
Ana Cavalcanti · Marie-Claude Gaudel

Testing for Refinement in Circus

Received: date / Revised: date

Abstract Circus combines constructs to define complex data operations and
interactions; it integrates Z and CSP, and, distinctively, it is a language for
refinement that can describe programs as well as specification and design
models. The semantics is based on Hoare and He’s unifying theories of pro-
gramming (UTP). Most importantly, Circus is representative of a class of
refinement-oriented languages that combines facilities to specify abstract
data types in a model-based style and patterns of interaction. What we
present here is the Circus testing theory; this work is relevant as a foundation
for sound test-generation techniques for a plethora of state-rich reactive lan-
guages. To cater for data operations, we define symbolic tests and exhaustive
test sets. They are the basis for test-generation techniques that can combine
coverage criteria for data and transition models. The notion of correctness
is Circus refinement, a UTP-based generalisation of failures-divergences re-
finement that considers data modelling. Proof of exhaustivity exploits the
correspondence between the operational and denotational semantics.

Keywords symbolic testing – specification-based testing – exhaustivity

1 Introduction

The use of formal models as a basis for testing techniques is well established;
examples of early work can be found in [19,29,5,7,2,42]. On the other hand,

Ana Cavalcanti
University of York
Department of Computer Science
York YO10 5DD, England

Marie-Claude Gaudel
Univ Paris-Sud, Laboratoire LRI, UMR8623, Orsay, F-91405;
CNRS, Orsay, F-91405, France

2 Ana Cavalcanti, Marie-Claude Gaudel

it was just recently that we presented a testing theory for CSP [58,38], a
process algebra based on the notion of refinement.

In [14], we instantiate a well-established theory of formal testing [30] to
CSP, using refinement as the notion of correctness. Here, we extend and
generalise these results to a much richer process algebra: Circus. We tackle a
problem that was not relevant in the context of CSP: testing based on models
that cover both patterns of interaction and complex data structures specified
in the predicative model-based style (of languages like Z, VDM, and B).

We propose and justify the use of novel symbolic representations of traces,
initials, acceptance sets, and tests. What we achieve is the identification and
formalisation of a theoretical framework that (1) provides a clear route for
arguably sound symbolic techniques for test-case generation; and (2) applies
to refinement notations suited for state-rich reactive systems, with complex
data types and operations specified in a predicate-based style.

Circus, in particular, combines CSP [58], Z [73], and a refinement theory
and technique [17]. It has a semantics based on Hoare and He’s unifying
theories of programming (UTP) [39]. It is a relational model rendered in a
predicative style like that of Z; it supports combinations of programming con-
structs from different notations and paradigms. It caters for the CSP-based
constructs of Circus, but also, unlike the CSP failures-divergences model, it
caters for the specification and refinement of data operations described in an
assertional style, and the use of miraculous programs in refinement [48].

There are several combinations of a process algebra with a state-based
formalism; examples are discussed in [1,28,65,64,23,62,68,10,24,45,40,51,
41]. Circus distinguishes itself as a language for refinement, that supports
modelling of high-level specifications, designs, and concrete programs. It is
representative of a class of languages that provide facilities to model data
types, using a predicate-based notation, and patterns of interactions, with-
out imposing architectural restrictions. It is this feature that makes it suit-
able for reasoning about both abstract and low-level designs. Circus has been
applied in areas like control systems [53,13], mobility [67,66], real-time appli-
cations [61], and hardware languages [11]; tools are under development [26,
71]. It is important to emphasise, however, that our results are relevant in
the context of all the works cited above, where a language that integrates
model-based data specifications and reactive constructs is considered.

The use of Circus as a basis for our study benefits from the fact that it has
both a denotational and operational semantics, with a justified connection.
The UTP provides a well established relational framework for justifying the
soundness of our results. In addition, Circus has a well understood simple
account of the central notion of refinement.

Interpreting a testing experiment in Circus, as in any formal framework is
not straightforward, because we test a system, not a model. To bridge the gap
between them, we use testability hypotheses in [2]. These are assumptions on
the system under test (SUT) that are essential to the proof that the success
of a testing campaign entails correctness. Complementary tests or proofs are
typically necessary to establish that the testability hypotheses are valid.

In our Circus theory of testing, the first testability hypothesis is that the
SUT behaves like some unknown Circus process SUTCircus . This means that,

Testing for Refinement in Circus 3

in any environment, execution of the SUT or execution of SUTCircus gives the
same set of observations. In this context, even though the SUT is not a Circus
process, we can use refinement to compare it to a given Circus specification.
This requires, however, that events used in the specification are perceived as
atomic and of irrelevant duration in the SUT .

This kind of testability hypothesis has been widely used in formalisations
of testing experiments. As early as in the 70s, Chow [19] raised this issue for
Finite State Machine (FSM) descriptions. He assumes that the SUT behaves
as an FSM, and all subsequent FSM-based techniques rely on this testa-
bility hypothesis [42]. Similarly, methods for IO-Transition Systems assume
that the SUT behaves as an IO-automaton [69], and methods for algebraic
specifications assume that the SUT behaves as a many-sorted algebra [2].

Our second testability hypothesis is that the SUT satisfies a complete
testing assumption: when a test experiment is performed a number of times,
then all possible (nondeterministic) behaviours of the SUT are observed. The
definition of the required number of repetitions of the experiments is usually
based on knowledge of the SUT , like, for example, the level of internal par-
allelism that may lead to nondeterminism, or the way choices are resolved.
It is also possible to use knowledge of the execution environment or statis-
tical techniques. The complete testing assumption on the SUT is standard
in the testing literature and practice. Basically, there is no way of draw-
ing conclusions about testing experiments involving a nondeterministic SUT
without such an assumption [7,27]. This, however, imposes no restrictions
on the specifications, which, in the case of Circus, in particular, are typically
nondeterministic, and even possibly unboundedly nondeterministic.

In our formalisation of the observations (traces, initials, and acceptances)
that can be done when performing test experiments derived from a Circus

specification, we take advantage of the symbolic nature of the Circus opera-
tional semantics. In contrast to the CSP semantics, the operational semantics
for Circus [72] gives a symbolic account of the evolution of a system. This
caters for the rich data constructs; from the point of view of testing, it induces
a natural symbolic characterisation of tests and test sets.

Our main contribution is a symbolic characterisation of an exhaustive test
set. This is a suite of symbolic tests such that, if we were to run experiments
using all the concrete tests obtained by instantiating these symbolic tests,
getting the right observations is equivalent to establishing that the SUT is
correct with respect to the given Circus specification and in accordance to
refinement. We, of course, do not propose that a practical testing technique
uses all the tests in these sets, since they are typically infinite or very large.
Their definition, however, is a fundamental basis to justify pragmatic selec-
tion and test-case generation techniques. The set of tests that we propose
that a practical technique selects and generates is a subset of the exhaustive
test set that we present here. We establish exhaustivity in terms of the usual
operational concepts, but we have a clear link to the denotational semantics.
This simplifies the proofs, and allows for a formal algebraic style. Our contri-
bution in this paper is mainly of a theoretical nature, but it is a foundation
for practical techniques that we are currently exploring.

4 Ana Cavalcanti, Marie-Claude Gaudel

In our previous work on CSP, we have provided only concrete tests; that
was appropriate, since the data language of CSP is rather simple when com-
pared to that of Circus. In any case, we could have adopted a similar approach
for Circus, and our results transfer with almost no change. In the context of
Circus, however, these concrete tests make it more difficult to exploit the
exhaustive test set effectively, because of the rich data language of Circus.
For any non-trivial specification, the exhaustive test set is infinite, and test
selection and test-data generation techniques are essential in practice. Our
symbolic tests are ideal bases to consider well known strategies using con-
straints decomposition and solving [2,21,37] to explore the rich data models,
and ensure meaningful coverage of the observations and of the specification.
In addition, the symbolic tests cater for the rich, potentially infinite, data
types of Circus models, with operations specified in the Z predicative style, as
opposed to the CSP types, which are specified using a functional language.

In summary, our symbolic tests and the ingredients used to define them,
namely, constrained symbolic traces, initials, and acceptance sets, are a pre-
requisite for proposing and justifying test-data generation techniques in any
language combining control and complex data types. They, for instance, iden-
tify the relevant constraint-solving problems involved. Our proofs of exhaus-
tiveness confirm their suitability in the context of testing techniques for Circus
refinement. The approach, however, is of more general interest.

The notion of refinement in Circus is a natural generalisation of failures-
divergences refinement induced by the UTP model. It considers information
about interactions, like in the canonical failures-divergences model of CSP,
but also about data and associated operations. In [16], we calculate char-
acterisations in Circus of traces refinement, which, like in CSP, amounts to
traces inclusion, and also of the relation usually called conf (for confor-
mance), which requires reduction of deadlock. We also prove in [16] that
the combination (conjunction) of traces refinement and conf corresponds to
process refinement in Circus, for divergence-free processes. Accordingly, our
characterisation of an exhaustive test set is the union of an exhaustive test
set for traces refinement, and another for conf .

We work with divergence-free specifications, since we take the view that
divergence in a specification is a mistake. In addition, since it is not possible
to distinguish a divergent from a deadlocked system using testing, if the SUT
diverges, this is observed as a deadlock and reported as such in the verdict.

A foundational work on testing theory for process algebras, more specif-
ically CCS, is that of de Nicola and Hennessy [49]. As most works on test-
ing based on process descriptions, the theory considered here was influenced
by [49] in, for example, its definition of a test execution. The work in [49] focus
on testing equivalences, but in [33] Hennessy covers refinement testing with
respect to his acceptance-tree semantics. May and must-tests are introduced
to characterise trace refinement and failures refinement. The framework pre-
sented is, however, different from ours, in that two models are compared. We
are interested in comparing a specification model and a system (under test).
To justify our results, we assume, as explained previously, that there is an
unknown model of the system, but we have an extremely limited knowledge

Testing for Refinement in Circus 5

of it. We observe that it is because de Nicola and Hennessy work with models
that the results in [49] do not require testability hypotheses.

In the next section, we give an overview of Circus: we use an example
to introduce the notation, and describe its operational semantics. To define
symbolic tests, we need to define symbolic characterisations of traces, initials,
and acceptances for Circus; this is the subject of Section 3. In Section 4, we
present our results for traces refinement, and in Section 5 our results for conf .
Finally, in Section 7, we discuss related and future work. Appendix A provides
more information about the operational semantics, covering transition rules
for external choice and parallelism, and a few examples. The proofs of the
lemmas that are omitted in Sections 4 and 5 can be found in [15].

2 Circus and its operational semantics

To explain the Circus notation, we provide as an example the model of a
cash machine that keeps track of the status of cards, pin numbers, and the
bank of notes available. We also use this example to illustrate our symbolic
characterisations of tests, and to illustrate, in Appendix A, the use of the
definitions that specify the Circus operational semantics. The example covers
the main features of Circus relevant to our work: state, combination of nonde-
terministic data operations and patterns of interaction, and concurrency. It
is an abstract model, but, as we explain later on, it can be used as a basis for
testing concrete implementations. A complete description of Circus, including
examples, and its refinement technique can be found [52,54].

2.1 Notation

A Circus model is a sequence of paragraphs, just like in Z, but they can also
declare channels and processes. Figure 1 gives an overview of the structure
of our example; we observe that the definition of the CashMachine process
is also a sequence of paragraphs. First of all, however, we have a paragraph
that declares the sets CARD and PIN of valid cards and pin numbers. We
use the Z notation for introducing given sets.

[CARD ,PIN]

We next declare some channels. Requests for money are accepted by the cash
machine through the channel incard , which takes a card, a pin number and
an amount to be withdrawn: the inputs are triples.

channel incard : CARD × PIN × N1

The amount is a positive natural number. Cards are returned through a
channel outcard , unless there is a problem with the card and it is retained.

channel outcard : CARD

The notes kept in and dispensed by the cash machine are those whose de-

6 Ana Cavalcanti, Marie-Claude Gaudel

nominations are in the set Note defined below (in the standard Z notation).

Note == {10, 20, 50}

For simplicity, we consider just a few notes, and do not address the fact that
the amount requested must be decomposable in terms of the notes available.
If it is not, the machine fails to dispense the cash. In our model, cash is
represented as a bag of notes: elements of the set Cash.

Cash == bagNote

If there is enough money in the machine and a way of providing the requested
amount, the cash is output through a channel cash.

channel cash : Cash

The cash machine has two main components: a card verifier, which accepts
requests and decides whether the card should be returned and the cash dis-
pensed, and a cash controller, which dispenses the cash if possible, and refills
the note bank. These components interact through the channels below.

channel disp : N1; ok

The channel disp is used by the card verifier to tell the cash controller to
dispense a given amount, and ok is used by the cash controller to tell the card
verifier that it has concluded its operation. The channel ok does not have a
type; it is not used to communicate values, but just for synchronisation. This
is also the case of the channel refill defined below.

channel refill

This channel is used to accept requests to refill the machine
A Circus process models a system or a component. Just like in CSP, it

interacts with its environment and other processes via channels. In Circus,
however, a process encapsulates a state defined just like in Z. Our model
defines the process CashMachine; its only state component is a function
noteBank that records, for each denomination, the amount of notes available.

process CashMachine =̂ begin

The state is defined by a schema, namely CMState, which declares noteBank
as a total function. In this example, we do not have an elaborate state in-
variant (which is restricted to the functional property of noteBank).

state CMState == [noteBank : Note → N]

The function pin defines the pin number of each valid card. It is declared
using a Z axiomatic description, but its scope is restricted to the process.

pin : CARD → PIN

For simplicity, we assume that the pin numbers are constant.

Testing for Refinement in Circus 7

[CARD ,PIN]
channel incard : CARD × PIN × N1

channel outcard : CARD
Note == {10, 20, 50}
Cash == bagNote
channel cash : Cash
channel disp : N1; ok
channel refill

process CashMachine =̂ begin

state CMState == [noteBank : Note → N]

pin : CARD → PIN

CardV =̂ . . .

DispenseNotes
∆CMState
a? : N; notes! : Cash

. . .

DispenseError
ΞCMState
a? : N; notes! : Cash

. . .

Dispense == DispenseNotes ∨ DispenseError

cap : N

CashC =̂ . . .

• (CardV J {} | {| disp, ok |} | {noteBank} K CashC) \ {| disp, ok |}

end

Fig. 1 Sketch of the cash machine model

The card verifier is defined below using basically CSP notation. It accepts
a request incard?c.(pin c)?a; this is an input of any card c, the particular
pin number pin c, and any amount a. It then decides whether to retain
the card, output it using outcard and no money, or ask the cash controller
to dispense the requested amount. The decision is nondeterministic; it is
defined by factors outside of this model: status of the card, balance on the
corresponding account, and so on. If the card verifier asks for the cash to be
dispensed, then it waits for an ok from the controller to indicate that it is

8 Ana Cavalcanti, Marie-Claude Gaudel

finished (and the verifier can proceed recursively to accept a new request).

CardV =̂

incard?c.(pin c)?a→

CardV
⊓
outcard !c → CardV
⊓
disp!a → ok → outcard !c → CardV

Nondeterminism here is in the pattern of interaction, and it is explicitly
indicated using the CSP construct ⊓ for internal choice.

The DispenseNotes data operation takes an amount a? as input and pro-
duces a bag of notes notes ! as output; it also updates noteBank . It is defined
using a Z schema that specifies a relation on CMState. (This is the stan-
dard Oxford style used in Z to define data operations.) With the declaration
∆CMState, we introduce the variables noteBank , to represent the value of
the state component before the operation, and noteBank ′, to represent its
value after the operation. The definition of the schema ∆CMState is implic-
itly established by the Z (and the Circus) semantics.

DispenseNotes
∆CMState
a? : N; notes ! : Cash

Σ notes ! = a?

∀n : Note •(
(notes ! ♯ n) ≤ noteBank n ∧
noteBank ′ n = (noteBank n)− (notes ! ♯ n)

)

The value of notes ! is nondeterministically chosen: it is any bag notes ! whose
sum Σ notes ! of its elements is equal to a?, and such that, for each note
denomination n, the number notes ! ♯ n of occurrences of n is less than or
equal to the number noteBank n of notes of denomination n in the bank.

If there is no such bag, we have an error: the output is the empty bag [[]] ,
and the state is not changed. This is defined by the schema DispenseError
below; following the Z practice, it includes the schema called ΞCMState to
declare implicitly the variables noteBank and noteBank ′ representing the
state components and define (also implicitly) that their values are equal.

DispenseError
ΞCMState
a? : N; notes ! : Cash

¬ ∃ns : Cash • Σ ns = a? ∧ ∀n : Note • (ns ♯ n) ≤ noteBank n
notes ! = [[]]

The total operation to Dispense cash is the schema disjunction of the oper-
ations DispenseNotes and DispenseError .

Dispense == DispenseNotes ∨ DispenseError

For conciseness, we omit the definition of the operation Σ for bags.

Testing for Refinement in Circus 9

The cash controller CashC offers the choice to refill the bank or dispense
some money. For simplicity, we assume that when the machine is refilled, it
then has a number cap of notes of each denomination.

cap : N

This is a constant that reflects the capacity of the cash machine.
In the definition of CashC , we use an assignment to noteBank , instead of

a data operation defined by a Z schema, to define the value of the state after
a synchronisation on refill . This illustrates the possibility of use of program-
ming constructs as well as abstract specifications in Circus. (In particular, it
is possible to define an executable Circus model.)

If the cash controller receives a request disp?a to dispense an amount
a of cash, it uses the operation Dispense defined previously to determine
how cash is to be dispensed. To use that operation, CashC declares a local
variable notes . The input variable a and the local variable notes now in scope
are associated with the input and output of Dispense, which then assigns an
appropriate value to notes . If that value is not the empty bag, then the cash
is dispensed using the channel cash, and then the message ok is sent (to
CardV). If, on the other hand, the bag is empty, then it is not possible to
output the amount of cash requested and the ok message is sent directly.

CashC =̂

refill → (noteBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; CashC)
@

disp?a →

var notes : Cash •

Dispense;

(notes 6= [[]])N cash!notes → ok → CashC
@
(notes = [[]])N ok → CashC

This illustrates the free combination of specification and programming con-
structs, and the free combination of data operations and communications.
There is no direct association between interactions and state changes.

So far, we have defined just components of (the model of) CashMachine.
In particular, the schemas DispenseNotes , DispenseError , and Dispense,
which are data operations, and CardV and CashC , which are actions of
CashMachine. As we have seen, they have access to the state of the process,
and are defined using a combination of Z, CSP, and guarded commands.
They are used in the specification below of a main (nameless) action that
defines the behaviour of CashMachine. This is a parallel composition of the
CardV and CashC components, synchronising on the channels disp and ok .

In Circus, to avoid conflicts in the access to variables, a parallel compo-
sition of actions defines the disjoint sets of variables to which each of the
parallel actions have write access. All the actions can read the value of all
the variables before the parallelism starts, but can modify only the variables
in their associated sets. In our example, CardV does not update the state,
and so is associated with the empty set { } of variables. On the other hand,
CashC updates noteBank , and so it is associated with {noteBank}.

10 Ana Cavalcanti, Marie-Claude Gaudel

The parallel composition also defines the channels on which communica-
tion requires interaction from both parallel actions. In our example, they are
disp and ok . This means, for example, that CardV can engage on communi-
cations using incard and outcard independently from CashC . This freedom
is an extra source of nondeterminism in the specification model.

The channels disp and ok are used only for communication between the
internal components CardV and CashC of CashMachine. Such communica-
tions are of no interest to the user of a cash machine, and so they are hidden.
Just like in CSP, communications on hidden channels are not visible.

To conclude, the main action of CashMachine is as follows; it is separated
from the previously defined (auxiliary) actions by a •. The parallelism of
actions A1 and A2 is written A1 J ns1 | cs | ns2 K A2, where ns1 and ns2 are
the sets of the names of the variables to which A1 and A2 are associated
in the parallelism, and cs is the set of channels on which synchronisation
between A1 and A2 is required. Additionally, A \ cs is the action obtained
by hiding the (communications on the) channels in set cs in the action A.

• (CardV J {} | {| disp, ok |} | {noteBank} K CashC) \ {| disp, ok |}

end

Since CardV and CashC synchronise on (just) the channels disp and ok , we
have that the cash machine can be refilled while a request for cash is being
processed, but not when cash is actually being dispensed.

As highlighted in Figure 1, the main action is the last component of an
explicit process definition, like that above. The end marks the end of the
definition, and matches the begin at the start of the process declaration.

Interaction with CashMachine is only possible via the channels incard ,
outcard , refill , and cash, in the way defined by its main action above. There
is no possibility of direct access to its state, which is encapsulated. In Circus,
it is also possible to combine basic processes, which are defined as above
using Z and CSP constructs; the combinators are the usual CSP operators
for internal and external choice, parallelism, interleaving and so on.

2.2 Operational semantics

In [72], a Plotkin-style operational semantics for Circus is presented. In this
section, we summarise the main definitions for processes and actions. The
transition relation is defined in the context of the UTP: it is characterised in
the UTP theory used to give a denotational semantics to Circus, so that the
rules of the operational semantics discussed below are laws of this theory.

The predicates involved in the configurations of the transition relation, in
particular, are (texts of) predicates of the UTP general relational theory. The
treatment of alphabets is that adopted in the UTP as well. In addition, we
observe that the general UTP theory of relations is a complete lattice, so that
the greatest lower bound and least upper bound operators are available (as
options to provide and account of recursion, for instance.)

Testing for Refinement in Circus 11

Process ::= begin [state Schema-Exp] PParagraph∗ • Action end
| Process; Process
| Process @ Process
| Process ⊓ Process
. . .
| begin

[state Schema-Exp] loc (Predicate | Predicate) • Action
end

Fig. 2 Sketch of the BNF definition of Processes

2.2.1 Processes

The labelled transition system that specifies the operational semantics of
a Circus process is defined by a transition relation between texts of pro-
cesses. These belong to the syntactic category Process, defined in the Circus

BNF [54]; Figure 2 briefly reproduces a sketch the specification of Process.
(The omitted productions just define the complete list of CSP operators that
can be used to combine Circus processes, including parallelism and hiding.)

A basic process specification begin state [x : T] • A end declares a
schema [x : T] that defines the process state, and its main action A. In
definitions, we consider a state defined by a single schema with a single
component x of type T , but any schema expression (element of Schema-Exp)
can be used, and also the state can be omitted altogether. The definitions
that cater for this generality are long, but straightforward.

As exemplified previously, a basic process definition includes a number
of paragraphs that define local auxiliary actions used in the definition of the
main process action. In the CashMachine example, we have, for instance,
paragraphs that define the actions CardV and CashC used directly to define
the main action. Such paragraphs are called process paragraphs; their syntax
is captured by the category PParagraph, and is based on that of Z, CSP,
and the refinement calculus. In definitions, we assume that there are no
local actions. In this case, the main action A is a self-contained definition
of the behaviour of the process. Any basic process can be rewritten (using
syntactic transformations) in this form. In the specification of CashMachine,
for instance, we could have avoided the definition of the actions Dispense,
CashC , and so on, and inlined all the specifications in the main action. Of
course, this is not the style of specification encouraged in Circus, but from
the point of view of semantic definitions, there is no loss of generality.

For the operational semantics, the definition of Process is extended to
add an extra form of basic process that includes an additional clause loc
that records the (local) value of the state, as the execution of the process
evolves. The state is represented by (the text of) two predicates. The first
constrains the values of symbolic variables used to represent the values of the
state components (and any extra variables in scope). The second predicate
relates the state components to the symbolic variables. In simple examples,
we write this predicate as an assignment; we adopt the view of the UTP
that programs are predicates. Like in the UTP, we use the typewriter font
to distinguish predicate texts from the predicates that they denote.

12 Ana Cavalcanti, Marie-Claude Gaudel

Below, we give the rules that define the transition relation p1
l

−→ p2 for
Circus processes; it associates processes p1 and p2, and a label l. When

p1
l

−→ p2 is in the transition relation, we say that there is a transition from
p1 to p2 with label l. Intuitively, if the label is ǫ, this means that the execu-
tion of the process p1 can evolve silently (without any interaction with the
environment), so that we now have an execution of p2. On the other hand,
there may be a label d.w, representing a communication over the channel d
of a value represented by the symbolic variable w . In this case, the execution
of p1 evolves to that of p2, after engaging in the communication d .w .

The transition rule (1) below defines that the first step in the execution
of a basic process is a silent transition that introduces the loc clause. In
the target process, the value of the state component x is represented by a
fresh symbolic variable w0 constrained to have a value of the type T of x .
The constraint in the clause loc is also on the symbolic variables used in the
labels. In all rules, the symbolic variables introduced are assumed to be fresh.

begin
state [x : T]
• A

end

 ǫ

−→

begin
state [x : T] | loc (w0 ∈ T | x := w0)
• A

end

 (1)

For CashMachine, the first step of execution introduces a loc clause that
contains a predicate that states that the type of a fresh symbolic variable w0

is the same as that of noteBank , and the assignment noteBank := w0.
For a basic process that already contains a clause loc, the transition

rule (2) below applies. Evolution is determined by the transition relation

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2) for actions presented in the next section.

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2)

begin
state [x : T] | loc (c1 | s1)
• A1

end

 l
−→

begin
state [x : T] | loc (c2 | s2)
• A2

end

(2)

For processes defined in terms of other processes, there is no need to give
transition rules. Their semantics is defined by transformations that remove
the process operators, by combining the bodies of the basic processes and
their main actions accordingly [54]. For example, an external choice p1 @ p2
of basic processes p1 and p2 can be written as a single basic process whose
state includes the components of the states of p1 and p2, and whose main
action is obtained by using the action (as opposed to process) external choice
operator to combine the main actions of p1 and p2.

2.2.2 Actions

The configurations of the transition system for the semantics of Circus actions
are triples (c | s |= A) where c is a constraint over the symbolic variables
in use, s an assignment of values to the all the variables in scope, and A a

Testing for Refinement in Circus 13

Circus action. We present below the transition rules for a selected subset of
the Circus actions: assignments, schemas, output and input prefixing; in the
Appendix A, we cover internal and external choice, and parallelism.

The rule (3) for an assignment v := e defines that its execution is silent,
changes the current constraint c on symbolic variables by recording that
the fresh variable w0 has value e, changes the current state assignment s

by associating w0 to v , and then terminates. The definitions of the new
constraint and state use the UTP sequence operator on predicates, which
corresponds to relational composition, and whose definition we give below.

c

(c | s |= v := e)
ǫ

−→ (c ∧ (s; w0 = e) | s; v := w0 |= Skip)
(3)

In the UTP, predicates are alphabetised: the alphabet αp of a predicate p is
the set of variables that represent observations of interest, and that are possi-
bly restricted by p. In our case, these are the variables in scope: the state com-
ponents and any extra variables that have been declared later. For predicates
that represent relations, the alphabet may include dashed variables v ′ and,
just like in Z, these predicates relate two observations of the variables. In this
case, we can partition the alphabet into input (undecorated) variables inαp,
and output (dashed) variables outαp. If, for predicates p1 and p2, we have
that by undashing the variables in the output alphabet of p1, we obtain the
set of input variables of p2, then we can compose these predicates in sequence.
The predicate p1; p2 is defined as p1; p2 =̂ ∃ v0 • p1[v0/v

′] ∧ p2[v0/v]. The
intermediate state characterised by the final state of p1 and the initial state
of p2 is represented using 0-subscripted variables, and quantified (hidden).

Going back to the transition rule (3), we observe that the predicate w0 = e
has in its alphabet only the state components (possibly used in e). The cor-
responding dashed variables are not in the alphabet; in other words, this is a
condition: a special case of a relational predicate in which there is no output
variables. It is important to observe that w0 is a (fresh) symbolic variable,
and so not part of the alphabet of the constraint (and not related to the
0-subscripted variables used above to define a sequence p1; p2). So, the con-
straint s; w0 = e restricts the value of w0 to that of e when evaluated in the
state characterised by the assignment s. For example, if the state contains two
variables x and y, and s is x, y := w1, w2, then (x , y := w1,w2); (w3 = x+y) is
equivalent to w3 = w1+w2. In addition, as expected, the predicate s ; v := w0

defines that the value of v is w0, and those of all other variables are as in s .
In the UTP, an assignment x := e with alphabet {x , y, . . . , z , x ′, y ′, . . . , z ′}
is defined as x := e =̂ x ′ = e ∧ y ′ = y ∧ · · · ∧ z ′ = z .

An important observation is that the constraint c of the assignment con-
figuration is a hypothesis in the transition rule (3). This ensures that transi-
tions only occur when the constraint is satisfiable: configurations with unsat-
isfiable constraints are stuck, that is, there are no valid transitions from such
configurations. As further illustrated below, all rules enforce such property,
and those that strengthen the constraints ensure that they are still satisfiable.
Therefore, if we start from a satisfiable constraint, the transitions lead only
to configurations with a satisfiable constraint. In the case of the assignment

14 Ana Cavalcanti, Marie-Claude Gaudel

rule, the new constraint is necessarily satisfiable whenever c is, because, as
already explained, the extra conjunct added to the constraint only equates
the fresh constant w0 to the value of the total expression e.

The rule (4) for an action defined by a schema Op that specifies an op-
eration is similar to that for an assignment. The difference is that now the
assignment is to all variables v in the output alphabet of the current state
assignment s. For simplicity, the set v is used in a (potentially multiple)
assignment to denote a list of all its variables.

c ∧ (s; preOp)

(c | s |= Op)
ǫ

−→ (c ∧ (s; Op[w0/v
′]) | s; v := w0 |= Skip)

v = outαs (4)

The values of the fresh constants w0 are determined in the constraint by the
restrictions imposed by Op on v ′. Both v and w0 are being used to denote
lists of variables and fresh constants. To make sure that the restrictions on v ′,
and therefore the new constraint, are satisfiable, the hypothesis requires that
the constraint c of the schema configuration and the precondition of Op (as
calculated using the standard Z preOp operator) in the current state s are
satisfiable. We omit the rule for when the precondition does not hold: the
execution of Op aborts, a behaviour captured by the action Chaos in Circus.

Communications and synchronisations are described using prefixing ac-
tions. We consider separately output prefixings d !e → A, where the value of
the expression e is output through the channel d before the action behaves
like A, and input prefixings d?x : T → A, where an input of the type T of
d is accepted through d and assigned to the local variable x . As illustrated
in the previous section, inputs are not (necessarily) decorated by their types,
but it is assumed that this type is available, so that the local variable x can
be declared appropriately; type checking provides this information.

The transitions from a prefixing are labelled with an input d?w0 or an
output d!w0 communication. It is necessary to distinguish whether the com-
munication represents an input or an output because an input d?w0 records
that every event d .v , where the value v satisfies the restrictions on w0 in the
target configuration, is accepted. On the other hand, an output d!w0 indicates
that there is only a single such event d .v that is accepted.

For example, in the CashC action of the cash machine, we have an input
disp?a : N; so, CashC is prepared to engage on any of the events disp.0,
disp.1, and so on. The synchronisation defines the value of the variable a, and
any value of the right type is acceptable. On the other hand, in the output
cash!notes , the value of notes is nondeterministically chosen by Dispense.
Any bag of notes that satisfies the specification Dispense may be chosen for
output, but CashC is prepared to accept a synchronisation only on the single
event in which that unique (although loosely defined) value is communicated.

The transition rule (5) for an output prefixing is presented below.

c

(c | s |= d!e→ A)
d!w0−→ (c ∧ (s; w0 = e) | s |= A)

(5)

The value of w0, used to represent the communicated output, is recorded to be

Testing for Refinement in Circus 15

that of e. We also treat as an output a prefixing involving a synchronisation
channel, like ok in our example, which does not communicate any values.

In the rule (6) for input prefixing, w0 represents the value input. Its value
is restricted only by the type T of the channel, and the hypothesis requires
that T is non-empty, so that w0 ∈ T is satisfiable.

c ∧ T 6= ∅ x 6∈ αs

(c | s |= d?x : T→ A)
d?w0−→ (c ∧ w0 ∈ T | s; var x := w0 |= let x • A)

(6)

In this rule, it is also necessary to declare the fresh input variable x . In
the state assignment, the UTP var construct, which introduces a fresh vari-
able (but does not close its scope) is used. In fact, for convenience, a new
construct var v := e is introduced; it is defined as the sequence var v ; v := e
that declares the fresh v and assigns e to it.

Finally, the let action in the target configuration of the transition rule (6)
is not part of the standard Circus syntax. We introduce this construct to
facilitate the definition of the operational semantics; let x • A records the
fact that the variable x used in A is local. We omit the transition rules for it,
but in a few words, when A is reduced to Skip, then the let is eliminated,
and the scope of x is closed in the state assignment.

The transition rules for internal and external choice, and parallelism are
discussed in Appendix A, where we also give examples of the use of the rules,
including those presented above. The whole set of rules can be found in [72].
In the next section, we use the labelled transition system that they define to
specify symbolic characterisations of traces, initials, and acceptances.

3 Symbolic traces, initials, and acceptances

To establish correctness with respect to traces refinement, we need to test the
SUT against the traces that are not traces of the reference Circus specification
SP , and check that they are refused. In fact, it is enough to consider the
minimal prefixes of forbidden traces that are forbidden themselves: if a trace
〈a, b, a〉 is forbidden, and we confirm that it is refused by the SUT , we no
longer need to check any of its extensions; if it is accepted, an error is already
identified. We, therefore, consider tests formed from a trace t of SP , and a
forbidden continuation e, that is, an event e that is not in the set of initials of
SP after the trace t . On the other hand, as explained later on in Section 5,
to construct the exhaustive test set for conf , which is concerned with the
reduction of deadlocks, we need the sets of acceptances.

Here, we give symbolic characterisations of sets of traces, initials (after a
given trace), and acceptances (also after a given trace) of processes and ac-
tions. We also discuss the instantiation operations used to relate the symbolic
and the concrete sets characterised by the denotational semantics.

16 Ana Cavalcanti, Marie-Claude Gaudel

3.1 Traces

To represent a group of traces that record communications over the same
channels in the same order, we define constrained symbolic traces.

A constrained symbolic trace is a pair formed by a symbolic trace st and
a constraint c. A symbolic trace is a finite sequence of symbolic events d.α0,
where d is a channel, and α0 is a symbolic variable that represents the value
communicated. The constraint c is the text of a predicate over the symbolic
variables used in st: the alphabet αst of st defined inductively as follows.

α〈 〉 = 〈 〉 α(〈d.α0〉a st) = 〈α0〉a αst

We emphasise that the variables in the alphabet of a trace are symbols. They
are not variables used in the state of any Circus model, but names used to
represent communicated values along the interactions.

Our treatment of alphabet is akin to that in the UTP. The only difference
is that, to simplify definitions, we take it to be a sequence, rather than a set. It
is an unbounded sequence of fresh names, with no repetitions, that records
symbolic variables used to represent communicated values. The symbolic
traces st over an alphabet a are those for which αst, as defined above, is a
prefix of a, that is, αst ≤ a, where ≤ is the prefix relation.

Our sets of constrained symbolic traces, as defined below (as well as
the sets of constrained symbolic initial and acceptances, defined later) are
parametrised by an alphabet a. It fixes the variables that can be used in a
symbolic trace, and the order in which they can be used. (We observe that
the order of the variables in the alphabet is similar to version numbers of
variable valuations during a symbolic program execution.)

For a process begin state [x : T] • A end, the constrained symbolic
traces over an alphabet a are those of its main action A, starting from a
state in which x takes the value w0 constrained by w0 ∈ T . This is the set
cstracesa(w0 ∈ T, x := w0, A) defined below using the operational semantics.
The traces are finite, and use only a portion of the variables in a.

Definition 1

cstracesa(begin state[x : T] • A end) =
cstracesa(w0 ∈ T, x := w0, A)

cstracesa(c1, s1, A1) ={
st, c2, s2, A2 | αst ≤ a ∧ (c1 | s1 |= A1)

st
=⇒ (c2 | s2 |= A2)

• (st, ∃(αc2 \ αst) • c2)

}

2

The parameter a determines the alphabet of the (constrained) symbolic
traces. A constrained symbolic trace (st, c) is said to be over an alphabet a
if its symbolic trace st is over a, as defined below.

Symbolic variables used in the evaluation of the operational semantics to
represent internal values of the state are not included in the alphabet. As
said above, a contains variables that denote values that are visible in the
observation of a process. For clarity, in examples, we use α0, α1, and so on,

Testing for Refinement in Circus 17

(c | s |= A)
〈 〉
=⇒ (c | s |= A)

(c1 | s1 |= A1)
ǫ

−→ (c2 | s2 |= A2)

(c1 | s1 |= A1)
〈 〉
=⇒ (c2 | s2 |= A2)

(c1 | s1 |= A1)
d?α0−→ (c2 | s2 |= A2)

(c1 | s1 |= A1)
〈 d.α0 〉
=⇒ (c2 | s2 |= A2)

(c1 | s1 |= A1)
d!α0−→ (c2 | s2 |= A2)

(c1 | s1 |= A1)
〈 d.α0 〉
=⇒ (c2 | s2 |= A2)

(c1 | s1 |= A1)
st1=⇒ (c2 | s2 |= A2) (c2 | s2 |= A2)

st2=⇒ (c3 | s3 |= A3)

(c1 | s1 |= A1)
st1

a
st2

=⇒ (c3 | s3 |= A3)

Table 1 Annotated transition relation

for variables in the alphabet, and w0, w1, and so on, for variables that can
be either in the alphabet or represent an internal value of the state.

The transition relation annotated with a trace is defined in terms of the
transition relation that defines the operational semantics in the usual way.
All the rules for this new relation are presented in Table 1. It ignores the dec-
orations in the labels that record whether they represent inputs or outputs,
since this information is not relevant for the definition of traces.

The constraint ∃(αc2 \ αst) • c2 is obtained from that built using the
operational semantics, namely c2, by quantifying its free (symbolic) variables
that are not in the alphabet αst of the associated trace st. These are the
symbolic variables used in the operational semantics to represents internal
values of state or local variables (as opposed to those in αst, which represent
communications). We use αc to denote the set of free variables of a constraint
c. We adopt the standard notion of free variables for (texts of) predicates: c
is (the text of) a predicate on symbolic variables, as explained previously.

The operational semantics guarantees that all configurations have satis-
fiable constraints. Therefore, every constrained symbolic trace is feasible, in
the sense that it has at least one valid instance. Instantiation of a constrained
symbolic trace is defined later on in this section.

By fixing the alphabet of interest, we avoid complications when dealing
with, or comparing, symbolic entities built using different symbols to repre-
sent the same values. Typically, this would require renaming as in [25].

In contrast, the order of the variables of the alphabet determines a unique
way in which equivalent symbolic traces are expressed. If we use a particular
alphabet, to conclude, for example, that two constrained symbolic traces
(st1, c1) and (st2, c2) are equivalent, we need to check only that st1 = st2
and c1 ⇔ c2; no renaming is needed. Fixing the alphabet in cstracesa(P), for
example, fixes the representation of symbolic traces in this set.

Example 1 NoOverlap andOverlap These are simple processes, with no state,
but with local variables introduced by input prefixings. They are inspired by

18 Ana Cavalcanti, Marie-Claude Gaudel

examples originally presented in [22, Example 4.2].

process NoOverlap =̂ begin •
g?x : x > 10→ g!x → Stop @ g?x : x < 10→ h!x → Stop

end

This example is interesting because, initially, the process NoOverlap does
not accept a communication of the value 10 in the channel g, and also de-
pending on whether the value communicated is greater or less than 10, it
can be followed by another communication of the same value on g or on
another channel h. We present below the set of constrained symbolic traces
of NoOverlap for an alphabet a such that 〈α0, α1〉 ≤ a. In this example,
and in others to follow, for the sake of conciseness and clarity, we omit the
information about the types of the channels. Strictly speaking, it needs to be
recorded in the constraints on the values communicated through them.

cstracesa(NoOverlap) =
{ (〈 〉, true),
(〈g.α0〉, α0 > 10), (〈g.α0〉, α0 < 10),
(〈g.α0, g.α1〉, α0 > 10 ∧ α1 = α0), (〈g.α0, h.α1〉, α0 < 10 ∧ α1 = α0) }

We observe that, in examples, we do not keep the textual representation of
constraints exactly as generated by the operational semantics and identified
in Definition 1 and in others to follow. Instead, for clarity, we give the text of
an equivalent predicate that captures the constraints in a more concise way.

A possible optimisation is the representation of (〈g.α0〉, α0 > 10) and
(〈g.α0〉, α0 < 10) by a single trace (〈g.α0〉, α0 > 10 ∨ α0 < 10). The in-
troduction of this sort of optimisation, however, complicates definitions and
proofs. We observe, for example, that the different traces above have different
continuations, and this is naturally identified directly from the operational
semantics in Definition 1 (without any need for normalisation of predicates,
for instance). If the optimised representation proves to be of practical inter-
est, it is not difficult to justify it separately.

For the process Overlap below, the restrictions on the values communi-
cated on g are not mutually exclusive. For values between 5 and 10, both a
second communication on g or a communication on h are possible.

process Overlap =̂ begin •
g?x : x < 10→ g!x → Stop @ g?x : x > 5→ h!x → Stop

end

The set of constrained symbolic traces of Overlap is similar.

cstracesa(Overlap) =
{ (〈 〉, true),
(〈g.α0〉, α0 < 10), (〈g.α0〉, α0 > 5),
(〈g.α0, g.α1〉, α0 < 10 ∧ α1 = α0), (〈g.α0, h.α1〉, α0 > 5 ∧ α1 = α0) }

provided 〈α0, α1〉 ≤ a. 2

The set of traces of a process can be obtained from its set of constrained

Testing for Refinement in Circus 19

symbolic traces by instantiation, as defined by the function instT below.

Definition 2 instT(st, c) = { v | c[v/αst] • st [v/αst] } 2

We use c[v/αst] to denote the substitution in c of all occurrences of the vari-
ables in αst with the corresponding value in the list v . Similarly, in st [v/αst]
we apply substitution to the symbolic trace st and get a concrete trace. In
this case, substitution is for the symbolic variables in st : those in αst , which
we define to be free in the symbolic trace st .

In the sequel, we also write substitutions like c[v0, v/α0, αst], where the
list of values is enriched with the value v0 at the beginning, and the list of
variables with α0. Therefore, α0 is replaced with v0, and all the other variables
in αst with the corresponding values in v as before. For instT(st, c) to be
well defined, all free variables of c have to be in αst.

Instantiation of a trace can be done one event at a time, but each choice
of a value for a symbolic variable has to be recorded in the constraint. This
is established below in Lemma 1; its proof can be found in [15], as can all
other omitted proofs in this and in the next section.

Lemma 1 Partial instantiation - traces

instT(〈d.α0〉a st, c) = { v0, t | t ∈ instT(st, c[v0/α0]) • 〈d .v0〉a t }

provided α0 6∈ αst. 2

The following proposition formalises the relationship between symbolic and
concrete traces induced by the instantiation function instT.

Proposition 1 For every alphabet a,

traces(P) =
⋃
{ cst : cstracesa(P) • instT(cst) }

2

By properties of the operational semantics, for all (st, c) in cstracesa(P), the
free variables of c are in αst, so that instT(st, c) is well defined.

The results in this section are used in Sections 4 and 5.

3.2 Initials

To define symbolic tests, we also need to provide a symbolic definition of the
initials of a process. The set csinitialsa(P, (st, c)) contains the constrained
symbolic events that represent valid continuations of the constrained sym-
bolic trace (st, c) over the alphabet a. It is defined just for the constrained
symbolic traces (st, c) of P over a. The constrained symbolic events are pairs
formed by a symbolic event, and a constraint that refers to the symbolic
variable of the event, as well as those in the alphabet of st.

Definition 3

csinitialsa(P, (st, c)) =

{se, c1 | (sta 〈se〉, c1) ∈ cstracesa(P) ∧ (∃ a • c ∧ c1) • (se, c ∧ c1) }

provided (st, c) ∈ cstracesa(P). 2

We require that the symbolic events se in csinitialsa(P, (st, c)) are continu-

20 Ana Cavalcanti, Marie-Claude Gaudel

ations of st compatible with c, that is, such that (∃ a • c ∧ c1). We use the
alphabet a to construct the existential quantification that states that there
is a valuation of the symbolic variables (of the alphabet a) that satisfies both
c and c1. In addition, in the constrained symbolic event, c is recorded to
characterise the fact that the symbolic event is a continuation of a trace con-
strained by c. We note that both c and c1 are constraints on the variables
of the alphabet a, which is a parameter in csinitialsa(P, (st, c)).

Example 2 NoOverlap and Overlap First of all, we consider NoOverlap and
the trace (〈g.α0〉, α0 > 10). We omit the alphabet for conciseness.

csinitials(NoOverlap, (〈g.α0〉, α0 > 10)) = {(g.α1, α0 > 10 ∧ α1 = α0)}

The trace (〈g.α0, h.α1〉, α0 < 10 ∧ α1 = α0) does not give rise to another
constrained symbolic event in csinitials(NoOverlap, (〈g.α0〉, α0 > 10)), even
though the trace 〈g.α0, h.α1〉 of course extends 〈g.α0〉. This is because the
conjunction α0 > 10 ∧ α0 < 10 ∧ α1 = α0 is false.

For Overlap and the trace (〈g.α0〉, α0 < 10) we have the following.

csinitials(Overlap, (〈g.α0〉, α0 < 10)) =
{(g.α1, α0 < 10 ∧ α1 = α0), (h.α1, 5 < α0 < 10 ∧ α1 = α0)}

In this case, the constrained symbolic trace (〈g.α0, h.α1〉, α0 > 5 ∧ α1 = α0)
gives rise to a symbolic event h.α1, but the constraint of this trace is strength-
ened with α0 < 10 to record that only some of the traces represented by the
constrained symbolic trace are of interest. 2

As for symbolic and concrete traces, instantiation can be used to deter-
mine the concrete initials of a process in terms of its set of constrained sym-
bolic initials. Instantiation of a symbolic initial, however, needs to take into
account the trace that leads to it since the constraint restricts the symbolic
variables used to represent all the previously communicated values.

We introduce, first, the notion of a trace property in relation to an al-
phabet. A concrete trace defines actual events, and, therefore, communicated
values; in this way, it can be seen as a definition of the values of the symbolic
variables of an associated alphabet. The syntactic function p defined below
determines the predicate or, more precisely, the conjunction of equalities,
defined by a trace t over the variables of a given alphabet a.

pa(〈〉) = true p(〈α0〉
a

a)(〈d.v〉a t) = (α0 = v ∧ pa(t))

As already said, in a symbolic event (d.α0, c), the constraint c restricts the
value of α0, and perhaps those of other variables of an alphabet a to keep track
of the relationship between α0 and other values communicated previously. If
the trace t that leads to the event is known, we can strengthen c to take t
into account. This is the purpose of the new operator below.

(d.α0, c) ↾
a t = (d.α0, c ∧ pa(t))

We often use relational image to apply this operator to a set of initials.
Below, we characterise instantiation of a symbolic event (d.α0, c) using a

Testing for Refinement in Circus 21

function from symbolic events to sets of concrete events.

Definition 4 instEa(d.α0, c) = {v0, v | c[v0, v/α0, a] • d .v0} 2

Instantiation takes into account the restrictions of c over all variables of the
alphabet a as well as the variable α0 used in the event. Here, and in the
sequel, we use v to stand for a (list of) value(s); v0 stands for a single value.

The lemma below relates instantiation of constrained symbolic traces, as
defined in the previous section, and events. It states that, if we can instantiate

a symbolic trace sta 〈d.α0〉 to obtain a concrete trace t a 〈e〉, then we can
get the same event e corresponding to d.α0 if we first constrain the symbolic
event to the concrete trace t and then instantiate the result.

Lemma 2 Trace and event instantiation

t a 〈e〉 ∈ instT(sta 〈d.α0〉, c) ⇔ (e ∈ instEαst((d.α0, c) ↾
αst

t))

2

The following proposition relates symbolic and concrete sets of initials. It de-
scribes how, for a process P, and a trace t , we can obtain the set initials(P, t)
of concrete initials of P after t using the symbolic sets of initials.

Proposition 2 For every alphabet a,

initials(P, t) =
⋃

{ st, c | (st, c) ∈ cstracesa(P) ∧ t ∈ instT(st, c)
•
⋃

instE L L csinitialsa(P, (st, c)) M ↾at M
}

2

For each of the symbolic traces (st, c) of P that can be instantiated to t ,
we strengthen the constraint of the events in csinitialsa(P, (st, c)) to take t
into account, and instantiate them. If t is not a trace of P, then it is not an
instance of any of its constrained symbolic traces, and initials(P, t) is empty.

In fact, it is enough to consider one constrained symbolic trace (st, c) that
can be instantiated to t . First, we observe that a symbolic trace st may occur
in more than one constrained symbolic trace of cstracesa(P). In the case of
NoOverlap and Overlap, for instance, 〈g.α0〉 is in two traces. In addition, the
constraints in such traces may not be mutually exclusive, as in the Overlap
example. Therefore, it is possible that a trace t may be an instance of more
than one constrained symbolic trace in cstracesa(P). If, however, t is indeed
an instance of two traces (st, c1) and (st, c2), the initials for (st, c1) and
(st, c2), when restricted to t , are the same. This is formalised below.

Proposition 3 For every process P and alphabet a,

(
(st, c1) ∈ cstracesa(P) ∧ (st, c2) ∈ cstracesa(P) ∧
t ∈ instT(st, c1) ∧ t ∈ instT(st, c2)

)
⇒

L csinitialsa(P, (st, c1)) M ↾at = L csinitialsa(P, (st, c2)) M ↾at

2

More specifically, this states that continuations of t calculated from any of

22 Ana Cavalcanti, Marie-Claude Gaudel

the constrained symbolic traces that represent t are consistent.

Example 3 Overlap The trace 〈g.6〉 of Overlap is an instance of two of its
constrained symbolic traces: (〈g.α0〉, α0 < 10) and (〈g.α0〉, α0 > 5). There-
fore, we can use either of the sets csinitials(Overlap, (〈g.α0〉, α0 < 10)) or
csinitials(Overlap, (〈g.α0〉, α0 > 5)) to determine initials(Overlap, 〈g.6〉).
As said before, the first set of constrained symbolic initials is as follows.

csinitials(Overlap, (〈g.α0〉, α0 < 10)) =
{(g.α1, α0 < 10 ∧ α1 = α0), (h.α1, 5 < α0 < 10 ∧ α1 = α0)}

The restriction of its events to 〈g.6〉 determines the value of α0 to be 6.

L csinitials(Overlap, (〈g.α0〉, α0 < 10)) M ↾〈g.〉 =
{(g.α1, α0 = 6 ∧ α1 = 6), (h.α1, α0 = 6 ∧ α1 = 6)}

On the other hand, csinitials(Overlap, (〈g.α0〉, α0 > 5)) is as follows.

csinitials(Overlap, (〈g.α0〉, α0 > 5)) =
{(g.α1, 5 < α0 < 10 ∧ α1 = α0), (h.α1, 5 < α0 ∧ α1 = α0)}

The restriction of this set to 〈g.6〉 is the same as above. Instantiation of the
events of these sets gives {g.6, h.6} as expected. 2

As said at the beginning of this section, we use the complement of the set of
initials in the construction of tests for traces refinement. Because of the sym-
bolic nature of csinitialsa(P, cst), however, it is not meaningful to consider
its complement: it does not characterise the complement of the concrete set of

initials. Instead, we define a different set csinitials
a
(P, (st, c)) that contains

the constrained symbolic events over the alphabet a that represent the events
that are not initials of P for any of the instances of (st, c). A constrained
symbolic event (se, c) is over an alphabet a if the free variables of c are in a
prefix of a that finishes with the symbolic variable used in se.

Definition 5

csinitials
a
(P, (st, c)) =

d, α0, c1 |(
α0 = a(# st+ 1) ∧
c1 = c ∧ ¬

∨
{c2 | (d.α0, c2) ∈ csinitialsa(P, (st, c)) }

)

• (d.α0, c1)

provided (st , c) ∈ cstracesa(P). 2

To define the symbolic events, we use the next variable α0 in the alphabet
a. If csinitialsa(P, (st, c)) is empty, then the disjunction used to define the
constraints c1 of the symbolic events is false, and therefore c1 = c. On the
other hand, if csinitialsa(P, (st, c)) includes several symbolic events over a

channel d , then a single event is included in csinitials
a
(P, (st, c)) to repre-

sent communications over d ; its constraint guarantees that c holds, but none
of the constraints of the symbolic initials in csinitialsa(P, (st, c)) does.

Example 4 NoOverlap We consider the constrained symbolic trace (〈 〉, true)
of NoOverlap, and observe that csinitialsa(NoOverlap, (〈 〉, true)) is the set
{ (g.α0, α0 > 10), (g.α0, α0 < 10) }. Therefore, no communication over h is

Testing for Refinement in Circus 23

in the set of initials nor is a communication over g of the value 10.

csinitials
a
(NoOverlap, (〈 〉, true)) = { (h.α0, true), (g.α0, α0 = 10) }

Similarly, for the trace (〈 g.α0〉, α0 > 10), we have the following result.

csinitials
a
(NoOverlap, (〈 g.α0〉, α0 > 10)) =

{ (g.α1, α0 > 10 ∧ α1 6= α0), (h.α1, α0 > 10) }

In this case, (g.α1, α0 > 10 ∧ α1 = α0) and (h.α1, α0 < 10 ∧ α1 = α0) are the
symbolic initials. If we negate their constraints, and conjoin with α0 > 10,
we get the set already shown above. 2

Using Proposition 2, we can prove that this set does indeed define the com-
plement of the set of initials. This is established by the lemma below.

Lemma 4 Instantiation of csinitials
a
(P, (st, c)) For every alphabet a,

initials(P, t) =
⋃

{ st, c | (st, c) ∈ cstracesa(P) ∧ t ∈ instT(st, c)

•
⋃

instE L L csinitials
a
(P, (st, c)) M ↾

a
t M

}

provided t ∈ traces(P). 2

This result allows us to overcome the difficulty of handling negation when
working with symbolic characterisations of sets.

3.3 Acceptances

As already explained, to construct tests for conf , we need sets of acceptances.
The characterisation of failures in terms of the CSP operational semantics
presented in [58, p.189], and the standard characterisation of acceptances in
terms of failures are the inspiration for our definition of constrained sym-
bolic acceptances. The calculation below gives a clear indication of how ac-
ceptances of a process P after one of its traces t can be defined in terms
of configurations of the CSP operational semantics and sets of initials. (The
treatment of termination in Circus is different from that in CSP, which uses
a special event X. The definition of failures used below is, therefore, a sim-
plification of that in [58], since there are no Circus traces with a X event.)

acceptances(P , t)

= {X | (t ,X) 6∈ failures(P) }

[definition of acceptances (in terms of failures)]

= {X | ¬ (∃Q | P
t

=⇒ Q ∧ Q is stable • initials(Q) ∩ X = ∅) }

[definitions of failures(P) and initials(Q) as presented in [58]]

= {X | (∀Q | P
t

=⇒ Q ∧ Q is stable • initials(Q) ∩ X 6= ∅) }

[predicate calculus]

24 Ana Cavalcanti, Marie-Claude Gaudel

= {X | (∀Q | P
t

=⇒ Q ∧ Q is stable • (∃ e : X • e ∈ initials(Q))) }

[property of sets]

To summarise, in CSP, we have the result below, which is the basis for our
characterisation of symbolic acceptances as explained in the following.

acceptances(P , t) =

{X | (∀Q | P
t

=⇒ Q ∧ Q is stable • (∃ e : X • e ∈ initials(Q))) }
(7)

In the Circus operational semantics, as explained in Section 2.2.2, the events
e are represented by labels d?α0 and d!α0. To capture acceptances from sets
of symbolic events, we rely on this distinction between inputs and outputs.

The set csacceptancesa(P, (st, c)) of constrained symbolic acceptances
over the alphabet a of a process P after a constrained symbolic trace (st, c)
is a set of constrained symbolic events (over a) with associated input and
output information. In order to define the set csacceptancesa(P, cst), we use
the set IOcsinitialsast(c, s, A) of constrained symbolic initials over a for an
action A (in the context of a constraint c and a state assignment s, and after
a trace st) that record input and output information.

The set IOcsinitialsast(c, s, A) is defined below

Definition 6

IOcsinitialsast(c1, s1, A1) =

{l, c2, s2, A2 |

(c1 | s1 |= A1)
l

−→ (c2 | s2 |= A2) ∧ chanl 6= ǫ ∧ α(sta 〈 l 〉) ≤ a

• (l, ∃(αc2 \ (α(sta 〈 l〉)) • c2)

2

The initials in IOcsinitialsast(c1, s1, A1) are called here input-output con-
strained symbolic initials (over a). They are determined by the labels l of
non-silent (chan l 6= ǫ) transitions from (c1 | s1 |= A1) whose symbolic vari-
able is determined by the alphabet a. It is the next variable in a after those

used in st; this is guaranteed by α(sta 〈 l 〉) ≤ a. The constraint c2 of the
target configuration of each transition determines the constraint of the corre-

sponding symbolic event. The variables not in the alphabet of sta 〈 l 〉, that
is, those that do not represent communicated values, are quantified. Strictly

speaking, sta 〈 l 〉 is not a symbolic trace as defined in Section 3.1, since l

includes an input or output decoration. We note, however, that the extension
of the definition of αst to cater for such decorations is trivial.

Previously, we defined the set csinitialsa(P, (st, c)) of initials of a process
P after a particular trace (st, c). Here, to characterise acceptances, we need to
define the set of initials of a particular action: we define IOcsinitialsast(c, s, A)
for a particular action A, and identify its context explicitly via the constraint
c and state s. Comparatively, in (7), the particular processes Q of interest
arise from the execution of P along a trace t . In general, it is not possible to
uniquely identify Q using P and t , since, due to nondeterminism, t may lead
to several different states of P . We need to consider them all, and identify
the initials of each of them. This is reflected below in Definition 7.

Testing for Refinement in Circus 25

Example 5 Overlap After an event g.α0 of the trace (〈g.α0〉, α0 < 10), if
α0 > 5, then Overlap may be ready to behave like either g!x → Stop or
h!x → Stop. The trace itself does not identify a single action, but the fact
that either of them is possible. To characterise the acceptance set of Overlap
after (〈g.α0〉, α0 < 10), we need to know the set of initials of g!x →Stop and
of h!x → Stop. As indicated by the calculation above, we need at least one
element of each of them in an acceptance set. 2

As for traces, the acceptances of a process after a trace are defined in
terms of those for its main action. In both cases, the acceptances are well
defined only for traces of the process or action.

Definition 7

csacceptancesa(begin state [x : T] • A end, (st, c)) =
csacceptancesa(w0 ∈ T, x := w0, A, (st, c))

provided (st, c) ∈ cstracesa(begin state [x : T] • A end).

csacceptancesa(c1, s1, A1, (st, c)) =

SX |

∀ c2, s2, A2 |(
(c1 | s1 |= A1)

st
=⇒ (c2 | s2 |= A2) ∧

(∃ a • c2 ∧ c) ∧ stable(c2 | s2 |= A2)

)
•

∃ iose : SX • iose ∈ IOcsinitialsast(c2, s2, A2) ↾
a
c

provided (st, c) ∈ cstracesa(c1, s1, A1), and where

stable(c1 | s1 |= A1) = ¬ ∃ c2, s2, A2 • (c1 | s1 |= A1)
ǫ

−→ (c2 | s2 |= A2)

2

As indicated by (7), to define the sets SX of symbolic acceptances of an action
A1 (in the context of a constraint c1 and a state s1) after a trace (st, c), we
consider all stable configurations (c2 | s2 |= A2) that can be reached from
(c1 | s1 |= A1). For each of them, we require SX to include at least one
element of its set IOcsinitialsast(c2, s2, A2) of initials.

Since the trace (st, c) is symbolic, we need to make sure that the con-
figuration (c2 | s2 |= A2) reached using st is compatible with c, that is,
(∃ a • c2 ∧ c). As before, we use the alphabet a to construct the existential
quantification that requires that there is a valuation satisfying both c2 and c.
In addition, the events in the set IOcsinitialsast(c2, s2, A2) need to be further
constrained by c. For that, we use above the operator SX ↾

a
c, which we

define below. It yields the set of input-output constrained symbolic events
that can be obtained by strengthening the constraint of those in SX with c.
Events (iose, c1) that are not compatible with c are eliminated; for these,
the property defined by (∃ a • c ∧ c1) does not hold.

SX ↾
a
c = {iose, c1 | (iose, c1) ∈ SX ∧ (∃ a • c ∧ c) • (iose, c ∧ c1)}

This operator is used above because the set IOcsinitialsast(c2, s2, A2) of con-

26 Ana Cavalcanti, Marie-Claude Gaudel

strained symbolic initials from (c2 | s2 |= A2) does not record that we are
interested only in the traces that satisfy the constraint c.

A stable configuration is one from which there are no silent transitions
available. In our operational semantics, these have the label ǫ, as formalised
in the definition of stable(c1 | s1 |= A1) above.

Example 6 Overlap We consider the set of constrained symbolic acceptances
of Overlap after the trace (〈g.α0〉, α0 < 10). There are two configurations
that can be reached with 〈g.α0〉. In one of them the constraint is α0 < 10

and in the other α0 > 5. Both of these constraints are compatible with that
in the symbolic trace, that is, α0 < 10, and both configurations are stable.
Therefore, we need to consider the sets of input-output constrained symbolic
initials for both configurations. They are presented below. In examples, we
omit both the a and st parameters of IOcsinitials.

IOcsinitials(α0 < 10, x := α0, g!x→ Stop) = { (g!α1, α0 < 10 ∧ α1 = α0) }
(8)

IOcsinitials(α0 > 5, x := α0, h!x→ Stop) = { (h!α1, 5 < α0 ∧ α1 = α0) }
(9)

The event in (9) needs to be constrained to reflect the fact that the trace of
interest has the constraint α0 < 10. Filtering gives the result below.

IOcsinitials(α0 > 5, x := α0, h!x→ Stop) ↾ α0 < 10 =
{ (h!α1, 5 < α0 < 10 ∧ α1 = α0) }

(10)

Filtering with α0 < 10 does not change the set (8). In conclusion, the set
csacceptances(Overlap, (〈g.α0〉, α0 < 10)) contains all the sets of constrained
symbolic events that include (8) and (10). 2

To obtain sets of concrete acceptances using the sets of constrained symbolic
acceptances we need to distinguish input and output symbolic events.

– A symbolic variable in an input event denotes a value to be defined by
the environment: any value is acceptable by the process.

– A symbolic variable in an output event denotes a value to be defined by
the process. If nondeterminism means that there are several values that
satisfy the constraint on it, any of those values can be chosen, internally.
This means that, even from a stable configuration as defined above, there
may still be open nondeterministic choices for the process.

The examples in the sequel illustrate how symbolic acceptances can be used.

Example 7 Internal and external choices We first consider an example of an
internal choice involving an input and an output, where the output value is
arbitrary: it is left completely unspecified in the model.

process IC =̂ begin

state S =̂ [x : N] • g?y → Stop ⊓ h!x → Stop

end

In the CashMachine, the definition of CardV uses a similar kind of internal
choice, since the recursive call to CardV , which starts with an input on
incard , is in choice with, for example, an output communication on disp.

Testing for Refinement in Circus 27

The set csacceptances(IC, (〈 〉, true)) contains all sets of symbolic events
that include both (g?α0, α0 ∈ N) and (h!α0, α0 ∈ N). To obtain a concrete
acceptance for IC after the empty trace, we need one instance of the input
event (g?α0, α0 ∈ N), but all the instances of the output event (h!α0, α0 ∈ N).

In contraposition, we also consider the process EC below, which provides
an external choice between an input and an output. In the CashMachine
example, such a choice is offered by the action CashC (since semantically a
synchronisation is a special form of output).

process EC =̂ begin

state S =̂ [x : N] • g?y → Stop @ h!x → Stop

end

Now, the acceptances are all the sets of symbolic events that include either
(g?α0, α0 ∈ N) or (h!α0, α0 ∈ N). In a concrete acceptance, we can include
either one instance of (g?α0, α0 ∈ N) or all the instances of (h!α0, α0 ∈ N). 2

As these examples suggest, given a set of constrained symbolic acceptances,
we need to consider the input and output events separately. For a set SX we
define SX ↾I to be the subset of SX containing the input events.

SX↾I = {d, α0, c | (d?α0, c) ∈ SX • (d.α0, c)}

Similarly, SX ↾O contains the subset of events on output variables.
Another issue illustrated below is the treatment of multiple input or out-

put events in the same set of symbolic acceptances.

Example 8 Multiple inputs and outputs We first consider an example of an
internal choice involving inputs. External choices do not give rise to accep-
tance sets that need to have more than one event (unless, like in the Overlap
example, they offer two choices of the same event, in which case it is really
an internal choice written using the external choice operator).

process II =̂ begin • g?x → Stop ⊓ h?y → Stop end

The set csacceptances(II, (〈 〉, true)) contains all sets that include both the
event (g?α0, α0 ∈ N) and the event (h?α0, α0 ∈ N). A concrete acceptance
for II needs one instance of each of them.

In contraposition, we also consider the process IO below which makes an
internal choice between outputs. The definition ofCardV in the CashMachine
has such a choice: between a synchronisation on outcard !c (or rather, an
output of the value c through outcard) and an output (of a) through disp.

process IO =̂ begin

state S =̂ [x : N] • g!x → Stop ⊓ h!x → Stop

end

In this case, the constrained symbolic acceptances contains all the sets that
include both (g!α0, α0 ∈ N) and (h!α0, α0 ∈ N). A concrete acceptance in-
cludes all instances of (g!α0, α0 ∈ N) and all instances of (h!α0, α0 ∈ N).
(There is only one minimal acceptance set.) 2

28 Ana Cavalcanti, Marie-Claude Gaudel

In summary, if we take the sets of instances of the symbolic events in a set SX ,
to get a concrete acceptance set, we pick one instance from each of the sets
defined by an input event, and unite all the sets coming from output events.
This is formalised below by the function instAS from sets of input-output
constrained symbolic events to sets of sets of concrete events.

Definition 8

instAS(SX) = {A : ⊗(instE L SX ↾I M) • A ∪
⋃

instE L SX ↾O M }

2

We consider separately the subsets of symbolic events representing inputs
and outputs. We need to choose an element of each of the sets obtained from
SX ↾I . The ⊗ operator defined below is a generalised cartesian product whose
elements are sets, rather than tuples. It takes a set of sets SS as argument,
and defines also a set of sets, characterised as follows.

⊗SS =

S1 |

(∀S2 : SS | S2 6= ∅ • (∃ e : S2 • e ∈ S1))
∧
(∀ e : S1 • (∃S2 : SS • e ∈ S2))

In the definition of instAS(SX), the ⊗ operator is used to determine the set
of all sets of events that can be obtained by choosing one element in each of
the sets instELSX ↾I M. The sets A so obtained can be used to form a concrete
acceptance. What we need to add to such an A is the union of all sets of sets
of events that are obtained from SX ↾O , namely

⋃
instE L SX ↾O M.

Below, we describe how symbolic and concrete acceptances are related.

Proposition 4

acceptances(P, t) =
⋃

{ st, c, SX |(
(st, c) ∈ cstracesa(P) ∧ t ∈ instT(st, c) ∧
SX ∈ csacceptancesa(P, (st, c))

)

• instAS(LSX M ↾
a
t)

}

2

We consider the constrained symbolic traces (st, c) that can be instantiated
to the trace of interest t , and use them to characterise the symbolic accep-
tances SX of interest. Each such set gives rise to a set of concrete accep-
tances: a set of sets of events. Their union is the complete set of acceptances.

With LSX M ↾
a
t , we restrict the events to the trace t : using relational

image, we restrict each symbolic event in SX to consider the constraint de-
termined by t . The resulting set of events is then instantiated using instAS.

Example 9 Overlap To calculate acceptances(Overlap, 〈g.4〉), we observe that
there is a single symbolic trace of Overlap that can be instantiated to 〈g.4〉;
this is (〈g.α0〉, α0 < 10). As discussed previously, a set of symbolic accep-
tances of Overlap after (〈g.α0〉, α0 < 10) is as follows.

{(g!α1, α0 < 10 ∧ α1 = α0), (h!α1, 5 < α0 < 10 ∧ α1 = α0)}

If we restrict these events to the trace 〈g.4〉, we obtain the set below. Since

Testing for Refinement in Circus 29

α0 is now defined to be 4, the constraint on h.α1 becomes false.

{ (g!α1, α0 = 4 ∧ α1 = α0), (h!α1, false) }

When we instantiate this set using instAS, we observe that there are no
events representing inputs: SX ↾I is empty, and so is instE L SX ↾I M. There-
fore, the only set A in ⊗(instE L SX ↾I M) is the empty set, which does not
contribute any event to the concrete acceptance sets. The set SX ↾O, on the
other hand, contains all the events of SX . Their instantiation using instE
gives { {g.4},∅ }, since the event on h has a false constraint. The distributed
union of this set is {g.4}, which is indeed in acceptances(Overlap, 〈g.4〉). 2

Example 10 Overlap In the case of acceptances(Overlap, 〈g.6〉), we observe
that there are two constrained symbolic traces of Overlap that can be instan-
tiated to 〈g.6〉; they are (〈g.α0〉, α0 < 10) and (〈g.α0〉, α0 > 5). If we restrict
to 〈g.6〉 the events of the set of constrained symbolic acceptances of Overlap
after (〈g.α0〉, α0 < 10) presented in Example 9, we get the result below.

{ (g!α1, α0 = 6 ∧ α1 = α0), (h!α1, α0 = 6 ∧ α1 = α0) } (11)

Its instantiation using instE gives { {g.6}, {h.6} }, whose distributed union is
{g.6, h.6}, which is indeed an acceptance set in acceptances(Overlap, 〈g.6〉).

A set of acceptances of Overlap after (〈g.α0〉, α0 > 5) is as follows.

{(g!α1, 5 < α0 < 10 ∧ α1 = α0), (h!α1, 5 < α0 ∧ α1 = α0)}

The restriction of these events to 〈g.6〉 gives the same result presented above
in (11), so it gives rise to no new concrete acceptances. 2

In the next sections, we use the definitions of symbolic traces, initials, and
acceptances to characterise symbolic tests and test sets.

4 Testing for traces refinement

Traces refinement is useful for reasoning about safety properties of a process.
We write P1 ⊑T P2 when the process P1 is trace refined by the process P2;
informally, this ensures that P2 does not engage in any interactions with the
environment that are not allowed by P1. More precisely, this corresponds to
trace inclusion: the set of traces of P2 is included in that of P1. In [16], we
use the Circus UTP theory and its relationship with the traces (component
of the failures-divergences) model of CSP, as identified in [18], to calculate a
formal definition of traces refinement for Circus using its UTP model.

The function TT below characterises tests for traces refinement as Circus
actions. It takes as arguments a trace and a forbidden continuation e.

Definition 9

TT (〈 〉, e) = pass → e → fail → Stop

TT (〈 e1 〉a t , e2) = inc → e1 → TT (t , e2)

2

The extra events pass , fail , and inc are assumed not to be used in the given

30 Ana Cavalcanti, Marie-Claude Gaudel

trace or in the forbidden continuation e, or more generally, in the reference
Circus specification SP used to identify the traces and forbidden continuations
of interest. These events indicate the verdict. A corresponding Circus test
process has no state and the main action as defined above by TT .

An execution ExecutionSP
SUT (T) of a test T for a given SUT , against a

specification SP , is defined below as a process: the parallel execution of T
with SUT , where all the events are hidden, except for inc, pass , and fail .

Definition 10 ExecutionSP
SUT (T) = (SUT J Σ K T) \ Σ 2

We use Σ to denote the set of channels in scope: those used in either the
specification or in the SUT . (Like in CSP, we do not attach alphabets of
events to processes, but to the parallelism operator, as said in Section 2.1.)

The test characterised by TT (t , e) drives the SUT to synchronise on the
events of t . If it does not, this is not a mistake, since the SUT does not need
to exhibit all the allowed behaviours of the specification. The test, however,
is not conclusive in this case. If the trace t is accepted, then the SUT should
not synchronise on the forbidden continuation e accepted by the test. If it
does, then the test fails. Accordingly, if the last event of an execution is pass ,
then the SUT passes the test; similarly, if it is fail , then the SUT fails the
test. Finally, if the last event is inc, then the test is inconclusive. As defined
above, the synchronisation set, which is the interface of the system as defined
in the specification SP , is hidden. This means that synchronisation between
the SUT and the test proceeds immediately when available, and cannot be
affected by the test execution environment.

We define an exhaustive test set for traces refinement based on the set
of traces t of the reference specification SP , and their forbidden continua-
tions: events e not in the set initials(SP , t) containing all the events that
may be accepted by SP after engaging in the trace t . The exhaustive test set
ExhaustT (SP) for a process SP is a set of processes whose main actions are
the tests in the set ExhaustAT (SP) containing the actions that result from
applying TT to all traces of SP and their forbidden continuations.

Definition 11

ExhaustT (SP) = {TA : ExhaustAT (SP) • (begin • TA end) }

ExhaustAT (SP) = { t , e | t ∈ traces(SP) ∧ e 6∈ initials(SP, t) • TT (t , e) }

2

Exhaustivity is established by the following theorem. So far, all our defini-
tions are very similar to those presented in [14] for CSP, and so the proof of
this theorem is not surprising, and is basically omitted. For a trace (or any
sequence) t , we use last t to identify its last element.

Theorem 1 Exhaustivity - traces refinement Given two Circus pro-
cesses, SP and SUT, we have that SP ⊑T SUT if, and only if,

∀T : ExhaustT (SP); t : traces(Execution
SP
SUT (T)) • last t 6= fail

Proof Straightforward adaptation of that presented in [14] for a similar result

Testing for Refinement in Circus 31

for testing based on CSP specifications. 2

In this paper, we consider symbolic descriptions of the tests. In particular,
we define in this section a set of symbolic tests that describe all tests in
ExhaustT (SP). As previously discussed, it is useful to explore elaborate se-
lection criteria that take advantage of the specifications of the data operations
and of the constraints of the symbolic traces and initials.

For a symbolic trace (st, c1) and a symbolic event (d.α0, c2) that rep-
resents a forbidden continuation, the corresponding symbolic test is given
by STαT ((st, c1), (d.α0, c2)) defined below; it incorporates c1 and c2. For the
prefixing involving d.α0, we use c2 to restrict the accepted values of the sym-
bolic variable. For the prefixings corresponding to each of the symbolic events
dst.α0 of the trace st, we use the constraint c1 to extract the right constraint
over α0. The α parameter of STT records the symbolic variables already used,
and the constraint on α0 is obtained by quantifying all variables not in α and
different from α0, namely, those in the list α, α0.

Definition 12

STαT ((〈 〉, c1), (d.α0, c2)) = pass→ d?α0 : c2 → fail→ Stop

STαT ((〈 dst.α0 〉a st, c), iose) =

inc→ dst?α0 : (∃α, α0 • c)→ ST
(α,α0)
T ((st, c), iose)

2

Example 11 NoOverlap For the constrained symbolic trace (〈 g.α0〉, α0 > 10)
of NoOverlap, and its forbidden continuation (g.α1, α0 > 10 ∧ α1 6= α0), as
characterised by csinitials, we have the test below.

inc→ g?α0 : (α0 > 10)
→ pass→ g?α1 : (α0 > 10 ∧ α1 6= α0)
→ fail→ Stop

The constraint associated with g?α0 is on a single variable α0, which is not
quantified. The constraint on the g?α1 relates the fresh variable α1 to the
previously communicated value represented by α0. 2

Example 12 CashMachine As suggested by Example 18, one of the con-
strained symbolic traces of CashMachine is as follows.

(
〈 refill, incard.α0.α1.α2, outcard.α3〉,
α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1 ∧ α3 = α0

)

In addition, a forbidden continuation of this trace has the symbolic event
outcard.α4 and the same constraint. From these, we get the test below.

inc→ refill

→ inc→ incard?α0?α1?α2 : (α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1)
→ inc→ outcard?α3 : (α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1 ∧ α3 = α0)
→ pass→ outcard?α4 : (α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1 ∧ α3 = α0)
→ fail→ Stop

With this we check that it is not possible to output a card twice. 2

32 Ana Cavalcanti, Marie-Claude Gaudel

These symbolic tests are in fact proper Circus processes or actions. As tests,
however, they provide little controllability. The inputs d?α0 that correspond
to inputs of the SUT are chosen nondeterministically in a test execution,
since d is hidden. In practice, the symbolic tests are not meant to be used
directly; they define patterns for the tests to be constructed by instantiation.
The instances provide particular values to be communicated.

An instance of a symbolic test is defined by the functions instP and instA,
which specify the set of test instances of a symbolic process or action test. We
define instA here just for the kind of actions that can be used to characterise
tests for trace refinement. In the next section, we extend its definition to
consider external choices, which are used in the tests for conf .

Definition 13

instP(begin • STA end) = {TA : instA(STA) • (begin • TA end) }

instA(Stop) = {Stop }
instA(d→ A) = {TA : instA(A) • d → TA }
instA(d?α0 : c→ A) =
{ v0,TA | c[v0/α0] ∧ TA ∈ instA(A[v0/α0]) • d .v0 → TA }

2

The instances of a process test are built using the instances of its main
action. The action Stop is not really symbolic; its only instance is itself. For
a prefixing d→A, whose communication is a simple synchronisation like inc,
pass, or fail, for example, the instances are prefixings formed out of d itself
and the instances TA of A. Finally, if we have a prefixing d?α0 : c → A,
then the instances consider all possible ways of choosing for communication
a value v0 that satisfies the restriction c, and the corresponding instances of
the action A[v0/α0], which records the choice of v0.

We observe that in the symbolic test d?α0 : c→ A the symbolic variable
is being used as a local input variable whose scope is A. We, therefore, use
the standard notation A[v0/α0] to denote substitution in the action A of v0
for its free variable α0, as defined for Circus [52].

The next lemma establishes an important property of the function instA,
when applied to symbolic tests for actions. Namely, given a symbolic test
STαT ((st, c1), (d.α0, c2)), by choosing values v for the symbolic variables in
use, that is, those in the sequence α, and then instantiating the resulting
symbolic test, we obtain the same set of concrete tests that result if we record
the choice of values v for α in the trace (st, c1) and in the event (d.α0, c2),
and then instantiate the symbolic test obtained from the resulting symbolic
trace and event. We use α to stand for a sequence of symbolic variables, but
in the provisos write α also to denote the set of the elements in the sequence.

Lemma 5 Alphabet of instantiations - traces-refinement tests

instA((STαT ((st, c1), (d.α0, c2)))[v/α]) =

instA(ST
〈 〉
T ((st, c1[v/α]), (d.α0, c2[v/α])))

provided α0 6∈ α, and α ∩ αst = ∅. 2

The following set of symbolic tests represents the exhaustive test set. Just like

Testing for Refinement in Circus 33

ExhaustT (SP) is defined in terms of the sets of concrete traces and initials
of SP , SExhaustaT(SP) is defined in terms of the constrained symbolic traces
and initials of SP . The alphabet a used is fixed by an extra parameter.

Definition 14

SExhaustaT(SP) = { STA : SExhaustAaT(SP) • (begin • STA end) }

SExhaustAaT(SP) ={
cst, cse | cst ∈ cstracesa(SP) ∧ cse ∈ csinitials

a
(SP, cst)

• ST
〈 〉
T (cst, cse)

}

2

In order to prove exhaustivity, first, we relate a symbolic test for actions to
a set of concrete tests. Namely, the instances of a symbolic test are the tests
obtained from the instances of the symbolic trace and event used to construct
it. The pairs of symbolic trace (st, c1) and event (d.α0, c2) considered are
such that c2 ⇒ c1 so that we know that (d.α0, c2) is feasible after (st, c1).
This holds for all events in csinitialsa(P, (stc)) with respect to (st, c).

Lemma 6 Instantiation of symbolic tests-actions-traces refinement

instA(ST
〈 〉
T ((st, c1), (d.α0, c2))) =

{ t , e | t ∈ instT(st, c1) ∧ e ∈ instEαst((d.α0, c2)↾
αst

t) • TT (t , e) }

provided αc2 ⊆ αst ∪ {α0}, α0 6∈ αst, and c2 ⇒ c1. 2

Now, we relate the symbolic and concrete exhaustive test sets for actions.
This next lemma is the central result in the argument summarised in Theo-
rem 2 below that justifies the use of the set SExhaustaT(P) of symbolic tests
to characterise the exhaustive test set for traces refinement.

Lemma 7 Symbolic exhaustivity - actions - traces refinement For
every alphabet a

ExhaustAT (SP) =
⋃
{ STA : SExhaustAaT(SP) • instA(STA) }

Proof

⋃
{ STA : SExhaustAaT(SP) • instA(STA) }

=
⋃

cst, cse |

cst ∈ cstracesa(SP) ∧ cse ∈ csinitials
a
(SP, cst)

• instA(ST
〈 〉
T (cst, cse))

[definition of SExhaustAaT]

=
⋃

st, c1, d, α0, c2 |

(st, c1) ∈ cstracesa(SP) ∧ (d.α0, c2) ∈ csinitials
a
(SP, (st, c1))

• instA(ST
〈 〉
T ((st, c1), (d.α0, c2)))

[property of sets]

34 Ana Cavalcanti, Marie-Claude Gaudel

=
⋃

st, c1, d, α0, c2 |(
(st, c1) ∈ cstracesa(SP) ∧

(d.α0, c2) ∈ csinitials
a
(SP, (st, c1))

)

•

{
t , e | t ∈ instT(st, c1) ∧ e ∈ instEαst((d.α0, c2)↾

αst
t)

• TT (t , e)

}

[Lemma 6 and properties of cstraces and csinitials]

=

st, c1, d, α0, c2, t , e |

(st, c1) ∈ cstracesa(SP) ∧

(d.α0, c2) ∈ csinitials
a
(SP, (st, c1)) ∧

t ∈ instT(st, c1) ∧ e ∈ instEαst((d.α0, c2)↾
αst

t)

• TT (t , e)

[property of sets]

=

st, c1, t , e |
(st, c1) ∈ cstracesa(SP) ∧ t ∈ instT(st, c1) ∧ e 6∈ initials(SP, t)

• TT (t , e)

[Lemma 4]

= { t , e | t ∈ traces(SP) ∧ e 6∈ initials(SP, t) • TT (t , e) } [Proposition 1]

= ExhaustAT (SP) [definition of ExhaustAT]

2

Finally, we can lift our result on symbolic action tests to process tests.

Theorem 2 Symbolic exhaustivity-processes-traces refinement For
every alphabet a,

ExhaustT (SP) =
⋃
{ ST : SExhaustaT(SP) • instP(ST) }

Proof

⋃
{ ST : SExhaustaT(SP) • instP(ST) }

=
⋃
{ STA : SExhaustAaT(SP) • instP(begin • STA end) }

[definition of SExhaustaT]

= { STA : SExhaustAaT(SP); TA : instA(STA) • begin • TA end }

[definition of instP]

= {TA : ExhaustAT (SP) • begin • TA end } [Lemma 7]

= ExhaustT (SP) [definition of ExhaustT]

2

This justifies the soundness of using the symbolic tests as a basis for selection

Testing for Refinement in Circus 35

CSP

Circus

traces refinement
f-d model

traces refinement
UTP model

calculation

algebraic
proof

concrete
exhaustive test set

similar
proof

symbolic
exhaustive test set

instantiation

operational
semantics

Fig. 3 Structure of the argument of exhaustivity

of concrete tests. It guarantees that, by working with the symbolic represen-
tation of tests, we are not excluding any of the possible concrete tests, or
including unnecessary tests. Figure 3 summarises the structure of our argu-
ment. In previous work, based on CSP and its failures-divergences model, we
have established exhaustivity of a set of concrete tests. Using a relationship
between the failures-divergences model and the UTP model for CSP and
Circus, we have calculated a notion of traces refinement for Circus. The cor-
respondence between the notions of traces refinement and the fact that the
concrete tests induced by Circus models are similar to those obtained using
CSP allowed us to have a very similar proof of exhaustivity in the context
of Circus (Theorem 1). The operational semantics of Circus induces a sym-
bolic characterisation of the tests, which we proved that, by instantiation as
formalised in Definition 13, can be used to define the exhaustive set of con-
crete tests (Theorem 2). The same proof approach is used in our argument
of exhaustivity for conf in the next section.

Ultimately, the predicative specifications used in Circus to define data
types and operations in the style of Z specify sets of values that characterise
the extensional meaning of these types and operations. Theorem 1 is justified
by a model based on sets of values. The purpose of establishing the connection
to this result via Theorem 2 is to establish that our predicative model of
tests based on the symbolic operational semantics of Circus is sound. The
predicative model supports and guides the use of more advanced reasoning
and testing techniques (based, for example, on SAT and SMT solving).

5 Testing for conf

The conf relation captures reduction of deadlock; it is a widely used notion
of conformance in testing. We write P1 conf P2 if, and only if, whenever P2

engages in a sequence of events that can be accepted by P1, then P2 can only
deadlock if P1 may as well. Formally, conf can be defined as follows.

P2 conf P1 =̂ ∀ t : traces(P1) ∩ traces(P2) • Ref (P2, t) ⊆ Ref (P1, t)
where Ref (P , t) =̂ {X | (t ,X) ∈ failures(P) }

We note that the definition of Ref (P , t) is compatible with that of refusals(P)

36 Ana Cavalcanti, Marie-Claude Gaudel

in CSP, for the process P/t [58, pages 94,197]. A formalisation of conf is
calculated for the Circus denotational UTP model in [16]. Like that of traces
refinement, it is based on the above definition and a relationship between the
Circus UTP theory and the failures-divergences model [18].

For SUT conf SP to hold, the definition requires that, after performing
every one of their common traces, the failures of the SUT are failures of SP .
This means that, after a trace t of SP , the SUT cannot refuse all events in
an acceptance set X of SP . It also means that the SUT may refuse all events
refused by SP or accept some of them. Testing for conf based on the refusals
of SP is, therefore, useless. Instead, we execute the test corresponding to t ,
followed by an external choice among the events in X .

In more detail, for a trace t , and a set of acceptances X , a test is charac-
terised by TF (t ,X) as defined below. It offers the trace t , and at the end a
choice of the events in X . If the SUT does not synchronise on all events of t ,
the test is inconclusive, since it is not necessary for the SUT to allow for all
the traces indicated in the specification. If the trace t is accepted, however,
then the SUT must accept at least one event of X .

Definition 15

TF (〈 〉,X) = fail → (@ e : X • e → pass → Stop)

TF (〈 e 〉a t ,X) = inc → e → TF (t ,X)

2

The exhaustive test set for conf contains all the tests obtained from the
traces and acceptances of the Circus specification SP .

Definition 16

ExhaustF (SP) = {TA : ExhaustAF (SP) • (begin • TA end) }

ExhaustAF (SP) =
{ t , e | t ∈ traces(SP) ∧ X ∈ acceptances(SP, t) • TF (t ,X) }

2

The sets of minimal acceptances are actually enough, but we leave aside the
technicalities of the removal of the unnecessary tests. With that, we have a
clearer structure of definitions and proofs.

Theorem 3 Exhaustivity - conf Given two Circus processes, SP and
SUT, we have that SUT conf SP if, and only if,

∀T : ExhaustF (SP); t ,X | (t ,X) ∈ failures(ExecutionSP
SUT (T)) •

last t 6= fail ∨ X 6= { inc, pass , fail }

Proof Straightforward simplification of the proof presented in [14] for CSP.
Here we do not need to justify the use of minimal acceptance sets, since this
issue will be treated in subsequent work as an optimisation. 2

In the context of Circus, our interest is of course the definition of symbolic

Testing for Refinement in Circus 37

tests, based on the sets of constrained symbolic traces and acceptances. They
are defined by the function STαF defined in the sequel. As for STαT , the α
parameter records the symbolic variables already used.

Definition 17

STαF ((〈 〉, c), SX) =

fail→

@(d.α0, c) : SX↾I • d?α0 : c→ pass→ Stop

@

@(d.α0, c) : SX↾O • d!α0 : c→ pass→ Stop

STαF ((〈 d.α0 〉a st, c), SX) =

inc→ d?α0 : (∃α, α0 • c)→ ST
(α,α0)
F ((st, c), SX)

2

Example 13 Symbolic test for IC For the process IC , we consider the trace
(〈 〉, true), and the symbolic acceptance set { (g?α0, α0 ∈ N), (h!α0, α0 ∈ N) }.

With ST
〈 〉
F ((〈 〉, true), { (g?α0, α0 ∈ N), (h!α0, α0 ∈ N) }) we get the test

shown below. Since the leading trace is empty, the first event is fail .

fail→

g?α0 : (α0 ∈ N)→ pass→ Stop

@
h!α0 : (α0 ∈ N)→ pass→ Stop

Apart from the annotation of the constraint on the output, this is a proper
Circus action. Most importantly, however, it characterises a set of concrete
tests; instantiation is discussed in the sequel. 2

Example 14 Symbolic test for the CashMachine For the constrained symbolic
trace (〈 refill, incard.α0.α1.α2〉, α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1) of
the CashMachine process, we have the symbolic acceptance below.

(
incard?α3!α4?α5,
α0 ∈ CARD ∧ . . . ∧ α3 ∈ CARD ∧ α4 = pinα3 ∧ α5 ∈ N1,

)
,

(outcard!α3, α0 ∈ CARD ∧ . . . ∧ α3 = α0),
(cash!α3, α0 ∈ CARD ∧ . . . ∧ Σα3 = α2 ∧ ∀ n : Note • α3 ♯ n ≤ cap)

This reflects the fact that, after inputting a card, we have to be prepared for
the machine to produce no cash, retain the card, and then accept a new card,
or return the card previously input, or finally produce the cash requested.
The symbolic test corresponding to this trace and acceptance is as follows.
It checks that at least one of these reactions is observed.

inc→ refill

→ inc→ incard?α0?α1?α2 : (α0 ∈ CARD ∧ α1 = pinα0 ∧ α2 ∈ N1)
→ fail→

incard?α3!α4?α5 : (α0 ∈ CARD ∧ . . . ∧ α5 ∈ N1)→ pass→ Stop

@
outcard!α3 : (α0 ∈ CARD ∧ . . . ∧ α3 = α0)→ pass→ Stop

@
cash!α3 : (. . . ∧ ∀ n : Note • α3 ♯ n ≤ cap)→ pass→ Stop

This illustrates that a (symbolic) event may involve both inputs and outputs;

38 Ana Cavalcanti, Marie-Claude Gaudel

this is the case of incard?α3!α4?α5. Our definitions do not (explicitly) cover
these examples; their extension, however, is long, but not difficult. 2

The purpose of instantiation is to achieve controllability. There is no point
in trying to control the output of a process; the choice is internal. So, in the
instantiation of a test, we choose only values for the inputs. We formalise
instantiation below, but first we present an example.

Example 15 Concrete tests for IC In the symbolic test defined above for IC ,
we have an external choice involving a communication over an input variable
and another over an output variable. The instances of this test are as follows.

fail → (g.0→ pass → Stop @ h?α0 : (α0 ∈ N)→ pass → Stop)
fail → (g.1→ pass → Stop @ h?α0 : (α0 ∈ N)→ pass → Stop)
. . .

In a test execution, the input for the SUT is fixed, but any output is accepted.

2

Even if we instantiated the output communications, the external choices in
the instantiated tests would need to include all possible instantiations, be-
cause it is not a failure for the SUT to refuse to output a particular value: it
may output any of those that satisfy the (possibly nondeterministic) specifi-
cation of the output. The input prefixing that we keep is just an abbreviated
way of expressing this possibly infinite external choice; a similar approach
was adopted in [43]. More precisely, we have the result below: a direct con-
sequence of properties of prefixing and choice in Circus [54].

Lemma 8 Equivalence of conf tests

TF (t , {d .α0 : c}) = TF (t , instE(d.α0, c))

2

In contraposition, in the tests for traces, and also in the part of the symbolic
tests for conf that is determined by the trace rather than by the acceptance
set, we instantiate output communications. As a result, we get inconclusive
tests, when the SUT refuses to output a value chosen in a particular in-
stantiated test. The verdict is not wrong, but there is an obvious scope for
optimisation in the choice and construction of tests.

As with tests for traces refinement, instantiation of a symbolic test for
conf is characterised by the functions instP and instA in Definition 13. The
definition of instA for external choices is as follows.

instA((@ i • di?αi : ci → A(i)) @ (@ j • dj !αj : cj → A(j))) =

@ L { STA : ⊗{i • instA(di?αi : ci → A(i)) }
• STA ∪ {j ,TA | TA ∈ instA(A(j)) • dj ?αj : cj → TA}

} M

To create a concrete test from an external choice of prefixings, we need to
handle the input and output prefixings separately. The result is a set of ex-

ternal choices of prefixings; they are obtained using a generalised@ operator

Testing for Refinement in Circus 39

that applies to sets of actions. It is applied to each of the sets in a set of sets
of prefixings. From the set of sets of actions obtained by instantiating each
of the input prefixings, we can form the set of sets of actions that should
be included in the choice using the generalised cartesian product ⊗. It guar-
antees that the external choices are built out of sets of actions that contain
one instance of each of the actions expressed using the symbolic events. To
form the final sets of actions, we add to the sets the output prefixings, after
turning them into inputs, and with the associated actions instantiated.

The following lemma is similar to Lemma 5; it establishes that partial
trace instantiation can be carried out before or after the construction of a
symbolic test also in the case of the conf tests defined above.

Lemma 9 Alphabet of instantiations - conf tests

instA((STαF ((st, c), SX))[v/α]) = instA(ST
〈 〉
F ((st, c[v/α]), SX[v/α]))

provided α ∩ αst = ∅. 2

The set of symbolic tests below represents the exhaustive set in Definition 16.

Definition 18

SExhaustaF(SP) = { STA : SExhaustAaF(SP) • (begin • STA end) }

SExhaustAaF(SP) ={
cst, SX | cst ∈ cstracesa(SP) ∧ SX ∈ csacceptancesa(SP, cst)

• ST
〈 〉
F (cst, SX)

}

2

As for trace refinement, to relate the symbolic exhaustive test set with the
concrete exhaustive test set for conf , we first examine the instantiation of
individual symbolic tests. We compare the concrete tests obtained by instan-
tiating a symbolic test, with those obtained from the concrete traces and
acceptance sets obtained by instantiating the corresponding symbolic trace
and acceptance set. For that, we define a function E that creates an input
communication out of a constrained symbolic event.

Definition 19 E(d.α0, c) = d?α : c 2

We also define partial instantiation of a set of symbolic acceptances.

Definition 20

pinstAS(SX) = {A : ⊗(instE L SX ↾I M) • A ∪ E L SX ↾O M }

2

This definition is similar to that provided for instAS(SX) in Definition 8,
but in the sets of pinstAS(SX) the output events are not instantiated; they
are converted to proper Circus events as characterised by E.

40 Ana Cavalcanti, Marie-Claude Gaudel

Example 16 IC We consider again the set of symbolic acceptances presented
in Example 13: { (g?α0, α0 ∈ N), (h!α0, α0 ∈ N) } By taking the relational
image of instE over the singleton {(g.α0, α0 ∈ N)}, containing the only in-
put event in the acceptance set, we get { {g.0, g.1, . . .} }. With the ⊗ op-
erator, we then get { {g.0}, {g.1}, . . .}. On the other hand, the relational
image of E over {(h.α0, α0 ∈ N)} gives just {h?α0 : (α0 ∈ N)}. Therefore,
the result of applying pinstAS to the above set of acceptances gives the set
{ {g.0, h?α0 : α0 ∈ N}, {g.1, h?α0 : α0 ∈ N}, . . . }. This is the basis for con-
structing the concrete tests in Example 15. 2

Using the above notion of partial instantiation of a set of symbolic accep-
tances, we can relate symbolic and concrete tests as follows.

Lemma 10 Instantiation of symbolic tests - actions - conf

instA(ST
〈 〉
F ((st, c), SX)) =

{ t ,X | t ∈ instT(st, c) ∧ X ∈ pinstAS(LSX M ↾
αst

t) • TF (t ,X) }

2

The relationship between the symbolic and concrete tests for actions is es-
tablished by the lemma below. It is similar to Lemma 7.

Lemma 11 Symbolic exhaustivity - actions - conf For every alphabet
a,

ExhaustAF (SP) =
⋃
{ STA : SExhaustAaT(SP) • instA(STA) }

Proof

⋃
{ STA : SExhaustAaF(SP) • instA(STA) }

=
⋃

st, c, SX |
(st, c) ∈ cstracesa(SP) ∧ SX ∈ csacceptancesa(SP, (st, c))

• instA(ST
〈 〉
F ((st, c), SX))

[definition of SExhaustAaT]

=
⋃

st, c, SX |
(st, c) ∈ cstracesa(SP) ∧ SX ∈ csacceptancesa(SP, (st, c))

•

t ,X |
t ∈ instT(st, c) ∧ X ∈ pinstAS(L SX M ↾

αst
t)

• TF (t ,X)

[Lemma 10]

=
⋃

st, c, SX |
(st, c) ∈ cstracesa(SP) ∧ SX ∈ csacceptancesa(SP, (st, c))

•

{
t ,X | t ∈ instT(st, c) ∧ X ∈ instAS(LSX M ↾

αst
t)

• TF (t ,X)

}

[Lemma 8]

Testing for Refinement in Circus 41

=
⋃

st, c, SX , t ,X |

(st, c) ∈ cstracesa(SP) ∧
SX ∈ csacceptancesa(SP, (st, c)) ∧
t ∈ instT(st, c) ∧ X ∈ instAS(LSX M ↾

αst
t)

• TF (t ,X)

[property of sets]

=
⋃
{ t ,X | t ∈ traces(SP) ∧ X ∈ acceptances(SP, t) • TF (t ,X) }

[Proposition 4]

= ExhaustAF (SP) [definition of ExhaustAF]

2

Finally, we address tests for processes; Theorem 4 is similar to Theorem 2.

Theorem 4 Symbolic exhaustivity - processes - conf For every al-
phabet a,

ExhaustF (SP) =
⋃
{ ST : SExhaustaF(SP) • instP(ST) }

Proof Similar to the proof of Theorem 2, but it uses Lemma 11. 2

In [16], we have proved that process refinement in Circus can be characterised
by the conjunction of traces refinement and conf . Therefore, Theorems 2 and
4 allow us to conclude that the union of the exhaustive sets for traces refine-
ment and for conf , as presented in Definitions 14 and 18, is an exhaustive
test set for process refinement in Circus. In addition, we can then conclude
that, if the testability hypotheses hold, then the SUT passes this set of tests
if, and only if, the Circus model used to define the tests is refined by the
Circus model of the SUT . Precisely, we say that a SUT passes a test set TS ,
if it passes every test t in TS . In addition, a SUT passes a test t if the verdict
of n executions of t , as characterised in Definition 10, is not a failure. The
number n comes from the complete testing assumption.

Together these results justify the use of the symbolic tests as a starting
point for selection strategies. The symbolic tests benefit from a concise and
comprehensive account of the data operations and their properties. Coverage
criteria can consider both the concrete labelled transition system and the
symbolic transition system. With the latter, we have a handle for coverage of
the data operations and the structure of the constraints. Actually, the con-
straints provide a basis for the definition of the so-called equivalence classes,
or uniformity subdomains, used in the testing literature.

6 Related work on formal testing

As far as we know, there is no formal theory of symbolic testing for a model-
based language that covers predicative specification of data types and process

42 Ana Cavalcanti, Marie-Claude Gaudel

algebraic specification of behaviour. Our results lay the foundation to justify
the soundness of elaborate testing techniques based on this important class
of languages. They put forward a clear path for the use of coverage criteria
that are in tune with the nature of such comprehensive notations.

On the other hand, several works indicate routes to apply the theory
presented here. We discuss some of them in the sequel.

Z Most testing methods for Z refer to the seminal work for VDM by Dick
and Faivre [21] that is applicable to all model-based notations. The formulae
of VDM specifications are relations on states described by operations ex-
pressed in first-order predicate calculus. In [21], these relations are reduced
to a disjunctive normal form (DNF), creating a set of disjoint subrelations.
Each of them yields a set of constraints that describe a single disjoint test
domain. As VDM is state-based, a finite state automaton is extracted us-
ing the results of the partition analysis of the operations to partition the
states. From this automaton, test sequences are produced to ensure cover-
age of the paths. The notion of test sequence is strongly related to the state
orientation of the specification and the fact that states are hidden: testing
an operation for a given subrelation requires reaching an adequate state via
some sequence of inputs, and to observe the resulting state by using other
operations that provoke outputs [35]. This method was transposed to Z by
Helke et al. [32], with the DNF partition of the schemas and the elimination
of the unsatisfiable cases automated using Isabelle.

Major problems with this approach are explosion of the number of test
cases induced by the DNF reduction and proliferation of unfeasible cases. The
first problem can be overcome by limiting the reduction, similarly to what
was done in [46] for axiom unfolding, or by applying specific decomposition
strategies such as the one described in [35]. The second problem can be
alleviated by powerful constraint solvers or theorem provers [32,8], but this
remains to be investigated in the context of Z. In the context of Circus, we plan
to explore this issue, since the Z operations are captured in the constraints
of the symbolic traces and acceptances presented previously.

In [12] Carrington and Stock presented a framework for Z-based testing
with a choice of strategies, including reduction to DNF. The key element was
the construction of abstract descriptions of test data called test templates: Z
descriptions of test cases. The definition of templates for each operation was
based on the Valid Input Space template, which roughly corresponds to the
precondition. Further templates were derived according to the chosen test-
ing strategy. Derivation of test cases was not automatic; potential problems
with unsatisfiable templates were not mentioned. More recently, a tool that
partially automates this approach has been developed; it relies on Z/Eves (a
Z theorem prover), ZLive (a Z animator), and customised algorithms [20].

The application of test templates and automatic partition of schemas for
systems of industrial size have been problematic due to the lack of efficient
constraint solvers and theorem provers. Given the progress recently achieved
for these tools, these techniques are worth revisiting for integration in a global
testing method for Circus guided by our symbolic tests.

Testing for Refinement in Circus 43

CSP There has been a lot of interest in testing based on CSP. As already
said, however, it was only recently that we have ourselves defined a testing
theory for CSP based on its notion of failures(-divergences) refinement.

Peleska and Siegel [55,56] applied CSP-based testing, but did not address
the gap between the system under test and the CSP model; their test sets are
inspired by, but not in direct correspondence with, their theoretical defini-
tions. Schneider [59] defined conformance relations for CSP based on testing
and showed how model checking can be used to establish such relations. The
work of Srivatanakul et al. [63] applies mutation-testing techniques to a CSP
model, and uses the mutants that satisfy the properties of interest as a basis
for clarification of requirements. More recently, CSP was used by Nogueira et
al. to formalise a notion of conformance traditionally associated with input-
output labelled transition systems [50], with refinement model checking used
for generation and selection of tests.

Our theory for CSP could be used in the context of Circus, but does
not provide a clear route to the treatment of the model-based data type
definitions. As explained before, symbolic tests bring the possibility to take
into account coverage criteria of both behavioural and data type descriptions.
This is the main contribution of the work presented here.

Conversely, our symbolic account of traces, initials, and acceptances can
be used to model CSP processes. The operational semantics of a CSP process,
however, leads to trivial symbolic specifications, as there are no abstract data
operations intermingled in a CSP process, and all values are fully evaluated.

State machines A coverage criterion that has been widely used for Finite
State Machines (FSM) is transition coverage [42]. It is justified by the as-
sumption that the SUT behaves like some (unknown) FSM: there is no mem-
ory associated to states and, from a given state, the transitions associated
with an input have the same effect, whatever the execution history.

Extended FSM (EFSM) have been used for describing systems with an
infinite or a very large number of states (SUT). There are numerous variants.
Similar extensions have been proposed for Labelled Transition Systems (LTS)
under the name of Symbolic Labelled Transition Systems (SLTS). For EF-
SMs and SLTSs, the above justification of transition coverage does not hold,
since the behaviour of a transition depends on the values of the variables in
the current state, and those depend on the previous transitions. In addition,
guards and symbolic events lead to reachability and feasibility problems [37].
Some approaches have been proposed for generating test cases from specifica-
tions in full LOTOS and SDL [70,60]. The idea was to map the specification
into an EFSM, and apply classical program testing strategies for selection.

Later on, taking advantage of testing methods for algebraic data types,
Gaudel and James suggested an integrated approach for full LOTOS, where
behavioural descriptions and algebraic data types are considered [31]. The
approach produces interesting boundary test cases, and has been generalised
in [43] to Input-Output Transition Systems with parameters and LOTOS-like
data types. In that work, the idea of propagating constraints on communica-
tion variables and parameters along traces to get symbolic tests is introduced.
A prototype test-generation tool was developed, but failed to give convincing

44 Ana Cavalcanti, Marie-Claude Gaudel

results due to the lack of a powerful constraint solver, and the problem of
infeasible traces. Infeasibility has been addressed later for SDL in [37].

The ideas in these works have influenced our definition of the Circus ex-
haustive test set. The selection criteria and test generation algorithms, how-
ever, cannot be directly transposed to Circus. Its flexible integration of Z and
CSP to cater for programming architectures and constructs, and its unstruc-
tured definition of data operations based on predicates, rather than axioms,
impose a new challenge. In addition, the semantic framework of Circus and
its notion of conformance, namely, refinement, are entirely different.

A theory of testing based on CO-OPN specifications was stated by Peraire
et al. in [57]. CO-OPN uses algebraic structures and object-based concepts to
define data types and Petri nets to handle concurrency. The implementation
relation is observational equivalence, and tests are Hennessy-Milner formulas
labelled by true or false. A notion of exhaustive test set associated to a spec-
ification has been stated in [57]. Due to the different nature of the formalism
and conformance relation, the tests are necessarily very different from those
presented here. The operational semantics of CO-OPN has been implemented
in Prolog, providing a powerful prototyping tool: the development approach
there is based on prototyping and testing, and is thus different from the one
considered in Circus, which includes refinements and coexistence of abstract
specifications and executable programs.

In a more recent work, Lucio et al. [44] present a test selection language for
CO-OPN specifications, which is used to capture the test intention of the test
engineer: the test selection language combines Hennessy-Milner Logic and
constraints. It serves as basis for a test-generation tool. The use of this tool
is reported in [9], which considers model-based testing for BPMN (Business
Process Modelling Notation). The approach to define and use test intentions
is potentially relevant in the context of Circus.

A symbolic version of the ioco relation [69] is used by Frantzen et al. [25]
to handle Input-Output Symbolic Transition Systems (IOSTS), where states
are locations decorated with variables, and transitions are labelled by guards,
by events with interaction variables, and by assignment actions. The main
result is a conformance relation between IOSTS and input-enabled IOSTS.
The SUT is assumed to accept every input in every state. The models and
relations are different from ours, but there are similar notions of symbolic
extended traces, with a formula constraining the interaction variables, and
another constraint on the update of the state variables. They propose location
coverage: a sort of symbolic state coverage. We can invent a similar coverage
for Circus, but given its analogy with statement coverage in program testing,
it is not clear it would provide sufficient fault-detection power. It is not the
objective of [25] to explore the definition of symbolic tests or exhaustive
symbolic test sets as a basis for test generation.

UML statecharts Due to their similarity to EFSMs and SLTSs, UML state-
charts are very popular as bases for testing. Of relevance to Circus is that by
Hierons et al. in [34], which considers a hybrid specification language where
a system is described using statecharts, whose states, guards, and operations
are specified in Z. In this work, Z state decomposition techniques for test-

Testing for Refinement in Circus 45

ing are used to transform the associated statechart (EFSM), which is then
used to generate test cases. The focus of the work is to circumvent false nega-
tives arising from coincidental correctness; for that, notions of distinguishable
states and transitions are introduced, and used to generate tests.

In [4,3], a testing method for statecharts that takes into account hierar-
chy and concurrency is proposed by Bodganov and Holcombe. It provides
selection criteria that significantly reduce the size of test sets in an effec-
tive way. The work by Briand et al. in [6] considers flattened deterministic
statecharts where states are objects or object clusters, and transitions are la-
belled by guards and actions defined by pre and postconditions expressed in
OCL. Normalisation is used to handle the constraints and guide the test-case
generation; the construction of constraints is described by an algorithm.

All these results related to UML statecharts are of high practical rel-
evance, but their theoretical background has not been developed yet. The
testing theory we developed here for Circus can be adapted to be used as a
basis to justify the pragmatic techniques proposed.

In [47] Maassink et al. study a version of statecharts named UMLSC. A
testing theory, in the sense of [49], that is, for models rather than systems,
as well as a notion of conformance and a test-case generation algorithm, are
presented. The theoretical framework developed follows the same pattern as
ours, but the considered language and conformance relation are very different.
In addition, symbolic treatment of data is not covered, and the consideration
of data values and variables is left as future work.

7 Conclusions

As an experimental technique, testing is a pragmatic activity. The justifi-
cation of the testing process, however, can be formalised, as already widely
discussed in the literature. What we provide here is the theoretical foundation
to achieve such formalisation for an important class of refinement languages
for state-rich reactive systems. This is in contrast with approaches that focus
on tool development and experiments, but do not justify their conclusions.

In concrete terms, our main result is a foundation for model-based test-
ing techniques for a rich and flexible modelling language that can be used for
data and behavioural modelling, namely, Circus. Our testability hypotheses
are standard: we assume that the SUT behaves like some unknown Circus

process, and adopt the complete testing assumption to handle nondetermin-
ism. Divergence is treated as deadlock, since this is the only and standard
way in which divergence is perceived or interpreted in testing experiments.

The basis of our work is an operational semantics that gives a symbolic
account of the evolution of a system; it captures internal state changes, and
associated constraints on interactions. Nondeterminism in interaction pat-
terns is captured in the standard way, but nondeterminism in data values is
handled separately, and reconciled in the semantics of parallelism.

Using the operational semantics, we have provided symbolic characteri-
sations of traces, initials, and acceptances. The challenge was to determine
unique (up to predicate equivalence) symbolic representatives of these sets.
Our solution is to fix an ordered alphabet of symbolic variables. That allows

46 Ana Cavalcanti, Marie-Claude Gaudel

a uniform account of these sets, and simplifies the management of names by
avoiding renaming complications. It also simplifies the symbolic characteri-
sation of the forbidden continuations (that is, the complement of the set of
initials). Our definitions of symbolic traces, initials, and acceptances are in
direct correspondence with the standard characterisations of these notions in
a concrete setting (like that of CSP, for instance).

The sets of symbolic traces, initials and acceptances have been used to
define symbolic tests and exhaustive test sets for traces refinement and conf .
Detailed algebraic proofs of exhaustiveness have been presented; all theorems
and lemmas are proved in detail and this provides strong validation of the
definitions. Together the symbolic exhaustive test sets ensure exhaustivity
with respect to process refinement in Circus, given the testability hypothe-
ses. The symbolic tests and exhaustive test sets are ideal bases for work on
optimisation, selection criteria, and test-generation algorithms that take into
account both data operations and interaction patterns.

The notions of instantiation, especially that for the symbolic acceptance
sets, are rather subtle; we have, therefore, provided a detailed formalisation.
Instantiation is at the centre of our proof of exhaustivity for the symbolic
test sets, but is also of practical interest. The instantiation functions will be
essential components of test-generation algorithms.

The exhaustive test sets are infinite for any non-trivial specification. We
plan to investigate various approaches to address the problem of selection of
finite test sets, and the automatic generation of test cases. Since we have a
symbolic version of the tests, with labels constraining communicated values,
it is natural to consider strategies based on constraints decomposition and
solving. Our theory, however, puts us in a strong position to go further and
address the challenging problem of providing coverage of complex internal
data operations, and justify the soundness of the techniques.

There are two fundamental properties that the selected test sets need to
satisfy: validity and unbias. Validity ensures that if the selected tests pass,
then those in the exhaustive set do as well. On the other hand, a set of
selected tests is unbiased if whenever the tests in the exhaustive test set
pass, so do its own tests. In summary, we have to prove that, under the given
selection hypothesis, the selected test set rejects all incorrect SUT and does
not reject any correct SUT . For some of the selection criteria that we will
investigate, validity and unbias is obvious, but for others proofs are expected
to be tricky. Some authors use a different terminology: unbias is sometimes
called soundness, and validity is sometimes called exhaustivity [69].

Because we have identified testability hypotheses, we will proceed along
the same lines with the idea of formally expressing testing strategies and
criteria as hypotheses on the SUT . This was first proposed by Bernot et
al. [2], and then recommended by Hierons in [36], since test hypotheses make
it possible to formalise and compare test sets and test criteria.

We perceive two approaches for selection. The first defines subsets of the
symbolic exhaustive test set, and the second is guided by the text of the
Circus specification. Our long term goal is the identification of a plethora of
sound selection strategies and corresponding test-case generation algorithms
for Circus, with a corresponding evaluation of their effectiveness. This work

Testing for Refinement in Circus 47

will lead to an evaluation of our testing theory in terms of the difficulty to
use it to prove soundness of the techniques.

A Operational semantics: choice and parallelism

For an internal choice A1 ⊓ A2, silent transitions are available to either A1 or
A2 (in a configuration with the same constraint and state assignment).

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A1)

c

(c | s |= A1 ⊓ A2)
ǫ

−→ (c | s |= A2)
(12)

For an external choice, an extra syntactical construct is used to keep track
of local state changes that do not decide the choice, and may need to be dis-
carded when that happens. As an example, we consider the external choice
x := x + 1; d1!x → Skip @ x := x + 2; d2!x → Skip. The choice is only
decided when a communication via either d1 or d2 occurs. Before reach-
ing that point, however, each of the actions x := x + 1; d1!x → Skip and
x := x + 2; d2!x → Skip can evolve silently by executing their assignments.
In spite of that, the effect of the assignment x := x +1, for example, is made
permanent only when, and if, a communication on d1 decides the choice. Sim-
ilarly, if the choice is determined by a communication on d2, then x := x +2
becomes permanent (and the effect of x := x + 1 is ignored).

The first step in the execution of an external choice, therefore, is a silent
transition that introduces a loc clause in each action in the choice to record
the current constraint and state assignment locally. This is captured by the
transition rule (13) below. The choice operator ⊞, which is defined for the
operational semantics, is introduced to indicate that a local state is already
recorded, but a choice has not yet been made.

c

(c | s |= A1 @ A2)
ǫ

−→ (c | s |= (loc c | s • A1) ⊞ (loc c | s • A2))
(13)

The transition rule (14) for external choice determines that, if the first action
in the choice terminates, then it is possible to decide the choice in favour of
that action: its local constraint and state become those of the target configu-
ration. We omit the similar rule that covers the case when the second action
in the choice terminates. (External choice is commutative.)

c1

(c | s |= (loc c1 | s1 • Skip) ⊞ (loc c2 | s2 • A))
ǫ

−→ (c1 | s1 |= Skip)
(14)

The transition rule (15) considers the possibility of silent evolution of the
first action A1 in the choice. In this case, the evolution is recorded locally in

48 Ana Cavalcanti, Marie-Claude Gaudel

the choice. Again, we omit the similar rule for silent evolution of A2.

(c1 | s1 |= A1)
ǫ

−→ (c3 | s3 |= A3)

c | s
|=(

(loc c1 | s1 • A1)
⊞
(loc c2 | s2 • A2)

)

ǫ

−→

c | s
|=(

(loc c3 | s3 • A3)
⊞
(loc c2 | s2 • A2)

)

(15)

Finally, we have rule (16) for the case in which a labelled transition (that is,
a transition whose label is different from ǫ) is possible for A1 in its current
local constraint and state. In this case, the choice for A1 eliminates the ⊞
operator; the target configuration is that of the transition from A1.

(c1 | s1 |= A1)
l

−→ (c3 | s3 |= A3) l 6= ǫ

(c | s |= (loc c1 | s1 • A1)⊞ (loc c2 | s2 • A2))
l

−→ (c3 | s3 |= A3)
(16)

Example 17 We consider below the action CashC , in a configuration charac-
terised by the constraint w0 ∈ T, where T is the type of noteBank , and the
state assignment noteBank := w0. We omit ǫ labels in examples.

(w0 ∈ T | noteBank := w0 |= CashC)

−→

w0 ∈ T | noteBank := w0
|=

(loc w0 ∈ T | noteBank := w0 • refill→ . . .)
⊞

(loc w0 ∈ T | noteBank := w0 • disp?a→ . . .)

[Rule (13)]

Since there are no internal actions possible in any of the choices, there are
only two possible transitions from the above configuration. Either we have a
synchronisation on refill or on disp. The transition for the synchronisation on
refill is below; there is no communicated value, so no extra symbolic variable.

refill
−→

w0 ∈ T | noteBank := w0
|=
noteBank := { 10 7→ cap, 20 7→ cap, 50 7→ cap } ; CashC

[Rules (16) and (5)]

We do not present here the rule for sequence, but it is standard, and it allows

Testing for Refinement in Circus 49

the progress of the first action until it finishes (reduces to a configuration with
action Skip), when then the second action takes over. In our example, our
first action is an assignment, whose transition rule (3) was discussed above.

−→

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .} | noteBank := w1
|=
Skip ; CashC

 [Rule (3)]

−→

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .} | noteBank := w1
|=
CashC

. . .

We consider the transition labelled by a communication on disp below.

disp?w1
−→ (w0 ∈ T ∧ w1 ∈ N1 | noteBank := w0 |= var notes : Cash • . . .)

[Rules (16) and (6)]

The omitted rule for variable blocks [72], determines the next step. 2

Local information is also needed to define the semantics of parallelism.
Each parallel action needs a local record of the current value of the state and,
additionally, the set of the names of the variables to which it has write access.
This is because, as already explained, each parallel action uses independently
the state at the start of the parallelism. Also, at the end of the parallelism, it
is their effect on the variables in their associated sets that defines the state.

So, the first (silent) step of a parallelism A1 J x1 | cs | x2 K A2 introduces a
new parallel operator that records only the synchronisation set cs, and par
clauses in the parallel actions to record the local information. This is captured
in the transition rule (17) shown below. The sets x1 and x2 are assumed to
partition all the state components in scope; this is not necessarily the case
in a Circus model, but can be easily enforced by pre-processing.

c

(c | s |= A1 J x1 | cs | x2 K A2)
ǫ

−→

c | s
|=(

(par c | s | x1 • A1)
JcsK

(par c | s | x2 • A2)

)

(17)

outαs = (x ′
1, x

′
2)

The rule (18) below for the special parallel operator states that, when both
parallel actions terminate (that is, are reduced to Skip), then the whole
parallelism terminates. The constraint in the target configuration is the con-
junction of the local constraints c1 and c2 of the parallel actions. The fact
that they are jointly satisfiable is a hypothesis of the rule. The state assign-
ment is also the conjunction of the local states s1 and s2, but in this case,
first it is necessary to quantify away in s1 the variables x′2 whose values are

50 Ana Cavalcanti, Marie-Claude Gaudel

to be determined by s2. Symmetrically, x′1 is quantified away from s2.

c1 ∧ c2

c1 ∧ c2 | s
|=(

(par c1 | s1 | x1 • Skip)
JcsK

(par c2 | s2 | x2 • Skip)

)

ǫ

−→

c1 ∧ c2 | (∃ x

′
2 • s1) ∧ (∃ x′1 • s2)

|=
Skip

(18)

We observe that this rule applies only to configurations in which the con-
straint of the parallelism is the conjunction of the local constraints c1 and
c2 of the parallel actions. While the local state assignments are only relevant
for their associated parallel actions, the local constraints are relevant for the
parallelism as it evolves. This is because some of the symbolic variables are
used in communications of the parallel action, and so the restriction on them
needs to be recorded. The next two rules further clarify this point.

When there is a labelled transition for the first parallel action A1 with a
label l that is either ǫ or a communication over a channel chan l that is not in
the synchronisation set, the rule (19) for the extra parallel operator indicates
that the whole parallelism evolves accordingly. (The second parallel action
does not need to participate in, and is not affected by, such a transition.)
The local state information for A1 is updated in the parallelism. We omit the
symmetric rule for the second parallel action.

(c1 | s1 |= A1)
l

−→ (c3 | s3 |= A3) l = ǫ ∨ chan l 6∈ cs c1 ∧ c2 c3 ∧ c2

c1 ∧ c2 | s
|=(

(par c1 | s1 | x1 • A1)
JcsK

(par c2 | s2 | x2 • A2)

)

l

−→

c3 ∧ c2 | s
|=(

(par c3 | s3 | x1 • A3)
JcsK

(par c2 | s2 | x2 • A2)

)

(19)

The transition rule (20), the last that we present for the special parallel op-
erator, considers the case in which there is a transition for the first parallel
action with a label d?w1 and a transition for the second action with a corre-
sponding label d!w2, and the channel d is in the synchronisation set. In this
case, progress requires that the parallel actions agree on the communication
and synchronise. The output determines the value w2 to be communicated,
therefore the parallel action evolves with the event d!w2 determined by the
output. Accordingly, the constraint c3 ∧ c4 ∧ w1 = w2 requires that equating
w1 to w2, in the context of the existing constraints c3 on w1 and c4 on w2,
is satisfiable. This becomes the constraint of the target configuration. The
equality w1 = w2 is also kept in the local constraints, so that the constraint

Testing for Refinement in Circus 51

of the parallelism remains the conjunction of the local constraints.

(c1 | s1 |= A1)
d?w1−→ (c3 | s3 |= A3) (c2 | s2 |= A2)

d!w2−→ (c4 | s4 |= A4)

d ∈ cs c1 ∧ c2 c3 ∧ c4 ∧ w1 = w2

c1 ∧ c2 | s
|=(
(par c1 | s1 | x1 • A1)

JcsK
(par c2 | s2 | x2 • A2)

)

d!w2−→

c3 ∧ c4 ∧ w1 = w2 | s
|=(
(par c3 ∧ w1 = w2 | s3 | x1 • A3)

JcsK
(par c4 ∧ w1 = w2 | s4 | x2 • A4)

)

(20)

The label d!w2 of the parallelism records an output because, since one of the
parallel actions produces an output, synchronisation constrains the commu-
nication of the other action to the output value, and so the whole parallelism
produces that output. The same comments apply when we have communi-
cations d!w1 and d?w2, or two outputs d!w1 and d!w2, which need to agree on
a single value. The rule for when the parallel actions have transitions with
labels d?w1 and d?w2 is similar, but in this case the transition of the paral-
lelism has label d?w2. Since both parallel actions accept inputs, the whole
parallelism accepts the inputs that are acceptable by both of them.

Example 18 For the parallelism in the main action of CashMachine, again
in the initial configuration for this process, we have the possible sequence of
transitions sketched below, where we first have a(n independent) communi-
cation on refill from CashC , and then a synchronisation on disp.

w0 ∈ T | noteBank := w0
|=
CardV J { } | {| disp, ok |} | {noteBank} K CashC

−→

w0 ∈ T | noteBank := w0
|=

(par w0 ∈ T | noteBank := w0 | { } • CardV)
J {| disp, ok |} K

(par w0 ∈ T | noteBank := w0 | {noteBank} • CashC)

[Rule (17)]

−→

w0 ∈ T | noteBank := w0
|=

(par w0 ∈ T | noteBank := w0 | { } • CardV)
J {| disp, ok |} K

par w0 ∈ T | noteBank := w0 | {noteBank} •

(loc w0 ∈ T | noteBank := w0 • refill→ . . .)
⊞

(loc w0 ∈ T | noteBank := w0 • disp?a→ . . .)

[Rule (13)]

52 Ana Cavalcanti, Marie-Claude Gaudel

refill
−→

w0 ∈ T | noteBank := w0
|=

(par w0 ∈ T | noteBank := w0 | { } • CardV)
J {| disp, ok |} K(

par w0 ∈ T | noteBank := w0 | {noteBank} •
noteBank := { 10 7→ cap, . . .} ; CashC

)

[Rules (19), (16), and (5)]

−→

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .} | noteBank := w0
|=

(par w0 ∈ T | noteBank := w0 | { } • CardV)
J {| disp, ok |} K

par

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .}
| noteBank := w1
| {noteBank}

 •

Skip ; CashC

[Rules (19) and (3)]

−→

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .} | noteBank := w0
|=

(par w0 ∈ T | noteBank := w0 | { } • CardV)
J {| disp, ok |} K

par

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .}
| noteBank := w1
| {noteBank}

 • CashC

. . .

incard?w8!w9?w10−→

. . .

−→

(
w0 ∈ T ∧ . . . ∧ w10 ∈ N1

| noteBank := w0

)

|=

par

w0 ∈ T ∧ . . . ∧ w10 ∈ N1

| noteBank := w0; var c, a := w8, w10
| { }

• disp!a→ ok→ outcard!c→ CardV

J {| disp, ok |} K
par

w0 ∈ T ∧ w1 = { 10 7→ cap, . . .}
| noteBank := w1
| {noteBank}

 • CashC

Testing for Refinement in Circus 53

disp!w13
−→

(
w0 ∈ T ∧ . . . ∧ w13 = w10 ∧ w13 = w14
| noteBank := w0

)

|=

par

w0 ∈ T ∧ . . . ∧ w13 = w10 ∧ w13 = w14
| noteBank := w0; var c, a := w8, w10
| { }

• ok→ outcard!c→ CardV

J {| disp, ok |} K

par

w0 ∈ T ∧ . . . ∧ w13 = w14
| noteBank := w1 ; var a := w14
| {noteBank}

• (var notes : Cash • . . .)

[Rules (20), (6), (16), and (5)]

. . .

Since the parallelism does not finish, the par operator is never eliminated. As
said before, synchronisation communications, like refill , do not require the
use of extra symbolic variables. Also, we observe that in a communication like
incard?c.(pin c)?a, we do not explicitly indicate (pin c) as an output, because
intuitively this is a synchronisation on a specific value defined by the function
pin. Semantically, however, this is equivalent to an output and is recorded
as such in the label of the transition that models the communication. 2

The complete set of transition rules can be found in [72].

Acknowledgements We are grateful to the Royal Society of London, who sup-
ported our collaboration through funding for an International Joint Project.

References

1. Abrial, J.R.: B#: toward a synthesis between Z and B. In: D. Bert, J.P. Bowen,
S. King, M. Waldén (eds.) ZB, Lecture Notes in Computer Science, vol. 3582,
pp. 168 – 177. Springer-Verlag (1996)

2. Bernot, G., Gaudel, M.C., Marre, B.: Software testing based on formal spec-
ifications: a theory and a tool. Software Engineering Journal 6(6), 387 – 405
(1991)

3. Bogdanov, K., Holcombe, M.: Refinement in statechart testing: Research arti-
cles. Software Testing, Verification and Reliability 14(3), 189–211 (2004)

4. Bogdanov, K., Holcombe, M., Singh, H.: Automated test set generation for
statecharts. In: FM-Trends 98: Proceedings of the International Workshop
on Current Trends in Applied Formal Method, pp. 107–121. Springer-Verlag
(1999)

5. Bougé, L., Choquet, N., Fribourg, L., Gaudel, M.C.: Test set generation from
algebraic specifications using logic programming. Journal of Systems and Soft-
ware 6(4), 343 – 360 (1986)

6. Briand, L.C., Labiche, Y., Cui, J.: Automated support for deriving test re-
quirements from UML statecharts. Journal of Software and Systems Modeling
pp. 399 – 423 (2005)

7. Brinksma, E.: A theory for the derivation of tests. In: Protocol Specification,
testing and Verification VIII, pp. 63 – 74. North-Holland (1988)

54 Ana Cavalcanti, Marie-Claude Gaudel

8. Brucker, A.D., Rittinger, F., Wolff, B.: Hol-z 2.0: A proof environment for
z-specifications. Journal of Universal Computer Science 9(2), 152–172 (2003)

9. Buchs, D., Lucio, L., Chen, A.: Model checking techniques for test generation
from business process models. In: 14th Ada-Europe International Conference
on Reliable Software Technologies, Lecture Notes in Computer Science, pp. 59
– 74. Springer-Verlag (2009)

10. Butler, M.J.: csp2B: A Practical Approach to Combining CSP and B. Formal
Aspects of Computing 12(3), 182 – 198 (2000)

11. Butterfield, A., Sherif, A., Woodcock, J.C.P.: Slotted Circus: A UTP-family of
reactive theories. In: International Conference on Formal Enginneering, Lecture
Notes in Computer Science, vol. 4591, pp. 75 – 97. Springer-Verlag (2007)

12. Carrington, D., Stocks, P.: A tale of two paradigms: Formal methods and soft-
ware testing. In: J.P. Bowen, J.A. Hall (eds.) Z User Workshop, Workshops in
Computing, pp. 51 – 68. Springer-Verlag (1994)

13. Cavalcanti, A.L.C., Clayton, P., O’Halloran, C.: Control Law Diagrams in Cir-

cus. In: J. Fitzgerald, I.J. Hayes, A. Tarlecki (eds.) FM 2005: Formal Methods,
Lecture Notes in Computer Science, vol. 3582, pp. 253 – 268. Springer-Verlag
(2005)

14. Cavalcanti, A.L.C., Gaudel, M.C.: Testing for Refinement in CSP. In: 9th
International Conference on Formal Engineering Methods, Lecture Notes in
Computer Science, vol. 4789, pp. 151 – 170. Springer-Verlag (2007)

15. Cavalcanti, A.L.C., Gaudel, M.C.: Testing for Refinement in Cir-

cus – Extended version. Tech. rep., University of York (2009).
www-users.cs.york.ac.uk/~alcc/CG09.pdf

16. Cavalcanti, A.L.C., Gaudel, M.C.: A note on traces refinement and the conf
relation in the Unifying Theories of Programming. In: A. Butterfield (ed.)
Unifying Theories of Programming 2008, Lecture Notes in Computer Science,
vol. 5713. Springer-Verlag (2010)

17. Cavalcanti, A.L.C., Sampaio, A.C.A., Woodcock, J.C.P.: A Refinement Strat-
egy for Circus. Formal Aspects of Computing 15(2 - 3), 146 — 181 (2003)

18. Cavalcanti, A.L.C., Woodcock, J.C.P.: A Tutorial Introduction to CSP in Uni-
fying Theories of Programming. In: Refinement Techniques in Software Engi-
neering, Lecture Notes in Computer Science, vol. 3167, pp. 220 – 268. Springer-
Verlag (2006)

19. Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Transactions on Software Engineering SE-4(3), 178 – 187 (1978)

20. Cristiá, M., Monetti, P.R.: Implementing and Applying the Stocks-Carrington
Framework for Model-Based Testing. In: K. Breitman, A.L.C. Cavalcanti (eds.)
11th International Conference on Formal Engineering Methods, Lecture Notes
in Computer Science, vol. 5885, pp. 167 – 185. Springer-Verlag (2009)

21. Dick, J., Faivre, A.: Automating the generation and sequencing of test cases
from model-based specifications. In: Formal Methods Europe, Lecture Notes
in Computer Science, vol. 670, pp. 268 – 284. Springer-Verlag (1993)

22. Eertink, E.H.: Simulation techniques for the validation of LOTOS specifica-
tions. Ph.D. thesis, University of Twente (1994)

23. Fischer, C.: How to Combine Z with a Process Algebra. In: J. Bowen, A. Fett,
M. Hinchey (eds.) ZUM’98: The Z Formal Specification Notation. Springer-
Verlag (1998)

24. Fischer, C.: Combination and Implementation of Processes and Data: from
CSP-OZ to Java. Ph.D. thesis, Fachbereich Informatik Universität Oldenburg
(2000)

25. Frantzen, L., Tretmans, J., Willemse, T.A.C.: A Symbolic Framework for
Model-Based Testing. In: K. Havelund, M. Núñez, G. Rosu, B. Wolff (eds.)
Formal Approaches to Software Testing and Runtime Verification, no. 4262 in
Lecture Notes in Computer Science, pp. 40 – 54. Springer (2006)

26. Freitas, A.F., Cavalcanti, A.L.C.: Automatic Translation from Circus to Java.
In: J. Misra, T. Nipkow, E. Sekerinski (eds.) FM 2006: Formal Methods, Lecture
Notes in Computer Science, vol. 4085, pp. 115 – 130. Springer-Verlag (2006)

27. Fujiwara, S., Bochmann, G.: Testing non-deterministic finite state machines
with fault coverage. In: 4th International Workshop on Protocol Test Systems
(1991)

Testing for Refinement in Circus 55

28. Galloway, A.J.: Integrated Formal Methods with Richer Methodological Pro-
files for the Development of Multi-perspective Systems. Ph.D. thesis, University
of Teeside, School of Computing and Mathematics (1996)

29. Gannon, J., McMullin, P., Hamlet, R.: Data abstraction implementation, spec-
ification and testing. ACM Transactions on Programming Languages and Sys-
tems 3(3), 211–223 (1981)

30. Gaudel, M.C.: Testing can be formal, too. In: International Joint Conference,
Theory And Practice of Software Development, Lecture Notes in Computer
Science, vol. 915, pp. 82 – 96. Springer-Verlag (1995)

31. Gaudel, M.C., James, P.J.: Testing algebraic data types and processes : a uni-
fying theory. Formal Aspects of Computing 10(5-6), 436 – 451 (1998)

32. Helke, S., Neustupny, T., Santen, T.: Automating Test Case Generation from
Z Specifications with Isabelle. In: J.P. Bowen, M.G. Hinchey, D. Till (eds.)
International Conference of Z Users, Lecture Notes in Computer Science, vol.
1212, pp. 52 – 71. Springer-Verlag (1997)

33. Hennessy, M.C.B.: Algebraic Theory of Processes. MIT Press (1988)
34. Hierons, R., Sadeghipour, S., Singh, H.: Testing a system specified using stat-

echarts and Z. Information and Software Technology 43(2), 137 – 149 (2001)
35. Hierons, R.M.: Testing from a Z Specification. Software Testing, Verification

& Reliability 7, 19 – 33 (1997)
36. Hierons, R.M.: Comparing test sets and criteria in the presence of test hy-

potheses and fault domains. ACM Transactions on Software Engineering and
Methodology 11(4), 427–448 (2002)

37. Hierons, R.M., Kim, T.H., Ural, H.: On the testability of SDL specifications.
Computer Networks 44(5), 681–700 (2004)

38. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Interna-
tional (1985)

39. Hoare, C.A.R., Jifeng, H.: Unifying Theories of Programming. Prentice-Hall
(1998)

40. Hoenick, J., Olderog, E.R.: Combining specification techniques for processes,
data and time. In: M.J. Butler, L. Petre, K. Sere (eds.) Integrated Formal
Methods, Lecture Notes in Computer Science, vol. 2335, pp. 245 – 266 (2002)

41. Kahsai, T., Roggenbach, M., Schlingloff, B.H.: Specification-based testing for
refinement. In: SEFM ’07: 5th IEEE International Conference on Software En-
gineering and Formal Methods, pp. 237 – 246. IEEE Computer Society (2007)

42. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines
- A survey. In: Proceedings of the IEEE, vol. 84, pp. 1090 – 1126 (1996)

43. Lestiennes, G., Gaudel, M.C.: Testing processes from formal specifications with
inputs, outputs, and datatypes. In: IEEE International Symposium on Software
Reliability Engineering, pp. 3 – 14 (2002)

44. Lucio, L., Pedro, L., Buchs, D.: A Test Language for CO-OPN Specifications.
In: 16th IEEE International Workshop on Rapid System Prototyping, pp. 195
– 201. IEEE Computer Society (2005)

45. Mahony, B., Dong, J.S.: Timed Communicating Object Z. IEEE Transactions
on Software Engineering 26(2), 150 – 177 (2000)

46. Martin, A.: Machine-Assisted Theorem-Proving for Software Engineering.
Ph.D. thesis, Oxford Universiversity Computing Laboratory, Pembroke Col-
lege, Oxford - UK (1995)

47. Massink, M., Latella, D., Gnesi, S.: On testing UML statecharts. The Journal
of Logic and Algebraic Programming 69(1-2), 1 – 74 (2006)

48. Morgan, C.C.: Programming from Specifications, 2nd edn. Prentice-Hall (1994)
49. Nicola, R.D., Hennessy, M.C.B.: Testing equivalences for processes. Theoretical

Computer Science 3(1-2), 83 – 133 (1984)
50. Nogueira, S., Sampaio, A.C.A., Mota, A.C.: Guided test generation from csp

models. In: J.S. Fitzgerald, A.E. Haxthausen, H. Yenigün (eds.) 5th Inter-
national Colloquium on Theoretical Aspects of Computing, Lecture Notes in
Computer Science, vol. 5160, pp. 258 – 273. Springer (2008)

51. Olderog, E., Wehrheim, H.: Specification and (property) inheritance in csp-oz.
Science of Computer Programming 55(1-3), 227–257 (2005)

56 Ana Cavalcanti, Marie-Claude Gaudel

52. Oliveira, M.V.M.: Formal Derivation of State-Rich Reactive Programs Using
Circus. Ph.D. thesis, University of York (2006)

53. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: Formal development
of industrial-scale systems. Innovations in Systems and Software Engineering
1(2), 126 – 147 (2005)

54. Oliveira, M.V.M., Cavalcanti, A.L.C., Woodcock, J.C.P.: A UTP Semantics for
Circus. Formal Aspects of Computing 21(1-2), 3 – 32 (2009)

55. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems. In:
Formal Methods Europe, Industrial Benefits and Advances in Formal Methods,
Lecture Notes in Computer Science, vol. 1051 (1996)

56. Peleska, J., Siegel, M.: Test automation of safety-critical reactive systems.
South African Computer Journal 19, 53 – 77 (1997)

57. Péraire, C., Barbey, S., Buchs, D.: Test selection for object-oriented software
based on formal specifications. In: W.P.d.R. D. Gries (ed.) Programming Con-
cepts and Methods, IFIP TC2/WG2.2,2.3 International Conference on Pro-
gramming Concepts and Methods, IFIP Conference Proceedings, vol. 125, pp.
385 – 403. Chapman & Hall (1998)

58. Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall Series
in Computer Science. Prentice-Hall (1998)

59. Schneider, S.: Concurrent and Real-time Systems: The CSP Approach. Wiley
(2000)

60. Schoot, H.V.D., Ural, H.: Data flow oriented test selection for LOTOS. Com-
puter Networks and ISDN Systems 27(7), 1111 – 1136 (1993)

61. Sherif, A., Jifeng, H., Cavalcanti, A.L.C., Sampaio, A.C.A.: A framework for
specification and validation of real-time systems using circus actions. In: Z. Liu,
K. Araki (eds.) International Colloquium on Theoretical Aspects of Computing,
Lecture Notes in Computer Science, vol. 3407, pp. 478 – 493. Springer-Verlag
(2005)

62. Smith, G.: The Object-Z Specification Language. Kluwer Academic Publishers
(1999)

63. Srivatanakul, T., Clark, J.A., Stepney, S., Polack, F.: Challenging formal spec-
ifications by mutation: a CSP security example. In: 10th Asia-Pacific Software
Engineering Conference, pp. 340 – 350. IEEE Press (2003)

64. Stoddart, B.: An Introduction to the Event Calculus. In: J.P. Bowen, M.G.
Hinchey, D. Till (eds.) International Conference of Z Users, Lecture Notes in
Computer Science, vol. 1212, pp. 52 – 71. Springer-Verlag (1997)

65. Taguchi, K., Araki, K.: The State-based CCS Semantics for Concurrent Z Spec-
ification. In: M. Hinchey, S. Liu (eds.) International Conference on Formal
Engineering Methods, pp. 283 – 292. IEEE (1997)

66. Tang, X., Woodcock, J.C.P.: Towards Mobile Processes in Unifying Theories.
In: 2nd International Conference on Software Engineering and Formal Methods
– SEFM 2004, pp. 44 – 53. IEEE Computer Society (2004)

67. Tang, X., Woodcock, J.C.P.: Travelling Processes. In: D. Kozen, C. Shankland
(eds.) Mathematics of Program Construction – MPC 2004, Lecture Notes in
Computer Science, vol. 3125, pp. 381 – 399. Springer-Verlag (2004)

68. Treharne, H., Schneider, S.: Using a process algebra to control B OPERA-
TIONS. In: 1st International Conference on Integrated Formal Methods –
IFM’99, pp. 437 – 457. Springer-Verlag (1999)

69. Tretmans, J.: Test Generation with Inputs, Outputs, and Quiescence. In: Tools
and Algorithms for the Construction and Analysis of Systems, Lecture Notes
in Computer Science, vol. 1055, pp. 127 – 146. Springer-Verlag (1996)

70. Tripathy, P., Sarikaya, B.: Test Generation from LOTOS Specifications. IEEE
Transactions on Computers 40(4), 543–552 (1991)

71. Woodcock, J.C.P., Cavalcanti, A.L.C., Freitas, L.: Operational Semantics for
Model-Checking Circus. In: J. Fitzgerald, I.J. Hayes, A. Tarlecki (eds.) FM
2005: Formal Methods, Lecture Notes in Computer Science, vol. 3582, pp. 237
– 252. Springer-Verlag (2005)

72. Woodcock, J.C.P., Cavalcanti, A.L.C., Gaudel, M.C., Freitas, L.J.S.: Opera-
tional Semantics for Circus. Formal Aspects of Computing To appear.

73. Woodcock, J.C.P., Davies, J.: Using Z—Specification, Refinement, and Proof.
Prentice-Hall (1996)

