
A note on traces refinement and the conf relation

in the Unifying Theories of Programming

Ana Cavalcanti1 and Marie-Claude Gaudel2

1 University of York, Department of Computer Science
York YO10 5DD, UK

2 LRI, Université de Paris-Sud and CNRS
Orsay 91405, France

Abstract. There is a close relation between the failures-divergences and
the UTP models of CSP, but they are not equivalent. For example, mira-
cles are not available in the failures-divergences model; the UTP theory is
richer and can be used to give semantics to data-rich process algebras like
Circus. Previously, we have defined functions that calculate the failures-
divergences model of a CSP process characterised by a UTP relation. In
this note, we use these functions to calculate the UTP characterisations
of traces refinement and of the conf relation that is widely used in test-
ing. In addition, we prove that the combination of traces refinement and
conf corresponds to refinement of processes in Circus. This result is the
basis for a formal testing technique based on Circus; as usual in testing,
we restrict ourselves to divergence-free processes.

1 Introduction

Formal specifications have been widely explored as a starting point for software
testing; the works reported in [8, 11, 3, 4, 2, 14] give a few examples. In our own
previous work [5], we have instantiated Gaudel’s long-standing theory of formal
testing [12] to CSP [19]. We now face the challenge of a richer language: Circus [6],
which combines CSP with Z [20] and Morgan’s refinement calculus [17] to provide
a notation that supports refinement of reactive systems with state.

The Circus semantic model [18] is based on the UTP [13]; a Circus process
is characterised by a relation in a restriction of the UTP theory for CSP. In
this model, we can define, for example, the application of CSP constructs like
external choice to processes that involve operations on a local state. We can also
accommodate miraculous specifications from Morgan’s refinement calculus.

In previous work, to study the relationship between the UTP and the canon-
ical failures-divergences model of CSP, we have defined functions that calculate
the failures-divergences model of a UTP relation that characterises a CSP pro-
cess [7]. The UTP theory for CSP is richer than the failures-divergences model.
In addition, refinement in the UTP is in close correspondence with failures-
divergences refinement, but the other two main refinement relations that sup-
port compositional and stepwise reasoning in CSP, namely traces and failures
refinement, have not been studied in the UTP.

Traces refinement is useful for reasoning about safety properties of a process;
it ensures that the implementation does not engage in any interactions with the
environment that are not allowed by the specification. Failures refinement, on
the other hand, is used for reasoning about liveness: the interactions in which
an implementation has to be prepared to engage.

Our interest is in a testing technique based on Circus specifications; our long-
term goal is to provide automated support for test generation with the objective
of verifying that a system under test implements a Circus specification correctly.
In other words, we are interested in testing for refinement using Circus.

It is usual for testing techniques to assume that the specification and the sys-
tem under test are divergence free. In addition, testing for trace inclusion and for
reduction of deadlock is typically carried out separately to simplify the individ-
ual tests. Trace inclusion is, of course, traces refinement in the context of CSP,
and reduction of deadlock, is captured by a relation usually called conf (for con-
formance). For CSP, we have proved that traces refinement and conf , together,
are equivalent to failures-divergences refinement for divergence-free processes.

For Circus, we follow a similar approach, but there is no accepted definition
of traces refinement and conf in the UTP. In this note, we calculate definitions
for these relations, and prove that their combination corresponds to refinement
of divergence-free Circus processes. Our calculations are based on functions that
map UTP relations to components of the failures-divergences model. A perhaps
surprising result is that the combination of traces refinement and conf do not
correspond to the refinement relation in the UTP, but to refinement when state
components are encapsulated; this is the notion of process refinement in Circus.

In the next section, we discuss the requirements and assumptions that are
common to testing techniques based on process algebra. Afterwards, in Section 3,
we give a brief and informal presentation of our process algebra of choice: Circus.
Sections 4, 5, and 6 present our main results: the calculations of UTP char-
acterisations of traces refinement and conf , and a proof that, together, they
correspond to process refinement. Finally, in Section 7, we summarise our re-
sults and discuss our plans for future work. An appendix presents a few lemmas
used in the proofs of our main theorems.

2 Process-algebra based formal testing

In this section we briefly recall some basic principles of specification-based test-
ing.

In testing, an executable system, called the system under test (SUT) is given
as a black-box. We can only observe the behavior of the SUT on any chosen
input, or input sequence, and then decide whether it is acceptable or not with
respect to some description of its intended behavior.

Given a formal specification SP and an SUT , any testing activity is, explicitly
or not, based on a satisfaction relation: SUT sat SP . Since the SUT is a black-
box, the testing process consists in using the specification SP to construct a set
of tests, such that the SUT passes them if, and only if, it satisfies SP .

The tests are derived from the specification on the basis of the satisfaction
relation, and often on the basis of some additional knowledge of the SUT and
of its operational environment called testability hypothesis. Such test sets are
called exhaustive in [12] or complete by other authors [4].

In the case of specifications based on some process algebra, tests are processes
built on the same alphabet of events as the specification (possibly enriched by
some special symbols). The execution of a given test consists in running it and the
SUT in parallel. This can be done under the assumption (testability hypothesis)
that the SUT behaves as some unknown, maybe infinite, transition system.

This testability hypothesis builds a bridge between the notions of satisfac-
tion, (as introduced above, between a system and a specification) and refinement
between two models: a specification model and an implementation model. Refine-
ment has the advantage of being formalisable and well studied, while satisfaction
is less easily formalisable, since it relates a model and a system.

The verdict about the success or not of a test execution depends on the ob-
servations that can be made, and it is based on the satisfaction relation. Most
testing methods based on process algebras consider that two kinds of observa-
tions are possible: external events, and deadlock (that is, refusal of some external
events). Deadlock is observed via time-out mechanisms: it is assumed that if the
SUT does not react after a given time limit, it is blocked.

Divergences raise problems of observability; generally, it is not possible to dis-
tinguish a divergent from a deadlocked system using testing. So, most methods
assume that the SUT is divergence free. This is equivalent to identifying diver-
gence with deadlock in the unknown models of the systems under test; most
authors, including us in [5], circumvent the problem of observability in this way.
If the SUT is divergent, the divergence is detected as a (probably forbidden)
deadlock and reported as such by the verdict of the tests.

Exhaustive test sets are often infinite, or too large to be used in practice.
They are, however, used as references for selecting finite, practical, test subsets
according to a variety of criteria, such as additional hypotheses on the SUT [2],
coverage of the specification [8, 14], or test purposes [10].

3 Circus

A Circus program is a sequence of paragraphs just like in Z, but we can declare
channels and processes. A system is specified in Circus as a process: it encapsu-
lates a state, and exhibits some behaviour. Figure 1 gives a small example: the
specification of a fresh identifier generator; it has four paragraphs. The first
paragraph declares a given set ID containing all valid identifiers. The second
and third paragraphs declare a few channels: req is used to request a fresh iden-
tifier, which is output by the system using the channel out ; and the channel ret
is used to return an identifier that is no longer required. The type of a channel
determines the values that it can communicate; in the case of req, the absence
of a type declaration indicates that it is used only for synchronisation.

[ID]

channel req

channel ret , out : ID

process FIG =̂ begin

state S == [idS : P ID]

Init =̂ idS := ∅

Out

∆S

v ! : ID

v ! /∈ idS

idS ′ = idS ∪ {v !}

Remove

∆S

x? : ID

idS ′ = idS \ {x?}

• Init ;

var v : ID • (µX • (req → Out ; out !v → Skip 2 ret?x → Remove) ;X)

end

Fig. 1. Simple Circus specification: fresh identifier generator

The process FIG specifies the system; it is a basic process defined as a se-
quence of process paragraphs that specify its state and behaviour. The state
is defined using a (horizontal) Z schema; in our example it contains just one
component: the set idS of identifiers currently in use.

The behaviour of a process is given by a main action at the end of its specifi-
cation. In our example, first of all, it uses the action Init to initialise the state: it
assigns the empty set to idS . Afterwards, a local variable v is declared, and a
recursion is used to define that FIG repeatedly offers to its environment the
choice of requesting or returning an identifier. After a request via a synchroni-
sation on req, the action Out , which is specified by a Z schema, is used to define
the value of v to be that of any unused identifier, which is then recorded in idS .
The value of v is output via the channel out . If, on the other hand, an identifier
x is returned via ret , then the action Remove is used to update the state.

As shown in our small example, an action can be defined using a combination
of Z, CSP, and imperative programming constructs. It can be a data operation
specified in Z, or an assignment for example. It can also be Skip, the action that
terminates immediately, without interacting with the environment, or Stop, the

action that deadlocks. More interestingly, an action can interact with the envi-
ronment via channels that can be used for input and output of values. Process
algebra constructs like parallelism and external choice can be used to combine
actions that involve both communications and data operations.

In addition, processes can also be combined using CSP operators. For exam-
ple, we can combine FIG in parallel with another process that uses it to provide
identifiers for new employees, for instance. In this case, the channels req, ret ,
and out are likely to be internal to the system, and can be hidden like in CSP.

Actions are modelled as predicates of a restriction of the UTP theory for CSP,
in which the state components and local variables in scope, and their dashed
counterparts, are part of the alphabet, in addition to the extra variables ok , wt ,
tr , and ref , and their dashed counterparts. Action refinement is characterised by
reverse implication just like in the UTP. Process refinement, on the other hand,
is characterised by refinement of the main actions, with the state components
taken as local variables. This follows from the fact that the state of a process is
encapsulated, and its behaviour is given by the main action.

In the sequel, we calculate a characterisation of traces refinement and conf
for the UTP theory for CSP, and, therefore, for Circus actions and processes. We
also establish that, jointly, they are equivalent to process refinement.

4 Traces refinement

In the Circus, or CSP, theory of the UTP, the boolean variable ok records whether
or not a process is in a divergent state (of another process that has already
started). If the state is not divergent, that is, if ok holds, then wt , also a boolean
observational variable, determines whether the previous process is waiting for
interaction or has terminated. The sequence of events tr gives the history of
interactions of the previous process, and finally, ref gives a set of events in
which it may refuse to engage. Similarly, the dashed variables ok ′, wt ′, tr ′ and
ref ′ give similar information about the current process.

A number of healthiness conditions characterise first reactive processes in
general, and then those that are in the CSP theory. The Circus theory has an
extra healthiness condition. Here we use the healthiness conditions R2 and
CSP4 , which we describe below. A complete discussion can be found in [18].

The healthiness condition R2 requires that an action does not rely on the
history of interactions that passed before its activation, that is, tr , and restricts
only the new events to be recorded since the last observation, that is, tr ′ − tr .
It has two different formulations; we use the one shown below.

R2 (A) =̂ A[〈〉, tr ′ − tr/tr , tr ′]

This requires that the action A is not changed if tr is taken to be the empty
sequence, and tr ′ to be just the new events arising from the execution of A.
The condition CSP4 requires that Skip is a right-unit for sequence.

CSP4 (A) =̂ A ; Skip

In more intuitive terms, CSP4 requires that, on termination or divergence,

the value of ref ′ is irrelevant. The following lemma [7] makes this clear; for
completeness its proof is presented in the appendix, along with the proof of all
other lemmas used in this paper.

Lemma 1.

A ;Skip = (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ ∨ A ∧ ok ′ ∧ wt ′ ∨ (A ∧ ¬ ok ′) ; tr ≤ tr ′

This result shows that, if A = A ;Skip, then if A has terminated without diverg-
ing, the value of ref ′ is not relevant. If A has not terminated, then the value of
ref ′ is as defined by A itself. Finally, if it diverges, then the only guarantee is
that the trace is extended; the value of the other variables is irrelevant.

We define An =̂ ok ∧ ¬ wt ∧ A ∧ ok ′ as the predicate that gives the
behaviour of the action A when its preceding action has not diverged and has
terminated, and when A itself does not lead to divergence. This is the normal
behaviour of A; behaviour in other situations is defined by healthiness conditions.
The terminating, non-diverging behaviour of A is At =̂ An ∧ ok ′ ∧ ¬ wt ′, and
finally, the diverging behaviour of A is Ad =̂ ok ∧ ¬ wt ∧ A ∧ ¬ ok ′. We define
that an action A is divergence free if, and only if, [¬ Ad].

The function traces defined below [7] gives the set of traces of a Circus action
defined as a UTP predicate A. This gives a traces model to A compatible with
that adopted in the failures-divergences model of CSP.

As already said, the behaviour of the action itself is that prescribed when
ok and ¬ wt . The behaviour in the other cases is determined by healthiness
conditions of the UTP theory. For example, in the presence of divergence, that
is, when ¬ ok , every action can only guarantee that the trace is only extended,
so that past history is not modified. This behaviour is not recorded by traces(A).

traces(A) = { tr ′ − tr | An } ∪ { (tr ′ − tr) a 〈X 〉 | At }

As mentioned above, tr records the history of interactions before the start of
the action; tr ′ carries this history forward. Therefore, the traces in traces(A) are
sequences tr ′ − tr obtained by removing from tr ′ its prefix tr . In addition, if
tr ′− tr leads to termination, then traces(A) also includes (tr ′− tr)a 〈X 〉, since
X is used in the failures-divergences model to signal termination.

The properties of traces(A) depend on those of A. Since the UTP actions do
not satisfy all healthiness conditions imposed on the failures-divergences model,
there are sets of traces that do not correspond to any of those of a CSP process.
For example, R(true ⊢ tr ′ = tr a 〈 a, b 〉 ∧ ¬ wt ′) is an action that engages in
the events a and b and then terminates. Its behaviour does not allow for the
traces 〈 〉 and 〈 a 〉, so its set of traces does not include the empty trace and is
not prefix closed as required in the failures-divergences model.

The divergent behaviour of a UTP action in the theory of CSP processes
does not enforce ¬ ok ′; the healthiness condition CSP2 enforces exactly that,
whenever ¬ ok ′ is possible, so is ok ′. This means that no process is required to
diverge, and that one of the possible behaviours of a divergent process is not to
diverge or even terminate. For example, the behaviour of the divergent process

Chaos, when ok and ¬ wt hold, is given simply by tr ≤ tr ′. This means that
traces(Chaos), for example, includes every possible trace. This is in contradiction
with the traces model of CSP, where the process that diverges immediately is
identified with Stop in the traces model [19]; its only trace is the empty trace.

In this work, however, since we are interested only in divergence-free actions,
this is not an issue. In [7], we have actually introduced the set traces⊥(A), which
is defined as follows to include all traces that lead to divergence.

traces⊥(A) = traces(A) ∪ divergences(A)
divergences(A) = { tr ′ − tr | Ad }

For CSP2 reactive actions A, the sets traces(A) and traces⊥(A) are the same,
because the traces that lead to divergence may also lead to non-divergence, and
so are included in traces(A). Since divergence-free actions are CSP2 , and in
any case we are interested in (models of) Circus actions and processes, which
are CSP2 , it is adequate for us to use traces(A) in our work. In addition, for
divergence-free actions A, the set traces(A) is that in the traces model of CSP,
which is also the set traces⊥(A) defined in the failures-divergences model.

Here, using the connection between the UTP theory and the CSP traces
model defined by traces , we now calculate a characterisation for traces refinement
in the UTP for divergence-free actions. Refinement in the UTP is defined for
predicates on the same alphabet. In the case of traces refinement, it is defined
for CSP processes, and so, for Circus actions in particular, but there is no need to
assume that the programming variables in their alphabets are the same. In what
follows, we consider actions A1 and A2, whose alphabets include the lists v1 and
v2 of undashed variables. Both v1 and v2 include ok , wt , tr , and ref , but also
possibly different (lists of) variables x1 and x2 representing state components.

The proof of the theorem below, and of the others in the sequel, use a few
lemmas stated and proved in the appendix; in particular, the next theorem uses
Lemma 2. We use [A] as an abbreviation for a universal quantification over all
variables v1, v ′

1
, v2, and v ′

2
. As expected, for a list of variables v , the list v ′

contains the corresponding dashed variables.

Theorem 1.

A1 ⊑T A2 ⇔ [An
2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)]

where the variable list v1 = w1, tr , and provided A1 and A2 are divergence free.

Proof

A1 ⊑T A2

⇔ traces(A2) ⊆ traces(A1) [definition of traces refinement]

⇔ { tr ′ − tr | An
2
} ∪ { (tr ′ − tr) a 〈X 〉 | At

2
}

⊆ { tr ′ − tr | An
1
} ∪ { (tr ′ − tr) a 〈X 〉 | At

1
}

[definition of traces]

⇔ { tr ′ − tr | An
2
} ⊆ { tr ′ − tr | An

1
} ∧ { tr ′ − tr | At

2
} ⊆ { tr ′ − tr | At

1
}

[property of sets and X not in the range of tr or tr ′]

⇔

(
(∀ t • (∃ v2, v

′

2
• An

2
∧ t = tr ′ − tr) ⇒ (∃ v1, v

′

1
• An

1
∧ t = tr ′ − tr)) ∧

(∀ t • (∃ v2, v
′

2
• At

2
∧ t = tr ′ − tr) ⇒ (∃ v1, v

′

1
• At

1
∧ t = tr ′ − tr))

)

[property of sets]

⇔

(
∀ t , v2, v

′

2
| t = tr ′ − tr ∧ An

2
•

(
(∃ v1, v

′

1
• An

1
∧ t = tr ′ − tr) ∧

(¬ wt ′ ⇒ ∃ v1, v
′

1
• At

1
∧ t = tr ′ − tr)

))

[predicate calculus, and definitions of At
2

and An
2
]

⇔

(
∀ t , v2, v

′

2
| t = tr ′ − tr ∧ An

2
•

(
(∃w1,w

′
1
• An

1
[〈 〉, t/tr , tr ′]) ∧

(¬ wt ′ ⇒ ∃w1,w
′

1
• At

1
[〈 〉, t/tr , tr ′])

))

[Lemma 2]

⇔

(
∀ v2, v

′

2
• An

2
⇒

(
(∃w1,w

′
1
• An

1
[〈 〉, tr ′ − tr/tr , tr ′]) ∧

(¬ wt ′ ⇒ ∃w1,w
′

1
• At

1
[〈 〉, tr ′ − tr/tr , tr ′])

))

[predicate calculus]

⇔ ∀ v2, v
′

2
• An

2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
) [R2]

⇔ [An
2
⇒ (∃w1,w

′
1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′
1
• At

1
)] [predicate calculus]

2

In words, this characterisation of traces refinement establishes that if t is a trace
of A2, then it is a trace of A1, and if it leads to termination for A2, then it also
leads to termination for A1.

We observe that, if a trace is not terminating for A2, then it may or may not
be terminating for A1. If it is not terminating for A2 because A2 deadlocks, but
it is terminating for A1, we have a situation in which termination is refined by
deadlock. Indeed, in the simplest case, we observe that Skip is refined by Stop;
in fact, Stop is the most refined CSP process according to the traces refinement
relation. If, on the other hand, a trace is not terminating for A2 because it
proceeds to carry out further interactions, but A1 terminates, for the extension
of the trace, the required property for traces refinement does not hold.

5 The conf relation

The well-studied satisfaction relation [4] called conf , for conformance relation,
can be defined in terms of failures. A failure of a process P is a pair (t ,X), where
t is a trace of P , and X is a set of events in which it may refuse to engage after
performing the events in t (in the order determined by t).

The conf relation is defined for divergence-free processes. The function de-
fined below gives the set of failures of a divergence-free action A.

failures(A) = { ((tr ′ − tr), ref ′) | An }∪
{ ((tr ′ − tr), ref ′ ∪ {X }) | An ∧ wt ′ }∪
{ ((tr ′ − tr) a 〈X 〉, ref ′) | At }∪
{ ((tr ′ − tr) a 〈X 〉, ref ′ ∪ {X }) | At }

In a state that is not terminating, for every refusal set ref ′, there is an extra set
ref ′∪{X }. This is because X is not part of the UTP model and is not considered
in the definition of ref ′, just as it is not considered in the definition of tr ′. As
before, for a terminating state, the extra trace (tr ′ − tr) a 〈X 〉 is recorded.
Finally, after termination, X is also refused, and so ref ′ ∪ {X } is included.

For actions A1 and A2, conf can be defined as follows.

A2 conf A1 =̂ ∀ t : traces(A1) ∩ traces(A2) • Ref (A2, t) ⊆ Ref (A1, t)
where Ref (A, t) =̂ {X | (t ,X) ∈ failures(A) }

The above definition of Ref (A, t) is compatible with the definition of refusals(P)
in CSP, for the process P/t [19, pages 94,197]. Intuitively, the action A2 conforms
to another action A1 if, and only if, whenever A2 performs a trace of events that
is also possible for A1, it does not refuse more events than A1. In other words,
deadlock is reduced or maintained after common traces.

The following theorem gives a characterisation of conf for the UTP. It is a
relation between divergence-free actions.

Theorem 2.

A2 conf A1 ⇔

[
(∃w1,w

′

1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

)]

where v1 = w1, tr , and w1 = k1, ref , and A1 and A2 are divergence free.

Proof

A2 conf A1

⇔ ∀ t : traces(A1) ∩ traces(A2) • Ref (A2, t) ⊆ Ref (A1, t) [definition of conf]

⇔

∀ t : traces(A1) ∩ traces(A2) •

∀ v2, v

′
2
•

(
An

2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr

)
∧

(
An

2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′
1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
At

2
∧ t = (tr ′ − tr) a 〈X〉 ⇒
∃ u1, u

′

1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉

)

[Lemma 3]

⇔

∀ t •

(
(∃ v1, v

′

1
• An

1
∧ (t = tr ′ − tr ∨ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉)) ∧

(∃ v2, v
′
2
• An

2
∧ (t = tr ′ − tr ∨ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉))

)

⇒

∀ v2, v

′
2
•

(
An

2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr

)
∧

(
An

2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′
1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
At

2
∧ t = (tr ′ − tr) a 〈X〉 ⇒
∃ u1, u

′

1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉

)

[definition of traces and property of sets]

⇔

∀ t •

(∃ v1, v

′

1
• An

1
∧ t = tr ′ − tr) ∧ (∃ v2, v

′

2
• An

2
∧ t = tr ′ − tr) ∨(

(∃ v1, v
′
1
• At

1
∧ t = (tr ′ − tr) a 〈X〉) ∧

(∃ v2, v
′

2
• At

2
∧ t = (tr ′ − tr) a 〈X〉)

)

⇒

∀ v2, v

′

2
•

(
An

2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr

)
∧

(
An

2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
At

2
∧ t = (tr ′ − tr) a 〈X〉 ⇒
∃ u1, u

′
1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉

)

[predicate calculus]

⇔

∀ t , v2, v
′

2
•

(∃ v1, v
′

1
• An

1
∧ t = tr ′ − tr)

⇒

(∃ v2, v
′

2
• An

2
∧ t = tr ′ − tr) ⇒

(
An

2
∧ t = tr ′ − tr ⇒

∃ u1, u
′
1
, ref • An

1
∧ t = tr ′ − tr

)
∧

(
An

2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
At

2
∧ t = (tr ′ − tr) a 〈X〉 ⇒
∃ u1, u

′

1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉

)

∧

∀ t , v2, v
′
2
•

(∃ v1, v
′

1
• At

1
∧ t = (tr ′ − tr) a 〈X〉) ∧

⇒

(∃ v2, v
′
2
• At

2
∧ t = (tr ′ − tr) a 〈X〉) ⇒

(
An

2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr

)
∧

(
An

2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
At

2
∧ t = (tr ′ − tr) a 〈X〉 ⇒
∃ u1, u

′

1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉

)

[predicate calculus]

⇔

∀ t , v2, v
′

2
•

(∃ v1, v
′

1
• An

1
∧ t = tr ′ − tr) ∧ An

2
∧ t = tr ′ − tr

⇒(
(∃ u1, u

′

1
, ref • An

1
∧ t = tr ′ − tr) ∧

(wt ′ ⇒ ∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′)

)

∧

∀ t , v2, v
′
2
•

(
(∃ v1, v

′

1
• An

1
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉) ∧

An
2
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉

)

⇒
(∃ u1, u

′

1
, ref • An

1
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉)

[predicate calculus]

⇔

(
∀ v2, v

′

2
• (∃w1,w

′

1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′
1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

))
∧

(∀ v2, v
′

2
• (∃w1,w

′

1
• At

1
) ∧ At

2
⇒ ∃ k1, k

′

1
, ref • At

1
)

[Lemma 2, R2 , v1 = w1, tr and v1 = k1, tr , ref]

⇔

(
∀ v2, v

′

2
• (∃w1,w

′

1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

))
∧

(∀ v2, v
′

2
• (∃ k1, k

′

1
, ref • At

1
) ∧ At

2
⇒ ∃ k1, k

′

1
, ref • At

1
)

[Lemma 4]

⇔

[
(∃w1,w

′

1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ (∃ k1, k
′

1
, ref • An

1
∧ wt ′))

)]

[predicate calculus]

2

This establishes that, if a trace of A2 is also a trace of A1, with any refusal,
then (1) it must be possible for A1 to have that trace with the same refusal; and
(2) if the trace leads to an intermediate state of A2, then it should also lead to
an intermediate state of A1 (with the same refusal). If it leads to a terminating
state of A2, then A1 may or may not terminate, but must have the same refusals.
This stresses the fact that Skip conf Stop, but not Stop conf Skip, a fact that
is perhaps not so obvious in the original definition.

6 Process refinement

Refinement of Circus processes is defined as shown below, where we consider two
processes P1 and P2 whose (lists of) states components are x1 and x2, and whose
main actions are A1 and A2; for simplicity, we omit types.

P1 ⊑P P2 =̂ (var x1 • A1) ⊑ (varx2 • A2)

The variable blocks make the state components local to the actions. Precisely,
the UTP model of a Circus variable block is defined as follows.

(var x • A) =̂ (∃ x , x ′ • A)

In the definition of process refinement, the alphabets of the actions (var x1 • A1)

and (var x2 • A2) are the same; it includes no programming variables. The
refinement relation between actions is the standard UTP relation.

Below, we establish that process refinement can be characterised in terms
of traces refinement and conf . This establishes that we can determine refine-
ment just by examining the traces and refusals of a process. We do not need
information about its internal state, to which an observer has no access.

As already mentioned, in our previous work, we have established that traces
refinement and conf correspond to failures-divergences refinement in CSP. Here,
we show that they do not establish refinement in the richer model of Circus pro-
cesses in the UTP. Instead, it corresponds to processes refinement; this clarifies
the role of data in testing for traces inclusion and deadlock reduction.

Theorem 3. Provided P1 and P2 are divergence-free Circus processes with main
actions A1 and A2, we can characterise refinement as follows.

P1 ⊑P P2 ⇔ A1 ⊑T A2 ∧ A2 conf A1

Proof

A1 ⊑T A2 ∧ A2 conf A1

⇔

[An

2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)] ∧[

(∃w1,w
′

1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

)]

[Theorems 1 and 2]

⇔

(An

2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)) ∧(

(∃w1,w
′
1
• An

1
) ∧ An

2
⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′
1
, ref • An

1
∧ wt ′)

))

[predicate calculus]

⇔

(An
2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)) ∧

(
(∃w1,w

′

1
• An

1
) ⇒

(
(∃ k1, k

′
1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

))
∨

(An
2
⇒ ((∃ k1, k

′

1
, ref • An

1
) ∧ (wt ′ ⇒ ∃ k1, k

′

1
, ref • An

1
∧ wt ′)))

[predicate calculus]

⇔

(An

2
⇒ (∃w1,w

′

1
• An

1
) ∧ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)) ∧(

(∃w1,w
′
1
• An

1
) ⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′
1
, ref • An

1
∧ wt ′)

))

 ∨

An
2
⇒

(∃ k1, k

′

1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1,w
′
1
• At

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

[predicate calculus]

⇔

(An

2
⇒ ∃w1,w

′

1
• An

1
) ∧ (An

2
⇒ (¬ wt ′ ⇒ ∃w1,w

′

1
• At

1
)) ∧(

(∃w1,w
′

1
• An

1
) ⇒

(
(∃ k1, k

′
1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

))

 ∨

An
2
⇒

(∃ k1, k

′

1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1,w
′

1
• At

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

[predicate calculus]

⇔

(
(An

2
∨ (∃w1,w

′

1
• An

1
)) ⇒

(
(∃ k1, k

′

1
, ref • An

1
) ∧

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

))
∧

(An
2
⇒ (¬ wt ′ ⇒ ∃w1,w

′
1
• At

1
))

 ∨

An
2
⇒

(∃ k1, k

′

1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1,w
′

1
• At

1
) ∧

(wt ′ ⇒ ∃ k1, k
′
1
, ref • An

1
∧ wt ′)

[predicate calculus]

⇔

An
2
⇒

(∃ k1, k

′

1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1,w
′
1
• At

1
)

(wt ′ ⇒ ∃ k1, k
′

1
, ref • An

1
∧ wt ′)

 [predicate calculus]

⇔

An
2
⇒

(∃ k1, k

′
1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1, ok
′, ref ′, x ′ • An

1
[false/wt ′])

(wt ′ ⇒ ∃ k1, ok
′, x ′ • An

1
[true/wt ′])

 [one-point rule]

⇔

An
2
⇒

(∃ k1, k

′
1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃w1, ok
′, ref ′, x ′ • An

1
)

(wt ′ ⇒ ∃ k1, ok
′, x ′ • An

1
)

 [predicate calculus]

⇔

An
2
⇒

(∃ k1, k

′

1
, ref • An

1
) ∧

(¬ wt ′ ⇒ ∃ x1, x
′

1
• An

1
)

(wt ′ ⇒ ∃ x1, x
′
1
• An

1
)

[ok , wt , ref , ok ′, and ref ′ are not free in ¬ wt ′ and wt ′]

⇔ [An
2
⇒ (∃ k1, k

′
1
, ref • An

1
) ∧ (∃ x1, x

′
1
• An

1
)] [predicate calculus]

⇔ [An
2
⇒ (∃ x1, x

′

1
• An

1
)] [predicate calculus]

⇔ [(∃ x2, x
′

2
• An

2
) ⇒ (∃ x1, x

′

1
• An

1
)] [x2 and x1 are not free in A1]

⇔ P1 ⊑P P2 [definition of process refinement]

2

Actions do not represent systems in Circus. Their effects on state are visible, and
refinement is only defined for actions on the same state. Therefore, an account
of system testing based on Circus needs to rely on process refinement. This does
not mean, however, that data does not play a part in a testing technique based
on Circus; we further discuss this issue in the next section.

7 Conclusions

In this paper we have established the foundation of a testing theory for Circus, by
calculating definitions for traces refinement and conf and proving that, together,
they characterise process refinement. We are now in a position to consider how
the standard techniques of test generation to establish traces refinement and
conformance can be applied to the state-rich operational semantics of Circus.

Formalisation of testing techniques in the UTP has also been considered
in [1]. That work is concerned with fault-based testing using mutations; it goes
well beyond what we present here, in that it already provides test-case generation
techniques. It is not, however, concerned with testing for refinement in state-rich
reactive languages. The formalisation is conducted in the theory of designs for
total correctness of sequential imperative programs.

A predicative account of traces refinement is also presented in [9]. In that
work, traces refinement is defined for abstract data types, and characterised
using simulation relations. It is also observed that conf cannot be treated in the
same way, because it is not a preorder.

We have already defined exhaustive test sets for CSP processes in [5]. For
Circus, the operational semantics is defined symbolically, with events referring
to values that are constrained by the state and local variable definitions and by
the data operations. It supports the integration of model checking and theorem
proving techniques in reasoning about Circus processes and actions. For testing,
the symbolic operational semantics provides guidance for the coverage of traces
(by giving structure to the set of traces of an action) and, therefore, for the
construction of tests to establish both traces refinement and conf .

In the case of CSP, values are part of event names, and are treated indis-
tinctively. For example, c.0, c.1, and so on, are just event names. In the case
of Circus, symbolic traces like 〈 c.w0, d .w1 〉, for instance, represent collections
of traces; this example, in particular, defines a family of traces that record a
communication over a channel c followed by a communication over a channel d ,
of values w0 and w1. The symbolic representation and the constraints that w0

and w1 are required to satisfy give us an indication of how to produce test data
to achieve acceptable coverage of the collection of traces.

These constraints are raised by the local state of the processes, and by its
data operations. Therefore, even though testing for process refinement does not
require observation of internal state, the valid traces reflect restrictions that
arise from the state operations. It is in our immediate plans to adapt to Circus

the test generation strategy based on a combination of IOLTS (Input-Output
Labelled Transition Systems) and algebraic specifications provided in [16, 15].
We will formalise the proposed technique based on the results presented here.

Traces refinement and conf also have value as tools for reasoning about
safety and liveness properties of actions; we are yet to explored this aspect of
the UTP theory. For traces refinement, further work on healthiness conditions are
necessary to allow a closer correspondence with the CSP traces model. Algebraic
laws of traces refinement and conf is also an interesting topic for future work.

Acknowledgments

We are grateful to the Royal Society of London, who support our collaboration
through an International Joint Project. We have discussed this work with Jim
Woodcock, and are grateful for his comments.

References

1. B. Aichernig and He Jifeng. Mutation testing in UTP. Formal Aspects of Com-

puting, 2008.
2. G. Bernot, M.-C. Gaudel, and B. Marre. Software Testing Based on Formal Spec-

ifications: A theory and a tool. Software Engineering Journal, 6(6):387 – 405,
1991.

3. L. Bougé, N. Choquet, L. Fribourg, and M.-C. Gaudel. Test set generation from
algebraic specifications using logic programming. Journal of Systems and Software,
6(4):343 – 360, 1986.

4. E. Brinksma. A theory for the derivation of tests. In Protocol Specification, testing

and Verification VIII, pages 63 – 74. North-Holland, 1988.
5. A. L. C. Cavalcanti and M.-C. Gaudel. Testing for Refinement in CSP. In 9th Inter-

national Conference on Formal Engineering Methods, Lecture Notes in Computer
Science. Springer-Verlag, 2007.

6. A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. A Refinement
Strategy for Circus. Formal Aspects of Computing, 15(2 - 3):146 — 181, 2003.

7. A. L. C. Cavalcanti and J. C. P. Woodcock. A Tutorial Introduction to CSP in
Unifying Theories of Programming. In Refinement Techniques in Software En-

gineering, volume 3167 of Lecture Notes in Computer Science, pages 220 – 268.
Springer-Verlag, 2006.

8. T. S. Chow. Testing Software Design Modeled by Finite-State Machines. IEEE

Transactions on Software Engineering, SE-4(3):178 – 187, 1978.
9. J. Derrick and E. Boiten. More Relational Concurrent Refinement: Traces and Par-

tial Relations. In REFINE Workshop, Electronic Notes in Theoretical Computer
Science. Elsevier, 2008.

10. J.-C. Fernandez, C. Jard, T. Jéron, and G. Viho. An Experiment in Automatic
Generation of Conformance Test Suites for Protocols with Verification Technology.
Science of Computer Programming, 29:123 – 146, 1997.

11. J. Gannon, P. McMullin, and R. Hamlet. Data abstraction implementation, speci-
fication and testing. ACM Transactions on Programming Languages and Systems,
3(3):211–223, 1981.

12. M.-C. Gaudel. Testing can be formal, too. In International Joint Conference,

Theory And Practice of Software Development, volume 915 of Lecture Notes in

Computer Science, pages 82 – 96. Springer-Verlag, 1995.
13. C. A. R. Hoare and He Jifeng. Unifying Theories of Programming. Prentice-Hall,

1998.
14. D. Lee and M. Yannakakis. Principles and methods of testing finite state machines

- A survey. In Proceedings of the IEEE, volume 84, pages 1090 – 1126, 1996.
15. G. Lestiennes. Contributions au test de logiciel basé sur des spécifications formelles.

PhD thesis, Université de Paris-Sud, 2005.
16. G. Lestiennes and M.-C. Gaudel. Testing processes from formal specifications with

inputs, outputs, and datatypes. In IEEE International Symposium on Software

Reliability Engineering, pages 3 – 14, 2002.

17. C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd edition, 1994.
18. M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P. Woodcock. A UTP Semantics

for Circus. Formal Aspects of Computing, online first, 2007.
19. A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall Series in

Computer Science. Prentice-Hall, 1998.
20. J. C. P. Woodcock and J. Davies. Using Z—Specification, Refinement, and Proof.

Prentice-Hall, 1996.

A Some lemmas

Lemma 1.

A ;Skip = (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ ∨ A ∧ ok ′ ∧ wt ′ ∨ (A ∧ ¬ ok ′) ; tr ≤ tr ′

Proof We take v to be a list of the undashed variables in the alphabet of A,
including ok , wt , tr , ref , and programming variables x .

A ; Skip

= ∃ v0 • A[v0/v
′] ∧ R(true ⊢ tr ′ = tr ∧ ¬ wt ′ ∧ x ′ = x)[v0/v]

[definition of sequence and Skip (as a reactive design [18])]

=

∃ v0 •

A[v0/v

′] ∧(
(wt0 ∧ ((¬ ok0 ∧ tr0 ≤ tr ′) ∨ II [v0/v])) ∨
(¬ wt0 ∧ (ok0 ⇒ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0) ∧ tr0 ≤ tr ′)

)

[definition of R and property of substitution]

=

∃ v0 •

A[v0/v
′] ∧ wt0 ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨

A[v0/v
′] ∧ wt0 ∧ ok ′ ∧ II [v0/v] ∨

A[v0/v
′] ∧ ¬ wt0 ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨

A[v0/v
′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0

[predicate calculus]

=

∃ v0 •

A[v0/v

′] ∧ ¬ ok0 ∧ tr0 ≤ tr ′ ∨
A[v0/v

′] ∧ wt0 ∧ ok0 ∧ ok ′ ∧ II [v0/v] ∨
A[v0/v

′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0

[predicate calculus]

=

(∃ v0 • A[v0/v

′] ∧ ¬ ok0 ∧ tr0 ≤ tr ′) ∨
(∃ v0 • A[v0/v

′] ∧ wt0 ∧ ok0 ∧ II [v0/v]) ∨
(∃ v0 • A[v0/v

′] ∧ ¬ wt0 ∧ ok0 ∧ ok ′ ∧ tr ′ = tr0 ∧ ¬ wt ′ ∧ x ′ = x0)

[predicate calculus]

=

(A ∧ ¬ ok ′); (tr ≤ tr ′) ∨
A ∧ wt ′ ∧ ok ′ ∨
(∃ ref ′ • A) ∧ ¬ wt ′ ∧ ok ′)

 [definition of sequence and one-point rule]

2

Lemma 2.

(∃ tr , tr ′ • A ∧ t = tr ′ − tr) = A[〈 〉, t/tr , tr ′]

provided A is R2 -healthy.

Proof

∃ tr , tr ′ • A ∧ t = tr ′ − tr

= ∃ tr1, tr
′

1
• A[tr1, tr

′

1
/tr , tr ′] ∧ t = tr ′

1
− tr1 [predicate calculus]

= ∃ tr1, tr
′

1
• A[〈 〉, tr ′ − tr/tr , tr ′][tr1, tr

′

1
/tr , tr ′] ∧ t = tr ′

1
− tr1 [R2]

= ∃ tr1, tr
′
1
• A[〈 〉, tr ′

1
− tr1/tr , tr ′] ∧ t = tr ′

1
− tr1 [property of substitution]

= ∃ tr1, tr
′

1
• A[〈 〉, t/tr , tr ′] ∧ t = tr ′

1
− tr1 [property of equality]

= A[〈 〉, t/tr , tr ′] ∧ ∃ tr1, tr
′

1
• t = tr ′

1
− tr1 [predicate calculus]

= A[〈 〉, t/tr , tr ′] [property of sequences]

2

Lemma 3.

Ref (A2, t) ⊆ Ref (A1, t) ⇔

(An

2
∧ t = tr ′ − tr ⇒ ∃ u1, u

′

1
, ref • An

1
∧ t = tr ′ − tr) ∧

(An
2
∧ t = tr ′ − tr ∧ wt ′ ⇒ ∃ u1, u

′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′) ∧

(At
2
∧ t = (tr ′ − tr) a 〈X〉 ⇒ ∃ u1, u

′
1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉)

Proof

Ref (A2, t) ⊆ Ref (A1, t)

⇔ {X | (t ,X) ∈ failures(A2)} ⊆ {X | (t ,X) ∈ failures(A1)}

[definition of Ref (A, t)]

⇔

X | (t ,X) ∈

{ ((tr ′ − tr), ref ′) | An
2
}∪

{ ((tr ′ − tr), ref ′ ∪ {X }) | An
2
∧ wt ′ }∪

{ ((tr ′ − tr) a 〈X 〉, ref ′) | At
2
}∪

{ ((tr ′ − tr) a 〈X 〉, ref ′ ∪ {X }) | At
2
}

⊆

X | (t ,X) ∈

{ ((tr ′ − tr), ref ′) | An
1
}∪

{ ((tr ′ − tr), ref ′ ∪ {X }) | An
1
∧ wt ′ }∪

{ ((tr ′ − tr) a 〈X 〉, ref ′) | At
1
}∪

{ ((tr ′ − tr) a 〈X 〉, ref ′ ∪ {X }) | At
1
}

[definition of failures and property of sets]

⇔

∀X•

∃ v2, v

′

2
•

An
2
∧

t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {X} ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∪ {X}

⇒

∃ v1, v

′
1
•

An
1
∧

t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {X} ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∪ {X}

[predicate calculus]

⇔

∀X , v2, v
′
2
•

An
2
∧

t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {X} ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∪ {X}

⇒

∃ v1, v

′
1
•

An
1
∧

t = tr ′ − tr ∧ X = ref ′ ∨
t = tr ′ − tr ∧ wt ′ ∧ X = ref ′ ∪ {X} ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ X = ref ′ ∪ {X}

[predicate calculus]

⇔

∀ v2, v
′
2
•

An
2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

∧

An
2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

∧

An
2
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

∧

An
2
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ⇒

∃ u1, u
′
1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

[predicate calculus, v1 = u1, ref , and X is not ref ′]

⇔

∀ v2, v
′

2
•

An
2
∧ t = tr ′ − tr ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

∧

An
2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

∧

An
2
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ⇒

∃ u1, u
′

1
, ref , refX•

An

1
[refX /ref ′] ∧(

t = tr ′ − tr ∧ wt ′ ∧ ref ′ = refX ∨
¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ∧ ref ′ = refX

)

[predicate calculus]

⇔

∀ v2, v

′

2
•

(An
2
∧ t = tr ′ − tr ⇒ ∃ u1, u

′

1
, ref • An

1
∧ t = tr ′ − tr) ∧(

An
2
∧ t = tr ′ − tr ∧ wt ′ ⇒

∃ u1, u
′

1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′

)
∧

(
An

2
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉 ⇒

∃ u1, u
′

1
, ref • An

1
∧ ¬ wt ′ ∧ t = (tr ′ − tr) a 〈X〉

)

[predicate calculus]

⇔

(An

2
∧ t = tr ′ − tr ⇒ ∃ u1, u

′

1
, ref • An

1
∧ t = tr ′ − tr) ∧

(An
2
∧ t = tr ′ − tr ∧ wt ′ ⇒ ∃ u1, u

′
1
, ref • An

1
∧ t = tr ′ − tr ∧ wt ′) ∧

(At
2
∧ t = (tr ′ − tr) a 〈X〉 ⇒ ∃ u1, u

′

1
, ref • At

1
∧ t = (tr ′ − tr) a 〈X〉)

[definition of At
2

and At
1
]

2

Lemma 4.

(∃ ref ′ • At) = At

provided A is CSP4 -healthy.

Proof

(∃ ref ′ • At)

= ok ∧ ¬ wt ∧ (∃ ref ′ • A) ∧ ok ′ ∧ ¬ wt ′ [definition of At]

= ok ∧ ¬ wt ∧ (∃ ref ′ • ((∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′))) ∧ ok ′ ∧ ¬ wt ′

[Lemma 1]

= ok ∧ ¬ wt ∧ ((∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′)) ∧ ok ′ ∧ ¬ wt ′

[ref ′ is not free in (∃ ref ′ • A) ∨ ((A ∧ ¬ ok ′); tr ≤ tr ′)]

= ok ∧ ¬ wt ∧ A ∧ ok ′ ∧ ¬ wt ′ [Lemma 1]

= At [definition of At]

2

