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Abstract. To analyse the behaviour of reactive systems formally, it
is necessary to build a model. At the very beginning of the develop-
ment, typically only natural language requirements are documented. We
present a formal model, named Data-Flow Reactive Systems (DFRS),
which can be automatically obtained from natural language requirements
that may also describe temporal properties. We prove that a DFRS can
be mapped to a timed input-output transition system, which is widely
used to characterise conformance relations for timed reactive systems.
To validate the proposed model as well as the mechanisation developed
to support its analysis, we consider two toy examples and two examples
from the aerospace and automotive industry. Test cases are indepen-
dently created and we verify that they are all compatible.

Keywords: model mapping, TIOTS, test-case generation

1 Introduction

The need to model the behaviour of a system may become an obstacle to the
use of formal methods as the requirements are commonly written in Natural
Language (NL). In 2009, the Federal Aviation Administration (FAA) published
a report [12] that discusses current practices concerning requirements engineering
management. The report states that “... the overwhelming majority of the survey
respondents indicated that requirements are being captured as English text...”.

With this in mind, we have investigated how we can obtain formal models
from NL requirements of reactive systems automatically, particularly to gen-
erate test cases. Automation is essential, since requiring knowledge of formal
modelling by practitioners is often not feasible. Automation also allows an early
application of formal methods within the development of reactive systems. To
accomplish this goal, we have previously developed a strategy (NAT2TEST) that
generates test cases from NL requirements based on different internal and hidden
formalisms: SCR [14] (NAT2TESTSCR [8]), and IMR [18] (NAT2TESTIMR [6]).

Both in [8] and in [6], the input is NL requirements. The first phase of the test-
generation strategy is a Syntactic Analysis to generate a syntax tree. The second
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Fig. 1. The NAT2TEST Strategy.

phase is a Semantic Analysis, which maps the syntax trees into an informal
semantic representation based on the Case Grammar theory [13].

Based on the experience of generating test cases using two different formal
representations, and with the perspective of instantiating our approach to sev-
eral other target notations, translating the NL requirements to an intermediate
formal notation is a more promising alternative, since the translation from a NL
is a more elaborate task. Then, from an intermediate, and formal, representa-
tion, one might explore different target notations and analyse the system from
several perspectives, using different languages and tools. For example, one might
want to generate SCR code and then use T-VEC [2] to generate test cases, as
already mentioned, but also to analyse the completeness and disjointness of sys-
tem requirements [3]. As another example, it is possible to generate CSP models
and use tools like FDR1 to prove both classical and domain specific properties
of the system requirements.

Therefore, a new architecture for our strategy, which is based on the genera-
tion of an intermediate notation from NL requirements, is presented in Figure 1.
Our focus here is the third step of this strategy (DFRS Generation) and the
DFRS (Data-Flow Reactive System) model that it generates.

Our claim that a DFRS is a good candidate for such an intermediate notation
comes from a theoretical and an empirical perspective. First, as we detail in this
paper, a DFRS can be characterised as a Timed Input-Output Transition System
(TIOTS) – a labelled transition system extended with time, which is widely used
to characterise conformance relations for timed reactive systems. Being more ab-
stract than a TIOTS, a DFRS comprises a more concise representation of timed
requirements. Second, we have so far derived two different formal models from
NL requirements (namely, SCR [8] and IMR [6]), besides other notations that
are currently being considered, and the DFRS model encompass the information
required to derive models in these notations.

1 https://www.cs.ox.ac.uk/projects/fdr/
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Fig. 2. The Vending Machine Specification.

In [10] we briefly present our first ideas of a DFRS as it is used as a source
model to derive a CSP specification, which is later used within the context of a
timed conformance relation. Here, we formalise the definition and properties of
a DFRS, using Z [15] with the support of Z/EVES [19]. We also prove that a
DFRS can be characterised as a Timed Input-Output Transition System

To evaluate the expressiveness of DFRSs, we consider examples from four
domains: a Vending Machine (VM — toy example); a control system for safety
injection in a Nuclear Power Plant (NPP — toy example), a Priority Command
(PC) control provided by Embraer2; and the Turn Indicator System (TIS) of
Mercedes vehicles. Test cases are independently generated for each example,
and we assess whether they are compatible with those generated using a DFRS.

The main contributions of this paper are a formalisation of DFRSs, a theoret-
ical and a practical analysis of these models, and a strategy to generate DFRSs
from NL requirements automatically.

Next section gives the formal definition of a DFRS. Section 3 defines a TIOTS
and how any DFRS can be mapped to a TIOTS. Section 4 describes how a DFRS
can be automatically obtained from NL requirements. Section 5 considers the
test cases of our examples for an empirical analysis of DFRSs. Finally, Section
6 presents our conclusions, and addresses related and future work.

2 Definition and Properties of a DFRS

To illustrate our work, we consider a toy example — the Vending Machine (VM)
presented in Figure 2 as a timed statechart — it is an adaptation of the Coffee
Machine in [16]. We present this statechart just for a concise illustration of the
structure of DFRSs. The input of our strategy is NL requirements.

Initially, the VM is in an idle state. When it receives a coin, it goes to the
choice state and resets the reqTimer (r in Figure 2) clock. This assigns the
current global time (gc) to this variable. After inserting a coin, when the coffee
option is selected, the system goes to the weak or strong coffee state. If coffee is
selected within 30 seconds after inserting the coin, the system goes to the weak
coffee state. Otherwise, it goes to the strong coffee state. The time required to
produce a weak coffee is also different from that of a strong coffee.

2 www.embraer.com.br
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Formally, a DFRS is a 7-tuple: (I, O, T, gcvar, S, s0, TR). Inputs (I ) and
outputs (O) are system variables, whereas timers (T ) are a distinct kind of
variable, which can be used to model temporal behaviour. The global clock is
gcvar, a variable whose values are non-negative numbers representing a discrete
or a dense time. S denotes a (possibly infinite) set of states, s0 is the initial state,
and TR is a (possibly infinite) transition relation between states.

Below, we describe a formal definition of a DFRS available in full in [7].

2.1 Inputs, Outpus and Timers

We use a given set NAME containing the set of all valid variable names, and
define gc to be the name of the system global clock (gc : NAME ). Also VNAME
is the set of all system variables except for the global clock (NAME \ {gc}).

Based on these definitions, we define SVARS and STIMERS to represent in-
puts and outputs (defined later as different mappings of the same type SVARS ),
and timers, respectively, as partial functions from VNAME to TYPE. In this
work, we consider as valid types boolean and numerical types (bool, int, nat,
float, p float – where p float represents non-negative floating-point numbers).
We restrict our model to these types as they are sufficient to describe the con-
sidered domain of requirements – embedded reactive systems whose inputs and
outputs can be seen as signals. Despite that, one can expand the model to in-
corporate new types.

SVARS == {f : VNAME 7→ TYPE | f 6= ∅ ∧ ran f ⊆ {bool , int ,float}}
STIMERS == {f : VNAME 7→ TYPE | ran f = {nat} ∨ ran f = {p float}}

The functions f in SVARS are not empty: the system needs to have at least
one input and one output variable. Differently, one can have a system without
timers, that is, a DFRS whose behaviour is not dependent on time elapsing.

The possible types of an element of SVARS are bool, int and float. The types
nat and p float are used to restrict the possible values of timers since time is
a non-negative number. Besides that, the type of all timers must be the same:
you can analyse the behaviour of the system discretely or continuously, but not
in both ways simultaneously.

Example Besides the system global clock, five variables are identified in the
context of the VM example: two system inputs (coin sensor, coffee request but-
ton), two outputs (system mode, coffee machine output), and one timer (request
timer) whose types are bool, nat, and p float, respectively. �

2.2 States

A state is a relation between names and values (STATE == NAME 7→ VALUE ).
VALUE is a free type that includes booleans and numerical values. As float num-
bers are not part of Standard Z, we declare them as given sets. Despite being



A Formal Model for Natural-Language Timed Requirements 5

out of the scope of this work, it is possible to represent float numbers in Z. For
more details, refer, for instance, to ProofPower-Z3.

The valuation of a variable n defined to have a type t is well typed in a state
s if, and only if, n belongs to the domain of s, and the value associated with
n in s belongs to the set of possible values of t. The function values yields all
possible values of a specific type t. This property of well typedness for variables
in the context of a state is captured by the following predicate.

well typed var : P(STATE ×NAME × TYPE )

∀ s : STATE ; n : NAME ; t : TYPE ; v : VALUE |
n ∈ dom s ∧ s(n) = v • (s,n, f (n)) ∈ well typed var ⇔ v ∈ values(t)

Considering a set f of variables (names related to types), a state s is well typed
if, and only if, it provides a value for each variable (that is, its domain is that
of the function f ) and those variables are well typed in s.

well typed state : P(STATE × (NAME 7→ TYPE ))

∀ s : STATE ; f : NAME 7→ TYPE •
(s, f ) ∈ well typed state ⇔ dom s = dom f ∧
(∀n : dom f ; t : TYPE | f (n) = t • (s,n, t) ∈ well typed var)

The set of states is defined as a (possibly infinite) non-empty set of states
(STATE SET == P1 STATE ), since it must contain at least an initial state.

Example Considering the VM example, a possible initial state of the corre-
sponding DFRS is the following.

{(coin sensor 7→ b(false)), (coffee request button 7→ b(false),
(system mode 7→ n(1)), (coffee machine output 7→ n(1)),

(request timer 7→ p fl(0.0), (system global clock 7→ p fl(0.0))}

where b, n, and p fl are free type constructors associated with boolean values,
natural numbers, and non-negative floating-point values, respectively. We con-
sider that false is used to represent that a coin was not inserted, as well as that
the coffee request button was not pressed. Regarding the variables system mode
and coffee machine output, the natural numbers represent elements of an enu-
meration of possible values: {0 7→choice, 1 7→idle, 2 7→preparing strong coffee,
3 7→preparing weak coffee}, and {0 7→strong, 1 7→undefined, 2 7→weak}. �

2.3 Transitions

A transition relates two states by means of a label. A label represents the oc-
currence of a functional behaviour (fun) or time elapsing (del).

TRANS == (STATE × TRANS LABEL× STATE )
TRANS LABEL ::= fun〈〈FUNCTION ENTRY 〉〉 |

del〈〈DELAY × STMT SET 〉〉
3 http://www.lemma-one.com/ProofPower/index/index.html
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Function Transition With the system behaviour defined as a function that
describes how the system reacts in a given scenario, the occurrence of a func-
tion transition leads to the application of an entry of this function. A function
entry models a scenario as a pair of static and timed guards, related to a set
of statements. When both guards evaluate to true, the system reacts instantly
performing the set of statements. One of the guards can be empty, but not both.

FUNCTION ENTRY ==
{sGuard , tGuard : EXP ; stmts : STMT SET | sGuard ∪ tGuard 6= ∅}

The guards are expressions whose structure adheres to a Conjunctive Normal
Form: a finite set of conjunctions of disjunctions, where each disjunction is a non-
empty binary expression. Above, EXP refers to the set of such expressions. Each
binary expression is a static or a timed expression. A binary expression is said
to be static if, and only if, the name it mentions is the name of a system input
or output. Otherwise, it is a timed expression. Similarly, a guard is static (or
timed) if all its conjunctions and disjunctions are static (or timed). A statement
(STMT == VNAME × VALUE ) is an assignment of a value to a name, and
STMT SET a non-empty set of statements (STMT SET == F1 STMT ).

Delay Transition Time elapsing is characterised by a delay and a set of state-
ments, which model stimuli from the environment that happens immediately
after the delay. A delay can represent a discrete or dense time elapsing. The
former delay is characterised by a positive natural number (N1), whereas the
latter by a positive float number (P FLOAT1), which is a subset of P FLOAT .

DELAY ::= discrete〈〈N1〉〉 | dense〈〈P FLOAT1〉〉

Based on these definitions, we define the DFRS transition relation as a set of
transitions (TRANSREL == PTRANS ). Each transition must be well typed. A
function transition is well typed if, and only if, the statements of its label modify
only values of outputs and timers. In other words, the system does not interfere
with the environment stimuli, which is modelled by the input variables.

well typed function transition : P(TRANS LABEL×
(VNAME 7→ TYPE )× (VNAME 7→ TYPE )×
(VNAME 7→ TYPE ))

∀ trans : TRANS LABEL; I ,O : VNAME 7→ TYPE ;
T : VNAME 7→ TYPE | trans ∈ ran fun •

(trans, I ,O ,T ) ∈ well typed function transition ⇔
(∀ stmt : (functionTransition(trans)).3 •

stmt .1 ∈ dom O ∪ dom T ) ∧
((functionTransition(trans)).1, I ,O) ∈ static exp ∧
((functionTransition(trans)).2,T ) ∈ timed exp

Furthermore, the first guard of a function entry must be static, whereas the
second must be timed. To formalise these requirements, we rely on an auxiliary
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function (functionTransition : TRANS LABEL 7→ FUNCTION ENTRY ) that
extracts the corresponding function entry given a transition label. We note that
the notation .i is used to refer to the projection of the i-th element of a tuple.

Similarly, a delay transition is well typed if, and only if, its statements modify
only values of inputs. Furthermore, there must be one statement concerning each
input, that is, on the occurrence of each delay transition, the system receives the
current value of all its inputs.

Moreover, the delay transitions need to be compatible with the global clock,
that is, if the delay is discrete, the type of the system global time must be
nat , whereas if the delay is dense, the type of the clock must be p float . As
a consequence, all delay transitions share the same type of delay, that is, they
are all discrete or dense. This is captured by the clock compatible transition
property.

clock compatible transition : P(TRANS LABEL× ({gc} → TYPE ))

∀ trans : TRANS LABEL; gcvar : {gc} 7→ TYPE •
(trans, gcvar) ∈ clock compatible transition ⇔ trans ∈ ran del ∧
(((delayTransition(trans)).1 ∈ ran discrete ∧ ran gcvar = {nat}) ∨
((delayTransition(trans)).1 ∈ ran dense ∧ ran gcvar = {p float}))

From these definitions, a transition is said to be well typed (well typed transition)
if it satisfies the restrictions for function and delay transitions defined above.

Example If s0 is the initial state presented in Section 2.2, inserting a coin after
3.14 time units is represented by the following entry in the transition relation.

(s0, del(dense(3.1), {(coin sensor, b(true)), (coffee request button, b(false))}), s1).

It leads to a new state, named s1 �

2.4 Complete Definition

The variables of a DFRS (I, O, T, and gcvar) are defined by the DFRS Variables
schema. It defines that the set of inputs, outputs and timers are disjoint, and
the type of the timers is equal to that of the system global clock.

DFRS Variables
I ,O : SVARS ; T : STIMERS ; gcvar : {gc} → {nat , p float}

disjoint 〈dom I ,dom O ,dom T 〉 ∧ ran T = ran gcvar

The initial state and the set of states of a DFRS (s0, S ) are defined by the
following schema. The initial state of the DFRS is an element of its set of states.

DFRS States == [ S : STATE SET ; s0 : STATE | s0 ∈ S ]

The transition relation (TR) is defined in DFRS TransitionRelation, which es-
tablishes that for each state, it is not possible to have both function and delay
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transitions; that is, or the system receives stimuli from the environment or reacts
to it, but not both at the same state.

DFRS TransitionRelation
TR : TRANSREL

∀ entry1, entry2 : TR | entry1.1 = entry2.1 •
{entry1.2, entry2.2} ⊆ ran fun ∨ {entry1.2, entry2.2} ⊆ ran del

Finally, a DFRS is defined formally by the following schema that includes the
three previous schemas. It establishes that each state in S is well typed with
respect to the system variables. As a consequence we impose that the same
name cannot be associated with values of different types in different states. We
also enforce that TR relates states of S, and each transition is well typed.

DFRS
DFRS Variables
DFRS States
DFRS TransitionRelation

∀ s : S • (s, I ∪O ∪ T ) ∈ well typed state
∀ entry : TR • {entry .1, entry .3} ⊆ S ∧

(entry .2, I ,O ,T , gcvar) ∈ well typed transition

This structure is rich enough to represent requirements written using several
different sentence formations in the context of a variety of application domains.

3 Theoretical Validation: Mapping DFRSs to TIOTSs

An important validation is the definition of the semantics of a DFRS. We show
here that any DFRS can be mapped to a corresponding TIOTS.

3.1 Definition and Properties of a TIOTS

A TIOTS is a 6-tuple (Q, q0, I, O, D, T ), where Q is a (possibly infinite) set of
states, q0 is the initial state, I represents input actions and O output actions, D
is a set of delays, and T is a (possibly infinite) transition relation relating states.

Inputs and Outputs TIOTS ACTION is a given set of all valid actions, that
is, inputs and outputs, and TIOTS ACTIONS the set of sets of actions.

Delays A TIOTS delay represents a discrete or a dense time elapsing, but
differently from a DFRS delay, a delay in a TIOTS can also be 0.

TIOTS DELAY ::= tiots discrete〈〈N〉〉 | tiots dense〈〈P FLOAT 〉〉

TIOTS DELAYS is defined as a set of TIOTS DELAY.
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States A state of a TIOTS is an element of the given set TIOTS STATE, and
TIOTS STATE SET is a non-empty set of states (P1 TIOTS STATE ).

Transition Relation The transition relation (TIOTS TRANSREL) relates
two states by means of a label (TIOTS TRANS LABEL). A label may concern
an input or output action, a delay, or an internal invisible action (τ – tau).

TIOTS TRANS LABEL ::= in〈〈TIOTS ACTION 〉〉 |
out〈〈TIOTS ACTION 〉〉 | tiots del〈〈TIOTS DELAY 〉〉 | tau

TIOTS TRANS == (TIOTS STATE×
TIOTS TRANS LABEL× TIOTS STATE )

TIOTS TRANSREL == PTIOTS TRANS

Complete Definition TIOTS Variables defines input and output actions as
disjoint sets, besides defining a set of delays, which needs to be time compatible
(tiots time compatible): all delays must be of the same type (discrete or dense).

TIOTS Variables
I ,O : TIOTS ACTIONS ; D : TIOTS DELAYS

disjoint 〈I ,O〉 ∧ D ∈ tiots time compatible

A TIOTS comprises a set of states and the initial state is in this set.

TIOTS States == [ Q : TIOTS STATE SET ; q0 : TIOTS STATE | q0 ∈ Q ]

Finally, a TIOTS is defined by the schema below, which requires that each
transition relates states of Q and is well-typed (well typed tiots transition),
that is, comprises elements of I, O, or D. In other words, an input transition
must be labelled by an input action, and an output transition by an output
action. Similarly, a delay transition must be labelled by an element of D.

TIOTS
TIOTS Variables
TIOTS States
T : TIOTS TRANSREL

∀ entry : T • {entry .1, entry .3} ⊆ Q ∧
(entry .2, I ,O ,D) ∈ well typed tiots transition

It also makes sense to constraint a TIOTS by other properties [21]: time addi-
tivity (time additivity TIOTS ), null delay (null delay TIOTS ), and time de-
terminism (time determinism TIOTS ). Informally, time additivity states that
if a state can be reached by two consecutive delay transitions, then it can also
be reached by just one delay transition whose delay is equal to the sum of the
original delays. The second property enforces that two states related by a zero
delay transition are the same. Time determinism ensures that if two states can
be reached by the same amount of delay, then they are the same too.
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3.2 From DFRSs to TIOTSs

The function fromDFRStoTIOTS maps a DFRS to a TIOTS. Figure 3 presents
an informal overview of this mapping process. The states of a DFRS are mapped
to TIOTS states (for instance, 1 7→ A; 2 7→ B ; 3 7→ C ), but some new states
are also introduced in the TIOTS (these are unnamed in Figure 3). The delay
of a delay transition (DFRS) is straightforwardly mapped to a delay in the
TIOTS (for example, tiots del(tiots dense(3.14))), whereas the statements of a
function or a delay transition (DFRS) are mapped to a chain of transitions such
that each one corresponds to an output or an input action (TIOTS), respectively
(for instance, (coin, b(true)) 7→ in(coin true); (mode,n(0)) 7→ out(mode 0)).

Fig. 3. From DFRS to TIOTS – Mapping Transitions.

The delay transition of the DFRS is mapped to a chain of three transitions
(from states A to B) with two new intermediate states. The first transition
represents the time elapsing, whereas the next two represents the stimuli from
the environment. Similarly, the function transition of the DFRS is mapped to a
chain of two transitions (from B to C ). Next, we formalise the mapping process.

TIOTS – Inputs, Outputs and Delays The set of input actions is derived
from the statements of a delay transition as they represent stimuli provided by
the environment. This is formalised by the function mapInputActions. Similarly,
the output actions are derived from the statements of a function transition as it
represents a functional response of the system for a given context. The function
mapStatement maps a DFRS statement into a TIOTS action. The mapping of
delays is straightforward and its formalisation is omitted here.
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mapInputActions : TRANSREL→ TIOTS ACTIONS

∀ transRel : TRANSREL • mapInputActions(transRel) =⋃
{entry : transRel | entry .2 ∈ ran del •
{stmt : (delayTransition(entry .2)).2 • (mapStatement(stmt))}}

TIOTS – States The function mapState : STATE � TIOTS STATE maps a
DFRS state to a TIOTS state, represented abstractly by a name; mapStatements :
STMT SET → TIOTS ACTIONS maps DFRS statements to a set of TIOTS
actions. Each action is a name to represent the corresponding statement.

TIOTS – Transitions From the transition relation of a DFRS we derive
that of the TIOTS using the function mapTransitionRelation, formalised below.
Figure 3 illustrates this mapping with an example.

mapTransitionRelation : TRANSREL→ TIOTS TRANSREL

∀ transRel : TRANSREL •
∃ tr1, tr2 : TIOTS TRANSREL |
tr1 = mapFunctionTransitions(getTransitions(transRel , ran fun),

ran mapState) ∧
tr2 = mapDelayTransitions(getTransitions(transRel , ran del),

ran mapState ∪ getStates(tr1)) •
mapTransitionRelation(transRel) = tr1 ∪ tr2

The function getTransitions is used to extract the transitions of the transi-
tion relation transRel of a particular type characterised by the range of the
fun or del constructors. The translation functions mapFunctionTransitions and
mapDelayTransitions for the different kinds of transitions take the sets of states
already in use as an extra parameter,since, as illustrated, they create new states.

For illustration, we show the mapping of delay transitions.

mapDelayTransitions : (TRANSREL× TIOTS STATE SET ) 7→
TIOTS TRANSREL

dom mapDelayTransitions =
{tr : TRANSREL | ∀ en : tr • en.2 ∈ ran del} × TIOTS STATE SET
∀ transRel : TRANSREL; used : TIOTS STATE SET •
∃ tr1, tr2 : TIOTS TRANSREL •
tr1 = mapTDDelayTransitions(⋃

{set : groupNTDDelayTrans(transRel) | #set = 1}, used) ∧
tr2 = mapSetOfNTDDelayTransitions(
{set : groupNTDDelayTrans(transRel) | #set > 1}, used ∪ getStates(tr1)) ∧

mapDelayTransitions(transRel , used) = tr1 ∪ tr2

The function mapDelayTransitions applies to sets of transitions whose entries en
are of type del (en.2 ∈ ran del). For those, the functions mapTDDelayTransitions
and mapSetOfNTDDelayTransitions are used to map the deterministic and non-
deterministic transitions. The function groupNTDDelayTrans defines a set of sets
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of transitions with the same delay. The sets set of size 1 contain the time deter-
ministic transitions. The sets of size greater than one group the nondeterministic
transitions. For each of these sets, a chain of transitions is defined. For the non-
deterministic transitions, we ensure that the TIOTS target state obtained from
the mapping of the transitions is the same. This becomes the initial state of the
chain of input actions obtained from the statements of each delay transition.

Mapping a DFRS to a TIOTS We use the functions named above to define
how a DFRS is mapped to a TIOTS. The set of states of a TIOTS is defined as
the union of the states obtained from its transition relation with its initial state.
Our mapping function is total, that is, every data-flow reactive system can be
mapped to a corresponding timed input-output system.

Theorem 1 Totality of fromDFRStoTIOTS

∀ d : DFRS • (∃ t : TIOTS • t = fromDFRStoTIOTS (d))

Furthermore, the obtained TIOTS preserves the time additivity and null delay
properties, and it is time deterministic. The proofs of these results are in [7].

4 Formalising Natural Language Requirements

A DFRS model can automatically generated from NL requirements described by
actions guarded by conditions. Here, we provide an overview of how it is done.
Pseudo-code of the related algorithms can be seen in [7]. For more details about
the format of the requirements we refer to [8, 6, 9].

First, the requirements are parsed to assess whether they are correct with
respect to a Controlled Natural Language (CNL) defined in [9]. For instance,
the following is an example of a valid requirement of the VM: “When the system
mode is idle, and the coin sensor changes to true, the coffee machine system
shall: reset the request timer, assign choice to the system mode” [REQ001].

Afterwards, the syntax trees obtained from the requirements are automati-
cally mapped into an informal semantic representation based on the Case Gram-
mar theory [13]. In this theory, a sentence is analysed in terms of the semantic
roles played by each word or group of words in the sentence (e.g., Agent — who
performs the action; Patient — who is affected by the action, To Value — value
associated with action, and so on). Table 1 shows a concrete example obtained
from REQ001. More details of this step are reported in [9].

Finally, we employ an algorithm defined to generate a DFRS from a list of
case frames (Algorithm 1). First, the algorithm calls identifyVariables to identify
the system variables (line 1). A variable is classified as an input if, and only
if, it appears only in patient roles of conditions; otherwise it is an output. To
distinguish timers, we require their names to have “timer” as a suffix.

The type of the variables is inferred from the values mentioned in the to value
role. Then, we create an initial state for these variables (line 2) considering initial
default values (like 0 for int and nat, and false for bool, for instance).
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Table 1. Example of Case Frames (Vending Machine).

Condition #1 - Main Verb: is
Patient: the system mode To Value: idle
Condition #1 - Main Verb: changes
Patient: the coin sensor To Value: true
Action #1 - Main Verb: reset
Agent: the coffee machine system To Value: - Patient: the request timer
Action #2 - Main Verb: assign
Agent: the coffee machine system To Value: choice Patient: the system mode

Algorithm 1: Derive DFRS
input : reqCFList
output : dfrs

1 inputList, outputList, timerList = identifyVariables(reqCFList);
2 initialState = buildInitialState(inputList, outputList, timerList);
3 functionEntries = identifyFunctions(reqCFList, inputList, outputList, timerList);
4 dfrs = new DFRS();
5 dfrs.I = inputList;
6 dfrs.O = outputList;
7 dfrs.T = timerList;
8 dfrs.gcvar = setSystemGC (timerList);
9 dfrs.s0 = initialState;

10 dfrs.TR = generateTransition(functionEntries);

Afterwards, the algorithm calls identifyFunctions to identify the function
transitions that describe the system behaviour (line 3). We identify one function
for each different agent. Therefore, identifyFunctions yields a list of functions
indexed by the corresponding agents. Each function is a list of action statements
mapped to the respective discrete and timed guards. In the end (lines 4–9), the
algorithm creates a DFRS. The complete definition can be seen in [7]. Here, we
now present the algorithm for statement generation.

Algorithm 2 generates an action statement from a case frame that depicts
an action. First (lines 1–3), we retrieve the verb from the Action and the name
of the variable involved from the Patient. If the variable is a timer and the verb
is not reset, an exception is raised since timers can only be reset (line 4–5).

The next step is the identification of the value being assigned to the vari-
able (lines 6–10). If the verb is “reset” the value is the system global time (line
7). Otherwise, it is the content of the To Value (line 8). If the content of the To
Value is not an integer, a float or a boolean, it is a string and the value is the
index of this string within the list of possible values of the variable (lines 9–10).

If the verb being used describes a simple mathematical operation, the algo-
rithm creates the corresponding expression considering the variable and values
identified (lines 11-16). Then, a new statement is created considering the variable
and values identified (lines 17–18).

5 Practical Validation: Test Cases from NL Requirements

To provide an empirical argument as to whether the DFRS model is expressive
enough to represent the behaviour of a timed reactive system as defined using
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Algorithm 2: Generate Statement
input : action, varList
output : actionStatement

1 verb = action.ACT ;
2 varName = toString(action.PAT);
3 var = varList.find(varName);
4 if var .kind = timer ∧ ¬ verb.equals(“reset”) then
5 throw Exception(“timers can only be reset”);

6 value = null;
7 if verb.equals(“reset”) then value =“gc”;
8 else value = toString(action.TOV );
9 if ¬ isInteger(value) ∧ ¬ isFloat(value) ∧ ¬ isBoolean(value) then

10 value = var .possibleValuesList.getIndex(value);

11 rhsExp = newExp();
12 if verb.equals(“add”) then rhsExp = varName + “+” + value;
13 else if verb.equals(“subtract”) then rhsExp = varName + “-” + value;
14 else if verb.equals(“multiply”) then rhsExp = varName + “*” + value;
15 else if verb.equals(“divide”) then rhsExp = varName + “/” + value;
16 else rhsExp = value;

17 actionStatement = new Statement();
18 actionStatement = varName + “:=” + rhsExp;

natural language, we consider the four examples listed in Section 1. Supported by
a mechanisation of the strategy presented in Section 4, we assess whether test
cases, either independently written by specialists of our industrial partner or
generated by a commercial tool (RT-Tester4) from the same set of requirements,
are compatible with the corresponding DFRS models.

To analyse the compatibility with the corresponding DFRS model, we im-
plemented a depth-first search algorithm that explores the DFRS state space
guided by a test case. We provide to the DFRS the inputs described by each
test vector, and check whether the outputs provided by the system are equal to
those in the vector. This comparison is straightforward since we are dealing with
primitive types.

The selected tests are relevant as they are able to detect a high amount of er-
rors introduced by mutation testing as reported in [6]. The verdict of our testing
experiments have been successful as all considered test vectors are compatible
with the corresponding DFRS models, which gives evidence that the generated
DFRSs indeed capture the NL requirements as suggested in this paper.

6 Conclusions

We have presented DFRSs, a concise formal model to represent timed reactive
systems. It is part of an automatic strategy to generate test cases from natu-
ral language requirements that may also describe temporal properties. We have
given a semantics for DFRSs based on TIOTSs. This mapping preserves desired
properties of a TIOTS, namely, time additivity, null delay, and time determin-
ism. We have also considered examples from four different domains, and showed

4 www.verified.de/products/rt-tester/
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that the derived DFRS models are expressive enough to represent a set of inde-
pendently written and generated test cases. To support this analysis, we have
developed a tool NAT2TEST5 that automatically generates DFRS models from
NL requirements, besides other features such as animation of DFRS models.

Previous studies have already addressed the topic of formal modelling nat-
ural languages. These works differ in two main aspects: (1) structure of NL
requirements, or (2) support for timed requirements.

Some studies opt for a more free structure, whereas other impose more re-
strictions when writing the requirements. In general, this choice is related to
the trade-off of a greater or lesser level of automation. Works such as those re-
ported in [4, 20] generate a formal model from unrestricted NL requirements.
This makes the strategy more flexible than ours, but requires user interaction
for the generation process, whereas our strategy is fully automated. Other stud-
ies [17] achieve a high level of automation by imposing restrictions that make the
NL requirements resemble an algorithm. In our work, we reach a compromise.

Our NL imposes some restrictions, but the requirements still resemble a tex-
tual specification. Our restrictions make our approach suitable for describing
actions guarded by conditions, and thus we cannot express properties like in-
variants; this can be accomplished by works such as [1].

A compromise similar to ours is reached, for instance, in [5], but timed re-
quirements are not covered. In [17] timed requirements are considered, but as
previously said from a not so natural textual representation. In [11] timed re-
quirements are handled, but the strategy requires human intervention.

We intend to: (1) integrate this study with our previous works to take ad-
vantage of the generality of DFRS as indicated in Figure 1; (2) analyse the
soundness of our DFRS encoding in CSP; (3) propose a conformance relation to
DFRS models, and (4) compare it with typical conformance relations defined to
TIOTSs, as well as with the conformance relation we define in [10].
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