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Abstract. CSP is a well-established formalism for modelling and verifi-
cation of concurrent reactive systems based on refinement. Consolidated
denotational models and an effective tool have encouraged much work
on algebraic reasoning and model checking. Testing techniques based on
CSP, however, have not been widely explored, and in this paper we take
a first step by instantiating Gaudel et al’s theory of formal testing to
CSP. We identify the testability hypothesis that we consider necessary
to use CSP models as a basis for testing. We also define test sets that
we prove to be exhaustive with respect to traces and failures refinement,
and consider optimisations, inputs and outputs, and selection strategies.
Our results are proved in terms of the CSP denotational models; they are
a sound foundation for the development of test-generation techniques.

1 Introduction

It is well accepted that formal specifications can be useful bases for software
testing; we refer to [6, 11, 2, 3, 1, 17] among many other pioneering papers and
surveys. In spite of that, testing based on CSP [26, 16], which is a popular formal
notation for specification and verification of concurrent systems, has not been
widely explored. In this paper, we establish the foundations of CSP-based testing
by instantiating a well-established theory of formal testing.

Even though it has been recognised for a while that formal models can bring
much to software testing, embedding implementation testing within a formal
framework is far from being obvious. In this case, we test a system: a system is not
a formula, even if it can be (partially) described as such. Thus, testing is related
to, but very different from proof of correctness based on the program text using,
for example, an assertion technique. Similarly, testing is different from model
checking, where verifications are based on a known model of the system: when
testing, the model corresponding to the system under test is unknown. If it was
known, testing would not be necessary... Moreover, it is sometimes difficult to
observe the state of the system under test [6, 12, 17]. These points have been
successfully circumvented in several testing methods that are based on formal
specifications (or models) and on conformance relations that precisely state what
it means for a system under test to satisfy a specification [7–9, 31, 14, 13, 20, 18].

The gap between systems and models is generally taken into account by ex-
plicit assumptions on the systems under test [6, 1, 17] that are called “testability



hypotheses” in [1] or “test hypotheses” in [4]. Such assumptions are fundamental
in the proof that the success of the test set derived from the specification estab-
lishes the conformance relation. Moreover, they provide hints on complementary
tests or proofs that may be necessary to ensure this equivalence.

CSP provides, in addition to a formal semantics of communicating processes,
formal definitions of notions of refinement similar to the conformance relations
used in specification-based testing or model-based testing. Peleska and Siegel [24,
25] have already studied and applied CSP-based testing. They have not, however,
addressed the issue of the gap between the system under test and the CSP model
that it defines. The practical test sets they propose in [25] are inspired by, but
not in direct correspondence with, their theoretical definitions.

Schneider [27] defines a partition that classifies refusable and non-refusable
events, and high-level and low-level events, for the purposes of modelling security
applications in CSP. In that work, two conformance relations based on testing
are defined, and Schneider shows how model checking can be used to establish
such relations. In our work, on the other hand, we are interested in refinement.

More recently, CSP has been used to formalise a notion of conformance tradi-
tionally associated with input-output labelled transition systems [22]. This work
goes well beyond ours, in that it provides a technique and a tool for genera-
tion and selection of tests based on the use of FDR, the CSP refinement model
checker. Our definition of a test case, however, is similar to theirs. We believe
that the results on exhaustiveness of test sets and factorisation that we present
here are relevant to further justify some of the definitions in [22].

The work in [29] recognises the potential impact of the assumptions about the
interaction of a system with its environment on refinement; it aims at supporting
the validation of (implicit) assumptions. For that, mutation testing techniques
are applied to a CSP model of the system, and the mutants that satisfy the
properties of interest are used as a basis for the clarification of requirements.

In this paper, we state the testability hypotheses that are associated with the
use of CSP. Moreover, we formalise accurately the kind of observations (traces
and refusals) that must be done when performing test experiments derived from a
CSP specification. It leads to a novel formulation of the tests and of their verdicts.
We give algebraic proofs that getting the right observations when running these
tests is equivalent to establishing traces or failures refinement.

In the next section, we give a brief introduction to CSP, and in Section 3
we discuss the consequences of using a process algebra as a basis for testing. In
Section 4, we introduce our testability hypotheses and their consequences, and in
Section 5, we give our exhaustive test sets. In the next three sections, we discuss
possible optimisations of our tests, test selection criteria, and the issues raised
by inputs and outputs. Proofs of our results can be found in [5]. We conclude in
Section 9 with a summary, and a discussion of related and future work.

2 A few things on CSP

Here we briefly recall the syntax of CSP, and some important points of its se-



mantics and notions of refinement. More information can be found in [26].

2.1 Main CSP operators

In CSP, a system is modelled as a process that can interact with its environment
via a number of events. CSP models describe a collection of processes and their
patterns of interactions. The unit of interaction is an event which processes
perform and on which they may synchronise; the occurrence of events is atomic.
The set of (external) events of a process P is denoted αP .

There are two basic processes: STOP is a deadlocked process, and SKIP is
the terminating process. The process a → P can perform an event a and then
behave as P . The external choice, P1 2 P2, is initially prepared to behave either
as P1 or as P2, with the choice being made on occurrence of the first event.
Nondeterminism is modelled by an internal choice, P1 u P2, which is a process
that can arbitrarily choose to behave as either P1 or P2.

Processes can also be combined in sequence, using the operator ; , or in
parallel. CSP provides a number of operators for parallelism; here we use the
alphabetised parallelism: P1 |[ A ]| P2 , which executes P1 and P2 concurrently,
requiring that they synchronise on events that are in the set A.

Events can be external, that is, observable and controllable by the environ-
ment, or internal. Using the hiding operator, like in P \ A, we define a process
that behaves like P , but whose events in the set A are internal.

A simple example, which we use later on, is given below: a process Counter2
that counts from 0 to 2, and is defined in terms of the processes C1 and C2.

Counter2 = add → C1

C1 = add → C2 2 sub → Counter2
C2 = sub → C1

The events in αCounter2 = {add , sub} model requests to add or subtract.
In CSP, inputs and outputs are not primitive concepts; they are modelled

using events whose names are composite. A classical example is a copying process
Replicator , which takes an input x from a channel c and sends it back.

Replicator = c?x → c!x → C

If we assume that the type of x is the rather small set { 0, 1, 2 }, then we have
the events c.0, c.1, and c.2. In this case, the above definition of Replicator is
just an abbreviation for the following definition in terms of these basic events.

Replicator = (c.0 → c.0 → C ) 2 (c.1 → c.1 → C ) 2 (c.2 → c.2 → C )

An input c?x → P(x ) is an abbreviation for a possibly infinite external choice
over processes c.v → P(v), for all possible values v for x . An output event c!e,
on the other hand, is just another name for c.v , where v is the value of e.

2.2 Semantics and refinement

There are three well-established semantic models of CSP: the traces, the (sta-
ble) failures, and the failures-divergences models. The traces model characterises



a process P by its set traces(P) of traces: finite sequences of events which it can
perform. It is a subset of ((αP) ∪ {X })∗; A∗ is the set of finite sequences of
elements of A. The special event X records termination. The empty trace is 〈 〉.
The set of all events, except only for X, is Σ; the set including X is denoted
ΣX. In the sequel, we sometimes consider traces as processes: the finite trace
a1, a2, . . . corresponds to the process a1 → a2 → . . . → SKIP .

As usual we write P/s to describe the behaviour of the process P after one of
its traces s , and initials(P/s) for the set of events performable by P after s . In
fact, initials is defined for any process P [26, page 197], and can be characterised
in terms of its traces as initials(P) = { a : ΣX | 〈 a 〉 ∈ traces(P).

For a trace s of a process P and a subset A = {a1, . . . , an} of αP , the pair
(s ,A) is a failure for P if, and only if, after performing s , P may refuse all events
of A: in other words, P |[ αP ]| (s ; (a1 → P1� . . .�an → Pn) may deadlock just
after s . For Counter2, the set of failures includes the following elements.

(〈 〉, { sub }), (〈 〉, ∅), (〈 add 〉, ∅),
(〈 add , add 〉, { add }), (〈 add , add 〉, ∅), (〈 add , sub 〉, { sub }), (〈 add , sub 〉, ∅),
(〈 add , add , sub 〉, ∅), . . .

The set failures(P) containing all failures of P is subset closed: for instance, if P

may deadlock when the choice among the events {a, b} is proposed by its environ-
ment after a trace s , it may deadlock as well if only a or b is proposed. The traces
of P can be defined from its failures: traces(P) = { t : ΣX∗ | (t , ∅) ∈ failures(P) }.

The set divergences(P) is the set of traces of P that lead to divergent be-
haviour, that is, an infinite sequence of internal events, plus all the extensions of
those traces. The canonical semantics of CSP is given by the failures-divergences
model; it represents a process P by the two sets failures(P) and divergences(P).

Here, we assume that specifications and systems are divergence free. A diver-
gent specification is necessarily a mistake. Also, when testing, divergences raise
problems of observability; generally, it is not possible to distinguish a divergent
from a deadlocked system using testing. Therefore, we identify divergence with
deadlock in the models of the systems under test, so that the models are diver-
gence free; most authors circumvent the problem of observability in this way.
If the system under test is divergent, the divergence is detected as a (probably
forbidden) deadlock and reported as such by the verdict of the tests.

We consider two refinement relations between CSP processes: traces and
failures refinement. A process P is trace-refined by a process Q , that is P vT Q ,
if, and only if, traces(Q) ⊆ traces(P). For failures refinement, P vF Q , we
require that failures(Q) ⊆ failures(P), that is, Q refines P with respect to
failures if, and only if, all its possible traces are traces of P , and Q may refuse
a set of events and deadlock after a trace only if P may.

The first refinement relation is restrictive: it states that there are no ob-
servable behaviours of the refined process that are not behaviours of the original
process. It accepts the idle process STOP as a trace refinement of any other pro-
cess. The second refinement relation is still restrictive on traces, but prescriptive
on acceptances: it states that the refined process can only refuse to do something



when the original process may refuse the same thing in the same situation. In
this case, there are forbidden behaviours and mandatory behaviours.

For divergence-free processes, failures refinement as described above cor-
responds to the refinement relation in the canonical model of CSP: failures-
divergences refinement, which is defined as follows.

P vFD Q =̂ failures(Q) ⊆ failures(P) ∧ divergences(Q) ⊆ divergences(P)

In CSP, failures refinement is defined for the stable-failures model, and not for
the failures-divergences model as above. In the stable-failures model, a process is
represented by its set of traces and its set of failures, that is, we have a separate
record of the traces, independent of the failures. This is because, in this model,
failures are only recorded for stable states, so that traces that lead to divergence
are not in any of the failures. For the stable-failures model, failures refinement
requires subset inclusion of both traces and failures.

In the absence of divergence, however, the failures in the stable-failures model
are exactly those of the failures-divergences model, which contain a failure for
all traces of the process [26, page 215]. In this case, failures inclusion, as re-
quired above in our definition of failures refinement, implies traces inclusion. In
summary, for divergence-free processes, our definition of failures refinement is
equivalent to the standard definition of failures refinement in CSP.

Furthermore, since the set of divergences of divergence-free processes are
empty, failures-divergences refinement corresponds to failures refinement. In
summary, our definition of failures refinement is the notion of refinement in
the canonical model of CSP, when we are restricted to divergence-free processes.

3 Process-algebra based testing

Given a specification SP and a system under test (SUT ), any testing activity
is, explicitly or not, based on a satisfaction relation (also called conformance
relation): SUT sat SP . The subject of the test is an executable system. A system
is a dynamic entity. It raises tricky issues such as observability and controllability,
and is sometimes submitted to peculiar physical constraints. The only way to
observe it is to interact via some specific (and often limited) interface.

To test a system against a process specification, we need tests (more exactly
tester processes) built on the same alphabet of events as the specification (pos-
sibly enriched by some special symbols). The execution of a given test consists
in running it and the SUT in parallel.

The verdict about the success or not of a test execution depends on the ob-
servations that can be made, and it is based on the satisfaction relation. Most
testing methods based on process algebras consider that two kinds of observa-
tions are possible: external events, and deadlock (that is, refusal of some external
events). Deadlock is observed via time-out mechanisms: it is assumed that if the
SUT does not react after a given time limit, it is blocked.

The tests are derived from the specification on the basis of the satisfaction
relation, and often on the basis of some additional knowledge of the SUT and



of its operational environment called testability hypothesis. One advantage of
such a formal framework is that it makes it possible to define test sets that are
unbiased and valid: they accept any SUT satisfying the specification and the
testability hypothesis, and they reject any SUT that does not. Such test sets are
called exhaustive in [12] or complete by other authors [3].

Exhaustive test sets are often infinite, or too large to be used in practice, but
they are used as references for selecting finite, practical, test subsets according
to a variety of criteria, such as additional hypotheses on the SUT [1], coverage
of the specification [6, 17], or test purposes [10].

4 Testing versus refinement: testability hypotheses

Work on testing processes is traditionally based on labelled transition systems
or finite state machines. To recast these results for CSP, the obvious route is to
consider its operational semantics. However, there is a formal link between the
operational and the denotational semantics of CSP. The main concepts usually
associated with the operational semantics, like sets of initials and refusals, are
also defined in terms of the denotational semantics.

This is most convenient to establish a relationship between testing and re-
finement. The definitions of refinement based on the denotational semantics are
very simple: just subset inclusion, as presented above. It is fortunate that we are
able to discuss testing notions based on the usual operational notions, but that
we have a clear link to the denotational semantics. This simplifies the proofs, and
allows for a formal algebraic style. When considering test criteria and test selec-
tion, though, it is necessary to refer to the operational semantics. For instance,
the most popular selection criterion is transition coverage: explicit notions of
states and transitions are needed to formulate it.

The refinement relations presented in Section 2.2 are natural candidates for
CSP-based testing. They are, however, relations between CSP process, and the
SUT is not a CSP process. A classical way of overcoming this difficulty is to
assume that the SUT behaves like some unknown CSP process; this is our
first testability hypothesis. With this assumption, we can then require that this
process is a refinement of the CSP specification. We define that a system P

behaves like a CSP process Q to mean that, in any environment, running P

or running Q yields the same set of observations. If P and Q were both CSP
processes, then behavioural equivalence would be characterised as refinement in
both directions, but P is not a CSP process; it is a system.

In more detail, if SUTCSP denotes the unknown CSP process that behaves
as the SUT , we can consider the satisfaction relation SP vF SUTCSP based
on failures refinement. In the sequel, we write SUT instead of SUTCSP when
there is no ambiguity. The use of failures refinement as a satisfaction relation has
been studied in different frameworks, with various names and notations since the
original definition of testing equivalence in [21]; testing preorder, failure preorder,
≤te , red , conf are examples of the terminology that has been adopted.



The testability hypothesis requires that events of the specification abstract
operations are perceived as atomic and of irrelevant duration in the SUT . It is
necessary to ensure in some way that this requirement is fulfilled, for example,
by developing wrappers, or performing some complementary proofs or tests.

It is interesting to note that, similarly, testing methods based on Finite State
Machine (FSM) descriptions assume that the SUT behaves as an FSM with the
same number of states as the specification, or a known number of states [17].
Likewise, methods based on IO-automata or IO-Transition Systems assume that
the SUT behaves as an IO-automata: it is input-enabled, that is, always ready
to accept any input [31]. Analogously, methods based on algebraic specifications
assume that the SUT behaves as a many-sorted algebra [1].

Our second testability hypothesis is related to nondeterminism in the SUT

and its influence on the verdict after test executions. This hypothesis, sometimes
called the complete testing assumption, postulates that there is some known

integer k such that, if a test experiment is performed k times, then all possible

behaviours are observed. The issue of the number of test executions is a classical
problem in black-box testing of nondeterministic systems. Its choice is generally
based on empirical knowledge of the system, as, for example, its level of internal
parallelism that may give rise to nondeterminism, and the length of the test.
Without such hypotheses, it is hopeless to get a meaningful conclusion after a
test campaign. For some hints, see [13], and for recent variants, see [15].

An example is an SUT that reads the system clock , and based on whether
the time is an odd or an even number, performs the even or odd . Using the first
testability hypothesis, we assume that it behaves like the CSP process below.

CReader = clock?t → if even(t) then (even → SKIP) else (odd → SKIP)

If we cannot observe the clock , then the behaviour of the SUT is more accurately
described by the CSP process CReader \ {|clock |}, which, using the algebraic
laws of CSP, we can show to be equal, in the failures-divergences model, to
the nondeterministic process even → SKIP u odd → SKIP . Such SUT does
not satisfy, according to the semantics of nondeterminism in CSP, our second
testability hypothesis: no SUT that behaves like a nondeterministic CSP process
does, since nondeterminism in CSP is modelled as a completely arbitrary choice,
with no guarantee of balanced behaviour for any value of k . Extra knowledge of
the performance of the SUT , and of the system clock , however, may allow us
to conclude that, if the system is executed, for instance, sixty times in a single
minute, it is guaranteed to read an even and an odd time at least once.

Such considerations are beyond what we aim at formalising in this paper.
For the above example, for instance, we can say that CReader \ {|clock |} is
not an accurate model of the SUT . The extra knowledge of the performance
of the SUT and of the clock means that we know that it actually behaves like
a deterministic, in the sense of CSP, process whose description requires the
formalisation of a notion of time, and properties of the clock. In other words,
we accept the restriction imposed by the second testability hypothesis that, in
the CSP sense, the SUT is deterministic, but point out that determinism may



come from the observation of events that are not necessarily expected to be in
the alphabet of the specification. In our example, these events are, for instance,
the passage of time and the system clock.

These considerations are not relevant for works based, for example, on finite
state machines, where nondeterminism is not necessarily arbitrary. In CSP, non-
determinism captures a notion of abstraction relevant for system development,
and, therefore, refinement. If there is any factor that allows us to make any con-
clusion about the balance of nondeterministic behaviour, this means that, in the
CSP sense, the system is not really nondeterministic.

5 Tests and exhaustive test sets

Failures refinement can be expressed in terms of traces refinement and a well-
studied satisfaction relation [3]: the conf conformance relation (cf. Proposi-
tion 3.13.1 in [30]). For CSP processes P and Q , conf can be defined as follows.

Q conf P =̂ ∀ t : traces(P) ∩ traces(Q) • Ref (Q , t) ⊆ Ref (P , t)
where Ref (P , t) =̂ {X | (t ,X ) ∈ failures(P) }

The above definition of Ref (P , t) is compatible with the definition of refusals(P)
in CSP, for the process P/t [26, pages 94,197].

The following theorem establishes the relationship between failure refine-
ment, traces refinement, and conf ; its simple proof is in [5].

Theorem 1. (P vF Q) ⇔ (P vT Q ∧ Q conf P)

This theorem justifies the suggestion in [30] that traces refinement and conf

can be checked separately. In this section we first study how to test a system
with respect to traces refinement (that is, trace containment), and then address
testing against conf (that is, refusal containment). These two kinds of testing
are suitable for the detection of different types of faults. Testing against traces
refinement makes it possible to detect forbidden behaviours, and testing against
conf makes it possible to detect forbidden deadlocks.

5.1 Testing against traces refinement

Since trace refinement prescribes that traces(SUT ) ⊆ traces(SP), but not the
reverse, a testing strategy does not need to test that a SUT can execute the
traces of SP . It is sufficient to test it against those traces in α(SP)X∗ that are
not traces of SP and to check that they are refused. Moreover, it is sufficient to
consider the minimal prefixes of forbidden traces that are forbidden themselves.
For example, if after a trace abc, the event d is forbidden, then abcda, and abcdb,
for example, are also forbidden, but we only need to consider abcd . On the other
hand, if abd is also forbidden, we also check that it is refused.

Formally, we define a test set that proposes to the SUT the following traces.

{s _ 〈 a 〉 | s ∈ traces(SP) ∧ a /∈ initials(SP/s)}

For one test execution, the verdict is as follows. If the trace s , followed by a
deadlock is observed, then the test execution is said to be a success. If s _ a



is observed, we have a failure. If a strict prefix of s followed by a deadlock
is observed, then the test execution is inconclusive; the trace s has not been
executed by the SUT , and this is acceptable for traces refinement.

As mentioned in Section 4, if the SUT is nondeterministic, then several
executions of the same test must be performed and a global verdict is reached
based on such a set of executions. When the SUT is known to be deterministic,
there is no need for several executions of any of the tests, and the SUT passes a
test as soon as the verdict is either successful or inconclusive, and not a failure.

When the SUT is nondeterministic, the following global verdict for several
executions of the same test is recorded. If there is one execution with a failure
verdict, the SUT does not pass the test. If for all the test executions the verdict
is either success or inconclusive, the SUT passes the test.

The idea of basing the test set on the pairs (s , a) where s ∈ traces(SP) and
a /∈ initials(SP/s) is inspired by the work of Peleska and Siegel [24], where it
is proved that based on this set of pairs, it is possible to detect all violations of
traces refinement, and that this is the minimal set of pairs with this property.
The notions of test and verdict that we present below, however, are slightly
different, and also, we give an algebraic proof of the exhaustivity of the test set.

As mentioned in Section 3, a test execution is a run of the SUT and a test
process T in parallel; we describe this in CSP as (SUT |[ αSP ]| T )\αSP . The
synchronisation set, which is the interface of the system as defined in the specifi-
cation, is hidden; so, the external events of SUT are internal in a test execution.
This means that synchronisation between the SUT and the test proceeds imme-
diately, and cannot be affected by the test execution environment.

On the other hand, this also means that direct observation of traces is not
possible in such test executions. Thus, we introduce three special events, pass ,
fail , and inc, in the alphabet of the test in order to perform on-the-fly verdict.
Using these events, we have a very direct characterisation in CSP of the verdict
of a single test execution as described above.

For a finite trace s = a1, a2, . . . , an and an event a, we define a CSP test
process TT (s , a) as inc → a1 → . . . inc → an → pass → a → fail → STOP .
Formally, we can describe it as shown below.

TT (〈 〉, a) = pass → a → fail → STOP

TT (〈X 〉, a) = pass → a → fail → STOP

TT (〈 b 〉 _ s , a) = inc → b → TT (s , a)

Extending s with a is supposed to lead to an invalid trace; and the test aims at
ruling it out. The event X, it if happens, is final [26, page 143], and only marks
termination. So, no event should occur after it.

The execution of a test T for a given SUT , against a specification SP , is
described by the CSP process below.

ExecutionSP
SUT (T ) = (SUT |[ αSP ]| T )\αSP

The verdict is given by the last event observed (pass , fail , or inc) before deadlock.



Depending on the precision required for the verdict and on some knowledge
of the SUT , it is possible in some cases to use only one or two events among pass ,
fail , and inc. If the SUT is deterministic, for instance, there are no inconclusive
verdicts, and inc can be eliminated. In fact, in our case, since we are testing for
absence of forbidden traces, we can eliminate inc in this way. If any prefix of a
tested trace is observed, the test is successful (due to the prefix closure of the
sets of traces and the definition of trace refinement). Our use of the three events,
however, gives a direct model of verdict for a single test execution.

We now define an exhaustive test set for trace refinement.

ExhaustT (SP) = {TT (s , a) | s ∈ traces(SP) ∧ a /∈ initials(SP/s) }

Testing of termination is covered because it is signalled by the event X that is
explicitly included in the traces. As an example, we consider the process Counter2
from Section 1. The set ExhaustT (Counter2) contains the following tests.

TT (〈 〉, sub) = pass → sub → fail → STOP

TT (〈add , add〉, add) = inc → add → inc → add → pass → add → fail → STOP

TT (〈add , sub〉, sub) = inc → add → inc → sub → pass → sub → fail → STOP

TT (〈add , add , sub, add〉, add) =
inc→add→inc→add→inc→sub→inc→add →pass→add→fail→STOP

TT (〈add , add , sub, sub〉, sub) = . . .

This is, of course, an infinite set since the set traces(Counter2) is infinite.
The next theorem establishes that an SUT that does not fail any of the tests

in ExhaustT (SP) is a traces refinement of SP . Its proof can be found in [5]. For
a trace t , we use last(t) to refer to its last event.

Theorem 2 (Exhaustivity of ExhaustT ). Given two CSP processes, SUT

and SP, SP vT SUT if, and only if

∀TT (s , a) : ExhaustT (SP); t : traces(ExecutionSP
SUT (TT (s , a))) • last(t) 6= fail

As mentioned in Section 3, on the basis of this exhaustive test set, it is possible
to design selection and optimisation strategies for getting finite test sets.

5.2 Testing against refusals

In this section we address the problem of testing whether an SUT behaves as
a CSP process SUTCSP that satisfies SUTCSP conf SP . The definition of conf

requires us to check that, after performing one of their common traces, the
failures of SUT are failures of SP as well. For that we check that, after every
trace s of SP , the SUT cannot refuse all events in a set A accepted by SP .

This is achieved by executing the test described by the CSP process corre-
sponding to the trace s followed by an external choice among the events in A.
Basically, a test execution proposes to the SUT the traces of the CSP process
s ; (2 a ∈ A • a → STOP) where s ∈ traces(SP) and (s ,A) /∈ failures(SP). The



verdict of one execution of such a test is as follows. If s , followed by a deadlock is
observed, the test execution is said to be a failure. If a trace s _ a, with a ∈ A

is observed the result of the test is said to be a success. If a strict prefix of s

followed by a deadlock is observed, the test execution is said to be inconclusive;
the trace s has not been executed by the SUT during this test execution.

Using the same events inc, pass , and fail that modelled the verdict of test
executions concerned with traces refinement, we define the test for a trace
s = a1, a2, . . . , an of SP and a set A such that (s ,A) /∈ failures(SP), or in
other words, A /∈ Ref (SP , s) as follows.

TF (s ,A) = inc→a1→inc→a2→inc. . .an→fail→(2 a∈A • a→pass→STOP)

It can be formally defined as follows.

TF (〈 〉,A) = fail → (2 a ∈ A • a → pass → STOP)
TF (〈 a 〉 a s ,A) = inc → a → TF (s ,A)

Termination is not a special case here: every set is refused after a trace ending
by X. If s ends in X, then there is no A that does not belong to the failures of
SP [26, page 192], and so we do not need to define T (〈X〉,A).

When the SUT is nondeterministic, the global verdict for several executions
of the same test is just as before. If there is one execution with a failure ver-
dict, the SUT does not pass the test. If for all the test executions the verdict
is either success or inconclusive, it passes the test. However, it is not neces-
sary to consider all these tests because as soon as (s ,A) /∈ failures(SP), then
∀A′ ⊃ A • (s ,A′) /∈ failures(SP). If the SUT passes the test for A, it will in
principle pass the test for A′; the only concern would be with nondeterminism.
On the other hand, if the SUT fails the test for A, it may pass the test for A′,
which offers more choices, but a problem has already been identified.

Thus for each trace s , it is sufficient to consider a subset of the sets A′

such that (s ,A′) are not in failures(SP); namely we consider the set As of
sets A1, . . . ,Am of events such that for all Ai , (s ,Ai) /∈ failures(SP), and for
all (s ,A) /∈ failures(SP) there is Ai ∈ As such that A ⊇ Ai . These are the
minimal acceptance sets of SP . In the case of a deadlock, there is no A such
that (s ,A) /∈ failures(SP), and in this case As is empty. Precisely, we propose
the following exhaustive minimal test set for refusal containment.

Exhaustconf (SP) = {TF (s ,A) | s ∈ traces(SP) ∧ A ∈ As}

where As = min⊆({A | (s ,A) /∈ failures(SP) }). For a set S of sets, we define
min⊆(S) = { S | S ∈ S ∧ ¬ ∃S ′ • S ′ ∈ S ∧ S ′ ⊂ S }.

For the process Counter2, we have the following minimal acceptances.

For 〈 〉, we have { add }
For 〈 add 〉, we have { add }, { sub }
For 〈 add , add 〉, we have { sub }
For 〈 add , sub 〉, we have { add }
For 〈 add , add , sub 〉, we have { add }, { sub } . . .

For each trace, there can be several refusal sets, and similarly, several sets of



minimal acceptances. In the exhaustive test set, we have the following tests.

TF (〈 〉, { add }) = fail → add → pass → STOP

TF (〈 add 〉, { add }) = inc → add → fail → add → pass → STOP

TF (〈 add 〉, { sub }) = inc → add → fail → sub → pass → STOP

TF (〈 add , add 〉, { sub }) = inc→add→inc→add→fail→sub→pass→STOP

TF (〈 add , sub 〉, { add }) = inc→add→inc→sub→fail→add→pass→STOP

TF (〈 add , add , sub 〉, { add }) =
inc→add→inc→add→inc→sub→fail→add→pass→STOP

TF (〈 add , add , sub 〉, { sub }) =
inc→add→inc→add→inc→sub→fail→sub→pass→STOP

. . .

The exhaustive test set is enough to establish conformance: an SUT for which
none of the test executions deadlock after a fail is in conformance with SP

according to conf ; a proof is found in [5].

Theorem 3 (Exhaustivity of Exhaustconf ). Given two CSP processes SUT

and SP, (SUT conf SP) if, and only if,

∀TF (s ,A) : Exhaustconf (SP); (t ,B) : failures(ExecutionSP
SUT (TF (s ,A))) •

last(t) 6= fail ∨ B 6= { inc, pass , fail }

This theorem is similar, up to the notation, to Proposition 4.5, proved by Tret-
mans in [30, page 85]. The main difference there is that initials(SP/s) was added
to the minimal set of acceptance sets for technical reasons: the test set was de-
fined by induction, starting from the empty trace, and all the successors of the
state before the last one must appear at each induction step in order to get all
the traces at the next step.

There is also a similar result by Peleska and Siegel in [24], with a rather
different formulation of the sets of acceptance sets to be considered. In their
theoretical work, deadlock observations are characterised in terms of maximal
traces. This is not accurate for nondeterministic systems, since in the traces
model a prefix of a maximal trace may be included just because it is a prefix of
a possible trace, or because the system may deadlock after that prefix. It is well
known that the traces model is not enough to characterise failures. In practice,
one uses timeout to conclude that there is a deadlock, but in the theoretical
work, this must be expressed in terms of the failures model. In the test derivation
method that has been applied to several industrial systems [25], though, Peleska
and Siegel handle deadlock adequately.

5.3 Running tests against systems

The two last theorems are about CSP processes, namely a specification SP , an
unknown process SUTCSP such that the system under test behaves like it, and
some tests. They state some equivalence between, on the one hand, a confor-
mance relation between SP and SUTCSP , and, on the other hand, some prop-
erties of the traces of the parallel composition of SUTCSP with the tests. These
theorems are fundamental for stating practical properties on testing the SUT .



In practice, for every test in ExhaustT and Exhaustconf , it is trivial to obtain
some tester program (in any suitable language for interacting with the SUT , for
instance TTCN, Concert C, ...), that behaves like the CSP test. When performing
one test experiment of the SUT with the tester program corresponding to a test
t , we define that SUT passes1 t if the verdict as defined in the previous section
is not a failure. Now, from the second testability hypothesis, for any test t ,
there is an integer k that prescribes the number of experiments that must be
performed with t . We define that SUT passes t if there is no failure observed
when performing k experiments with t . We also define that SUT passes TS

when SUT passes all the tests in a test set TS .

Theorem 2 above allows to say that, under the testability hypotheses, an
SUT passes all the tests of ExhaustT (SP) if and only if SP vT SUTCSP . In a
more mathematical form we have:

Testability Hypotheses =⇒ (SUT passes ExhaustT (SP) ⇔ SP vT SUTCSP )

Similarly, Theorem 3 and Theorem 1 allow us to say that under the testability
hypotheses, an SUT passes all the tests of ExhaustT (SP) and Exhaustconf (SP)
if, and only if, SP vF SUTCSP .

Testability Hypotheses =⇒
(SUT passes ExhaustT (SP) ∪ Exhaustconf (SP) ⇔ SP vF SUTCSP )

Of course the set of experiments described above, that is, the SUT passing an
exhaustive test set, is not realistic since the test sets are infinite. This leads to
the problem of selecting a finite subsets of these experiments. This can be done
by enriching the hypotheses on the SUT with so-called selection hypotheses,
keeping the same kind of properties as above: under the testability hypotheses
and the selection hypotheses, the SUT passes the selected test set if and only if
it is a refinement of SP . Some hints on test selection are given later in Section 7.

6 Factorisation

The tests in ExhaustT can be factorised, taking advantage of the fact that the set
of traces of a process is prefix-closed. This factorisation decreases the number of
inconclusive executions, although it may result in some adaptive tests, originally
called adaptive checking sequences [17]. They were introduced for dealing with a
nondeterministic SUT . Instead of submitting a preset sequence of events to the
SUT , a tree of possible behaviours is submitted to it, allowing a test to follow
and reveal the nondeterministic choices of the SUT .

In the case of traces refinement testing, for a trace s , we define a factorised
test FactSP

T (s) which, after each of the events of s proposes to the SUT an
external choice between the continuation of the trace and those events forbidden
after the prefix of the trace executed so far. It is formally defined as follows, in
terms of the function FactSP

tr (s , dt) that takes as an extra parameter the trace



dt that has already been executed.

FactSP
T (s) = FactSP

tr (s , 〈 〉)

FactSP
tr (〈 〉, dt) = TFailSP (dt)

FactSP
tr (〈 a 〉 a s , dt) = TFailSP (dt) 2 inc → a → FactSP

tr (s , dt a 〈 a 〉)

TFailSP (s) = pass → 2 af /∈ initials(SP/s) • af → fail → STOP ,

provided initials(SP/s) 6= ∅
TFailSP (s) = STOP , otherwise

The function TFailSP (s) defines the CSP process that proposes all the invalid
extensions of s according to SP .

For Counter2, we have that FactCT (〈add , add , sub, add〉) is the following test.

pass→sub→fail→STOP

2

inc→add→inc→add→




pass→add→fail→STOP

2

inc→sub→inc→add→pass→add→fail→STOP





This factorised test subsumes three tests in the set ExhaustT (Counter2), namely,
TT (〈 〉, sub), TT (〈add , add〉, add), and TT (〈add , add , sub, add〉, add).

The factorised tests, however, have a problem concerning coverage of be-
haviours, since the choices are no more under the control of the test and can be
biased. For example, in the above factorised test, after the SUT performs the
trace 〈 add , add 〉, there is a choice between the testing events pass and inc that
is left up not to the test, but to the environment of the test execution. It is an
external choice over events that are not in the alphabet of the SUT .

For the non-factorised tests, the environment of a test execution can be a
simple process that is prepared to accept interaction on any of the events inc,
pass , and fail , at any moment. Even in such a liberal environment, it is guaran-
teed that the interaction with the SUT defined by the trace that corresponds to
the test is attempted in the test execution.

If the test is factorised, though, the environment of the test execution is
offered choices between pass and inc events, whenever there is a possibility, ac-
cording to the specification, of extending the trace or deadlocking. To ensure
coverage, both choices should be tried; in a simple environment like that de-
scribed above, there is no such guarantee, and more care is needed in its design.

A related concern arises when there are several possibilities of failure. By way
of illustration, we consider that the alphabet of Counter2 includes a third event
mult , which is always refused; the definition of Counter2 remains that presented
in Section 2. In this case, the factorised test takes the following shape.

pass → ((sub → fail → STOP) 2 (mult → fail → STOP))
2

inc → add → . . .

In this case, in the beginning, if the environment of the test execution chooses



to synchronise on pass , it then has no control over the choice between sub and
mult : these events are not in its alphabet. The test is not making a choice, but
rather offering it to the SUT . If the SUT can perform any of them, the mistake
is going to be detected, but it is not possible to determine which of the mistaken
events are possible, since the SUT is not forced to perform any of them.

If the SUT can perform one of the mistaken events, the test execution will
indicate a fail , but it will not be clear which of the choices was made; it is a choice
internal to the test execution. If the SUT can perform both sub and mult due to
an internal nondeterminism, the second testability hypothesis guarantees that,
after running the factorised test a certain number of times, both nondeterministic
choices will be made, but again the test executions will not indicate when this
has happened. If the SUT offers sub and mult in an external choice, in the test
execution, the choice becomes nondeterministic, and even though the testability
hypothesis guarantees that all choices will be made, there is no way, again, of
identifying the reason of the problems that will be indicated.

On the other hand, if the non-factorised tests pass → sub → fail → STOP

and pass → mult → fail → STOP are used instead, given the testability hy-
pothesis, the verdict is more precise. If only one of the mistaken events can be
performed by the SUT , only the test that offers that event will signal a fail . If
the SUT can perform both sub and mult due to an internal nondeterminism,
then the testability hypothesis guarantees that, after running each test a certain
number of times, the nondeterministic behaviour will be revealed. Therefore, the
executions for both tests will reveal a failure, and it will be observed that both
mistakes are possible. If, on the other hand, the SUT can perform both sub

and mult due to an external choice, then the individual non-factorised tests will
make the choice and reveal the individual problems straightaway.

An even more factorised test can be defined. The automaton that defines
set of traces of the so-called canonical tester [3] can be visualised as the tree
formed by the traces of SP decorated at each node by a choice between the
forbidden events after the traces from the root to the node. Such events lead
to a failure verdict followed by STOP . In this case, there is no need for an
inconclusive verdict, but the problem of coverage discussed above arises also
with valid continuations of the trace. In this case, not only the environment
cannot control the initial choice of mistaken events that are to be tried, that is,
the choice between sub and mult , but it also cannot control whether the initial
valid traces to be attempted are 〈 add , add 〉 or 〈 add , sub 〉, for example.

For this reason, the factorisation that we propose above is not the canonical
tester. It provides some optimisation, in that it joins all the tests based on traces
that are associated by the prefix relation, but it does not joint all the tests.

Several authors [3, 30, 24] have studied the minimisation and factorisation
of the exhaustive test set for the conf relation. Brinksma in [3], and later on
Tretmans in [30], provide some ways of building some canonical tester, that is,
some nondeterministic tester process whose behaviour contains all the tests in
Exhaustconf (SP). The factorisation is less obvious than for traces refinement
since all acceptable sets must be attempted after a given trace. It leads to highly



nondeterministic testers. In practice, this formulation raises issues of coverage
of the test set, as discussed above for ExhaustT (SP).

7 Test Selection and Derivation

A testing strategy can be formalised as a way of selecting some finite subset
of an exhaustive test set. The choice of such a strategy corresponds to stronger
hypotheses on the system under test than the testability hypotheses discussed in
Section 4. Such hypotheses are called selection hypotheses in [1]. Weak selection
hypotheses lead to large test sets. Strong selection hypotheses lead to smaller,
more practicable test sets, with the risk that they may not be fulfilled.

Various selection hypotheses can be formulated and combined depending on
some knowledge of the program, some coverage criteria of the specification and
ultimately cost considerations. For instance, a regularity hypothesis uses a size
function on the tests and has the form, for a given exhaustive test set: “ if the
subset of the exhaustive test set made up of all the tests of size less than or equal
to a given limit is passed, then the exhaustive test set is as well”.

For ExhaustT and Exhaustconf , an obvious candidate for a size function on
tests such as TT (s , a) and TF (s ,A) is the length of the trace s . Given the
precise way in which these tests are specified in subsections 5.1 and 5.2, it is
straightforward to implement test generators corresponding to these selection
hypotheses. It must be noted, however, that regularity hypotheses are not always
a good choice in practice. For instance, in [9], Dong and Frankl report cases where
such a strategy failed to detect important faults.

A popular criterion for model-based testing (using finite state machines or
labelled transition systems) is transition coverage. The corresponding selection
hypothesis is a so-called uniformity hypothesis. Such hypotheses are common in
software testing. They assume that the system behaves uniformly on some test
subsets. Thus it is enough to have only one test from each of these subsets.

In the case of transition coverage, it can be reworded as: “if a subset of the
exhaustive test set that exercises all the transitions is passed, then the exhaus-
tive test set is as well”. Given a finite model, it is quite feasible to develop a
generator that yields a set of paths satisfying this criteria (see for instance [6,
17]). One justification of this selection hypothesis is that in model-based testing,
there is a testability hypothesis similar to our first one: the SUT behaves like a
finite model. Since such models have no memory, the execution of a transition
is independent of the way in which it has been reached, and it is sufficient to
exercise it once, checking that the output (if any) is correct, and that the arrival
state in the SUT is equivalent to the arrival state in the model.

The framework that we have developed so far for CSP-based testing is based
on its denotational semantics. As mentioned in Section 4, to consider selection
strategies based on states or transitions, we need to work with the finite labelled
transition systems derived from CSP specifications using its operational seman-
tics. A brute-force way of transposing transition coverage into our framework
could be to select one subset of ExhaustT (resp., in Exhaustconf ), such that the



set of the traces s that originate the selected TT (s , a) (resp., TF (s ,A)) ensures
the coverage of all the transitions of this labelled transition system.

However, coverage of transitions is not just exercising the transitions, but,
importantly, checking that the arrival state after each transition in the SUT is
a right one: it accepts or refuses events that are compatible with the confor-
mance relation. Here the conformance relations are derived from the notions of
refinement, namely, SP vT SUTCSP and SUTCSP conf SP . These relations rely
on traces, as they appear in the form of the tests, in both cases. In our test-
ing approach, these traces correspond to full paths from the initial state, and
transitions are not considered individually. Thus it is not clear that transition
coverage is an adequate selection criteria for the approach of CSP-based testing
that is presented here. Starting from the exhaustive test sets we have defined,
new uniformity hypotheses must be investigated in order to propose pertinent
selection strategies. This is the subject of future work.

8 Inputs and outputs

So far, we have considered events, with no distinction between inputs and out-
puts. This distinction is extremely important in testing. The choice of inputs is
under the control of the tester. The outputs are under the control of the SUT

and provide the information for stating the verdict.
If we consider again our small Replicator example given in Section 2, for

example, we observe that ExhaustT (Replicator) contains the following tests.

TT (〈c.0〉, c.1) = inc → c.0 → pass → c.1 → fail → STOP

TT (〈c.0〉, c.2) = inc → c.0 → pass → c.2 → fail → STOP

TT (〈c.1〉, c.0) = inc → c.1 → pass → c.0 → fail → STOP

TT (〈c.0, c.0, c.0〉, c.1) =
inc → c.0inc → c.0 → inc → c.0 → pass → c.1 → fail → STOP

. . .

Instead of inputs or outputs, we have specific events c.0, c.1, and c.2. The same
applies for the tests in Exhaustconf . We proved that these sets are enough to
indicate mistaken implementations, but this is under our first testability hy-
pothesis: that the SUT can be accurately described as a CSP process. It raises
an issue related to input and output that is not directly captured in CSP: that
of origin of data communication.

As described in Section 2, in CSP, inputs and outputs are only syntactic
sugar for synchronisations on events with composite names. For example, the
process BReplicator defined below is not at all different from Replicator itself.

BReplicator = (c?x → c!x → BReplicator) 2 (c!0 → c!0 → BReplicator)

We could say that it is a process that, instead of waiting for an input, may decide
to output 0, twice. Its CSP model, however, is exactly as that of Replicator , since
c!0 → c!0 → Replicator is a choice already offered by the input.



If we are concerned with checking that an implementation does not decide to
make progress without duly waiting for input from the environment, this CSP
approach to modelling is not appropriate. In [26, page 302], Roscoe mentions
the possibility of introducing the notion of input and output as a basic concept
in CSP, by making outputs undelayable events, in much the same way that the
termination event X is undelayable. Much of the work on this has been carried
out in the context of security and timed applications.

In particular, Schneider [27] defines “may” and “must” tests in the context
of a partition of events that classifies refusable and non-refusable event, but
also high-level and low-level events, for the purposes of security applications.
Schneider is interested in new conformance relations, rather than refinement,
and on the use of model checking, rather than testing.

An interesting line for future work is the extension of CSP to include de-
layable and non-delayable events as suggested in [26], and analyse how results
on testing based on input-output labelled transitions systems [31], and on other
similar formalisms [19], can be cast in this new version of CSP.

By taking inputs and outputs into account, we are likely to be able to factorise
some of the tests that are based on the several traces generated by the implicit
choice associated with a CSP input.

9 Conclusions

In this paper we have established a solid foundation for model-based testing
using CSP. We have characterised the relevant testability hypotheses, and dis-
cussed their consequences. We have concentrated on testing for traces and fail-
ures refinement, but discussed the issues raised by divergence. We have proposed
exhaustive test sets; the algebraic proofs of exhaustiveness are directly based on
the definition of the semantics of CSP. We have considered some possible opti-
misations of our tests, with the observation, however, that optimisations raise
issues of controllability. Finally, we have indicated the challenges imposed by
inputs and outputs, and test selection based on labelled transition systems.

In [25], Peleska and Siegel present a pioneering work on CSP-based testing.
They define and study two extra relations, divergence refinement and robustness.
However, they point out divergent specifications are not very useful, and it is
not clear how they handle divergent implementations. Their test executions do
not hide the events of the specification, and so they allow interference from the
environment in the interaction between the test and the SUT . Their tests use
only one extra event; it characterises success. In the absence of a success, they
do not reveal if the test is inconclusive or a failure. They define may and must
tests; we do not make this distinction because we are able to give an inconclusive
verdict. Using the three events pass , inc, and fail , we have a very direct model
of the verdict. Their definitions of tests are based on traces, but assume the
possibility of infinite traces, as described in the operational semantics. For these,
their tests are not well-defined CSP processes. Since we base our work on the
denotational semantics, we have a natural characterisation of the set of finite



traces that are relevant for a partial, but widely accepted characterisation of
CSP processes: its canonical failures-divergences model.

The failures-divergences model that we adopt here is in direct correspondence
with the UTP model of CSP processes. We expect to be able to recast our results
in the UTP easily, and pave the way to consider more sophisticated concurrent
languages that include constructs from other programming paradigms. In par-
ticular, we are interested in a combination of CSP and Z [28] that is adequate
for refinement called Circus [23].

The next step in our work plans, however, is the characterisation of test
selection and generation techniques. We plan to use the CSP model checker to
provide some empirical results on test generation and selection that will guide
further work on Circus.
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PhD thesis, Université de Paris-Sud, 2005.
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