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Abstract. RoboChart is a graphical domain-specific language, based
on UML, but tailored for the modelling and verification of single robot
systems. In this paper, we introduce RoboChart facilities for modelling
and verifying heterogeneous collections of interacting robots. We propose
a new construct that describes the collection itself, and a new communi-
cation construct that allows fine-grained control over the communication
patterns of the robots. Using these novel constructs, we apply RoboChart
to model a simple yet powerful and widely used algorithm to maintain
the aggregation of a swarm. Our constructs can be useful also in the
context of other diagrammatic languages, including UML, to describe
collections of arbitrary interacting entities.

1 Introduction

In [15, 22], RoboChart, a domain-specific language tailored for robotics, is pre-
sented. The core of RoboChart is based on state machines, a modelling construct
widely employed in the embedded-software and robotics domains. RoboChart is
endowed with a denotational semantics that supports both automatic and semi-
automatic verification in the form of model checking and theorem proving.

Unlike general purpose notations, like, for example, UML [12], RoboChart is
concise, with well defined syntax and well-formedness conditions that guaran-
tee meaningfulness of models. RoboChart also includes constructs for modelling
abstraction (given types, operations definitions via pre and postconditions, and
so on), nondeterminism, and time. Most languages of the same nature avoid ab-
straction and nondeterminism since these features make code generation difficult
or impossible. While time is considered in UML MARTE [11] and UML-RT [18],
the RoboChart approach based on budgets and deadlines is distinctive.

RoboChart is supported by RoboTool, which provides facilities for graphi-
cal modelling, validation, and automatic generation of C++ simulations. Impor-
tantly, RoboTool automatically generates also the formal semantics of RoboChart
models. The semantics definition uses the process algebra CSP [20], and RoboTool
also provides a direct connection to the FDR model checker for CSP [10].

RoboChart as presented in [15], however, enforces the use of design patterns
appropriate for systems composed of a single robot. While such applications are
relevant and widespread, collections of robots, that is, swarms, are becoming
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popular. In robotic swarms, a goal such as pushing a block is achieved by a
collection of simple and cheap robots that individually cannot complete the task,
but can in cooperation. Their relative low cost allows for defective robots to be
easily replaced, making a swarm more robust than single robot applications.

Here, we extend RoboChart to support modelling and verification of collec-
tions of interacting robots. We focus on the nature of the robots, and how they
communicate with each other. With these, we can specify the behaviour of a
swarm as the result of the interaction of a(n unspecified) number of robotic sys-
tems. We can describe abstractly heterogeneous collections of interacting robots
through the use of underspecified constants, different robot specifications, and
communication patterns. We introduce a new inter-robot communication mech-
anism for fine-grained control over interactions, supporting both identification
of the source of interactions and restriction of the possible targets.

Although our focus is on capturing precisely descriptions of swarm appli-
cations from the robotics literature, our modelling constructs can be useful to
model arbitrary heterogeneous distributed systems. As far as we know, our con-
structs are entirely novel. In UML or SysML [17], for instance, a variant of
UML for systems modelling, the definition of a collection and their connections
requires two diagrams, and fixes the number of components in the collection.

We note, however, that as a design language, RoboChart does not cover the
explicit specification of global properties of the swarm, such as aggregation. A
property language for RoboChart is part of our agenda for future work.

Section 2 briefly introduces the RoboChart notation by means of a sim-
ple example of an aggregation algorithm running on a single robot. Section 3
describes the extensions necessary to accommodate the new features, and Sec-
tion 4 describes their semantics. Section 5 reviews the tool support available for
RoboChart and its extensions. Section 6 discusses related work. Finally, Section 7
concludes and discusses further opportunities for work.

2 RoboChart and its semantics

Here, to illustrate the RoboChart notation, we present in Section 2.1 a model of
the alpha algorithm [4]4, whose goal is to maintain a collection of robots in an
aggregate. This algorithm estimates the number of neighbours of a robot, and
uses that to decide whether to maintain its direction or turn around. The idea is
that the robot recognises when it has moved away from the aggregate by counting
the number of neighbours. Later, we show how our support for collections allows
for a much simpler and clearer model. In Section 2.2, we briefly introduce CSP.
Finally, Section 2.3 gives an overview of the semantics of RoboChart.

2.1 The notation

A RoboChart model describes two main aspects of an application: structure and
behaviours. The root element of a model is called a module, and provides an

4 www.cs.york.ac.uk/circus/RoboCalc/case-studies/
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Fig. 1: A robot implementing an aggregation algorithm.

overall view of the system. The module for our example is in Figure 1. A module
specifies two aspects of the applications: (1) assumptions about the platform, and
(2) available behaviours. The assumptions are modelled via a robotic-platform
block, illustrated in Figure 1 by the block ePuck, which describes the variables,
operations, and events that must be available for the application to be feasible.

In this example, the platform ePuck abstracts a piece of hardware containing
a number of sensors and actuators. The operation move that takes two param-
eters l and a, both of type real, models the actuator responsible for moving the
robot forward and turning. The event obstacle represents an obstacle sensor and
communicates the position of the obstacle. The events report and ack represent
sensors and actuators responsible for inter-robot communication.

The event obstacle carries a value of type Position that is defined by an
enumeration containing the values left and right. The event report carries a value
of type ID representing the source of the communication, and ack carries a pair
of ID values representing the source and target of the communication. ID is an
abstract type about which nothing is assumed except for its non-emptiness.

The behaviours of a RoboChart module are specified by one or more con-
trollers; they run in parallel and interact with each other and with the robotic
platform. The possible interactions are indicated by connections, which, at the
level of modules, are either synchronous or asynchronous.

In our example, the aggregation behaviour is decomposed into two con-
trollers: MovementC and CommunicationC. The first describes how the robot
moves based on the number of neighbours; the second uses inter-robot commu-
nications to estimate that number. There are four interaction points: the occur-
rence of the event obstacle represents an interaction between the robotic platform
and MovementC to communicate the position of the obstacle with respect to the
robot; report and ack are used to interact with other robots, intermediated by
the robotic platform, and communicating the identity of the robot; finally robots
in CommunicationC is used for interaction with MovementC through neighbours.
(Connected events do not need to have the same name, just the same type.)

Controllers are defined by one or more state machines interacting via syn-
chronous connections. Figure 2 shows CommunicationC. It declares two interfaces
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Fig. 2: Communication controller of the aggregation algorithm.

Fig. 3: Communication state machine of the aggregation algorithm.

CommHw and Internal, also shown in Figure 2. They define the events report, ack
and robots, connected to identically named events in the referenced state machine
Communication, whose definition is shown in Figure 3. Just like the connection
between CommunicationC and the platform, the connections for report and ack
are bidirectional. The connection for robots provides an output, matching the
connection between CommunicationC and MovementC.

Communication models a cyclic behaviour, where each cycle takes RC time
units. At each cycle, the machine indicates its presence via report, and then
monitors for responses from other robots through ack. At the same time, reports
from other robots are acknowledged. This allows estimating how many robots
are within the communication range. The size of the set of neighbours is sent
through robots and propagated to MovementC to decide how to move.

Similarly to the controller CommunicationC, the machine Communication de-
clares the two interfaces CommHw and Internal to define the events it uses. Addi-
tionally, it declares two constants: id of type ID, representing the identifier of the
robot and RC with type nat of natural numbers. There are also three variables: x
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of type ID*ID (pair of values of type ID) records values received through ack, y of
type ID records values received through report, and neighs of type Set(ID) (sets of
values of type ID) records the identifiers of the robots that respond to the event
report. Finally, Communication declares a clock RCC used to mark the cycles.

Communication initially enters the state Broadcast executing its entry action,
which sends id through report. After that, the transition to the state Receive is
taken, since it has no guard or event. This resets the clock (#RCC) and assigns
the empty set ({}) to neighs. From Receive, there are three possible transitions.
If the clock runs out (since(RCC)>=RC), the size of neighs is communicated via
robots, and Broadcast is entered. If, before the clock runs out (since(RCC)<RC),
the event report occurs, the pair (|y,id|) formed input y taken and id is sent
through ack, and the machine stays in Receive. Finally, if an event ack, where
the first element x[1] of its tuple input x is id, happens before the clock runs out,
the second element of x is added to neighs, and the machine stays in Receive.

The semantics of RoboChart captures this behaviour and that of the whole
module as a CSP process. We next give a brief overview of CSP.

2.2 CSP

Systems and components are modelled in CSP via processes. They are all re-
garded as black boxes and defined by the patterns of their interactions with each
other and the environment. Interaction is via atomic and instantaneous events.

Accordingly, the semantics of a RoboChart model is defined by a process
that captures the behaviour of its module. Each component, controller, and
state machine is defined by a process as well. The events of the module process
match the interface of the robotic system characterised by the robotic platform.
They correspond to accesses to variables, to calls to operations of the platform,
and to communications using the RoboChart events of the platform.

We explain the CSP notation as we use it; Table 1 gives a summary. A core
operator is prefixing c → P ; it describes a process that engages in a communi-
cation (event) c and then behaves as the process P . The event may be an input
c?x that records the value input via a channel c in a variable x , an output c!e
of the value of an expression e, or a simple synchronisation on c.

The parallel operators are also very important. P |[cs ]|Q defines the parallel
execution of P and Q , synchronising on the events in the set cs. Communications
internal to a component or system can be hidden using the operator P \ cs,
which hides the events in the set cs in the execution of P .

A dialect of CSP, called tock-CSP, uses a special event tock to mark the pas-
sage of time. We use tock-CSP to capture the semantics of the timed constructs
of RoboChart: clocks, budgets, and deadlines.

Most importantly for our agenda of work, CSP has a relational predica-
tive semantics defined using the Unifying Theories of Programming (UTP) [13].
Support for this semantics in Isabelle/HOL [8] means that our CSP semantics
for RoboChart is a front-end for a UTP theory. With that, we can carry out
verification using theorem proving. For large models, and for swarm models in
particular, this is crucial to ensure scalability.
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Symbol Name Description

Skip skip Terminate immediately without any side effects.

P |[ cs ]|Q parallel composition Run P and Q in parallel synchronising on events
in cs.

P ||| Q interleaving Run P and Q in parallel without synchronisation.

{|e|} channel set Set of all possible events associated with channel
e.

c → P prefix Synchronise on channel c and then behave like P .

P \ cs hiding Run P with events in cs hidden.

P [[c← d ]] renaming Rename the occurrences of event c to d in P .

||| i : I • P(i) replicated interleave Run P(i) in parallel for all i in I without synchro-
nisation.

Table 1: Summary of CSP operators

2.3 Semantics

The module process is defined by the parallel composition of the processes that
model its controllers, where events are renamed and the synchronisation set is
constructed so that the controllers interact according to the module connec-
tions. Asynchronous connections between controllers are modelled by single-cell
buffers. For example, the semantics of the module in Figure 1 is as follows.

AggregationRobot =


MovementC [MovementC obstacle.out ← ePuck obstacle.in]
|||

CommunicationC [ CommunicationC report .out ← ePuck report .in,
CommunicationC report .in← ePuck report .out ,
CommunicationC ack .out ← ePuck ack .in]
CommunicationC ack .in← ePuck ack .out ]


|[{|CommunicationC robots,MovementC neighbours|}]|

Neighbours Buffer(〈〉)


\ {|CommunicationC robots,MovementC neighbours|}

AggregationRobot composes in parallel the controller processes MovementC and
CommunicationC , with their channels that represent events connected directly
to the platform, that is, CommunicationC report and CommunicationC ack ,
renamed to the platform channels ePuck report and ePuck ack . For each event,
we have a channel that takes tokens in and out that identify the direction of
communication: input or output. The renamings identify the events to establish
the connections between the controllers and the platform. The inputs of the
platform are identified with the outputs of the controllers and vice-versa. For an
unidirectional connection, like that for obstacle, just one renaming is needed.

In the above example, the controller processes do not communicate because
they do not interact synchronously. So, the parallelism is an interleaving (|||).
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The parallel composition of the controller processes is composed in paral-
lel with a buffer process Neighbours Buffer(〈〉) that records RoboChart events
input through a channel CommunicationC robots modelling the RoboChart
event robots, and sends them through another channel MovementC neighbours
modelling neighbours. Communications using these channels are hidden as the
RoboChart events they represent are internal to the module (see Figure 1). The
set {|c|} contains all events that represent communications over the channel c.

The semantics of controllers is similarly defined as the parallel composition of
the processes that model its state machines. Since all connections between state
machines are synchronous, there is no need for buffers. Channels correspond-
ing to events of the state machine connected to the controller are renamed to
channels of the controller. In our example, since the controller CommunicationC
contains only one state machine, only the renamings take place.

CommunicationC =
Communication[ Communication robots ← CommunicationC robots

Communication report ← CommunicationC report
Communication ack ← CommunicationC ack ]

The renamings establish the connections between the events of the controller
CommunicationC and those of the state machine Communication.

The processes for state machines are defined in a compositional way in terms
of processes for states and transitions. They capture the control flow defined
by the machine in terms of CSP events that represent accesses and updates to
variables required or provided by the machine, calls to operations, and occurrence
of RoboChart events. Compositionality is important for verification and can be
achieved because we rule out constructs like inter-level transitions, for example.
The complete semantics of RoboChart is described and formalised in [22].

Next, we discuss the metamodel of the new constructs to deal with collections,
and present an updated version of our example that uses these constructs.

3 Collections in RoboChart: overview and metamodel

Our example models the controller of a single robot, but the application itself is a
swarm, where multiple robots communicate to estimate their numbers of neigh-
bours. To capture this behaviour, in the previous section we explicitly model the
source and destination of the event ack and the source of the event report.

To model the swarm as a whole and simplify the specification of the commu-
nications, we include two new features in RoboChart. We have a construct to
specify (heterogeneous) collections, and communications that support extraction
and restriction of attributes, namely, source and target robots.

Here, we describe our reworked example (Section 3.1), and discuss the collec-
tion (Section 3.2) and the extended communication (Section 3.3) mechanisms.
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Fig. 4: Collection for the aggregation system.

3.1 Extended example

In the previous section, the model of our example focused on an individual robot.
Here, we model how multiple robots interact with each other, and show how the
original model can be reworked to use our extended communication mechanism.
We model a swarm of N robots interacting through broadcast events.

Figure 4 shows a collection diagram for our example. It defines the collection
as N instances of the module AggregationRobot indexed by values i ranging from
1 to N, where N is an uninitialised constant of type nat. The index specified in
the collection is used to identify its individual robots.

Within the bottom compartment of the collection diagram, there are two
placeholders for AggregationRobot, with their events report and ack connected.
The placeholders stand for any two distinct instances of AggregationRobot. They
show how any two robots modelled by AggregationRobot interact.

While communication within a robot (between controllers and state ma-
chines) is one-to-one, communication between robots in a collection is a broad-
cast: all instances of a module with a broadcast event can potentially receive
messages from all other instances that are connected to that event as defined in
the collection. These events are indicated by the letter B inside the event box.

This system of idealised broadcast connections may seem too restrictive, but,
in conjunction with the communication mechanisms discussed in Section 3.3, it
can be used to model more constrained forms of interaction. We can, for example,
model that communication is only sent to a subset of other robots, or even to
a particular robot. These can capture the fact that there may be robots out of
range, or that there is a communication device in the platform with a protocol
that identifies when the communications are directed to its robot.

A broadcast event has implicit from and to attributes of a generic type ID
to identify the source and target of the communication. The type ID is that of
robot identifiers; it is instantiated in a collection diagram via the definition of
instances of modules (robots). The diagram in Figure 4, for example, defines
instances with identifiers i in the range 1 to N. In doing so, it instantiates the
type ID for AggregationRobot to the set of natural numbers between 1 and N.
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Fig. 5: Broadcast communication in the Communication state machine.

Using the collection communication mechanism, we can rewrite the machine
in Figure 3 to eliminate the parameters of the report and ack events, using the
attributes of the broadcast events instead. The updated version is in Figure 5.

In this version, the transition triggered by a report event uses an assignment
to record its attribute from in the variable y. It is used in the action that sends the
event ack to restrict its attribute to in a predicate that equates to to y. We use a
predicate, not an assignment to restrict to, so that, in general, several robots can
be targetted. We record the source of the report to direct the acknowledgement
to the right robot, since the scope of from and to is the broadcast event.

Similarly, upon receipt of the event ack the source is stored in x. It is that
identifier x that is recorded in the set neighs. We note, in particular, that the
condition x[1]==id in the guard of the corresponding transition in Figure 3,
becomes unnecessary, since ack is accepted only when the target is the robot id.

In what follows, we describe the metamodel and well-formedness conditions
for the collection diagrams and broadcast communications.

3.2 Collections

A collection diagram, illustrated in Figure 4, describes exactly which types of
robots (RoboChart Modules) form the collection and how many instances of each
type exist. Furthermore, it specifies how different instances or types of robots
can communicate using connections of broadcast events.

In the metamodel of RoboChart, a collection diagram is modelled by a con-
struct RCCollection shown in Figure 6. It can contain four components. A vari-
ableList declares the constants used to define the number of instances of each
type of robot. In the metamodel, they are identified as variables, but a well-
formedness condition ensures that they are constants. The value of a constant
may or may not be defined, like in our example in Figure 4.

Collections can also have Instantiations consisting of an index with a range,
of the Module being instantiated, and of parameters that initialise unspecified
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constants in the module, if any. For example, we could define the number alpha
of neighbours used as a threshold to determine whether a robot should turn as
a constant in AggregationRobot. In this case, we may define a value for alpha in
the collection, perhaps in terms of the number N of robots in the swarm.

A well-formedness condition ensures that the range is defined by an Expression
that denotes a finite set. We note that a collection may have just one instance of
a particular Module, so the range may be a singleton. This may be, for example,
a model for a collection that contains one robot controlling others.

Another well-formedness condition ensures that the parameters defined via
InstantiationParameters are values for constants of the Module instantiated. There
may be have several instantiations with different values for these constants.

Placeholders correspond to generic instances of modules. They are references
to a Module, that is, an element of ModuleRef. A well-formedness restriction
ensures that these are modules that occur in one of the instantiations. An extra
attribute IDInst of Module records an instantiation, if any, of the generic type ID
of identifiers for instances of the robots defined by the Module.

Since ID is a generic type, there are no operations beyond equality and in-
equality that can be used to manipulate its elements. If more operations are
needed, ID needs to be instantiated. For example, if the models in a compo-
nent (module, controller, or machine) use arithmetic operations on identifiers,
the type ID needs to be instantiated to a numeric type. A well-formedness con-
dition ensures that the same instantiation is used in the collections that use the
module. Different instantiations cannot be used in the same context.

Finally, we can include Connections between the placeholders establishing the
possible interactions between instances. Connections are between ConnectionN-
odes, one of which is a ModuleRef. A Connection can be bidirectional, and in a
collection, a well-formedness guarantees that it is asynchronous.

If there are several instantiations for the same Module, giving different values
for its constants, there may be more than two placeholders for such a Module.
In general, for each instantiation, there may be up to one or two placeholders
for its Module, depending on whether the range is a singleton or a larger set. An
empty range has a well defined semantics that can be used to explore behaviour
in the presence of missing robots, perhaps due to failure. Normally, however,
we expect that such a range is left unspecified, so that the collection may have
instances of the robot defined by the Module in some scenarios.

Events have a type that define the values that can be communicated. In
addition, broadcast events model the form of communication used in swarms.
Well-formedness requires that all connected events in a collection are broadcast
events, and broadcast events are only connected to other broadcast events.

The complete metamodel of RoboChart is available at [22], where elements
omitted in Figure 6, like Type or Expression, are defined.

3.3 Communications

The collection construct provides a general view of the potential communication
patterns between robots. In particular, it clearly specifies which communications
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Fig. 6: Metamodel of collections.

cannot happen. For example, in Figure 4, it is specified that there are no interac-
tions using the event obstacle. Nevertheless, the actual communication pattern
cannot be specified at this level. For instance, in our example, while the event
report is used to communicate with all other robots in the swarm, the event ack
is used in a more restricted fashion. It is used to communicate only with the
robot from which a report has been received.

Although a communication device available in a platform may not be able
to enforce a restricted protocol like this, it is simple to program functionality
to provide directed communication. The possibility to specify interactions that
follow a particular protocol allows us to construct more abstract models, where
the programming of any particular protocol is assumed to be in place.

The restricted interactions need to be specified at the level of the commu-
nication definitions using intrinsic information about their source and target.
Triggers, which are used in transitions and actions to define communications, in-
clude extra source and target attributes from and predicate. They allow both
identification and restriction of the participants.

The attribute from records the value of a predefined variable from: the
identifier of the source of the communication. The predicate attribute defines a
restriction on the target of the communication identified by a predefined variable
to. A well-formedness condition ensures that to is free in predicate. The variables
from and to have type ID and are local to a Trigger whose event is a broadcast.

These extensions to Trigger to consider the predefined variables from and to
affects the usage of events in triggers in transitions and actions. In an input
c?x[|v = from|], the occurrence of the communication c?x is accepted, and the
identifier of the source of the communication is recorded in the variable v. An
output c!e[|to in S|], for example, sends the value of e via c to each instance
specified by the collection diagram whose identifier belongs to the set S.

In the next section, we define the semantics of our collection constructs.
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4 Collections in RoboChart: semantics

The semantics of RoboChart is given by a function [[ ]]M from RoboChart mod-
ules to CSP processes. This function is defined compositionally over the meta-
model of RoboChart, in terms of other functions that calculate the semantics of
the controllers and connections that form the module.

The timed semantics is also defined by a function from RoboChart modules,
but its range is the set of tock-CSP processes. The definition of this function
reuses much of the original (untimed) semantics. In particular the description of
the collection semantics we provide here is valid in the context of both semantics.
We note that a tock-CSP process is itself a CSP process.

We define a new semantic function from RCCollection to CSP processes, and
modify three functions of the original semantics. The function [[ ]]M is modified
just to add a parameter id to the module process to record the module identifier.
It is used by the processes defined by the functions [[ ]]Trigger and [[ ]]Statement , which
specify the semantics of triggers in transitions and in actions.

The definitions of [[ ]]Trigger and [[ ]]Statement deal with the extra properties
from and predicate of triggers. In addition, events corresponding to accesses

to variables of the platform, to calls to its operations, and to simple platform
events, that is, that are not for broadcast, get id as an extra parameter. This
is so that the individual interactions of the platform with the controller and
the environment can be distinguished. Before we discuss all the affected seman-
tics functions, we present the CSP process Aggregation below that defines our
example collection to illustrate the overall idea of the semantics.

Aggregation =


||| i : 1..N • AggregationRobot(i)
|[{|report .in, report .out , ack .in, ack .out |}]|

||| (i , j ) : 1..N × (1..N \ {i}) •(
Buffer(〈〉, report , i , report , j ) ||| Buffer(〈〉, ack , i , ack , j )

)


The robots do not communicate directly. Using, for example, infrared or radio
devices, they communicate asynchronously. So, formally, they communicate via
buffers. Accordingly, in Aggregation, we combine the instances with identifiers 1
to N in interleaving. Instantiation defines the parameter id of the module.

There is a buffer for each direction of each connection between each pair of
robots. So, for each pair (i , j ) of robots i and j , we have a buffer to connect their
report and their ack events. We note that i and j are different robots, since j is
taken from the set (1 . .N \ {i}), which excludes i . Buffer(elems, e1, id1, e2, id2)
defines a buffer containing the elements in the sequence elems, taking inputs
from robot id1 via the events e1.in and producing outputs to robot id2 via
events e2.out . The buffers are initially empty: their sequence of elements is 〈〉.

The buffers do not interact with each other, so they are also combined in in-
terleaving. Their inputs and outputs are connected to the events of the module
processes. So, the module processes and the buffers are composed in parallel syn-
chronising on the events report .in, report .out , ack .in, and ack .out corresponding
to the ends of the bidirectional connections in Figure 4.
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Rule 1. Semantics of Collections [[c : RCCollection]]Col :CSPProcess =

||| inst : c.instantiations • ||| i : inst.range • [[inst.module]]M(i)

|[{|e1, e2 | (e1, e2)← connectedEvents(c)|}]|
(
||| conn : c.connections • ||| (i , j ) : inds(conn, c) •

Buffer(〈〉, eventId(conn.efrom), i , eventId(conn.eto), j )

)
|||(
||| conn : c.connections | conn.bidirec • ||| (i , j ) : inds(conn, c) •

Buffer(〈〉, eventId(conn.eto), j , eventId(conn.efrom), i)

)


where
connectedEvents(c : Collection) : P(Event × Event) =

{conn : c.connections •(eventId(conn.efrom), eventId(conn.eto))}
∪
{conn : c.connections | conn.bidirec •(eventId(conn.eto), eventId(conn.efrom))}

inds(conn : Connection, c : Collection) : P(ID × ID) =

if conn.from.ref = conn.to.ref then
range(conn.to, c) × range(conn.from, c) \ {i : range(conn.to, c) • (i , i)}

else
range(conn.to, c) × range(conn.from, c)

range(m : Module, c : Collection) : P ID = (ιi : c.instantiations | i.module = m).range

Rule 1 defines the semantic function [[ ]]Col that specifies the CSP processes
for collections. We use a simple meta-notation based on CSP itself; its terms are
underlined. CSP terms are in the usual mathematical font.

The function [[ ]]Col takes an element c of the type RCCollection defined in the
metamodel and returns an element of CSPProcess, a CSP process, defined by the
parallel composition of two interleavings as illustrated above. For each instanti-
ation inst of c, that is, in the set c.instantiations, we have a replicated interleave,
which is itself combined in interleaving with the interleaving for the other in-
stantiations. For each index i in the range inst.range of the instantiation, we have
a process [[inst.module]]M(i) combined in interleaving, where [[inst.module]]M de-
fines the semantics of the referred module inst.module. This semantic function is
as defined in [22] and previously illustrated in Section 2, but now the process it
defines includes the extra parameter id as explained above.

The second interleaving is of buffer processes. There are two groups of such
processes: the first models unidirectional communication, and the second com-
plements the first with buffers for the reverse direction of communication for
bidirectional connections. In each case, for each connection conn of c (from the set
c.connections), we have a replicated interleaving of processes modelling buffers.
We have a buffer for each pair of instances of each module connected by conn.

The replicated interleavings are indexed by pairs (i , j ) in the set inds(conn, c)
containing identifiers of the instances of the modules that can communicate
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through the connection conn. The definition of inds(conn, c) presented in Rule 1
takes into account the module of the two connected instances. If they are dif-
ferent (conn.from.ref = conn.to.refmodules is false), the pairs in inds(conn, c) are
those in the cartesian product of the indices of the source and target modules.
Otherwise, we need to discard the identity pairs (i , i), since there is no connec-
tion associating an instance of a module to itself.

The set of indices is specified using the function range. It takes a module m
and a collection c in which it is instantiated, determines the unique (ι) instan-
tiation whose module is m, and returns the associated range.

The second group of interleavings corresponding to the bidirectional connec-
tions is similar, except that the parameters of the process Buffer are reversed.

The two top-level interleavings are composed in parallel synchronising on
the events corresponding to the source and target of the connections. This is
calculated by the function connectedEvents, which takes a collection c and returns
a set of pairs of events. It is presented in Rule 1. For each connection in c, we
have a pair formed of the channels that model the source event (efrom) and the
target event (eto) of the connection. For bidirectional connections (conn.bidirec),
we also include the reversed pair in connectedEvents(c).

The semantics of triggers uses the in and out components of the broadcast
channels as well as the source and target identifiers to coordinate the exchange
of events between the module instances. To illustrate, we present the semantics
of two communications in our example in Figure 5.

The semantics of report[|y = from|] is given by the CSP process below, which
is used to define the semantics of the state machine, itself used as a component
in the module process and, therefore, in the collection. Here, id is the identifier
of the module defined, as explained above, as a parameter of its process.

report .out?from!id → set y !from → Skip

If the buffer process for the connection to the report event of a robot id contains
a value, it can synchronise with this process. It accepts the source from of the
connection as input, and assigns its value to the variable y using a communication
on a channel set y , and terminates (Skip). Variables in state machines are held
in memories represented by processes with set and get channels.

The semantics of ack[|to == y|] is given by the CSP process below.

||| t : {to | to← ID , to == y} • ack .in!id?t → Skip

While the trigger process for the previous example only synchronises with one
of the buffers, the above process synchronises with all buffers whose target iden-
tifiers t satisfy the predicate t == y . As previously indicated, the CSP trigger
processes illustrated above interact with the buffers in Aggregation.

The definition of the semantics of triggers requires a simple change to what
is presented in [22] to specify enriched processes like those shown above, which
can record identifier information, and synchronise with various buffers.

Validation of the semantics just described is provided by its mechanisation
RoboTool, which is presented in the next section.
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Fig. 7: Graphical editor for RoboChart.

5 Tool support

Tool support for RoboChart is implemented in RoboTool5. It provides a graphi-
cal editor for RoboChart models, a parser for the textual elements of the graph-
ical notations (expressions, statements, transition labels, and so on), validators
that check well-formedness conditions, and code generators. These tools are im-
plemented as Eclipse6 plugins using the Xtext7 and Sirius8 frameworks.

The RoboTool graphical editor is shown in Figure 7. It has been enriched with
facilities for the creation of collections, and parsing of collection declarations and
of the new triggers. The validator has been extended to check for well-formedness
conditions for collections described in Section 2.

RoboTool provides three code generators: for the untimed semantics, the
timed semantics, and a C++ simulation. The CSP files that are generated can
be opened from RoboTool directly into FDR to verify properties of the models.
A number of assertions of classical properties are also automatically generated
for checking. The code generator for the untimed semantics has been updated to
implement the semantics of collections of the previous section, and the update
of the remaining code generators is part of our future work.

Using RoboTool and FDR, we have checked deadlock freedom for our example
collection. For the empty collection, with N = 0, we have a deadlock: if there
is no working robot, there is no observable behaviour. Similarly, for N = 1,

5 https://www.cs.york.ac.uk/circus/RoboCalc/robotool/
6 www.eclipse.org
7 www.eclipse.org/Xtext
8 www.eclipse.org/sirius/
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we have a deadlock, because there is no other robot to accept a report . In the
analyses for larger values of N , there is no deadlock, as expected9. Although we
have been able to analyse this example, analysis of swarm applications requires
theorem proving and our approach is well suited for that. Ongoing work allows
automated proof of deadlock freedom using Isabelle/UTP.

6 Related work

UML and its various extensions are widely used for modelling in a number of
different domains. Due to its generality, UML is an option for modelling robots
and swarms. However, while a number of formalisations have been proposed for
UML using techniques such as graph transformations [14], CSP [19, 2], as well as
tailored semantic domains [1], these formalisations only cover subsets of UML.

RoboChart, on the other hand, is a small language, with a well defined process
algebraic semantics suitable for verification using model checking and theorem
proving. In addition, it caters for timed properties and now has specialised nota-
tion for collections of robots. Nordmann et al. [16] indicates that domain-specific
languages (DSL) for robotics are growing in popularity, further motivating our
choice of a small DSL over a more general notation such as UML.

Indeed, several robotic modelling notations have been proposed, but they
mostly aim at code generation for execution or simulation. In RoboChart, we also
focus on a formal semantics for verification and generation of sound simulations.

RobotML [3] is a UML-based notation for robotics that supports automatic
code generation, but support for formal verification is not yet available. Schlegel
et al.[21] propose the use of a UML-based framework for engineering robotic
systems, but formal verification is also not supported. Work on GenoM [9] is
one of the closest to ours. It supports verification of schedulability and dead-
lock checking. Unlike RoboChart, GenoM is an executable language (potentially
including C code) with limited support for abstractions.

The approach in [7] uses model checking to identify optimal configurations,
but verification of behavioural properties is not the goal. Orccad [5] supports
modelling, simulation, programming, and verification of timed behavioural prop-
erties. Verification is supported by translating models into formal languages like
in our work. However, Orccad differs from RoboChart in its limited support for
graphical modelling and granularity of its modelling elements.

To the best of our knowledge, the notations for robotics in the literature
do not support modelling and verification of collections of robots. UML-like no-
tations provide support for modelling of components. A distinguishing feature
of RoboChart, though, is that it allows specifying a swarm configuration by
relating meta (as opposed to concrete) robot instances via placeholders. There-
fore, a model identifies the relevant communication patterns and specifies them
as templates. The number of robots that form a concrete configuration can be
a parameter of the more abstract configuration specification. As far as we are

9 www.cs.york.ac.uk/circus/RoboCalc/case_studies/
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aware, all other existing graphical notations require that configurations are spec-
ified by relating concrete instances. This is the case, for instance, when we use
Structure Diagrams to define a system configuration in terms of UML or SysML
components. For every change in the number of components, the diagram needs
to be revised. In RoboChart, we need to provide only a new value for a constant.

7 Conclusions

RoboChart supports modelling, verification, and simulation of robotic applica-
tions. Its concise design allows for the full specification of well-formedness con-
ditions and semantics, as well as the implementation in the form of RoboTool.
In this paper, we have described RoboChart support for explicit modelling of
collections, and complex communication patterns within collections. The formal
semantics of these facilities has been described and mechanised in RoboTool.

Currently, RoboChart is being extended with support for probabilistic mod-
elling and verification, and a library of robotic platforms and common behaviours
is under development. Furthermore, extensions to support modelling of the con-
tinuous aspects of the hardware and the environment are planned. All these
extensions under development are useful also for modelling swarms.

Model checking is limited in the size of the models that it can handle. Our
plan, especially for verification of swarms, is to explore compositional techniques
for the efficient verification of CSP specifications [6], and semi-automatic verifi-
cation using a CSP mechanisation in the theorem prover Isabelle [8].

The only form of communication available within a collection is perfect broad-
cast. We plan to provide: (1) a catalogue of types of communication media in-
cluding mechanisms to model message loss and corruption; and (2) constructs
and a library of models to support the specification of environments.
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