
Testing with inputs and outputs in CSP

Ana Cavalcanti1 and Robert M. Hierons2

1 University of York, UK
2 Brunel University, UK

Abstract. This paper addresses refinement and testing based on CSP
models, when we distinguish input and output events. From a testing
perspective, there is an asymmetry: the tester (or the environment) con-
trols the inputs, and the system under test controls the outputs. The
standard models and refinement relations of CSP are, therefore, not en-
tirely suitable for testing. Here, we adapt the CSP stable-failures model,
resulting in the notion of input-output failures refinement. We compare
that with the ioco relation often used in testing.Finally, we adapt the
CSP testing theory, and show that some tests become unnecessary.

1 Introduction

As a process algebra, CSP [20] is a well established notation, with robust seman-
tics and tools; it has been in use for more than twenty years. The availability of
a powerful model checker has ensured the acceptance of CSP both in academia
and industry. In the public domain, we have reports on applications in hardware
and e-commerce [1, 10]. In addition, CSP has been combined with data modelling
languages to cope with state-rich reactive systems [8, 16, 22, 7, 18].

Admittedly, model-based testing is not a traditional area of application for
CSP. It remains the case, however, that when a CSP model is available, the
possibility of using it for testing is attractive, especially in industry. In fact, a
testing theory is available for CSP [4], and more recently, the use of CSP as part
of testing techniques has been explored by a variety of researchers [15, 21, 5].

A difficulty, however, is the fact that CSP models do not distinguish between
input and output events: they are all synchronisations. In testing, though, there
is an asymmetry: the system under test (SUT) controls outputs, while the tester
controls inputs. In this paper, we follow a suggestion in [19] to define a stable-
failures model parameterised by sets I and O of input and output events. We call
it the input-output failures model, and define input-output failures refinement.

The stable-failures model is a suitable starting point for our work because,
as usual in testing, we assume that both models and systems are divergence
free. In models, divergence is regarded as a mistake, and when testing an SUT, a
divergence cannot be distinguished from a deadlock. On the other hand, we cater
for nondeterminism in the model and in the SUT; for that, we consider failures
and failures refinement, since the traces model does not capture nondeterminism.

In the software testing community, there has been much interest in input-
output labelled transition systems (IOLTSs) [2], and it is typically assumed that



it is possible to observe quiescence, a state in which all enabled events are inputs
and it is not possible to take an internal transition. Most approaches use the
ioco implementation relation [23]; observations are traces that include inputs,
outputs, and quiescence, the only type of refusal that can be observed.

For CSP, we define that, in the presence of inputs and outputs, a state is
stable if it is not divergent, that is, stable according to the standard model,
and no output is enabled. These are quiescent states, but we can observe the
inputs that are enabled: models need not be input enabled. This means that a
stable state in CSP is not necessarily a quiescent state in the sense adopted in
IOLTS: in the standard stable-failures model, there is no notion of input, and
here we do not enforce input-enabledness. We show that ioco and input-output
failures refinement are incomparable: there are processes P and Q such that P
conforms to Q under ioco but not under input-output failures refinement, and
vice-versa. For input-enabled processes, however, ioco is stronger.

Other lines of work are related to ours in that they investigated refusals for
inputs [11, 3, 2]. These, however, allow refusals to be observed in states from
which an output is possible. The traditional explanation regarding the observa-
tion of a refusal set R is that, if the tester offers only events of R, we observe a
refusal if the composition of the tester and the SUT deadlocks. Usually a tester
does not block outputs from the SUT and so the composition of the SUT and the
tester cannot deadlock if an output is available. As a result, we do not consider
a state to be stable if an output is possible (since the SUT can change state)
and so do not allow the observation of refusals in such states.

The testing theory of CSP identifies (typically infinite) test sets that are
sufficient and necessary to establish (traces or failures) refinement with respect
to a given CSP specification. To take advantage of knowledge about inputs and
outputs, here we adapt that theory for input-output failures refinement.

In summary, we make the following contributions. First, we define input-
output failures, and show how they can be calculated. The existing failures
model of CSP does not cater for inputs and outputs. We also define input-output
failures refinement and prove that it is incomparable with ioco. This relates our
results to the extensive body of work on testing based on IOLTS. To obtain a
refinement relation that is stronger than ioco, we need to use the refusal-testing
model of CSP; we are exploring this issue in our current work. Finally, we adapt
the CSP testing theory to input-output failures refinement, and show that some
tests in the exhaustive test set for failures refinement become unnecessary.

Next, we present CSP and IOLTS. In Section 3, we present the new CSP
model that considers inputs and outputs, and its refinement notion. Section 4
discusses the relationship between input-output failures refinement and ioco.
Testing is addressed in Section 5. We conclude in Section 6.

2 Preliminaries

This section presents the notations and concepts that we use in this paper.



2.1 CSP and its stable-failures model

In CSP, the set Σ includes all events of interest. In addition, a special event X is
used to indicate termination, and is included in the set ΣX = Σ ∪ {X}. Inputs
and outputs are not distinguished in Σ, and none of the CSP models caters for
this distinction in controllability. We address this issue in Section 3.

The process STOP represents a deadlock: a process that is not prepared to
engage in any synchronisation; its only trace is the empty sequence 〈 〉 of events.
SKIP , on the other hand, terminates without engaging in any event: its traces
are 〈 〉 and 〈X〉. A prefixing c → P is ready to engage in a communicationc,
and then behave like the process P . A communication may be a simple event on
which the process is prepared to synchronise, an input, or an output.

An external choice P @Q offers the environment the possibility of choosing P
or Q by synchronising on one of the events that they offer initially. For instance,
out .1 → SKIP @ out .2 → STOP offers the choice to synchronise on out .1 (and
then terminate) or out .2 (and deadlock). If an event is available from both P
and Q , then the choice is internal: made by the process. In general P uQ is the
process that makes itself an internal choice to behave as P or Q .

An input communication is like in?x , for instance, in which a value is read
through a channel in and assigned to the variable x . Also, an output out !e
communicates the value of the expression e through the channel out . In CSP,
however, these are just modelling conventions that use events whose names are
composed of a channel name and a value. For example, if the type of the channel
in is T , then in?x → STOP is an abbreviation for an iterated external choice

@ v : T • in.v → STOP , where the environment is offered a choice to synchro-
nise on any of the events in.v , where v is a value in T . Additionally, the output
out !1 is just an abbreviation for the synchronisation out .1.

Parallelism can be described by the operator P J X K Q , where P and Q are
executed in parallel, synchronising on the events in the set X . For instance, in
(in?x → out !x → SKIP) J {|in|} K (in!3 → STOP), the processes synchronise on
in.3, then in?x → out !x → SKIP independently offers to synchronise on out .3,
and terminates. Since in!3 → STOP deadlocks, the whole process deadlocks.
The set {|in|} contains all events in.v , where v is a value of the type of in.

The events on which the parallel processes synchronise are visible to the

environment. To make them internal, we have the hiding operator: P \ X is the
process that behaves like P , except that occurrences of events in X are hidden.

If R is a renaming relation, that associates (old) event names to new names,
the process P [[R]] is that obtained by renaming the events in P according to R.
If an event e is related to two (or more) events in R, then every occurrence of e
in P gives rise to an external choice in P [[R]] based on the new events.

Stable failures This semantic model of CSP characterises a process P by its set
traces(P) of traces and failures(P) of stable failures. The latter are pairs (s,X ),
where s is a trace of P , after which P does not diverge, but may deadlock if only
the events in the refusal set X are offered. This model distinguishes external and



internal choices (which define the same sets of traces) and can be used to reason
about liveness properties (which are related to absence of deadlock).

Failures refinement P vF Q of a process P by a process Q is defined as
traces(Q) ⊆ traces(P) ∧ failures(Q) ⊆ failures(P). So, the refined process Q
can only engage in sequences of synchronisations (traces) that are possible for
P , and can only deadlock when P can. Traces refinement P vT Q requires only
traces inclusion. It is not difficult to show that failures refinement can also be
characterised as the conjunction of traces refinement and conf , a conformance
relation used by the testing community [4]. It is defined as follows.

Q conf P =̂ ∀ t : traces(P) ∩ traces(Q) • Ref (Q , t) ⊆ Ref (P , t)
where Ref (P , t) =̂ {X | (t ,X ) ∈ failures(P) }

This is concerned only with traces allowed by both P and Q , but requires that
after those, Q can deadlock only if P can.

2.2 CSP testing theory

A testing theory identifies testability hypotheses, notions of test and test exper-
iment, the verdict of an experiment, and an exhaustive test set.

First of all, to reason formally about testing it is necessary to discuss formal
models and thus to assume that the SUT behaves like an unknown model de-
scribed using a given formalism. This is often called the minimum hypothesis [9].
The formalism is usually the language used for specifications. Both in [4] and
here, it is assumed that the SUT behaves like an unknown CSP process.

Secondly, nondeterminism in the SUT can cause problems since whether a
test leads to a failure being observed or not might depend on how nondetermin-
ism is resolved. The standard testability hypothesis used to overcome this is that
there is some known k such that the application of a test T a total of k times is
guaranteed to lead to all possible responses of the SUT to T . The implications
of this for testing from CSP specifications have been discussed [4].

An exhaustive test set is a (potentially infinite) set of tests that are necessary
and sufficient to establish conformance with respect to a given relation [9]. The
CSP testing theory identifies exhaustive test sets for traces refinement and conf .

Given a (specification) process P , for traces refinement, the CSP testing

theory considers tests for pairs (s, a) such that s is a trace of P , but s a 〈a〉 is
not. Given such a pair (s, a) we obtain TT (s, a) defined as follows [4].

TT (〈〉, a) = TT (〈X〉, a) = pass → a → fail → STOP
TT (〈b〉_ s, a) = inc → b → TT (s, a)

We use verdict events inc, pass, and fail ; the last of these events observed before
a deadlock indicates the outcome of the test. If the trace s cannot be followed,
we have an inconclusive verdict. If s is executed, then we have a pass, but if
after that the forbidden event a occurs, then we have a failure.

Execution ExecutionP
Q (T ) of a test T for an SUT Q is described by the

process (Q J αP K T )\αP . In words, the processes Q and T are executed in



parallel, synchronising on the set of events αP used in the specification, which
are hidden. The set αP ⊆ Σ contains all events that P might use; its definition
is a modelling decision. If the events of αP were visible, that is, not hidden,
then the environment could potentially interfere with the test execution. By
hiding them, we specify that they happen as soon as possible, that is, as soon as
available in Q . The verdict events establish the outcome of the test execution.

Example 1. For the specification Rep = in?x → out !x → Rep, and for the empty
trace, and forbidden continuation out .0, we have pass → out .0→ fail → STOP
as a test for traces refinement. Similar tests arise for all output events out .x .
With the trace 〈in.0〉, we choose the value 0 to provide as input and have a test
inc → in.0→ pass → out .1→ fail → STOP . 2

Example 2. A very simple traffic light controller that can be terminated at any
point using an event end can be specified as follows.

Lights = red → (amber → (green → Lights @ end → SKIP) @ end → SKIP)
@
end → SKIP

Some of its tests for traces refinement are pass → amber → fail → STOP and
inc → red → inc → amber → inc → green → pass → green → fail → STOP . 2

Using TT , we obtain the following exhaustive test for traces refinement [4].

ExhaustT (P) = {TT (s, a) | s ∈ traces(P) ∧ a 6∈ initials(P/s)}

The process P/s characterises the behaviour of P after engaging in the trace s,
and initials(P) gives the set of events initially available for interaction with P .

As defined above, Q conf P requires checking that after a trace of both P
and Q , the refusals of Q are refusals of P as well. For that, we check that after
a trace of P , Q cannot refuse all events in a minimal acceptance set A of P . An
acceptance set A is such that (s,A) is not a failure of P ; it is minimal if it has
no acceptance set as a proper subset. Formally, testing for conf is performed
by proposing to Q the traces s in traces(P), and then an external choice over
the events a in a minimal acceptance set of P . For a trace s and a (minimal)
acceptance set A, the test process TF (s,A) is defined as follows.

TF (〈 〉,A) = fail → (@ a ∈ A • a → pass → STOP)

TF (〈 a 〉a s,A) = inc → a → TF (s,A)

As for traces-refinement tests, the last event before a deadlock gives the verdict.
The exhaustive test set for conformance to P is shown below; it contains all

TF (s,A) formed from traces s ∈ traces(P), and minimal acceptance sets A [4].

Exhaustconf (P) = {TF (s,A) | s ∈ traces(P) ∧ A ∈ As}

The set As = min⊆({A | (s,A) 6∈ failures(P) }) contains the minimal accep-
tances after s. As already indicated, for failures refinement, the exhaustive test
set is ExhaustT (P) ∪ Exhaustconf (P), covering traces refinement and conf .



2.3 Input-output labelled transition systems

An input-output labelled transition system (IOLTS) is a labelled transition sys-
tem in which we distinguish between inputs and outputs. IOLTSs have received
much attention in the software testing literature, due to the asymmetry between
input and outputs in testing. Formally, IOLTSs can be defined as follows.

Definition 1. An input-output labelled transition system is defined by a tuple
P = (P, I,O, T , pin) in which P is a countable set of states, pin ∈ P is the
initial state, I is a countable set of inputs, O is a countable set of outputs,
and T ⊆ P × (I ∪ O ∪ {τ}) × P, where τ represents an internal action, is the
transition relation. The sets I and O are required to be disjoint and τ 6∈ I ∪ O.
A transition (p, a, p′) means that from p it is possible to move to p′ with action
a ∈ I ∪O ∪ {τ}. A state p ∈ P is quiescent if all transitions from p are labelled
with inputs. We represent quiescence by δ and extend T by adding the transition
(p, δ, p) for each quiescent p, calling the resulting relation Tδ. Further, P is input
enabled if for all p ∈ P and ?i ∈ I there is some p′ ∈ P such that (p, ?i , p′) ∈ T .

A sequence s = a1, . . . , an ∈ (I ∪ O ∪ {δ})∗ of actions is a trace of P if there
exists a sequence (p1, a1, p2), (p3, a2, p4), . . . , (pn , an , pn+1) of transitions in Tδ
such that P can move from pin to p1 through a sequence of internal transitions
(those with action τ) and for all 1 ≤ i ≤ n it is possible to move from p2i to
p2i+1 through internal transitions. Given an IOLTS P , we let tr io(P) denote the
set of traces of P . Roughly speaking, an IOLTS action corresponds to a CSP
event, except that δ is not a CSP event, and X is not an action in IOLTSs.

3 Failures with inputs and outputs

The traces of a process P are not affected by the controllability of the events.
Therefore, the distinction between inputs and outputs does not affect the trace
model of CSP. Controllability, however, affects the notion of failures.

We define the input-output stable failures IOfailures(I,O)(P) of a process in
a context where the disjoint sets I and O of events identify the inputs and the
outputs. Synchronisation events, which do require agreement from the environ-
ment, are regarded as inputs. Stability here is characterised by the unavailability
of outputs (as well as internal events). A process that is ready to output is not in
a stable state because we assume that outputs are under the sole control of the
process: they do not require synchronisation, and therefore cannot be refused by
the environment. A process that can output can, therefore, choose to output and
evolve to a new state before considering any interaction with the environment.

It is our assumption that the SUT need not be input enabled, but we implic-
itly require the environment to be input enabled, since it cannot block outputs
from the SUT. It is clear that many systems are not input enabled since, for
example, they provide interfaces where certain fields or buttons may not be
available depending on the state. (Such an SUT might be regarded as input en-
abled if we consider inputs at the level of events such as mouse clicks, but this



level of abstraction is rarely suitable for modelling.) Such an SUT normally does
not provide the user with the option to refuse outputs, since it controls the user
interface: to block outputs the user has to close down the interface, a process
that may send an input to the SUT in any case.

Our definition of IOfailures(I,O)(P) in terms of the set failures(P) of failures

of P is as follows. (This definition is similar to that of a hiding P \ O, but the
output events are not removed from the trace.)

Definition 2. IOfailures(I,O)(P) = { (s,X ) | (s,X ∪ O) ∈ failures(P)}

As already said, the stable states are those in which the output events are not
available: those in which P can refuse all of them. They are characterised by a
failure (s,X ∪ O). For each of them, we keep in IOfailures(I,O)(P) the failure
(s,X ). Since refusals are downward closed, (s,X ) is also a failure of P . By
considering just the failures for which (s,X ∪ O) ∈ failures(P), we keep in
IOfailures(I,O)(P) just the failures of P in its stable states. For every process P
and disjoint sets I and O, the pair (traces(P), IOfailures(I,O)(P)) satisfies all
the healthiness conditions of the stable-failures model [20]. Proof of this and all
other results presented here can be found in an extended version of this paper [6].

Example 3. We present the input-output failures of the process E3 below, in the
context indicated in its definition; the events corresponding to communications
over the channels inA and inB are inputs, and those over outA and outB are
outputs. We have inputs in choice and an input in choice with an output.

E3 =

inA?x → STOP @ inB?x →

 inA?x → outA!1→ STOP
@
outB !1→ outA!1→ STOP


For conciseness, we omit below the parameter ({|inA, inB |}, {|outA, outB |}) of
IOfailures. Also, if the value x communicated in an event c.x does not mat-
ter, we write c?x in failures. For example, (〈inA?x 〉, {|inA, inB , outA, outB ,X|})
represents a set of failures: one for each of the possible values of x in inA.x .

IOfailures(E3) = { (〈〉, {|outA, outB ,X|}), . . .
(〈inA?x 〉, {|inA, inB , outA, outB ,X|}), . . . ,
(〈inB?x , inA?x , outA.1〉, {|inA, inB , outA, outB ,X|}), . . . ,
(〈inB?x , outB .1, outA.1〉, {|inA, inB , outA, outB ,X|}, . . .}

In the above description, we omit the failures that are obviously included due
to downward closure of refusals. For instance, the empty trace 〈 〉 is paired
with all subsets of {|outA, outB ,X|} in IOfailures(E3). We observe, however,
that there are no failures for traces 〈inB?x 〉 or for traces 〈inB?x , inA?x 〉 and
〈inB?x , outB .1〉, for any values of x . This is because, after each of them, an
output is available. So, the states after these traces are not stable. 2

Example 4. For outputs in choice, we have the example below.

E4 = out !0→ inA?x → STOP @ out !1→ inB?x → STOP



IOfailures(E4) = { (〈out .0〉, {|out , inB ,X|}), . . . , (〈out .1〉, {|out , inA,X|}), . . . ,
(〈out .0, inA?x 〉, {|out , inA, inB ,X|}), . . . ,
(〈out .1, inB?x 〉, {|out , inB , inB ,X|}), . . .}

There are no failures for 〈〉, since outputs are immediately available. 2

Input-output failures cannot distinguish between internal and external choice of
outputs. In the example above, for instance, the failures would not change if we
had an internal choice. This reflects the fact that, in reality, the environment
cannot interfere with outputs. As shown by the next example, however, input-
output failures can distinguish internal and external choice in other situations.

Example 5. We have a nondeterministic choice between an input and an output.

E5 = inp?x → STOP u out !1→ STOP

Corresponding to the possibility of the (internal) choice of inp?x → STOP , we
have failures for 〈〉. They indicate that an input cannot be refused in this case.

IOfailures(E5) = { (〈 〉, {|out ,X|}), . . . ,
(〈inp?x 〉, {|inp, out ,X|}), . . . , (〈out .1, 〉, {|inp, out ,X|}), . . .}

If we were to use an external choice in E5, then its initial state would be unstable,
as out .1 would be possible, and there would be no failure for 〈〉. 2

Calculating input-output failures As illustrated, not all traces are included in an
input-output failure. This is also the case in the standard stable-failures model,
where missing traces are those that lead to a divergent state. Here, missing traces
lead to a state where either divergence or an output is possible.

Using Definition 2, we can calculate characterisations of input-output failures
for the various CSP processes. A summary is provided in Table 1; proof of all
these results is provided in [6]. To allow us to consider IOfailures(I,O)(P) as
characterising a semantics for CSP processes P with inputs and outputs, we
need to define some well formedness rules. First, as already indicated, the sets
I and O of inputs and outputs must form a partition of Σ.

Second, in a parallelism P J X K Q , the processes P and Q must have the
same inputs and outputs I and O, and X can only contain inputs (X ⊆ I).
If X contains an output, unstable states of P and Q in which outputs are
available may become deadlocked, and so stable, if P and Q cannot agree on
the output. This is a strong restriction, but we observe that it is necessary only
for the compositional calculation of input-output failures (and consequently for
the use of IOfailures(I,O)(P) as a semantic function). It is always possible to use
Definition 2 to calculate input-output failures directly.

Third, for renaming, we require that the controllability of events is not
changed: renamed inputs are still inputs, and similarly, renamed outputs are
still outputs. In this way, given the sets I and O of inputs and outputs of P [[R]],
we characterise its input-output failures in terms of those for P when its input
and outputs are the relational images of I and O under R−1, the inverse of R.



Process P IOfailures(I,O)(P)

STOP { (〈〉,X ) | X ⊆ ΣX }
SKIP { (〈〉,X ) | X ⊆ Σ } ∪ { (〈X〉,X ) | X ⊆ ΣX }

a → P {(〈〉,X ) | a 6∈ O ∧ a 6∈X } ∪ {(〈a〉a s,X ) | (s,X ) ∈ IOfailures(I,O)(P)}
P uQ IOfailures(I,O)(P) ∪ IOfailures(I,O)(Q)

P @ Q {(〈〉,X ) | (〈〉,X ) ∈ IOfailures(I,O)(P) ∩ IOfailures(I,O)(Q)}∪
{(s,X ) | (s,X ) ∈ IOfailures(I,O)(P) ∪ IOfailures(I,O)(Q) ∧ s 6= 〈〉}∪
{(〈〉,X ) | X ⊆ Σ ∧ 〈X〉 ∈ traces(P) ∪ traces(Q)}

P J X K Q {(u,R) | ∃Y ,Z •
Y ∪ Z ∪ O = R ∪ O ∧ (Y \ (X ∪ {X})) ∪ O = (Z \ (X ∪ {X})) ∪ O ∧
∃ s, t • (s,Y ) ∈ IOfailures(I,O)(P) ∧ (t ,Z ) ∈ IOfailures(I,O)(Q) ∧
u ∈ s J X K t}

P \ X { (s \ X ,Y ) | (s,Y ∪X ) ∈ IOfailures(I,O)(P) }
P ; Q {(s,X ) | s ∈ Σ∗ ∧ (s,X ∪ O ∪ {X}) ∈ IOfailures(I,O)(P) }∪

{(t a u,X ) | t a 〈X〉 ∈ traces(P) ∧ (u,X ) ∈ IOfailures(I,O)(Q)}

P [[R]] { (s ′,X ) | ∃ s R s ′ ∧ (s,R−1(X )) ∈ IOfailures(R−1(I),R−1(O))(P) }
Table 1. IOfailures(I,O)(P) semantics

The input-output failures of STOP and SKIP are the same as their standard
failures. For a → P , the characterisation is slightly different. Before a takes place,
it cannot be refused, but this is a stable state only if a is not an output. So, we
only include failures for 〈〉 if a is not an output. For internal and external choices,
parallelism, hiding and sequence, input-output failures can be calculated in much
the same way as standard failures. In the definition of IOfailures(I,O)(P [[R]]), we
write R−1(X ) for the relational image of the set X under R.

Input-output failures refinement Having introduced a new notion of failure, we
can now introduce the corresponding definition of refinement.

Definition 3 (Input-output Failures Refinement).

P v(I,O)
IOF Q =̂ traces(Q) ⊆ traces(P) ∧

IOfailures(I,O)(Q) ⊆ IOfailures(I,O)(P)

This is a straightforward adaptation of the notion of failures refinement.
Chaos is the bottom of this relation (as well as of the standard failures-

refinement relation). This is the process that can nondeterministically choose to
deadlock, accept or reject any of the inputs, and produce any of the outputs. Its
set of failures includes all possible failures, and consequently, so does its set of
input-output failures: (s,X ∪ O) ∈ failures(Chaos) for every s and X . Like in
the standard model, the top of the refinement relation is div, the process that
diverges immediately. Its set of (input-output) failures is empty, independently



of which events are inputs and which are outputs. Recursion is handled as in the
standard failures model: as the least fixed point with respect to ⊆.

Reduction of nondeterminism and possible deadlocks is a way of achieving
input-output failures refinement. For example, we can refine the process E5 in
Example 5 to either inp?x → STOP or out !1→ STOP . We have the following.

Lemma 1. P uQ v(I,O)
IOF P and P uQ v(I,O)

IOF P @ Q

This follows directly from the definitions; all proofs omitted here are in [6].

4 Input-output failures refinement and ioco

As already mentioned, much of the work on testing is based on labelled-transition
systems, and to cater for inputs and outputs, IOLTSs have been widely explored.
In this context, the implementation relation ioco [23] is normally adopted. In the
context of CSP, on the other hand, the conformance relation is refinement, and

in the previous section we introduced input-output failures refinement (v(I,O)
IOF ).

In this section, we explore the relationship between ioco and v(I,O)
IOF .

First of all, we provide a definition of ioco. We use two functions: given a state
q and a trace s ∈ (Σ∪{δ})∗, q after s is the set of states reachable from q using
s. Furthermore, we have that out(q) is the set of a ∈ (O ∪ {δ}) such that, from
q , the next observable event could be a. This definition extends to sets of states
in the usual way: for a set P ′ of states we have that out(P ′) = ∪q∈P′ out(q).

Definition 4. If Q is input enabled, we say that Q conforms to P under ioco,
written Q ioco P , if out(Q after s) ⊆ out(P after s), for every s ∈ tr io(P).

As a simplifying assumption ioco requires implementations to be input enabled,
which is natural for some domains of application. This avoids, for example,
accepting an implementation that can initially either deadlock or behave like P
as a valid implementation of P (a feature, for instance, of the CSP traces model).

Input-enabled processes cannot have (reachable) termination states. This in-
dicates that ioco does not distinguish termination from deadlock, but that is
not all. Conformance under ioco does not guarantee refinement.

Theorem 1 There are Q and P such that Q ioco P , but not P v(I,O)
IOF Q .

The observation of input-output failures can provide additional observational
power, when compared to traces that include quiescence. For example, it is
possible to distinguish internal and external choice of inputs. So, it is no surprise

that Q ioco P does not imply that P v(I,O)
IOF Q . Proofs of the above theorem

and of all other theorems in the sequel can be found in [6].
On the other hand, under ioco it is possible to observe the failure to produce

output (quiescence) before the end of a trace, while under input-output failures
refinements we only observe refusal sets at the end of a trace.

Theorem 2 There are Q and P such that P v(I,O)
IOF Q , but not Q ioco P .

We observe that the above results are not specific to input-output failures.



In summary, v(I,O)
IOF and ioco are generally incomparable. On the other hand,

if we consider only input-enabled processes then ioco is strictly stronger.

Theorem 3 If Q and P are input enabled and Q ioco P , then P v(I,O)
IOF Q . It

is possible, however, that P v(I,O)
IOF Q , but not Q ioco P .

These results do not reflect on the value of one or the other conformance relation.
In the context of CSP, refinement, rather than ioco is the natural notion of
conformance, and input-enabledness is not an adopted assumption, although it
is possible to define input-enabled processes in CSP.

5 Testing

This section explores testing; we adapt the work developed for stable failures
refinement [4] described in Section 2. As already said, the notion of a trace is
not affected by the distinction between inputs and outputs. We can therefore
reuse the previous approach for testing for traces refinement. Additionally, like

in [4], we define the relation confO that models the requirements, under v(I,O)
IOF ,

on the input-output failures. As expected, it is similar to conf .

Q confO P =̂ ∀ t : traces(P) ∩ traces(Q) • Ref O(Q , t) ⊆ Ref O(P , t)
where Ref O(P , t) =̂ {X | (t ,X ) ∈ IOfailures(I,O)(P)}

The following shows the relevance of confO.

Lemma 2. P v(I,O)
IOF Q ⇔ traces(Q) ⊆T traces(P) ∧ Q confO P

The proof is similar to that in [4] for vT and conf , and is in [6].

Since ExhaustT (P) is exhaustive with respect to traces refinement, it is suffi-
cient to show how an exhaustive test can be produced for confO. Like for conf ,
by definition, to check Q confO P it is sufficient to check the refusal sets in
states reached by traces in traces(P) ∩ traces(Q). Since Q is not known, we
introduce tests to check the refusal sets after traces of P .

We use an approach similar to that of [4], which is formalised in the definition
of TF as presented in Section 2.2. At the end of a trace of P , we give a verdict
fail , but propose a choice of events which, if accepted by Q , lead to a pass
verdict. In the case of confO, however, we observe that if a trace leads to a
state of P that is unstable because it may produce an output, then a potentially
non-conformant implementation might deadlock, produce an unexpected output,
or move to another stable state before producing an output. Deadlock is not
allowed, and our tests for confO check that. Unexpected outputs are checked
by the tests for traces refinement. Finally, moving to another stable state may
or may not be allowed (due to the presence of nondeterminism), and whether
the inputs then required are allowed or not is also checked by traces refinement.
We, therefore, do not need as many tests for confO as we needed for conf .



Example 6. Consider the following example in which there is an internal choice
between an input and two possible outputs.

E8 = inp?x → STOP u (out !1→ STOP @ out !2→ STOP)

Under stable failures the maximal refusal sets after 〈〉 are {out .1, out .2,X} and
{|inp,X|}, and so the minimal acceptances A〈〉 contains all sets that contain out .1
and one input and all sets that contain out .2 and one input. For each of these,
we have one test for conf . On the other hand, in the initial internal choice, only
the choice of inp?x corresponds to a stable state and in this state only outputs
are refused. In this case, as formalised below, the minimal acceptances is the set
of sets that contain only one input. So, we have fewer tests for confO. 2

Formally, like for Exhaustconf , we consider pairs (s,A) 6∈ IOfailures(I,O)(P). We,
however, restrict ourselves to A ⊆ I. This is justified by the following lemma.

Lemma 3. For every P with output events O, set of events Y such that Y ⊆ O,
and (s,X ) ∈ IOfailures(I,O)(P), we have (s,X ∪Y ) ∈ IOfailures(I,O)(P).

The proof of this lemma is in [6]. Due to its converse (s,A∪Y ) 6∈IOfailures(I,O)(P)
implies (s,A) 6∈ IOfailures(I,O)(P). Therefore, since for the construction of tests
we are interested in minimal acceptances, it is enough to consider A ⊆ I. We
check that such an A is not a refusal set of a stable state of Q reached by s.

We check this by using a test based on s followed by an external choice of
the events in A ∪ O. The set O is included to ensure that we get verdict fail
only through the observation of a refusal of A in a stable state of Q , in which
outputs are not available. If the test deadlocks, then this means that (s,A) is in
IOfailures(I,O)(Q) and so we return verdict fail . If an event from A ∪ O occurs
after s then we return verdict pass. In fact, if an output is produced, the state
reached by s was not stable, and an inc verdict would also be appropriate, but
this distinction is not necessary: what we want to ensure is that a deadlock is
not possible. Finally, if s is not followed, then the verdict is inc. This leads to
the test TF (s,A ∪ O), using the previously defined function TF .

In conclusion, we obtain the following test set for input-output failures.

ExhaustOconf (P) = {TF (s,A ∪ O) | s ∈ traces(P) ∧A ∈ AOs (P)}
AOs (P) = min{A ⊆ I | (s,A) 6∈ IOfailures(I,O)(P)}

This test is exhaustive for confO.

Example 7. We consider E8 again. In IOfailures(I,O)(E8), the failures with trace
〈〉 have subsets of {out .1, out .2,X} as refusals, and so AO〈〉(E8) is the set of sets
that contain only one input as already said. For each of these, we have one test
that also accepts all outputs. For example, TF (〈〉, {inp.1} ∪ O). 2

Theorem 4 For Q and P such that traces(Q) ⊆ traces(P), Q confO P if, and
only, if there is no TF (s,A∪O) ∈ ExhaustOconf (P) such that Q fails TF (s,A∪O).



It might appear that ExhaustOconf (P) does not check refusals after traces s that
cannot take P to a stable state. This is not the case: since s cannot reach a
stable state of P , for all A ⊆ I we have (s,A) 6∈ IOfailures(I,O)(P) and so
AOs (P) = min{A ⊆ I | (s,A) 6∈ ∅} = min{A ⊆ I}. Thus, AOs (P) = {∅}. As
required, the SUT Q fails the corresponding test TF (s,O) if s can reach a stable
state of Q , in which case Ref (Q , s) is non-empty despite Ref (P , s) being empty.
The other special case is where s can reach a deadlock or terminating state of
P , in which case {A ⊆ I | (s,A) 6∈ IOfailures(I,O)(P)} is empty and so AOs (P)
is empty. We therefore obtain no tests for input-output failures with s; this is
what we expect since all refusal sets are allowed after s.

We now consider how ExhaustOconf (P) relates to the set Exhaustconf (P) for
testing for stable-failures refinement [4]. In the case of E8, we have already
noted that there are twice as many tests in Exhaustconf (E8). The traffic light
example is more extreme since under input-output failures the only stable states
are terminating states. Thus, ExhaustOconf (Lights) = {TF (〈〉,O),TF (〈red〉,O),
TF (〈red , amber〉,O), . . .}: these tests check that the SUT cannot deadlock or
terminate without first receiving end . In contrast, Exhaustconf (Lights) would
also include tests such as TF (〈red〉, {end}) and TF (〈red〉, {amber}), which check
that after red the process cannot refuse amber and also cannot refuse end . The
following shows how the sets As(P) and AOs (P) relate, the proof being in [6].

Lemma 4. If (s,A) ∈ AOs (P) then there exists Y ⊆ O where (s,A∪Y ) ∈ As(P).

Thus, for every test produced for input-output failures refinement there is a
corresponding test produced for stable failures refinement. This shows that
ExhaustOconf (P) contains no more tests than Exhaustconf (P). As we have seen

with E6 and Lights, ExhaustOconf (P) can contain fewer tests.

6 Conclusions

This paper has explored a model, a refinement relation, and a testing theory
for CSP where we distinguish between inputs and outputs. This distinction is
important for testing since the tester (that is, the environment) controls inputs
and the SUT controls outputs. It is normal to assume that the environment does
not block outputs and, as a result, the composition of a tester and the SUT can
only deadlock if the SUT is in a stable state where outputs are not available. We
have thus defined a notion of failures, called input-output stable failures, which
distinguish between inputs and outputs and only allow refusals to be observed
in stable states where no outputs are enabled. We have defined the notion of
input-output failures, showed how these can be calculated for (well-formed) CSP
processes and defined a corresponding notion of refinement. We have also showed
how this relates to ioco and adapted the CSP testing approach of [4].

Refusals in the presence of inputs have been studied in [11, 3, 2]. The key dif-
ference between these previous approaches and ours is that they allowed refusals
to be observed in states where outputs are enabled. One possible justification for
this approach is the symmetry between the SUT and the tester, neither of which



need to be input enabled; such a tester can block outputs and so can observe
refusals in states where outputs are enabled. What we suggest is that there are
systems that are not input enabled but whose environment is input-enabled. It
seems likely that there will be classes of system for which we can observe refusals
in states in which outputs are enabled, and so we can use implementation rela-
tions previously defined for IOLTSs, but also classes of systems for which these
previous approaches are not suitable. For example, synchronous devices consti-
tute environments that are not input enabled, on the other hand, as previously
discussed, systems that write to the screen (or to any asynchronous device) and
basically control its interface have an environment that is input enabled.

In occam, a programming language based on CSP [14], for instance, inputs
are distinguished from outputs. (This is, of course, necessarily the case in a
programming language.) In that context, there are restrictions on the use of
outputs. It is not possible, for instance, to have two outputs offered in an external
choice, since in this case, we have a nondeterminism as to the choice of output
communication that is going to be carried out. In abstract models, on the other
hand, such nondeterminism is not a problem.

In [15], the lack of inputs and outputs in CSP is handled by defining a notion
of test execution that takes this issue into account. The direction of the events
is used to determine how to carry out the tests and determine a verdict. All this
is formally defined, but soundness cannot be justified in the framework of CSP.

There are several lines of future work. Recent work has extended ioco to the
case where there are distributed observations, leading to the dioco implementa-
tion relation [12]. Like ioco, the dioco implementation relation is only defined
for input-enabled implementations. In addition, most of the work in this area
has assumed that specifications are also input-enabled and the generalisations
to the case where the specification need not be input-enabled are rather com-
plex [12]. Observing refusal of inputs might help simplify treatment of an input
not being enabled, but only in quiescent states; this could lead to simpler and
more general implementation relations for distributed systems.

We have observed that input-output failures refinement does not imply con-
formance under ioco because ioco allows partial observation of refusals before
the end of a trace. TheRT model for CSP allows the observation of a sequence of
events and refusal sets, and so it should be possible to adapt it to the case where
we distinguish between inputs and outputs as well, and in this case produce a
refinement relation strictly stronger than ioco.

The testing theory of Circus [17], an algebra that combines Z [24] and CSP, is
similar to that of CSP. It is based on symbolic tests, and already takes advantage
of the conventions of CSP to represent inputs and outputs more compactly.
To leverage the results here to that context, though, we need an input-output
failures model in the UTP [13], the semantic framework of Circus.

References

1. G. Barrett. Model checking in practice: The T9000 Virtual Channel Processor.
IEEE TSE, 21(2):69 – 78, 1995.



2. I. B. Bourdonov, A. Kossatchev, and V. V. Kuliamin. Formal conformance testing
of systems with refused inputs and forbidden actions. ENTCS, 164(4):83 – 96,
2006.

3. L. B. Briones and E. Brinksma. Testing real-time multi input-output systems. In
ICFEM, volume 3785 of LNCS, pages 264 – 279. Springer, 2005.

4. A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in CSP. In ICFEM,
volume 4789 of LNCS, pages 151 – 170. Springer, 2007.

5. A. L. C. Cavalcanti, M.-C. Gaudel, and R. M. Hierons. Conformance Relations for
Distributed Testing based on CSP. In ICTSS, LNCS. Springer, 2011.

6. A. L. C. Cavalcanti and R. M. Hierons. Testing with inputs and outputs
in CSP - Extended version. Technical report, 2012. Available at www-
users.cs.york.ac.uk/ alcc/CH12.pdf.

7. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 – 181, 2003.

8. C. Fischer. How to Combine Z with a Process Algebra. In J. Bowen, A. Fett, and
M. Hinchey, editors, ZUM. Springer, 1998.

9. M.-C. Gaudel. Testing can be formal, too. In TAPSOFT, volume 915 of LNCS,
pages 82 – 96. Springer, 1995.

10. A. Hall and R. Chapman. Correctness by construction: Developing a commercial
secure system. IEEE Software, 19(1):18 – 25, 2002.

11. L. Heerink and J. Tretmans. Refusal Testing for Classes of Transition Systems
with Inputs and Outputs. In FORTE/PSTV, volume 107 of IFIP Conference
Proceedings, pages 23 – 38. Chapman & Hall, 1997.

12. R. M. Hierons, M. G. Merayo, and M. Núñez. Implementation relations and test
generation for systems with distributed interfaces. Distributed Computing, 25(1):35
– 62, 2012.

13. C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.
14. G. Jones. Programming in occam 2. Prentice-Hall, 1988.
15. T. Kahsai, M. Roggenbach, and B.-H. Schlingloff. Specification-based testing for

refinement. In SEFM, pages 237 – 246. IEEE Computer Society, 2007.
16. B. P. Mahony and J. S. Dong. Blending Object-Z and Timed CSP: An Introduction

to TCOZ. In ICSE’98, pages 95 – 104. IEEE Computer Society Press, 1998.
17. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics

for Circus. Formal Aspects of Computing, 21(1-2):3 – 32, 2009.
18. M. Roggenbach. CSP-CASL: a new integration of process algebra and algebraic

specification. Theoretical Computer Science, 354(1):42 – 71, 2006.
19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
20. A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science.

Springer, 2011.
21. A. Sampaio, S. Nogueira, and A. Mota. Compositional verification of input-output

conformance via CSP refinement checking. In ICFEM, volume 5885 of LNCS,
pages 20 – 48. Springer, 2009.

22. S. Schneider and H. Treharne. Communicating B Machines. In ZB, volume 2272
of LNCS, pages 416 – 435, 2002.

23. J. Tretmans. Test Generation with Inputs, Outputs, and Quiescence. In TACAS,
volume 1055 of LNCS, pages 127 – 146. Springer, 1996.

24. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.
Prentice-Hall, 1996.


