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1.1 Introduction

Safety is a major concern in robotics: for example, regulations for industrial robots
often require them to be kept in cages, and autonomous vehicles currently cannot be
certified for civil aviation. The ability to provide safety evidence can create signif-
icant opportunities. Yet, the programming techniques in use involve, on one hand,
advanced robotics technology, and, on the other, outdated approaches to validation
and verification of software controllers (either in isolation or in the context of a
specific robotic hardware platform and environment).

Figure 1.1 indicates, in bold, the artefacts that are currently engineered in typical
developments. The other artefacts are either provided on an ad hoc basis by partic-
ular tools or missing. In a first development phase, a state machine is often used
to define the controller. If relevant, timed and probabilistic behaviours are recorded
informally. For simulation, if the tool of choice does not provide adequate hardware
and environment models, they need to be adapted or developed. A main difficulty
is reasoning about the effect of the environment or recording assumptions about it.
Connections between the artefacts are tenuous.

We propose here extensions and restrictions to INTO-SysML [2], a SysML [31]
profile for cyber-physical systems. Our goal is to support modelling of robotic ap-
plications, including facilities to specify time, probabilities, the robotic platform,
and the environment. SysML is a UML-based language that is becoming a de facto
standard for systems, rather than just software, modelling. The INTO-SysML profile
restricts the use of SysML block and internal block diagrams to characterise a col-
lection of potentially heterogenous (co-)models as typically required for describing
cyber-physical systems. These models may be written using a variety of notations
adopting a variety of modelling paradigms. The definition of a collection of models
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Fig. 1.1: Robot controller development artefacts: current practice

in INTO-SysML identifies how they are described and how they are connected to
each other to specify a complete cyber-physical system (CPS).

Our version of the INTO-SysML profile dictates the use of a domain-specific lan-
guage for discrete modelling of robot controllers: RoboChart [30]. For continuous
modelling, we use as an example Simulink [29], which is widely used in industry
for simulation of control laws. We can, however, accommodate other notations for
continuous modelling. To illustrate our novel SysML profile, we apply it to describe
co-models for the chemical detector in [22]1 and its environment.

Tools and facilities for simulation of robotic systems range from APIs [27] to so-
phisticated engines [35, 24] that embed discrete hardware and environment models.
The variety of tools, simulation languages, and facilities for hardware and environ-
ment modelling and simulation means that the choice is not obvious, tool-specific
knowledge is required, and reuse across tools is difficult.

In the long term, we envisage the automatic generation of tool-independent simu-
lations from models written in INTO-SysML. Typically, for the continuous models,
simulation tools are available. For RoboChart, automatic generation of simulations
is under development. To support overall simulation of the various heterogeneous
models of components, controllers, robotic platforms, and environment, using the
most adequate tool for the task, we can adopt co-simulation. This is a technique
widely adopted in industry to deal with the increased complexity of cyber-physical
systems via the coordinated use of heterogeneous models and tools.

An industry standard, FMI [15] (Functional Mock-up Interface), supports orches-
tration. It avoids the need for customised coupling of each collection of simulation
tools relevant for an application. An FMI co-simulation comprises black-box slave

1 See http://tinyurl.com/hdaws7o.
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FMUs (Functional Mockup Units); these wrap simulation models, connected via
their inputs and outputs. A master algorithm triggers and orchestrates the simula-
tion of the FMUs. In our envisaged approach, the environment, the controllers, and
sometimes the robotic platform are in different FMUs. A co-simulation evolves in
steps, which are synchronisation and data exchange points. An FMI API supports
the programming of the master algorithm.

An FMI-based co-simulation framework for robotic applications can help devel-
opers face the challenge of heterogeneity. Our vision is for a framework that uses
automatically generated co-simulations guaranteed to preserve the properties of the
co-models described using INTO-SysML.

Besides defining a version of INTO-SysML for robotics, here we also give the
INTO-SysML profile a formal behavioural semantics defined using the CSP pro-
cess algebra [36]. The semantics captures the properties that every realisation of the
co-simulation must satisfy. It captures the behaviours of the FMI simulations that
orchestrate the executions of the multi-models as specified in SysML.

The use of CSP is a front-end to a semantic model that is described using Uni-
fying Theories of Programming (UTP) [23] and can be extended to deal with con-
tinuous time and variables. With this preliminary use of CSP, we enable the use of
the model checker FDR [19] for validation. Our semantics complements existing
results on UTP semantics of RoboChart [30] and of FMI [9].

We present the background material to our work: SysML and the INTO-SysML
profile, FMI, and RoboChart in Sect. 1.2. Sect. 1.3 presents our SysML profile.
Sect. 1.4 presents our semantics. We consider related work in Sect. 1.5 and conclude
in Sect. 1.6, discussing also our agenda for future work.

1.2 Preliminaries

In what follows, we present the notations used in our work.

1.2.1 SysML and the INTO-SysML profile

SysML [31] is a general-purpose graphical notation for systems engineering appli-
cations, defined as an extension of a subset of UML [20]. This extension is achieved
by using UML’s profile mechanism, which provides a generic technique for cus-
tomising UML models for particular domains and platforms. A profile is a conser-
vative extension of UML, refining its semantics in a consistent fashion.
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There are commercial and open-source SysML tools. These include IBM’s Ra-
tional Rhapsody Designer,2 Atego’s Modeler,3 and Modeliosoft’s Modelio.4 They
support model-based engineering and have been used in complex systems.

Like a UML model, a SysML model can be described by a set of diagrams.
A central notion in SysML is that of a block, which is a structural element that
represents a general system component, describing functional, physical, or human
behaviour. The SysML Block Definition Diagram (BDD) shows how blocks are
assembled into architectures; it is analogous to a UML Class Diagram, but is based
on the more general notion of block. A BDD represents how the system is composed
from its blocks using associations and other composition relations.

A SysML Internal Block Diagram (IBD) allows a designer to refine a block’s
structure; it is analogous to UML’s Composite Structure Diagram, which shows the
internal structure of a class. In an IBD, parts are assembled to define how they
collaborate to realise the block’s overall behaviour.

SysML includes a number of other diagrams to define state machines, flow charts,
requirements, and so on. The BDD and IBD just described are the only ones relevant
for our profile for description of co-simulations.

The INTO-SysML profile [2] customises SysML for architectural modelling for
FMI co-simulation. It specialises blocks to represent different types of components,
that is, co-models, of a CPS, constituting the building blocks of a hierarchical de-
scription of a CPS architecture. A component is a logical or conceptual unit of the
system, software or a physical entity, modelled as an FMU.

The following types of components are represented in INTO-SysMML us-
ing specialised blocks: System, EComponent (encapsulating component), and
POComponent (part-of component). A System block is decomposed into sub-
systems: EComponents, which are further decomposed into POComponents.
An EComponent corresponds to an FMU. EComponents and POComponents
may be further classified as Subsystem, a collection of inner components, Cyber,
an atomic unit that inhabits the digital or logical world, or Physical, an atomic
unit in the physical world. Characterising phenomena may be classified as being
discrete or continuous. Decomposition of EComponents can be used to
provide more information about the structure of the co-models, although that struc-
ture is hidden inside an FMU from the point of view of the FMI co-simulation.

To define the system, the components, and their relationships, INTO-SysML
comprises two diagram types, Architecture Structure Diagrams (ADs) and Connec-
tion Diagrams (CDs), specialising SysML BDDs and IBDs. ADs describe a decom-
position in terms of the types of system components and their relations. They em-
phasise multi-modelling: certain components encapsulate a model built using some
modelling tool (such as VDM/RT [26], 20-sim [4] or Open Modelica [18]). CDs in-
clude AD block instances to describe the configuration of the system’s components,
highlighting flow and connectedness of these components.

2 See sysml.tools/review-rhapsody-developer/.
3 See http://www.atego.com/de/products/atego-modeler/.
4 See www.modelio.org/.
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In our examples, the multi-models are written in Robochart (see Section 1.2.3)
and Simulink [29]. The latter, developed by MathWorks, is a graphical programming
environment for modelling, simulating, and analysing multi-domain dynamic sys-
tems. Its primary interface is a graphical block diagramming tool and a customisable
set of block libraries. Simulink is a de facto standard for modelling and simulation
of control systems in the automotive and avionics industry.

1.2.2 Functional Mock-up Interface (FMI)

The Functional Mock-up Interface (FMI) [15] is an industry standard for collabora-
tive simulation of separately developed models of CPS components: co-simulation.
The key idea is that, if a real product is assembled from components interacting
in complex ways, each obeying physical laws (electronic, hydraulic, mechanical),
then a virtual product can be created from models of those physical laws and a model
of their control systems. Models in these different engineering fields are heteroge-
neous: they use different notations and simulation tools.

The purpose of FMI is to support this heterogeneous modelling and simulation
of a CPS by using the most convenient tools to deal with the different models.
FMI is used in a number of different industry sectors, including automotive, en-
ergy, aerospace, and real-time systems integration. There is a formal development
process for the standard, and many tools now support FMI.

As mentioned above, an FMI co-simulation consists of FMUs, which are mod-
els encapsulated in wrappers, interconnected through inputs and outputs. FMUs are
slaves: their collective simulations are orchestrated by a master algorithm. Each
FMU simulation is divided into steps with barrier synchronisations for data ex-
change; between these steps, the FMUs are simulated independently.

A master algorithm communicates with FMUs through the FMI API, whose most
important functions are those to exchange data, fmi2Set and fmi2Get, and that
to command the execution of a simulation step, fmi2DoStep. Other functions of
the FMI API support the low-level management of the FMUs: initialisation, termi-
nation, recovery of its state, and so on. They play an important role is supporting
the implementation of sophisticated master algorithms. From a conceptual point
of view, however, the co-simulation is characterised by the sequence of calls to
fmi2DoStep, which define the simulation steps, and the associated values input
and output using fmi2Set and fmi2Get.

The FMI standard does not specify master algorithms, but restricts the use of the
API functions to constrain how a master algorithm can be defined and how an FMU
may respond. Formal semantics for FMI can be found in [5, 9].
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Fig. 1.2: RoboChart module

1.2.3 RoboChart

RoboChart [30] is a diagrammatic notation tailored to the design of robotic sys-
tems. RoboChart models use Harel-style statecharts [21], but crucially, also include
constructs that embed concepts of robotic applications. They are used to structure
models for abstraction and reuse. Moreover, distinctively, the RoboChart state ma-
chines use an action language that is both timed and probabilistic.

A RoboChart design centres around a robotic platform and its controllers. Com-
munication between controllers can be either synchronous or asynchronous, but
communication between state machines inside a controller is synchronous. The op-
erations in a state machine may be given interface contracts using preconditions and
postconditions, may be further defined by other state machines, or may come from
a domain-specific API formalised separately. The formal semantics of RoboChart is
mechanised in CSP [30] for model checking with FDR [19].

As a simple example, we consider a Rover robot inspired by that in [22]. It is
an autonomous vehicle equipped to detect certain chemicals. It randomly traverses
a designated area, sniffing its path with its onboard analysis equipment. If it detects
a chemical source, it turns on a light and drops a flag as a marker.

A robotic system is specified in RoboChart by a module, where a robotic platform
is connected to one or more controllers. A robotic platform is modelled by variables,
events, and operations that represent built-in hardware facilities. The ChemicalDe-
tector module for our example is shown in Figure 1.2; it has a robotic platform
Rover and controllers DetectAndFlagC and LightC.

The named boxes on the border of Rover declare events. The lightOn and
lightOff events can be used to request that the robot built-in light is switched one
way or the other. The sensor events l and r record the detection by the robot of a wall
on one side or the other. Similarly, the alarm indicates the detection of a chemical
source by the built-in sensor in the robot.

The variables ls and as of Rover record its linear and angular speeds. The
move(l,a) operation commands the Rover to move with speeds l (linear) and a (an-
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gular); it is part of the RoboChart API. The operations LoadFlag() and Release-
Flag(), on the other hand, are not in the RoboChart API, since they are particular to
this example. They are declared, but not further defined.

The two controllers DetectAndFlagC and LightC define the behaviour of Rover.
DetectAndFlagC controls the events left, right, found, and flagged (see the bor-
dered boxes), thereby interacting with Rover and LightC. These events are asso-
ciated with l, r, and alarm of Rover, and activate of LightC, as indicated by the
arrows, whose directions define information flow. So, when Rover finds a chemical,
it sends an alarm to DetectAndFlagC. LightC uses events lon, loff, and activate to
communicate with Rover and DetectAndFlagC.

RoboChart models do not provide specific facilities to specify the robot physical
model and the environment. In the next section, we propose a way of consider-
ing RoboChart models in the context of a variation of the INTO-SysML profile,
especially designed to deal with RoboChart co-models. In Section 1.4, we give a
semantics based on the FMI API for the co-simulation specified in SysML.

1.3 Multi-modelling of robots in SysML

We propose the combined use of RoboChart with the notation of a simulation tool
for continuous systems: any of Simulink, 20-sim, or OpenModelica, for instance.
For illustration, we consider here control-law diagrams used in Simulink.

The goal is to support the addition of detailed models for the robotic platform
and for the environment. To identify these multi-models and their relationship, we
propose to adapt the INTO-SysML profile.

A RoboChart module includes exactly one robotic platform, for which it gives
a very abstract account. As already said, a RoboChart robotic platform defines just
the variables, events, and operations available. In many cases, the operations are
left unspecified, or are described just in terms of their effect on variables. In our
ChemicalDetector module, for example, the operation move is specified just in
terms of its effect on the variables ls and as of the robotic platform. There is no
account of the actual laws of physics that control movement.

In a Simulink model, on the other hand, we can define the expected effect of the
operations on the actual behaviour of the robot by capturing the laws of physics.
In addition, we can also capture physical features of the environment that have a
potential effect on the robot. To integrate the models, however, they need to share
and expose events and variables. It is the purpose of the SysML model to depict the
multi-models and their connections via events and variables.

Next, we present the extensions (Section 1.3.1) and restrictions (Section 1.3.2) to
the INTO-SysML profile that we require, mainly for the specification of RoboChart
and Simulink model composition. They are mostly confined to the Architecture
Structure Diagrams. Some are of general interest, and some support the use of
RoboChart as a co-model, in particular. In Section 1.3.3 we explain how we expect
the resulting INTO-SysML profile to be used.
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# Description INTO-SysML/RoboCalc
E1 The components of the System block can include

LComponent blocks.
Both.

E2 We can have specialisations of LComponent
blocks with stereotypes Environment and
RoboticPlatform to group models for the
environment and for the robotic platform.
We can have any number of Environment blocks,
but at most one block RoboticPlatform. These
blocks can themselves be composed of any number of
LComponent or EComponent blocks.

INTO-SysML may be extended to in-
clude an Environment block; how-
ever, RoboticPlatform should
be RoboChart-specific.

E3 The type of a flow port optional. RoboChart-specific.
E4 The Platform of an EComponent is a String

and can include any simulation tools. Alternatively,
RoboChart and Simulink need to be admitted.

RoboChart-specific.

Table 1.1: Overview of proposed extensions to the INTO-SysML profile

1.3.1 Extensions to INTO-SysML

The extensions are outlined in Table 1.1, and the restrictions later in Table 1.2. Both
tables identify if the changes are specific to the needs of multi-models involving
RoboChart diagrams, or if they are more generally useful for cyber-physical systems
and, therefore, could be included in the original INTO-SysML profile.

Figure 1.3 presents the definition of the Architecture Structure Diagram for the
multi-models for the chemical detection system. The block ChemicalDetector rep-
resents the RoboChart module in Figure 1.2. The interface of a RoboChart module
is defined by the variables and events in its robotic platform, which become ports
of the SysML block that represents the module. The blocks Arena, WallSensor,
MobilityHw, and ChemDHw represent Simulink models.

The first extension (E1) is about new LComponent blocks, which can be used
to group models of the robotic platform or of the environment. They are logical
blocks: they do not correspond to an actual component of the co-simulation. In our
example, the LComponent block Rover represents the models for the robotic plat-
form. It is composed of three EComponent blocks, representing Simulink models
for the hardware for wall sensing, mobility, and chemical detection.

In fact, it is possible to define Rover as a RoboticPlatform block using the
extension E2. On the other hand, we have just one EComponent that models one
aspect of the environment, namely, the Arena where the robot moves.

Event-based communications are required in RoboChart, so we propose in E3
that ports may not carry any values. For instance, in our model, left and right are
events of the robotic platform, as defined in RoboChart. As already said, they repre-
sent an indication of the presence of a wall from the sensors in the robotic platform.
They carry no values; they are events declared without a type.

The INTO-SysML profile does not include operations on blocks. This is due to
the fact that blocks are intended to inform FMI model descriptions. The FMI stan-



1 RoboChart 9

Fig. 1.3: Chemical Detector Architecture Structure Diagram

dard considers interactions to be in the form of typed data passed between FMUs—
this data is shared at each time step of a simulation. As such, the profile does not
natively support the concepts of event-based or operation-based interactions. The
new typeless ports representing RoboChart events are, therefore, handled by encod-
ing event occurrence using real numbers 0.0 and 1.0.

Finally, the extension E4 includes extra values, namely, RoboChart and Simulink,
for defining the platform of an EComponent block.

For the Connection Diagram, no changes to the INTO-SysML profile are re-
quired, except that we can have instances of LComponent blocks as well. For our
example, the diagram is shown in Figure 1.4.
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Fig. 1.4: Chemical Detector Connection Diagram

# Description INTO-SysML / RoboCalc
R1 There is exactly one System block and it cannot have

flow ports.
Both.

R2 An LComponent block has no ports. Both.
R3 In a diagram, we can have only one EComponent

of ComponentKind cyber that must have
Platform as RoboChart.

RoboChart-specific.

R4 When the kind of a variable is parameter and when
the Direction of a FlowPort with a type is in,
its initial value must be defined.

Both.

R5 Ports of a RoboChart block should be connected to the
robotic platform, and not to the environment.

RoboChart-specific.

R6 No use of POComponent is needed, if Simulink is
used. If textual continuous models are adopted, these
blocks can be used.

RoboChart-specific.

R7 Typeless ports of a RoboChart block can be connected
only to ports of type real of a Simulink block.

RoboChart-specific.

Table 1.2: Overview of proposed restrictions to INTO-SysML profile

1.3.2 Restrictions on INTO-SysML

As for the restrictions in Table 1.2, we have in R1 and R2 constraints on flow ports
of System and LComponent blocks. Basically, a System block, Chemical De-
tection System in our example, is unique and can have no ports.

An LComponent block, like Rover in Figure 1.3, cannot have ports either.
Since it is the EComponent blocks that represent multi-models, only them can
contribute with inputs and outputs. For this reason, it does not make sense to include
extra ports in an LComponent block, which just groups multi-models.
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We recall that a cyber component models software aspects of the system. They
should be specified using RoboChart. So, R3 requires that there is just one cyber
component: the RoboChart module that is complemented by the Simulink diagrams.
In our example, this is the ChemicalDetector block.

For simulation, parameters and inputs need an initial value as enforced by the
restriction R4. For a parameter, this is the default value used in a simulation, un-
less an alternative value is provided. For the inputs, these are initial conditions that
define the first set of outputs in the first step of the simulation. In our example, the
initial values for position and direction, for instance, are (0.0,0.0) and (1.0,1.0). So,
initially, the robot is stationary at a corner of the arena.

A controller can only ever sense or influence the environment using the sensors
and actuators of the robotic platform. With R5, we, therefore, require that there is no
direct connection between the controller and the environment. For example, Arena,
representing a Simulink model of the environment, has an output port walls, that
identifies as a 4-tuple the distances from the current position to the walls in the
directions left, right, front, and back. This port is connected to the input port of the
same name in WallSensor. It is this component that provides ports wleft and wright
connected to the input ports l and r of ChemicalDetector.

We note that FMI does not have vector (array) types. So, strictly speaking, instead
of ports with vector types, we should have separate ports for each component of the
vectors. The inclusion of vectors in the FMI standard is, however, expected. We,
therefore, make use of them in our example.

We require with R6 that no POComponent is included. For further detail in
the models, we use RoboChart and Simulink, which are both diagrammatical. Of
course, if only a textual continuous model is available, POComponent blocks can
improve readability of the overall architecture of the system.

The only restriction relevant to a Connection Diagram is R7. Only ports of com-
patible types can be connected; compatibility between RoboChart and Simulink
types is as expected. On the other hand, as already said, events in the RoboChart
model that do not communicate values are represented by typeless ports of its
SysML block. These ports can be connected to ports of a Simulink block repre-
senting a signal of type real. The values 0.0 and 1.0 can be used to represent the
absence or occurrence of the event, for example.

The Simulink model for MobilityHw is shown in Figure 1.5. The input ports
of MobilityHw, namely, ls, as, slope, and walls (see Figure 1.3) correspond to
the input ports of the same name in the Simulink diagram. Moreover, the output
ports gpspos and gpsdir correspond to the output ports current position and cur-
rent direction of the Simulink diagram.

The Simulink diagram consists of two main sybsystems: rotate takes an angle
and a vector as input and provides as output the result of rotating the vector by
the given angle; and accelerate takes a linear speed (ls) and a slope and calcu-
lates the necessary acceleration profile to reach that velocity taking the slope into
account. Essentially, given an initial position and initial direction, angular and
linear speeds as and ls, a slope, and the distances walls to obstacles, the model
calculates the movement of the robot. Restrictions over the speed are established by
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Fig. 1.5: MobilityHw Simulink Diagram

the block limit velocity. Restrictions over the position are described by the block
Switch, which sets the speed to zero if there is a wall in front of the robot.

1.3.3 Use of INTO-SysML with RoboChart

In addition to the proposed required changes to the INTO-SysML profile, there are
some specific methodological issues to consider when defining a multi-model for
RoboChart using the INTO-SysML profile. We outline these below.

Given a RoboChart module, the corresponding EComponent block has a partic-
ular form. First of all, it must have: kind as cyber; the Platform as RoboChart;
and the ModelType as discrete. This is illustrated in Figure 1.3.

The variables of the RoboChart robotic platform become output ports. In our
example, the variables ls and as of the Rover in Figure 1.2 become output ports of
ChemicalDetector in Figure 1.3. The variables record the speeds required by the
controller. This is used to define the behaviour of the mobility hardware.

The events of the RoboChart robotic platform are part of the visible behaviour
of the RoboChart module. For this reason, they become flow ports in the cyber
EComponent. In our example, we have events l, r, alarm, lightOn and lightOff in
the block ChemicalDetector of the Architecture Structure Diagram in Figure 1.3,
just like in the Rover of the module in Figure 1.2.

In the RoboChart module, the definition of the direction of the events is from
the point of view of the software controllers. In the Architecture Structure Diagram,
the point of view is that of the hardware and the environment. So, their directions
are reversed. For instance, the Rover in Figure 1.2 can send the events l and r to
the controller DetectAndFlagC indicating the presence of a wall on the left or on
the right. In ChemicalDetector, however, these are input events. The relevant part
of the hardware itself is modelled by the EComponent WallSensor, where the
matching events wleft and wright are indeed outputs.
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Operations of the RoboChart robotic platform, on the other hand, may or may not
be part of the visible behaviour of the module. So, they are not necessarily included.
For instance, move andLoadFlag are not in the EComponentRover. On the other
hand, ReleaseFlag is included in the ChemicalDetector to indicate that a call to
this operation is visible: we can see the flag dropped.

The flow ports of the cyber EComponent can become flow ports also of one
of the EComponent blocks that represent the robotic platform. It is possible, how-
ever, that there are extra flow ports for communication between the models of the
robotic platform and of the environment. In our example, for instance, an extra flow
port slope is used for the environment model Arena to inform the hardware model
MobilityHw of the inclination of the floor, which has an effect on the hardware con-
trol of movement to achieve the targetted speed.

In the next section, we define a semantics for our extended profile. Given an
INTO-SysML model, like that in Figures 1.3 and 1.4, our semantics defines the
FMI simulations that define inputs and outputs corresponding to the ports of the
blocks in the AD, and that, at each step of the simulation, connect these ports as
described in the CD. This establishes a correctness criterion for (a model of) an FMI
simulation, which includes extra components: a master algorithm, and wrappers that
allow communication between the FMUs and the master algorithm.

1.4 Semantics

A CSP semantics for INTO-SysML is already defined in [2]. Our semantics here
is different in two ways: it considers extensions and restrictions described above,
and it is based on events that represent calls to one of three functions of the FMI
API: fmi2Set, fmi2Get, and fmi2DoStep. In contrast, the semantics in [2]
identifies events with flows. It gives a simulation view of the model, where be-
haviour proceeds in steps, but a data flow is one interaction. In FMI, a flow is estab-
lished by a pair of calls to fmi2Set and fmi2Get functions.

As a consequence of our approach here, our semantics is useful to define specifi-
cations for FMI simulations. In [9], we present a CSP semantics for such simulations
that can be automatically generated from a description of the FMUs and their con-
nections, and a choice of master algorithm. The semantics presented here can be
used, for example, to verify the correctness of those models.

A CSP specification is defined by a number of processes that communicate via
channels. The system and each of its components are defined by a process. Commu-
nication is synchronous, atomic, and instantaneous.

The CSP process that defines the semantics of an INTO-SysML model uses com-
munications on the following channels.

channel fmi2Get : FMI 2COMP ×PORT ×VAL×FMI 2STATUSF
channel fmi2Set : FMI 2COMP ×PORT ×VAL×FMI 2STATUS
channel fmi2DoStep : FMI 2COMP ×TIME ×NZTIME ×FMI 2STATUSF



14 Ana Cavalcanti, Alvaro Miyazawa, Richard Payne, and Jim Woodcock

The types of these channels match the signature of the corresponding FMI API func-
tions. FMI 2COMP contains indices for each of the used instances of EComponent
blocks, which represent FMUs in the INTO-SysML profile.

PORT contains indices, unique to each EComponent instance, to identify
ports, which represent input and output variables of the FMU. VAL is the type of
valid values; we do not model the SysML or the FMI type system. For ports cor-
responding to a RoboChart event, special values (perhaps just 0 and 1) represent
absence or presence of an event occurrence. VAL must include these values.

In FMI, there is one fmi2Get and one fmi2Set function for each data type.
For simplicity, however, we consider just one generic channel for each of them,
since the overall behaviour of these functions is the same.

FMI 2STATUS and FMI 2STATUSF contain flags returned by a call to the
API functions. In our model, all calls return the flag fmi2OK , indicating success.
So, the scenarios that it defines do not cater for the possibility of errors.

Finally, the types TIME and NZTIME define a model of time, using natu-
ral numbers, for instance. In the case of NZTIME , it does not include 0, since
fmi2DoStep does not accept a value 0 for a simulation step size.

For example, if we consider that the WallSensor FMU has index WallSensor ,
its port wleft has index WSwleft , and VAL includes the real numbers, then the
communication fmi2Get .WallSensor .WSwleft .1.fmi2OK models the successful
recording of the value 1 for the variable corresponding to the port wleft in the FMU
for WallSensor. Similarly, fmi2DoStep.WallSensor .1.2.fmi2OK records a suc-
cessful request for the same FMU to take a step at time 1, with a step size 2.

In what follows, we use the above channels to define CSP processes that corre-
spond to EComponent instances (Section 1.4.1), and to co-simulations defined by
a Connection Diagram for a System block (Section 1.4.2).

1.4.1 EComponent instances

The process EComponent(ec) that defines the semantics of an EComponent
block instance of index ec is specified in Figure 1.6. We define a number of lo-
cal processes Init(setup), TakeOuptuts(outs), DistributeInputs(inps), Step, and
Cycle used to define the behaviour of EComponent(ec) as the initialisation defined
by the process Init , followed by the process Cycle.

We use functions Parameters , Inputs , Outputs , and Initials , which, given an
index ec, identify the parameters, input and output ports, and input ports with initial
values, of the block instance ec. Instances of the same EComponent block have
the same parameters, inputs, outputs, and input ports with initial values.

In Init(setup), the parameters and the input ports identified in setup are ini-
tialised using values defined by a fifth function InitialValues , which, given a block
ec and a parameter or input port var , gives the value of the parameter or the initial
value of the port. Initialisation is via the channel fmi2Set . Each variable var in
setup is initialised independently, so we have an interleaving (9) of initialisations.
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EComponent(ec) = let

Init(setup) =
(9var : setup • fmi2Set .ec.var .InitialValues(ec,var).fmi2OK −→SKIP)

TakeOutputs(outs) =
sync−→ (9var : outs • fmi2Get .ec.var?x .fmi2OK −→SKIP)

DistributeInputs(inps) =
sync−→ (9var : inps • fmi2Set .ec.var?x .fmi2OK −→SKIP)

Step = sync−→ fmi2DoStep.ec?t?ss.fmi2OK −→SKIP

Cycle =TakeOutputs(Outputs(ec)); DistributeInputs(Inputs(ec)); Step; Cycle

within
Init(Parameters(ec)∪ Initials(ec)); Cycle

Fig. 1.6: CSP model of an EComponent block

Each initialisation is defined by a prefixing (→) of a communication on fmi2Set to
the process SKIP , which terminates immediately.

Cycle defines a cyclic behaviour in three phases for an EComponent. It contin-
uously provides values for its outputs, as defined by TakeOutputs(Outputs(ec)),
takes values for its inputs, as defined by DistributeInputs(Inputs(ec)), and then
carries out a step of simulation, as defined by Step. As already said, fmi2Get is
a channel used to produce the values of the outputs, fmi2Set is used to take input
values, and fmi2DoStep is used to mark a simulation step.

The process TakeOutputs(Outputs(ec)) offers all the outputs var in the set
Outputs(ec) via the channel fmi2Get in interleaving. The particular value x out-
put is not defined (as indicated by the ? preceding x in the communication via
fmi2Get). This value can be determined only by a particular model (in RoboChart
or Simulink, for instance) for the EComponent. A synchronisation on a channel
sync, that is, a communication without data passing, is used to mark the start of the
outputting phase before the interleaving of communications on fmi2Get .

The process DistributeInputs(Inputs(ec)) is similar, taking the inputs in the
process Inputs(ec) via fmi2Set . Finally, the process Step, after accepting a sync,
takes an input via fmi2DoStep of a time t and a step size ss , and terminates.

In the next section, the semantics of a co-simulation uses the parallel composi-
tion (J...K) below of instances of EComponent(ec) for each EComponent block
instance. The processes EComponent(ec) synchronise on sync to ensure that they
proceed from phase to phase of their cycles in lock step.

BlockInstances = (J{sync} K ec : FMI 2COMP • EComponent(ec))
∖
{sync}

The communications on sync, however, are hidden (
∖

). Therefore, as already indi-
cated, the collective behaviour of the block instances is specified solely in terms of
communications on the FMI API channels: fmi2Get , fmi2Set , and fmi2DoStep.
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Connections = let

Init = 9ec : FMI 2COMP •
(9var : Initials(ec) • fmi2Set .ec.var?x .fmi2OK −→SKIP)

Step =‖ c : ConnectionIndex • [AC (c)]Connection(c)

Cycle = Step; Cycle

within
Init ; Cycle

Fig. 1.7: CSP model of a Connection Diagram

1.4.2 Co-simulation

A Connection Diagram for a System block instance characterises a co-simulation
by instantiating blocks of the Architecture Diagram and defining how their ports
are connected. This is captured by the CSP process CoSimulation defined in the
sequel. We note that the instances of LComponent blocks plays no role in the co-
simulation semantics, since these blocks do not represent any actual component of
a co-simulation, but just a logical grouping of co-models.

Besides BlockInstances above, CoSimulation uses the process Connections
shown in Figure 1.7. This is defined in terms of a parallel composition (

f
) Step

of processes Connection(c) that define each of the connections c in a Connection
Diagram, identified by indices in a set ConnectionIndex .

The behaviour of Connections is defined by the sequential composition of the
local processes Init followed by Cycle. Init initialises in interleaving the variables
corresponding to input ports of each component ec using the channel fmi2set as
before. Cycle continuously behaves like Step described above.

A Connection(c) process takes an output from the source port of the connec-
tion and gives it to the target port. In our example, we can, for instance, give the
connection between the ports wright of WallSensor and r of ChemicalDetec-
tor the index 3. In this case, Connection(3) is as follows, where WallSensor and
ChemicalDetector are the indices in FMI 2COMP for these EComponent block
instances, and WSwright and CDr are variables corresponding to wright and r.

Connection(3) = fmi2Get .WallSensor .WSwright?x .fmi2OK−→
fmi2Set .ChemicalDetector .CDr .x .fmi2OK −→SKIP

Connection(3) ensures that the value x output via wright is input to the r port.
In the parallel composition in the process Step, each process Connection(c)

is associated with an alphabet AC (c), which includes the communications over
fmi2Get and fmi2Set that represent the connection it models. In our example,
AC (3) contains all communications over fmi2Get with parameters WallSensor
and WSwright , and over fmi2Set with parameters ChemicalDetector and CDr .
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The use of these alphabets in the parallelism that defines Step ensures that, if there
are several connections with the same source port, they share the output in the port
by synchronising on that communication. In our example, the output Awalls of
Arena is shared between the processes for the connections between Arena and
WallSensor and between Arena and MobilityHw.

Finally, the semantics for the co-simulation defined by a Connection Diagram for
a System instance is the parallel composition below.

CoSimulation = BlockInstances JFMIGetSet KConnections

The processes synchronise on communications on the set FMIGetSet containing
the union of the alphabets of the Connection(c) processes.

If there are ports that are not associated with a connection, their corresponding
communications via fmi2Set or fmi2Get are not included in FMIGetSet . These
communications are restricted only by the process BlockInstances . In our example,
the ports lightOn and lightOff, for instance, are not connected to any other ports.
Their outputs are visible to the environment of the chemical detection system, but
not connected to any other modelled components.

The behaviour defined by CoSimulation specifies a cyclic simulation whose
steps contains three phases: all outputs are taken in any order, used to provide all
inputs, also in any order, and then the time advances via a simulation step of each
multi-model. As already said, a CSP semantics for an FMI co-simulation is avail-
able [9]. With that, CoSimulation can be used as a specification to validate an FMI
co-simulation where the FMUs correspond to the EComponent block instances
and must be orchestrated as indicated in the connection diagram.

1.5 Related work

Another graphical domain-specific language for robotics is presented in [12]. It also
supports design modelling and automatic generation of platform-independent code.
It was defined as a UML profile, with all the advantages and problems entailed by
this; reasoning about non-functional properties is envisaged.

Model-based engineering of robotic systems is also advocated in [39], where a
component-based framework that uses UML to develop robotics software is pre-
sented. The communication between components are realized through a set of com-
munication patterns such as request/response and publish/subscribe, which define
the visibility of components. The goal of that work, however, does not include defi-
nition of a formal semantics for controllers, like we do for RoboChart.

Some domain-specific languages focus on a particular application (like program-
ming self-reconfigurable robots [41] and service robots [7]). GenoM3 [28] supports
the description of robotic applications in terms of its execution tasks and services.
It has recently been given a timed behavioural semantics [17].
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There are (famously) many different semantics for UML state machines [13].
Kuske et al. [25] give semantics for UML class, object, and state-machine diagrams
using graph transformation. Rasch and Wehrheim [34] use CSP to give semantics for
extended class diagrams and state machines. Davies and Crichton [10] also use CSP
to give semantics for UML class, object, statechart, sequence, and collaboration
diagrams. Broy et al. [6] present a foundational semantics for a subset of UML2
using state machines to describe the behaviour of objects and their data structures.
RoboChart state machines have a precise semantics in CSP in the spirit of [34] and
[10]; however, for the sake of compositionality, RoboChart state machines do not
include history junctions and inter-level transitions.

UML 2.0 includes a timing diagram, a specific kind of interaction diagram with
added timing constraints. The UML-MARTE profile [43] provides richer models of
time based on clocks, including notions of logical, discrete, and continuous time.
The Clock Constraint Specification Language (CCSL) provides for the specifica-
tion of complex timing constraints, including time budgets and deadlines. This is
accomplished with sequence and time diagrams; it is not possible to define timed
constraints in terms of transitions or states like in RoboChart.

UML-RT [42] encapsulates state machines in capsules; inter-capsule communi-
cation is through ports and is controlled by a timing protocol with timeouts. More
complex constraints, including deadlines, are specified only informally.

The work in [33] defines a semantics for a UML-RT subset in untimed Cir-
cus [45]. An extension to UML-RT is considered in [1] with semantics given in
terms of CSP+T [46], an extension of CSP that supports annotations for the timing
of events within sequential processes. The RoboChart timed primitives are richer
and are inspired by timed automata and Timed CSP [40].

Practical work on master algorithms for use in FMI co-simulations includes gen-
eration of FMUs, their simulations, and hybrid models [3, 32, 14, 11]. FMUs can
encapsulate heterogeneous models; Tripakis [44] shows how components based on
state machines and synchronous data flow can be encoded as FMUs. In our ap-
proach, we have a hybrid co-simulation, but each EComponent is either discrete
or continuous. Extensions to FMI are required to deal with that [5].

Savicks [37] shows how to co-simulate Event-B and continuous models using
a fixed-step master algorithm. Savicks does not give semantics for the FMI API,
but supplements reasoning in Event-B with simulation of FMUs within Rodin, the
Event-B platform, applying the technique to an industrial case study [38]. The work
does not wrap Event-B models as FMUs, and so it does not constitute a general FMI-
compliant co-simulation. Here, we do not consider the models of FMUs, but plan to
wrap CSP-based models of Simulink [8] and RoboChart [30] to obtain CSP-based
FMUs models that satisfy the specification in [9].
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1.6 Conclusions and future work

In this paper, we have extended and restricted the INTO-SysML profile to deal with
robotic systems. For modelling the controller(s), we use RoboChart. For modelling
the robotic platform and the environment, we use Simulink. The approach, however,
applies to other languages of same nature: event-based reactive languages to define
software and control-law diagrams. We have also given a behavioural semantics for
models written in the profile using CSP. The semantics is agnostic to RoboChart and
Simulink, and captures a co-simulation view of the multi-models based on FMI.

Our semantics can be used in two ways. First, by integration with a semantics of
each of the multi-models that defines their specific responses to the simulation steps,
we can obtain a semantics of the system as a whole. Such semantics can be used to
establish properties of the system, as opposed to properties of the individual models.
In this way, we can confirm the results of (co-)simulations via model checking or,
most likely, theorem proving, due to scalability issues.

As already mentioned, the CSP model is a front-end for a UTP predicative se-
mantics. It is amenable to theorem proving using Isabelle [16].

There are CSP-based formal semantics for RoboChart [30] and Simulink [8] un-
derpinned by the UTP. Our next step is their lifting to provide an FMI-based view of
the behaviour of models written in these notations. With that, we can use RoboChart
and Simulink models as FMUs in a formal model of a co-simulation as suggested
here, and use CSP and the UTP to reason about the co-simulation. For RoboChart,
for example, the lifting needs to transform inputs of values 0.0 and 1.0 on ports
for typeless events to synchronisations. For Simulink, the notion of get and setting
values, and simulation steps is more directly recorded.

It is also relatively direct to wrap existing CSP semantics for UML state ma-
chines [34, 10] to allow the use of such models as FMUs in a co-simulation. In this
case, traditional UML modelling can be adopted.

Secondly, we can use our semantics as a specification for a co-simulation. The
work in [9] provides a CSP semantics for an FMI co-simulation; it covers not only
models of the FMUs, but also a model of a master algorithm of choice. The scenario
defined by an INTO-SysML model identifies inputs and outputs, and their connec-
tions. The traces of the FMI co-simulation model should be allowed by the CSP
semantics of the INTO-SysML model. This can be verified via model checking.

As indicated in Figure 1.1, currently there is no support to establish formal con-
nections between a simulation and the state machine and physical models (of the
robotic platform and the environment). The SysML profile proposed here supports
the development of design models via the provision of domain-specific languages
based on diagrammatic notations and facilities familiar to the engineering and
robotics community for clear connection of models. Complementarily, as explained
above, the profile semantics supports verification of FMI-based co-simulations.

There are plans for automatic generation of simulations of RoboChart mod-
els [30]. The semantics we propose can be used to justify the combination of these
simulations with Simulink simulations as suggested above.
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