
Data Flow coverage for Circus-based testing

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science, York YO10 5GH, UK
2 LRI, Université de Paris-Sud and CNRS, Orsay 91405, France

Abstract. Circus is a state-rich process algebra based on Z and CSP
that can be used for testing. In this paper, we consider data-flow cover-
age. In adapting the classical results on coverage of programs to Circus
models, we define a notion of specification traces, consider models with
data-flow anomalies, and cater for the internal nature of state. Our re-
sults are a framework for data-flow coverage of such abstract models,
a novel data-flow criterion suited to state-rich process models, and the
conversion of specification traces into symbolic traces.

1 Introduction

The use of formal models, especially those underlying process algebra, as a basis
for testing is now widely studied. Circus [5] is a very expressive and feature-rich
algebra; it belongs to the important family of notations that combine the advan-
tages of operational calculi like CSP [14] with specification languages like Z [17],
thus comprising abstract data types at their core. For testing from such nota-
tions, it is appealing and natural to guide selection of test data from symbolically
derived test traces using data-oriented criteria [13] that have been demonstrated
to be good at detecting faults on data dependencies.

In previous work, we have defined a testing theory for Circus [2]. Following
its operational semantics, this theory uses constrained symbolic traces: pairs
formed by a symbolic trace and a constraint over the symbolic variables in the
trace. Tests are built from such traces, enriched by observations (that is, refusals
or acceptance) and verdict events; test sets that are exhaustive with respect to
refinement in Circus have been defined. The constrained symbolic traces, how-
ever, capture the constraints raised by data operations and guards, but not
their structure. We have, therefore, so far defined test-selection criteria based on
notions like coverage of bounded symbolic traces or synchronisation coverage;
information is missing to address data-flow coverage.

Here, we introduce specification traces, which include, besides communication
events, internal data operations and guards. Based on these traces, we formalise
notions of definitions, uses, and definition-clear paths for Circus. We define the
conventional data-flow coverage criteria, and formalise a novel criteria inspired
by [15] to cater for internal data flows. Finally, we consider how to construct con-
strained symbolic traces, and thus, symbolic tests from the specification traces,
providing the link to the operational semantics. This result is relevant for all
selection criteria based on specification traces (and not only data-flow criteria).

In summary, we present here the first collection of coverage criteria for Circus
based on the structure of models. It is the first technique that takes advantage
of the data model itself, rather than its semantics, in selecting tests. We prove
unbias of the selected tests. This means that they cannot reject correct systems.

Data-flow coverage in the context of Circus requires adjustments. Firstly,
data-flow anomalies must be accepted, because repeated definitions and defini-
tions without use are routinely used in Circus abstract models. Second, due to
the rich predicative data language of Circus, a concrete flow graph is likely much
too big to be explicitly considered. Thus, tests are not based on paths of a flow
graph, but on specification traces. Finally, the state of a Circus process is hidden,
and so not all definitions and uses, and, therefore, not all data flows, are visible.

In the next section, we give an overview of the notations and definitions
used in our work. Section 3 presents our framework, and Section 4, our new
criterion. Section 5 addresses the general issue of constructing tests from selected
specification traces. Finally, we consider related works in Section 6 and conclude
in Section 7, where we also indicate lines for further work.

2 Background material

This section describes Circus, its operational semantics, and data-flow coverage.

2.1 Circus notation

A Circus model defines channels and processes like in CSP. Figure 1 presents an
extract from the model of a cash machine. It uses a given set CARD of valid
cards, a set Note of the kinds of notes available (10, 20, and 50), and a set
Cash == bag Note to represent cash. The definitions of these sets are omitted.

The first paragraph in Figure 1 declares four channels: inc is used to request
the withdrawal using a card of some cash, outc to return a card, cash to provide
cash, and refill to refill the note bank in the machine. The second paragraph is
an explicit definition for a process called CashMachine.

The first paragraph of the CashMachine definition is a Z schema CMState
marked as the state definition. Circus processes have a private state, and interact
with each other and their environment using channels. The state of CashMachine
includes just one component: nBank , which is a function that records the avail-
able number of notes of each type: at most cap.

State operations can be defined by Z schemas. For instance, DispenseNotes
specifies an operation that takes an amount a? of money as input, and outputs
a bag notes! of Notes, if there are enough available to make up the required
amount. DispenseNotes includes the schema ∆CMState to bring into scope the
names of the state components defined in CMState and their dashed counterparts
to represent the state after the execution of DispenseNotes. To specify notes!,
we require that the sum of its elements (Σ notes!) is a?, and that, for each kind
n of Note, the number of notes in notes! is available in the bank. DispenseNotes
also updates nBank , by decreasing its number of notes accordingly.

2

channel inc : CARD × N1; outc : CARD ; cash : Cash; refill

process CashMachine =̂ begin

state CMState == [nBank : Note→ 0 . . cap]

DispenseNotes
∆CMState
a? : N1; notes! : Cash

Σ notes! = a?
∀n : Note • (notes!] n) ≤ nBank n ∧ nBank ′ n = (nBank n)− (notes!] n)

DispenseError
ΞCMState
a? : N1; notes! : Cash

¬ ∃ns : Cash • Σ ns = a? ∧ ∀n : Note • (ns] n) ≤ nBank n
notes! = [[]]

Dispense == DispenseNotes ∨ DispenseError

•

µ X •

inc?c?a→
X
u outc!c→X

u

var notes : Cash •

Dispense; (notes 6= [[]])N cash!notes → Skip
@
(notes = [[]])N Skip

 ;outc!c→X

@
refill → (nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; X

end

Fig. 1. Cash machine model

Another schema DispenseError defines the behaviour of the operation when
there are not enough notes in the bank to provide the requested amount a?; the
result is the empty bag [[]] . The Z schema calculus is used to define the total
operation Dispense as the disjunction of DispenseNotes and DispenseError .

State operations are called actions in Circus, and can also be defined using
Morgan’s specification statements [11] or guarded commands from Dijkstra’s
language. CSP constructs can also be used to specify actions.

For instance, the behaviour of the process CashMachine is defined by a re-
cursive action at the end after the ‘•’. A recursion µ X • F (X) has a body
given by F (X), where occurrences of X are recursive calls. In our example, the
recursion first offers a choice between an input inc?c?a, which accepts a card c
and a request to withdraw the amount a, and a synchronisation on refill , which

3

is a request to fill the nBank . The actions that offer these communications are
combined in an external choice (@) to be exercised by the environment.

If refill is chosen, an assignment changes the value of nBank to record a
number cap of notes of all kinds. If inc?c?a is chosen, then we have an inter-
nal (nondeterministic) choice of possible follow-on actions: recursing immedi-
ately (without returning the card or producing the money), returning the card
via an output outc!c before recursing, or considering the dispensation of cash
before returning the card and recursing. In the dispensation, a local variable
notes is declared, the operation Dispense is called, and then an external choice
of two guarded actions is offered. If there is some cash available (notes 6= [[]]),
then it can dispensed via cash!notes. Otherwise the action terminates (Skip).
Here, nondeterminism comes from the fact that the specification does not go
into details of bank management (stolen cards, bank accounts, and so on).

This example shows how Z and CSP constructs can be intermixed freely. A
full account of Circus and its semantics is given in [12]. The Circus operational
semantics is briefly discussed and illustrated in the next section.

2.2 Circus operational semantics and tests

The Circus operational semantics [2] is distinctive in its symbolic account of state
updates. As usual, it is based on a transition relation that associates configura-
tions and a label. For processes, the configurations are processes themselves; for
actions A, they are triples of the form (c | s |= A).

The first component c of those triples is a constraint over symbolic variables
used to define labels and the state. These are texts that denote Circus predicates
(over symbolic variables). We use typewriter font for pieces of text. The second
component s is a total assignment x := w of symbolic variables w to all state
components x in scope. State assignments can also include declarations and
undeclarations of variables using the constructs var x := e and end x. The state
assignments define a specific value (represented by a symbolic variable) for all
variables in scope. The last component of a configuration is an action A.

The labels are either empty, represented by ε, or symbolic communications
of the form c?w or c!w, where c is a channel name and w is a symbolic variable
that represents an input (?) or an output (!) value.

We define traces in the usual way. Due to the symbolic nature of configura-
tions and labels, we obtain constrained symbolic traces, or cstraces, for short.

Example 1. Some of the cstraces of the process CashMachine are as follows.

(〈 〉, True) and (〈 refill, inc.α0.α1, outc.α2〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 = α0)

The first is the empty cstrace (empty symbolic trace with no constraint). The
second records a sequence of interactions where a request for a refill is followed
by a request for a withdraw of an amount α1 using card α0, followed by the
return of a card α2. The constraint captures those arising from the declaration
of inc, namely, α0 is a CARD and α1, a positive number. It also captures the
fact that the returned card is exactly that input (α2 = α0). 2

4

As usual for process-algebra, tests of the Circus theory are constructed from
traces. A cstrace defines a set of traces: those that can be obtained by instan-
tiating the symbolic variables so as to satisfy the constraint. Accordingly, we
have symbolic tests constructed from cstraces, and a notion of instantiation to
construct concrete tests involving specific data. This approach is driven by the
operational semantics of the language and led to the definition of symbolic ex-
haustive test sets and to proofs of their exhaustivity.

We observe that cstraces capture the constraints raised by data operations
and guards, but not their structure.

Example 2. The following is a cstrace of CashMachine that captures a withdraw
request followed by cash dispensation.

(〈 inc.α0.α1, cash.α2〉,
α0 ∈ CARD ∧ α1 ∈ N1 ∧ Σα2 = α1 ∧ ∀ n : Note • (α2] n) ≤ cap)

The constraint defines the essential properties of the cash α2 dispensed, but not
the fact that these properties are established by a variable declaration followed
by a schema action call, and a guarded action. 2

So, while cstraces are useful for trace-selection based on constraints, they do not
support selection based on the structure of the Circus model. To this end, in [1]
we have presented a collection of transition systems whose labels are pieces of
the model: guards (predicates), communications, or simple Circus actions. The
operational semantics for Circus defined by these transition systems is entirely
compatible with the Circus original operational and denotational semantics, al-
though it records information about the text of the model.

Thus, we use the transition relation =⇒RP from [1], written =⇒ here, to de-
fine a notion of specification traces, used to consider data-flow coverage criteria.

2.3 Data-flow coverage

Normally, the application of data-flow coverage criteria requires the absence of
anomalies in the data-flow graph; this is not required or adequate here.

Data-flow coverage criteria were originally developed for sequential impera-
tive languages based on the notion of definition-use associations [13]. They are
traditionally defined in terms of a data-flow graph as triples (d , u, v), where d
is a node in which the variable v is defined, that is, some value is assigned to it,
u is a node in which the value of v is used, and there is a definition-clear path
with respect to v from d to u. The strongest data-flow criterion, all definition-
use paths, requires that, for each variable, every definition-clear path (with at
most one iteration by loop) is executed. In order to reduce the number of tests
required, weaker strategies such as all-definitions and all-uses have been defined.

When using these criteria, it is often assumed that there is no data-flow
anomaly: on every path there is no use of a variable v not preceded by some
node with a definition of v , and that after such a node, there is always some
other node with a use of v [6]. These restrictions require preliminary checks and

5

facilitate the comparison of the criteria; they also ensure that there is always
some test set satisfying the criteria. In Circus, anomalies lead to empty test sets.

Data-flow based testing in the case of abstract specifications with concur-
rency and communications requires adjustments (see, for instance [15] and Sec-
tion 6) even if the notion of data-flow and the motivation are the same: to check
dynamically data-flow dependencies via the execution of selected tests.

3 Data-flow coverage in Circus

Here, we define specification traces resulting from the transition relation =⇒,
state the notions of definition and use of Circus variables, discuss anomalies, and
present the definition of one of the classical coverage criteria.

3.1 Specification traces

The main distinctive feature of the specification transition system in [1] is its
labels. They record not only events, like in the operational semantics, but also
guards and state changes. Moreover, they are expressed in terms of terms of the
model, rather than symbolic variables. For example, for the CashMachine, we
have labels inc?c?a, var notes, and Dispense. Finally, the specification-oriented
system has no silent transitions, since they correspond to evolutions that are not
guarded, and do not entail any communication or state change. These transitions
do not capture observable behaviour, and so are not interesting for testing.

Like in the operational semantics, we have a transition relation =⇒ between
texts of process. It is defined in terms of the corresponding relation for actions.

For actions, a transition (c1 | s1 |= A1)
g

=⇒ (c2 | s2 |= A2) establishes that in the
state characterised by (c1 | s1), if the guard g holds, then the next step in the
execution of A1 is the execution of A2 in the state (c2 | s2). Similarly, a transition

(c1 | s1 |= A1)
e

=⇒ (c2 | s2 |= A2) establishes that in the execution of A1 the event
e takes place and then again the next step is the execution of A2 in (c2 | s2).

Finally, (c1 | s1 |= A1)
A

=⇒ (c2 | s2 |= A2) establishes that the first step is the
action A, followed by A2 in (c2 | s2) and the remaining action to execute is A2.

It is simple to define sequences of specification labels based on =⇒ and its
associated transition relation⇒⇒ annotated with traces and defined as usual [3].

Example 3. For CashMachine, for instance, the following traces of specification
labels, as well as their prefixes, are reachable according to ⇒⇒.

〈inc?c?a, outc!c, inc?c?a, var notes〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, outc!c)〉 2

We need, however, to consider enriched labels that include a tag to distinguish
their various occurrences in the specification.

Example 4. In the traces in Example 3, the two occurrences of outc!c correspond
to different occurrences of this piece of syntax in the model. Since we cannot
consider repeated occurrences of labels to correspond to a single definition or
use of a variable, we use tags to distinguish them. 2

6

The tag can, for instance, be is related to the position of the labels in the model.
We need a simple generalisation of the definition of =⇒, where a label is a pair
containing a label (in the sense of Section 2.2) and a tag. We take the type Tag
of tags as a given set, and do not specify a particular representation of tags.

For a process P , we define the set sptraces(P) of sptraces of P : specification
traces whose last label is observable, that is, a non-silent communication. This
excludes traces that do not lead to new tests with respect to their prefixes.

Definition 1. If we define obs(l, t)⇔ l ∈ Comm ∧ l 6= ε, then we have

sptraces(begin state[x : T] • A end) = sptraces(w0 ∈ T, x := w0, A)

sptraces(c1, s1, A1) = {spt, c2, s2, A2 |
(c1 | s1 |= A1)

spt⇒⇒ (c2 | s2 |= A2) ∧ spt 6= 〈 〉 ∧ obs(last spt) • spt}

Without loss of generality, we consider a process begin state[x : T] • A end,
with state components x of type T and a main action A. Its sptraces are those
of A, when considered in the state in which x has some value identified by the
symbolic variable w0, which is constrained to satisfy w0 ∈ T . For actions A1,
the set sptraces(c1, s1, A1) of its sptraces from the state characterised by the
assignment s1 and constraint c1 is defined as those that can be constructed using
⇒⇒ from the configuration (c1 | s1 |= A1) and whose last label is observable.

Example 5. Some sptraces of CashMachine are as follows. (In examples, we omit
tags when they are not needed, and below we distinguish the two occurrences of
outc!c by the tags tag1 and tag2.)

〈inc?c?a, (outc!c, tag1)〉 〈inc?c?a, (outc!c, tag1), inc?c?a〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes〉
〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉

We note that the first specification trace in Example 3 is not an sptrace. 2

3.2 Definitions and uses

In an sptrace, a definition is a tagged label, where the label is a communication
or an action that may assign a new value to a Circus variable, that is, an input
communication, a specification statement, a Z schema where some variables are
written, an assignment, or a var declaration, which, in Circus causes an initial-
isation. The set defs(x, P) of definitions of a variable x in a process P is defined
in terms of the set defs(x, spt) of definitions of x in a particular sptrace spt.

Definition 2. defs(x, P) =
⋃
{ spt : sptraces(P) • defs(x, spt) }

The set defs(x, spt) can be specified inductively as follows.

Definition 3. defs(x, 〈 〉) = ∅
defs(x, tla spt) = ({tl} ∩ defs(x)) ∪ defs(x, spt)

The empty trace has no definitions. If the trace is a sequence formed by a tagged

7

label tl followed by the trace spt, we include tl if it is a definition of x as char-
acterised by defs(x). The definitions of spt are themselves given by defs(x, spt).

The tagged labels in which x is written (defined) can be specified as follows.

Definition 4. defs(x) = { tl : TLabel | x ∈ defV(tl) }

The set defV(tl) of such variables for a label tl is specified inductively; g stands
for a guard, d for a channel, e an expression. The tags play no role here, and we
ignore them in the definition below.

Definition 5.

defV(g) = defV(ε) = defV(d) = defV(d!e) = defV(end y) = ∅
defV(d?x) = defV(d?x : c) = { x } defV(f : [pre, post]) = { f }
defV(Op) = wrtV (Op) defV(x := e) = { x }
defV(var x : T) = { x } defV(var x := e) = { x }

A Morgan specification statement f : [pre, post] is a pre-post specification that
can only modify the variables explicitly listed in the frame f .

The set wrtV (Op) of written variables of a schema Op is defined in [5, page 161]
as those that are potentially modified by Op, and their identification is not a
purely syntactic issue. This set includes the state components v of Op that are
not constrained by an equality v ′ = v . Following the usual over-approximation
in data-flow analysis, we can take the pessimistic, but conservative, view that
Op potentially writes to all variables in scope and avoid theorem proving.

We note that we are interested in variables, not channels. In an input d?x , the
variable x is defined, but the particular channel d is not of interest. This reflects
the fact that we are interested in the data flow, not the interaction specification.

Example 6. Coming back to the CashMachine (and ignoring tags) we have:

defs(c, CashMachine) = {inc?c?a}
defs(a, CashMachine) = {inc?c?a}
defs(notes, CashMachine) = {var notes : Cash, Dispense}
defs(nBank, CashMachine) = {Dispense,

nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap }}

2

The notion of (externally visible) use is simpler: a tagged label with an output
communication. Formally, the set e-uses(x, P) of uses of a variable x in a process
P can be identified from its set of sptraces.

Definition 6. e-uses(x, P) =
⋃
{ spt : sptraces(P) • e-uses(x, spt) }

The set e-uses(x, spt) of uses of x in a trace spt can be specified as follows.

Definition 7. e-uses(x, 〈 〉) = ∅
e-uses(x, tla spt) = ({tl} ∩ e-uses(x)) ∪ e-uses(x, spt)

Finally, uses of a variable x are labels (d!e, t) where x occurs free in the expression
e. FV (e) denotes the set of free variables of an expression e.

8

Definition 8. e-uses(x) = {d : CName; e : Exp; t : Tag | x ∈ FV (e) • (d!e, t)}

At this point, we consider e-uses, but not the classical notion of p-uses, which
relates to uses in predicates and, in the context of Circus, are not observable. We
introduce a notion of internal uses (i-uses) later on in Section 4.1.

Example 7. We have e-uses(c, CashMachine) = {(outc!c, tag1), (outc!c, tag2) }
and e-uses(notes, CashMachine) = {cash!notes}. There are no other externally
visible uses in CashMachine. 2

We observe that a label cannot be both a definition and a use of a variable,
because a use is an output communication, which does not define any variable.
Besides, a label can be neither a definition nor a use (this is the case for refill)
and then not considered for data-flow coverage.

The property clear-path(spt, df, u, x) characterises the fact that the trace
spt has a subsequence that starts with the label df, finishes with the label u,
and has no definition of the variable x . (We consider subsequences of a trace,
but, for consistency with classical terminology, we use the term path anyway.)

Definition 9.

clear-path(spt, df, u, x)⇔ ∃ i : 1 . .# spt • spt i = df ∧
∃ j : (i + 1) . .# spt • spt j = u ∧
∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)

A e-use u of a variable x is said to be reachable by a definition df of x if there
is a trace spt such that clear-path(spt, df, u, x).

3.3 Data-flow anomalies and Circus

Three data-flow anomalies are usually identified: (1) a use of a variable without
a previous definition; (2) two definitions without an intermediate use; and (3) a
definition without use. While these all raise concerns in a program, it is not the
case in a Circus model. Because a variable declaration is a variable definition
that assigns an arbitrary value to a variable, it is common to follow it up with
a second definition that restricts that value.

In addition, it is not rare to use a communication d?x to define just that the
value x to be input via the channel d is not restricted (and also later not used).
In an abstract specification, a process involving such a communication might,
for example, be combined in parallel with another process that captures another
requirement concerned with restricting these values x , while the requirement
captured by the process that defines d?x is not concerned with such values.

For the data-coverage criteria that we consider, when a definition involved in
any of the above anomalies is considered, it imposes no restriction on the set of
tests under consideration for coverage. In practical terms, no tests are required.

9

3.4 all-defs

The data-coverage criterion that we present here, all-defs, requires that all def-
initions are covered, and followed by one (reachable) use, via any (clear) path.
We formalise coverage criterion by identifying the sets of sptraces SSPT that
satisfy that criterion. For all-defs, the formal definition is as follows.

Definition 10. For every variable name x and process P, a set SSPT of sp-
traces of P provides all-defs coverage if, and only if,

∀ df : defs(x, P) •
(∃ spt : sptraces(P); u : e-uses(x, P) • clear-path(spt, df, u, x))⇒

(∃ spt : SSPT ; u : e-uses(x, P) • clear-path(spt, df, u, x))

If there is an sptrace that can contribute to coverage, then at least one is included.

Example 8. As previously explained, in CashMachine, inc?c?a is the only defi-
nition of c, and its two uses are (outc!c, tag1) and (outc!c, tag2). Examples of
sets of sptraces that provide all-defs coverage are the three singletons below.

{〈inc?c?a, (outc!c, tag1)〉 }
{〈inc?c?a, var notes, Dispense, notes = [[]] , (outc!c, tag2)〉}
{〈inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes, (outc!c, tag2)〉}

Other sets that provide all-defs coverage are the supersets of the above sets, and
the sets that include any of the extensions of the sptraces above. 2

In [3] we define the classical all-uses and all-du-paths criteria.
The CashMachine variables nBank and a are used internally only. There

is no clear path from their definition to an external use, and so every set of
sptraces provides coverage (according to all-defs and the other classical criteria)
with respect to these variables. They contribute, however, to our next criterion.

4 sel-var-df-chain-trace

This criterion is based on the notion of a var-df-chain. The idea is to identify
sptraces that include chains of definition and associated internal uses of variables,
such that each variable affects the next one in the chain. Given the characteristics
of Circus, it is very likely that most specifications contain a number of such chains.

4.1 var-df-chain

A suffix of an sptrace spt starting at position i (that is, (i . . # spt) � spt) is in
the set var-df-chain(x, P) of var-df-chains of P for x if it starts with a label spt i
that defines x and subsequently has a clear path to a label spt j . This label must
either be a use of x , and in this case it must be the last label of spt, or affect
the definition of another variable y , and in this case spt must continue with a
var-df-chain for y. The continuation is (j . .# spt) � spt , the suffix of spt from j .

10

Definition 11.

var-df-chain(x, P) =
{ spt : sptraces(P); i : 1 . .# spt ; j : (i + 1) . .# spt | spt i ∈ defs(x, P) ∧ (∀ k : (i + 1) . . (j − 1) • spt k 6∈ defs(x, P)) ∧(

(spt j ∈ e-uses(x, P) ∧ j = # spt) ∨
(∃ y • affects(x, y, spt j) ∧ (j . .# spt) � spt ∈ var-df-chain(y, P))

)
• (i . .# spt) � spt

}

A variable x affects the definition of another variable y in a tagged label tl if it
is an internal use of x and a definition of y .

Definition 12. affects(x, y, tl) = x ∈ i-useV(tl) ∧ y ∈ defs(tl)

The set i-useV(tl) of variables used internally in tl is defined as follows.

Definition 13.

i-useV(g) = FV (g) i-useV(ε) = i-useV(d) = ∅
i-useV(d!e) = i-useV(d?x) = ∅ i-useV(d?x : c) = FV (c) \ {x}
i-useV(f : [pre, pos]) = FV (pre) ∪ FV (pos)
i-useV(Op) = FV (Op) i-useV(x := e) = FV (e)
i-useV(var x : T) = ∅ i-useV(var x := e) = FV (e)
i-useV(end y) = ∅

This notion of internal use subsumes the classical notion of p-uses.

4.2 The criterion

We observe that var-df-chains are not sptraces, but suffixes of sptraces. So,
coverage is provided by sptraces that have such suffixes, rather than by the
var-df-chains themselves. In particular, sel-var-df-chain-trace coverage requires
that every chain in a model is covered by at least one sptrace.

Definition 14. For every variable name x and process P, a set SSPT of sp-
traces of P provides sel-var-df-chain-trace coverage if, and only if,

∀ spt1 : var-df-chain(x, P) •
∃ spt2 : SSPT ; spt3 : seq TLabel • spt2 = spt3 a spt1

The specification trace spt3 is an initialisation trace that leads to the chain.
This criterion is the most demanding of the data-flow criteria defined in [3]

where a formal proof of this result is available.

Example 9. The very basic var-df-chains, where the same variable is considered
as the starting definition and the final use, with a clear path with respect to
this variable in between, are covered by the classical all-du-paths criterion. The
label nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } is such a definition, and nBank

11

c ∧ (s; g)

(c | s |= 〈g〉a spt)
ε−→ST (c ∧ (s; g) | s |= spt)

c ∧ T 6= ∅

(c | s |= 〈d?x : T〉a spt)
d?w0−→ST (c ∧ w0 ∈ T | s; var x := w0 |= spt)

c

(c | s |= 〈d!e〉a spt)
d!w0−→ST (c ∧ (s; w0 = e) | s |= spt)

(c1 | s1 |= A1)
ε−→ (c2 | s2 |= Skip)

(c1 | s1 |= 〈A1〉a spt)
ε−→ST (c2 | s2 |= spt)

Table 1. Operational semantics of sptraces; w0 stand for fresh symbolic variables

is used in Dispense. Moreover, notes is externally used in the label cash!notes.
This leads to the following var-df-chain.

〈nBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap },
inc?c?a, var notes, Dispense, notes 6= [[]] , cash!notes〉

Its coverage leads to coverage of the effect of a refill , after which the value of
nBank is updated. An initialisation trace for the above var-df-chain is 〈refill〉.

5 Conversion of specification traces to symbolic traces

Converting an sptrace to a symbolic trace requires an operational semantics for
sptraces, which we provide in Table 1. It defines a transition relation −→ST

using four rules: one for when the first label is a guard, two for when it is either
an input or an output, and one for an action label A. In this last case, the rules of
the operational semantics transition rule −→ define the new transition relation.

Like in the operational semantics, the configuration is a triple, but here, we
have an sptrace associated with a constraint and a state assignment. From a

configuration (c | s |= 〈l〉a spt) we have a transition to a configuration with
spt. The new constraint and state depend on the label l.

For a guard, a transition requires that c is satisfiable and g holds in the
current state (s; g). In this case, the transition is silent: it has label ε.

Input and output communications give rise to non-silent transitions with la-
bels that are symbolic inputs and outputs. Inputs d?x: T are annotated with
the type T of channel d . The new constraint records that the input value rep-
resented by the fresh symbolic variable w0 has type T and the state is enriched
with a declaration of x whose initial value is set to w0.

Finally, we have a transition relation
st→→ that defines a symbolic trace st that

captures the interactions corresponding to an sptrace. It is defined from −→ST

12

in the usual way [3], and used below to define the function cstraceSPT
a(P) that

characterises the set of cstraces of P in terms of sptraces(P). The parameter a

is an alphabet: a sequence of fresh symbolic variables. The cstraces defined by
cstraceSPT

a(P) use these variables in the order determined by a.

Definition 15.

cstraceSPT
a(begin state[x : T] • A end) =

convSPTa(w0 ∈ T, x := w0) L sptraces(begin state[x : T] • A end) M

As before, we consider a process begin state[x : T] • A end and define its
cstraces by applying a conversion function convSPTa(c, s) to each of its sptraces.

Definition 16. For every alphabet a, constraint c, state assignment s and sp-
trace spt, we have that convSPTa(c, s) spt = (st,∃(αc \ αst) • c1) where st

and c1 are characterised by αst ≤ a ∧ ∃ s1 • (c | s |= spt)
st→→ (c1 | s1 |= 〈 〉).

Each sptrace gives rise to exactly one cstrace, since any nondeterminism in the
actions is captured by the constraint on the symbolic variables. The alphabet
αst of the symbolic trace st is a prefix of a: αst ≤ a. We note that convSPT is a
linear translation and can be implemented with a good computational complexity
compared to the test cases generation itself.

Example 10. The following cstraces correspond to the sptraces in Example 8.

(〈inc?α0?α1, outc!α2〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧ α2 = α0)
(〈inc?α0?α1, cash!α2, outc!α3〉, α0 ∈ CARD ∧ α1 ∈ N1 ∧
Σα2 = α1 ∧ (∃ w0 : Note→ N • (∀ n : Note • α2] n) ≤ w0 n)) ∧ α3 = α0)

We take the alphabet to be 〈α0, α1, . . .〉. The first cstrace comes from both the
first and the second sptrace. The second cstrace comes from the last sptrace. The
symbolic variable w0 denotes the internal value of nBank , which is not observable
in the trace, but contributes to the specification of the observable value α2.

Two sptraces give rise to the same cstrace because after a withdraw request,
the card may be returned immediately for one of two reasons: a problem with
the card account (like insufficient funds) or no money in the cash machine. Since
the model abstracts away the existence of accounts, they cannot be distinguished
by tests from this model. This is reflected in the fact that the two sptraces have
different tags associated with outc!c. This indicates that they correspond to two
different occurrences in the model. 2

Contrary to the cstraces defined by the operational semantics, which capture
just observable labels, sptraces are defined specifically to capture the structure
of the model, and thus guards and data operations that may not be visible in the
interface of the SUT. So, it is not surprising that there are sptraces that lead to
the same cstrace. They come from paths in the model that are not distinguishable
by observing the SUT. Requiring their absence in programs is reasonable, but
abstract specifications may lead to such situations. It is not an issue for test

13

generation, but it may be a problem for understanding or observing the SUT
when running the tests. A test generation tool might, for example, warn that a
distinction may need to be introduced, or instrumented, in the SUT.

The next theorem establishes that tests identified by sptraces are unbiased
with respect to the operational semantics because they specify valid cstraces of
the process. Construction of unbiased tests from cstraces was addressed in [2].

Theorem 1 cstraceSPT
a(P) ⊆ cstracesa(P)

We do not have equality: there is no empty sptrace, for instance. A proof is in [3].
The main lemma is proved by induction on the specification traces of P .

6 Related works

Data-flow based testing for state-based specification languages has been applied
to Lotos [15], to SDL and Estelle (that is, EFSM) [16], and extended with con-
trol dependencies in [8]. Our sel-var-df-chain-trace selection criterion is inspired
from [15], but different, due to the notion of internal state in Circus and to the
forms of symbolic tests considered in the Circus testing theory (see [3] for de-
tails). These differences, however, should not prevent its extension to control
dependencies, possibly by some slight enrichment of our tagged labels.

In another context, Tse et al. have adapted data-flow testing to service or-
chestrations specified in WS-BPEL in [9], and to service choreographies in [10].
From the specifications, they build an XPath Rewriting Graph, which captures
the specificities of the underlying process algebra, which is very different from Cir-
cus, with loose coupling between processes, XML messages, and XPath queries.

Testing tools based on symbolic input-output transition systems, and a sym-
bolic version of the ioco conformance relation have been presented by Clarke et
al. in [4] and by Frantzen et al. [7]. The models and relations are different from
ours, since there is a semantic distinction between inputs and outputs, no data
structures, and no hidden state. In both [4] and [7], test selection is based on
test purposes. In [7], there is a similar notion of symbolic traces, with a formula
constraining the interaction variables of the trace, and another constraint on the
update of the state variables. Data-flow coverage, however, was not addressed
and is less relevant than for Circus given the limited operations on data.

7 Conclusions

We have presented a framework for test selection from Circus models based
on data-flow coverage criteria for specification traces, which record sequences of
guards, communications and actions of a model. Using these definitions, we have
formalised some coverage criteria, including a new criterion that takes into ac-
count internal definitions and uses. Proof of unbias of the selected tests is possible
due to formal nature of our setting. We have formalised also the construction of
cstraces (used to construct tests) from specification traces.

14

The specification traces defined in this paper can be used for other selection
criteria, data-flow based and other ones as well, since most features of the models
are kept. On these bases, it is our plan to consider a number of selection criteria
for Circus tests, and to explore criteria that consider a variety of Circus constructs
in an integrated way, to include, for instance, notions of Z schema coverage,
case splitting in the pre and postcondition of specification statements, control
dependencies and test purposes expressed in Circus. We plan also to address in
a formal framework the problem of monitoring such tests.

Acknowledgments

We warmly thank Frédéric Voisin and referees for several pertinent comments.
We are grateful to the Royal Society and the CNRS for funding our collaboration.

References

1. A. L. C. Cavalcanti and M.-C. Gaudel. Specification Coverage for Testing in Circus.
In UTP, vol. 6445 of LNCS, pages 1 – 45. Springer, 2010.

2. A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in Circus. Acta
Informatica, 48(2):97 – 147, 2011.

3. A. L. C. Cavalcanti and M.-C. Gaudel. Data Flow Coverage of Circus Spec-
ifications - extended version. RR 1567, LRI, Univ. Paris-Sud XI, Dec. 2013.
https://www.lri.fr/ bibli/Rapports-internes/2013/RR1567.pdf

4. Clarke, D., Jéron, Th., Rusu, V and Zinovieva E.: STG: A Symbolic Test Genera-
tion Tool. In: TACAS, vol. 2280 of LNCS, pages 470 – 475. Springer, 2002.

5. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. FACJ, 15(2 - 3):146 – 181, 2003.

6. L. A. Clarke, A. Podgurski, D. J. Richardson, and S. J. Zeil. A Comparison of
Data Flow Path Selection Criteria. In ICSE, pages 244 – 251, 1985.

7. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for Model-
Based Testing. In: FASTRV 2006, vol. 4262 of LNCS, pp. 40 – 54. Springer, 2006

8. H. S. Hong and H. Ural. Dependence testing: Extending data flow testing with
control dependence. In TESTCOM, pages 23 – 39, 2005.

9. L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service-oriented workflow
applications. In ICSE, pages 371 – 380, 2008.

10. L. Mei, W. K. Chan, and T. H. Tse. Data flow testing of service choreography. In
ESEC/FSE, pages 151 – 160, 2009.

11. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
12. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics

for Circus. FACJ, 21(1-2):3 – 32, 2009.
13. S. Rapps and E. J. Weyuker. Selecting software test data using data flow informa-

tion. IEEE TSE, 11(4):367 – 375, 1985.
14. A. W. Roscoe. Understanding Concurrent Systems. Springer, 2011.
15. H. V. D. Schoot and H. Ural. Data flow analysis of system specifications in LOTOS.

Int. Journal of Software Engineering and Knowledge Engineering, 7:43 – 68, 1997.
16. H. Ural, K. Saleh, and A. W. Williams. Test generation based on control and data

dependencies Computer Communications, 23(7):609 – 627, 2000.
17. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.

Prentice-Hall, 1996.

15

