

Here, Σ∗ is the set of finite sequences of elements of Σ, seq(Σ∗) is the set of finite
sequences over Σ∗, a/ ss is the distributed concatenation of all the elements of
the sequence of sequences ss, and ran(ss) is the set of the elements of ss.

The set of Minimal Interaction Patterns of a process P , MIP(P), is the
minimal set from which we are able to generate the same traces that can be
generated from IP(P). Formally, it is a subset of any other subset of interaction
patterns S of IP(P), such that S◦ = IP(P).

Definition 11 (Minimal Interaction Patterns). Let P be a CSP process.
The set of minimal interaction patterns of P, MIP(P), is a set such that

(MIP(P))◦ = IP(P) and ∀S : P(Σ∗) | S◦ = IP(P) • MIP(P) ⊆ S .

The following constructive proposition is based on the calculation of traces pro-
posed by Roscoe [10]. It calculates the MIP for CSP processes that describe
the behaviour of the basic components, which are strictly sequential (possibly
with choices) with no hiding. Parallelism is achieved by composing component
contracts using the composition rules. We also consider only tail recursion (and
no mutual recursion), in which recursive calls may only happen after at least
one visible event (guarded tail recursions). In what follows, we use N to denote
the process name and P to represent the CSP process expression that defines
its behaviour. We also use W1 and W2 to denote CSP behaviours.

Proposition 1 (Minimal Interaction Patterns Calculation). Let N be a
process name, and P its behaviour. Then MIP(N) is given by MIPN (P):

MIPN (N) = {〈〉}
MIPN (SKIP) = MIPN (STOP) = {}
MIPN (c →W1) = {t : MIPN (W1); e : {| c |} • 〈e〉a t}
MIPN (W1 2 W2) = MIPN (W1 uW2) = MIPN (W1) ∪MIPN (W2)
MIPN (W1[[R]]) =

⋃
{t : MIPN (W1) • ren(t ,R)}

MIPN (W1; W2) =

{
t1 : traces(W1); t2 : MIPN (W2) | last(t1) = X

• front(t1)a t2

}
MIPN (g & W1) = MIPN (W1)
MIPN (if g then W1 else W2) = MIPN (W1) ∪MIPN (W2)

The sequence front(t) contains all elements of the sequence t but the last one,
last(t) returns the last element of t , and the function ren(t ,R), presented below,
applies the renaming relation on events R to the trace t . For functional renaming,
this function returns a singleton set that contains a trace that corresponds to
t but replaces every element in the domain of the renaming function by its
image. However, relational renaming needs special care because it may turn
simple prefixing into an external choice. By way of illustration, for P = a → P ,
P [[a ← b, a ← c]] = a → P 2 c → P . For this reason, the function ren
presented below returns a set of traces and we need a distributed union (

⋃
) in

the definition of MIPN for renaming (see Proposition 1).

ren(〈〉,R) = {〈〉}
ren(〈e〉a t ,R) = if e ∈ dom(R) then {e ′ : R[{e}]; s : ren(t ,R) • 〈e ′〉a s}

else {s : ren(t ,R) • 〈e〉a s}

In Proposition 1, when MIPN is applied to N itself, the result is the empty
sequence. With our assumption that the process is guarded tail recursive, this
ensures that at this stage a minimum path is recorded. SKIP and STOP do
not contain any MIP because they terminate (either successfully or not). The

MIPN of the prefix process c →W1 is formed by concatenating the sequence 〈c〉
to the front of the sequences of MIPN (W1). The MIP of internal and external
choices are the union of the MIPN of the two operands. The MIP of W1[[R]]
are those of W1 replacing all occurrences of the events e in the domain of the
renaming relation R by the relational image of {e} in R. The MIPN (W1; W2)
are the ones of W2 prefixed by the traces of W1 that lead to termination, but
removing X. The calculation of the MIPN of guarded processes g & W1 (and
alternation if g then W1 else W2) simply ignores the guard g and takes
MIPN (W1) (and MIPN (W2)) as the result. As a consequence, our approach
may find false negatives because we consider interaction patterns which may
not be feasible depending on the evaluation of g . For instance, if we consider a
process P = g & a → P , our approach indicates the possibility of divergence
in P \ {a} because we do not analyse the value of g , which determines the
existence of either a divergence or a deadlock.

In our example, the calculation of the minimum interaction patterns for Fork1
and Phil1 yields the following result.

MIP(Fork1) = {〈fk .1.1.up, fk .1.1.down〉, 〈fk .1.2.up, fk .1.2.down〉}
MIP(Phil1) = {〈lf .1.thinks, pfk .1.1.up, pfk .2.1.up, lf .1.eats,

pfk .1.1.down, pfk .2.1.down〉}

We are now able to infer which channels can be used to compose a livelock-free
contract in BRIC. The function Allowed identifies all communication channels
that can be individually hidden with no introduction of contract livelock.

Definition 12 (Allowed). Let Ctr be a livelock-free component contract. The
set of communication channels of CCtr that can be individually hidden with no
introduction of divergence is given by Allowed(Ctr) defined below:

Allowed(Ctr) =
CCtr \ {c : CCtr | ∃ s : MIP(BCtr) • ran(s) ∩ evs(CCtr) ⊆ evs({c})}

The set evs(cs) =
⋃
{c : cs • {| c |}} contains all events produced by the channels

in the set cs given as argument.
The set of Allowed channels of a given contract Ctr contains all communica-

tion channels c, such that there is no MIP(BCtr) composed only by events on c.
Using these channels on compositions does not introduce a contract livelock be-
cause even after individually hiding the communication on these channels, every
member of MIP(BCtr) still has at least one further external communication on a
different channel with the environment. In our example, the sets of allowed chan-
nels are Allowed(CtrPhil1) = {lf .1, pfk .1.1, pfk .2.1} and Allowed(CtrFork1) = ∅.
The latter is empty because every member of MIP(Fork1) either contains only
interactions on fk .1.1 or only interactions on fk .1.2.

4.2 Conditions for Livelock Freedom in BRIC∗

An interleave composition always results in a livelock-free contract, since the
behaviour of both composing contracts are livelock-free by definition, and no

communication channel is used in this composition. The proofs of the theorems
in this paper can be found in [3].

In the communication composition via finite buffers, Ctr1[ic ↔ oc]∗Ctr2, a
contract livelock may be introduced because we hide the channels ic and oc
used in the composition, since they are removed from the set C of the resulting
component. There are, however, conditions under which this composition is safe.

For instance, we consider the composition CtrFork1 [fk .1.1 ↔ pfk .1.1]∗CtrPhil1

previously presented. Since the communication is asynchronous, after sending
the events fk .1.1.up and fk .1.1.down to the buffer, Fork1 recurses and may send
such events to the buffer again before the first ones have been consumed by
Phils1 via pfk .1.1.up and pfk .1.1.down. This, however, may be done only a finite
number of times because the buffer is finite and, at some point, the communica-
tions on pfk .1.1.up and pfk .1.1.down will be enforced causing the occurrences,
for instance, of the visible events lf .1.thinks and lf .1.eats. This composition is,
therefore, livelock-free. Along with the finiteness of the buffer, the fact that
one of the connecting channels is in the corresponding set of allowed chan-
nels (pfk .1.1 ∈ Allowed(CtrPhils1)) guarantees a resulting livelock-free contract.

We establish below a condition that ensures that a contract livelock is not
introduced in a communication composition in BRIC∗.

Theorem 1 (Livelock-free Finite Communication Compositions). Let
Ctr1 and Ctr2 be two livelock-free component contracts, and ic and oc two chan-
nels in CCtr1 and CCtr2 , respectively. The composition Ctr1[ic ↔ oc]∗Ctr2 is
livelock-free if ic ∈ Allowed(Ctr1) or oc ∈ Allowed(Ctr2).

Regarding unary compositions, due to the finiteness of the buffer, we also
only need to check if at least one of the communication channels used in the
composition belongs to the set of Allowed channels of the contract.

Theorem 2 (Livelock-free Finite Unary Compositions). Let Ctr be a
livelock-free component contract, and ic and oc two channels in CCtr . The com-
positions Ctr [ic ↪→ oc]∗ and Ctr [ic ¯↪→ oc]∗ are livelock-free if ic ∈ Allowed(Ctr)
or oc ∈ Allowed(Ctr).

We now turn our attention to the cases in which neither of the connecting
channels are in the set of Allowed . For example, let us consider three simple
livelock-free contracts Ctr1, Ctr2 and Ctr3 defined as follows.

C1 : 〈BC1 , {a → N}, {N}, {a}〉,where BC1 = a.1→ a.2→ BC1

C2 : 〈BC2 , {b → N}, {N}, {b}〉,where BC2 = b.1→ b.2→ BC2

C3 : 〈BC3
, {c → N}, {N}, {c}〉,where BC3

= c.2→ c.3→ BC3

The composition Ctr1[a ↔ c]Ctr3 is valid in BRIC because a and c are strong
compatible. However, neither a or c are allowed in the corresponding contracts;
this composition yields a divergent contract. In general, however, this would
not necessarily happen. For example, Ctr1[a ↔ b]Ctr2 would not introduce a
contract livelock because the channels would not be able to synchronise. The

BRIC rules, however, require the connecting channels to be strong compatible,
that is, at every state of a in BCtr1 if a.n is offered, then b.n is also offered by
BCtr2 . In Ctr1[a ↔ b]Ctr2, a and b are not strong compatible. As a consequence
of the strong compatibility requirement, there is no case in which neither of the
connecting channels are in Allowed of their contracts and the BRIC compositions
result in a livelock-free component contract.

In BRIC∞, the assumption that communications with the buffer will halt at
some point because the buffer is full is no longer valid because the buffers are
infinite. We, therefore, need stronger conditions to ensure livelock freedom.

4.3 Conditions for Livelock Freedom in BRIC∞

In the presence of infinite buffers, the conditions for safe compositions are nec-
essarily stronger because one of the contracts may indefinitely interact with the
buffer via the connecting channel. For example, let us revisit the example of
Section 4.2 replacing the buffer by an infinite one. The communication compo-
sition CtrFork1 [fk .1.1 ↔ pfk .1.1]∞CtrPhil1 remains asynchronous. After sending
fk .1.1.up and fk .1.1.down to the buffer, Fork1 still recurses and may send such
events to the buffer again before the first ones has been consumed by Phils1
via pfk .1.1.up and pfk .1.1.down. This, however, may now be done indefinitely
because the buffer is infinite; there is no guarantee that Phils1 ever consumes
any message on pfk .1.1.up and pfk .1.1.down causing the occurrence, for instance,
of the visible events lf .1.thinks and lf .1.eats. For this reason, the divergence of
Fork1 affects the overall composition. Therefore, we need a stronger requirement
to ensure contract livelock freedom in a communication composition in BRIC∞.

Theorem 3 (Livelock-free Infinite Communication Compositions). Let
Ctr1 and Ctr2 be two livelock-free contracts, and ic and oc two channels in CCtr1

and CCtr2 , respectively. The composition Ctr1[ic ↔ oc]∞Ctr2 is livelock-free if
ic ∈ Allowed(Ctr1) and oc ∈ Allowed(Ctr2).

Regarding the unary compositions in BRIC∞, we have to ensure that the
pair of connecting channels can be hidden together. We define the function
AllowedBin(Ctr), which is similar to Allowed(Ctr), but characterises all pairs
of channels that can be hidden together without generating a contract livelock.

Definition 13 (AllowedBin). Let Ctr be a livelock-free contract. The set of pairs
of channels of CCtr that can be hidden with no introduction of divergence is given
by AllowedBin(Ctr) defined as:

AllowedBin(Ctr) =
{c1, c2 : CCtr | ¬ (∃ s : MIP(BCtr) • ran(s) ∩ evs(CCtr) ⊆ {| c1, c2 |})}

For the same reason, the infiniteness of the buffers, unary compositions in BRIC∞
have a stronger condition for ensuring livelock freedom. We require both con-
necting channels to be allowed to be hidden together.

Theorem 4 (Livelock-free Infinite Unary Compositions). Let Ctr be a
livelock-free contract, and ic and oc two channels in CCtr . The compositions
Ctr [ic ↪→ oc]∞ and Ctr [ic ¯↪→ oc]∞ are livelock-free if (ic, oc) ∈ AllowedBin(Ctr).

The Theorems 1 to 4 establish the conditions under which we ensure that the
result of any BRIC composition is a livelock-free component contract.

In order to be able to perform further compositions using the resulting con-
tracts in an efficient manner, we calculate the new MIP after every livelock-free
composition. This information is stored in the contracts as metadata that aims
at alleviating further verifications in our method for component composition.

4.4 Dealing with Metadata

The calculation of the MIPs of composed components can be based on the
function proposed in [10] that calculates the traces of a parallel composition as
the combination of the traces of each argument process, where the synchronised
events are shared and all other events are interleaved. In our strategy, however,
we are not concerned with the MIP generated by the interleaving of the MIPs
because livelock can only be introduced by hiding events of a basic component.

For instance, using the merge from [10] to calculate the new MIPs of the
interleaving composition CtrFork1 [|||] CtrFork2 , we get all possible sequences re-
sulting from merging MIP(Fork1) and MIP(Fork2):

{〈fk .1.1.up, fk .1.1.down, fk .2.2.up, fk .2.2.down〉
〈fk .1.1.up, fk .2.2.up, fk .1.1.down, fk .2.2.down〉,
〈fk .2.2.up, fk .2.2.up, fk .1.1.down, fk .1.1.down〉, . . .}

For any two minimum interaction patterns ip1 and ip2 from MIP(Fork1) and
MIP(Fork2), respectively, this merge includes a large number of traces that com-
municate on the same channels from ip1 and ip2, which only differ in the order
of the events. This order, however, is not relevant for our strategy because, using
BRIC, further compositions like, for instance, with a contract Ctr3, will be made
on a one channel to one channel basis. As a consequence, composing Ctr3 with
Ctr1 [|||] Ctr2 will be a communication between Ctr3 with either Ctr1 or Ctr2.
Based on this analysis, we provide a variation of the merge function from [10].
This optimisation is extremely relevant to the scalability of our approach.

Definition 14 (Optimised Trace Merge). Let xs be a set of events, x and x ′

denote members of xs, and y denote a typical member of Σ \ xs. The optimised
trace merge is defined as follows.

〈〉 ‖〈s0,t0〉xs 〈〉 = {〈〉} (1)

〈x 〉a s ‖〈s0,t0〉xs 〈〉 = {u | u ∈ 〈x 〉a s ‖〈s0,t0〉xs t0} (2)

〈〉 ‖〈s0,t0〉xs 〈x 〉a t = {u | u ∈ s0 ‖〈s0,t0〉xs 〈x 〉a t} (3)

〈y〉a s ‖〈s0,t0〉xs t = {〈y〉a u | u ∈ s ‖〈s0,t0〉xs t} (4)

s ‖〈s0,t0〉xs 〈y〉a t = {〈y〉a u | u ∈ s ‖〈s0,t0〉xs t} (5)

〈x 〉a s ‖〈s0,t0〉xs 〈x 〉a t = {u | u ∈ s ‖〈s0,t0〉xs t} (6)

〈x 〉a s ‖〈s0,t0〉xs 〈x ′〉a t = { } (7)

The differences between our definition for trace merging and that of [10]
are: (1) Our merge function has the original traces s0 and t0 as arguments.
This allows us to merge n concatenations of s0 with m concatenations of t0;
(2) In the cases in which one side is willing to perform a synchronisation event
x and the other side has finished (lines 2 and 3), we “reset” the side that has
finished, enforcing at least one synchronisation on x and decreasing the size of
one of the sequences by at least one; (3) In the cases in which one side is willing
to perform an independent event (lines 4 and 5), we do not take all possible
combinations of permuting the independent events for the reasons previously
explained; and (4) In the cases in which the synchronisation is feasible (line 6),
our merge function does not include the synchronised event in the result because
they are hidden after composition. We define the merge function as follows.

Definition 15 (MIP Merge). Let Ctr1 and Ctr2 be two livelock-free com-
ponent contracts, ic and oc two communication channels in CCtr1 and CCtr2 ,
respectively, and x a fresh channel name. The MIP merge is defined as follows.

MIPMerge(Ctr1,Ctr2, ic, oc) =
{s : MIP(BCtr1) | {| ic |} ∩ ran(s) = ∅}
∪ {t : MIP(BCtr2) | {| oc |} ∩ ran(t) = ∅}

∪
⋃

s : MIP(BCtr1); t : MIP(BCtr2); sx , tx : Σ∗

| {| ic |} ∩ ran(s) 6= ∅ ∧ {| oc |} ∩ ran(t) 6= ∅
∧ sx ∈ ren(s, {v : extensions(ic) • (ic.v , x .v)})
∧ tx ∈ ren(t , {v : extensions(oc) • (oc.v , x .v)})
• sx ‖〈sx ,tx〉{|x |} tx

The resulting merge contains all MIPs from BCtr1 and BCtr2 that do not have
events on the connecting channels ic and oc, respectively. The remaining MIPs
are merged using the optimised trace merge. Before the merge, however, the
MIPs have to be unified on the events of the connecting channels. For that, we
use a fresh channel name x and the function ren to replace references to ic and
oc in BCtr1 and BCtr2 , respectively, by x . The function extensions(c) returns the
values which will complete the channel yielding an event [10].

Next, the metadata calculation for the binary operators is as follows.

Proposition 2 (Binary Composition Metadata). Let Ctr1 and Ctr2 be two
livelock-free component contracts and ic and oc two channels in CCtr1 and CCtr2 ,
respectively. The MIP of the binary compositions are defined as follows.

MIP(Ctr1 [|||] Ctr2) = MIP(BCtr1) ∪MIP(BCtr2)
MIP(Ctr1[ic ↔ oc]Ctr2) = MIPMerge(Ctr1,Ctr2, ic, oc)

Finally, we formalise the metadata calculation for the unary compositions.

Proposition 3 (Unary Composition Metadata). Let Ctr be a livelock-free
component contract and ic and oc two communication channels in CCtr . The
MIP of the unary compositions are presented as follows.

MIP(Ctr [ic ↪→ oc]) = {s : MIP(BCtr) • s \ {| ic, oc |}}
MIP(Ctr [ic ¯↪→ oc]) = {s : MIP(BCtr) • s \ {| ic, oc |}}

The calculation of the resulting MIP for unary compositions simply removes
both connecting channels from the original MIPs.

5 Evaluation

In this section, we demonstrate that our constructive approach to build livelock
free models can be applied in practice to large systems involving several com-
positions. We have developed three case studies: Milner’s scheduler [6], which
schedules a number of tasks and can be modelled as a ring of cell processes
synchronised pairwisely, and two variations of the dining philosopher [10], a
livelock-free version and a version in which we have deliberately included live-
lock. All case studies are developed using the BRIC methodology, hence, we
worked with asynchronous versions of these three case studies.

For each case study, we provide a comparative analysis of three scenarios:
the global analysis of FDR2, the static analysis of SLAP, and our local analysis.
In these case studies, we have used a dedicated server with an 8 core Intel(R)
Core(TM) i7-2600K, 16 GB of RAM and 160GB of SSD in an Ubuntu system.
The CSP scripts of these case studies can be found at http://goo.gl/mAZWXq.

Table 1. Results of the Livelock Analysis for Milner’s Scheduler in BRIC∗.

N # FDR2 SLAP (BDD) SLAP (SAT) LLA

5 5 0.123s 0.045s 4.196s 0.177s

10 10 672.164s 0.128s 14.340s 0.218s

15 15 * 0.465s 29.862s 0.243s

100 100 * 2428.308s ** 0.559s

1,000 1,000 * * ** 3.959s

3,000 3,000 * * ** 7.578s

Tables 1 and 2 summarise our results. The column N is the number of cells
and philosophers for Milner’s scheduler and dining philosophers, respectively.
The column # is the number of compositions, and the columns FDR2, SLAP
and LLA present the time cost of the global analysis in FDR2, SLAP Static
Analysis (using BDD and SAT), and our local analysis (LLA). The * indicates
one hour timeout and ** indicates memory overflow.

The results show that FDR2 and SLAP are unable to deal with large asyn-
chronous configurations. On the other hand, our method provided successful
results of livelock analysis for 10,000 philosophers and 10,000 forks (20,000 CSP
processes and 39,988 BRIC∗ compositions) in less than 4 minutes. This proved
to be a very promising result in dealing with complex and large systems.

6 Conclusion

In this paper, we propose a correct-by-construction approach for ensuring live-
lock freedom in BRIC models built using four composition rules. The develop-
ment of this strategy is based on the minimum sequences that represent patterns

Table 2. Results of the Livelock Analysis for the Dining Philosophers in BRIC∗.

Livelock-free System System with Livelock

N # FDR2
SLAP

(BDD)

SLAP

(SAT)
LLA FDR2

SLAP

(BDD)

SLAP

(SAT)
LLA

3 10 2.884s 0.342s 2.114s 0.219s 0.941s 0.252s 1.224s 0.215s

10 38 * 51.708s 383.884s 0.303s * 26.259s 149.091s 0.297s

100 398 * * * 0.778s * * ** 0.769s

1,000 3,988 * * * 3.888s * * ** 3.431s

10,000 39,988 * * * 206.689s * * ** 185.209s

of interactions after which the system recurses. Considering only these finite se-
quences, we are able to locally assert livelock freedom before integrating com-
ponents. Furthermore, we use metadata for storing information that alleviate
verification conditions during component composition. To perform this analysis
in BRIC, we have provided a clear distinction of asynchronous compositions
via finite and infinite buffers because the finiteness of the buffer is relevant for
detecting the possibility of livelock in such systems.

We have used three case studies that demonstrate the scalability of our ap-
proach. For larger systems, the verification using FDR2 and SLAP may easily
become costly and infeasible. On the other hand, our compositional livelock
analysis seems promising as demonstrated in our case studies.

Our approach for local and compositional livelock analysis can still be im-
proved. Parameters and non-tail recursion are not addressed here; they are,
however, in our research agenda, which also includes additional case studies.

References

1. G. Beneken, U. Hammerschall, M. Broy, M. Cengarle, J. Jürjens, B. Rumpe, and
M. Schoenmakers. Componentware - State of the Art 2003. October 2003.

2. Hans de Bruin. A grey-box approach to component composition. GCSE ’99, pages
195–209. Springer-Verlag, 2000.

3. Madiel Filho, Marcel Oliveira, Augusto Sampaio, and Ana Cavalcanti. Local
Livelock Analysis of Component-Based Models. Technical report, UFRN, 2016.
http://goo.gl/zl1MQV.

4. C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
5. Formal Systems Ltd. FDR2: User Manual, version 2.94, 2012.
6. R. Milner. Communication and Concurrency. Prentice-Hall, 1989.
7. Joel Ouaknine, Hristina Palikareva, A. W. Roscoe, and James Worrell. A static

analysis framework for livelock freedom in CSP. LMCS, 9(3), 2013.
8. R. T. Ramos. Systematic Development of Trustworthy Component-based Systems.

PhD thesis, Federal University of Pernambuco, 2011.
9. Rodrigo Ramos, Augusto Sampaio, and Alexandre Mota. Systematic development

of trustworthy component systems. In Formal Methods, volume 5850 of Lecture
Notes in Computer Science, pages 140–156. Springer, 2009.

10. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in
Computer Science. Prentice-Hall, 1998.

11. P. Soni and N. Ratti. Analysis of Component Composition Approaches. Interna-
tional Journal of Computer Science and Communication Engineering, 2(1), 2013.

