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Abstract. Control diagrams are routinely used by engineers in the de-
sign of control systems. Yet, currently the formal verification of programs
that implement the diagrams is a challenge. We present a strategy to
translate block diagrams to Circus, a notation that combines Z, CSP, and
a refinement calculus. This work is based on existing tools that produce
Z and CSP specifications from discrete-time block diagrams. By using a
combined notation, we provide a specification that considers both func-
tional and behavioural aspects of the diagrams, and can cover a wider
range of blocks. Moreover, the Circus refinement calculus can be used to
derive or verify implementations, and reason about the block diagrams.
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1 Introduction

A popular and intuitive representation for expressing control system specifica-
tions is that of block diagrams. In this notation, a system is modelled by a,
possibly cyclic, directed graph of blocks interconnected by wires. This graph in-
cludes inputs and outputs to the system, which are signals carried by the wires.
Roughly speaking, the blocks represent functions that determine how the outputs
are calculated from the inputs. In a continuous-time model, signals continuously
vary with time. In a discrete-time model, signals are sampled at discrete time
intervals; input and output take place in cycles.

Due to the criticality of many control systems, analysis has been a major
concern; numerical modelling and simulation are the established techniques. Re-
cently, there have been efforts to use logic to capture the meaning of control dia-
grams and to support reasoning [4, 3, 10]. Our work has a different focus: deriva-
tion and verification of implementations, as opposed to validation of systems.

Discrete-time diagrams written using Simulink are considered in [2]. Simulink
is a popular tool that is part of the Matlab environment [1]; its use in the
avionics and automotive sectors is standard. In [2] we find the description a
tool, ClawZ, that translates control law diagrams to Z. The translation is based
on an extensive Z library that formalises the meaning of many of the blocks. The
version of Z used is that implemented in the theorem prover ProofPower [11].

ClawZ has been extensively and successfully used at the Systems Assurance
Group at QinetiQ in the proof of correctness of Ada programs with respect to



Simulink specifications. As described in [14], the output of ClawZ is used to
construct a refinement conjecture (called a compliance argument) that can be
formally verified using tools integrated with ProofPower.

In Z, reactivity and concurrency cannot be modelled directly; ClawZ cap-
tures only the functional behaviour of one cycle of a control system. Basically,
the Z specification that it generates defines how the outputs of a cycle can be
determined in terms of the inputs (and possibly, state information).

QinetiQ developed another tool, called ClaSP, to support the definition of
a CSP [16] specification that captures the parallelism inherent in a control law
diagram. In principle, the computation embedded in the blocks can be performed
in parallel; order is imposed only by the wiring. ClaSP is used in the verification
by model checking of distributed cyclic scheduling.

Circus [19, 6] is a combination of Z and CSP with a refinement calculus; it
aims at the specification and design of state-rich reactive systems. Circus includes
a theory and a technique of refinement that support the calculation of concurrent
implementations from centralised specifications. The semantics is based on Hoare
and He’s unifying theories of programming [9].

In this work, we give a semantics to control diagrams using Circus, so that we
can capture functionality and concurrency. We reuse ClawZ and ClaSP, which
capture a partial semantics of these diagrams. Our semantics is a strategy to
translate the outputs of extended versions ClawZ and ClaSP to a Circus specifi-
cation: extensions are needed to enlarge the subset of the diagrammatic notation
that is covered. Even so, the existing experience with ClawZ and ClaSP improves
our confidence in the suitability of the Circus semantics.

Using Circus, we can model blocks whose output can be disabled or depends
on the order of arrival of input signals. Moreover, the Circus specification can
capture the behaviour of the system over any number of cycles; our model of a
diagram is a process that proceeds recursively executing cycle after cycle.

With a Circus model, we are able to use refinement to reason about diagrams
and their implementations. Separate analyses that consider functionality and
concurrency independently are not needed. Properties that are based on both the
functionality and the scheduling policies of an implementation can be handled.

In the next section, we present a brief introduction to Simulink control law
diagrams. In Section 3 we describe ClawZ, ClaSP, and Circus; the extensions of
ClawZ and ClaSP are described in Sections 4 and 5. Our translation strategy is
presented in Section 6; refinement is discussed and exemplified in Section 7. In
Section 8 we summarise our work and discuss future and related work.

2 Control law diagrams

Our work is based on the Simulink notation; an example is presented in Figure 1.
That diagram specifies a PID (Proportional Integral Derivative) controller that
is being used to control a fuel metering valve of an aircraft. Each box in a
diagram is called a block; the wires carry signals. The inputs and outputs of a
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system are represented by rounded boxes containing numbers. In our example,
there are eight inputs and one output.

Typically, a block takes some input signals and produces some outputs ac-
cording to a function determined by the kind of block in question. There are
libraries of blocks, and they can also be user-defined.

The rectangular boxes without inputs output the constant value they dis-
play. The circles are sum blocks. Boxes enclosing names are subsystems; they
denote control systems defined in other diagrams. For example, the diagram that
corresponds to the Differentiator block is presented in Figure 2.

Blocks can have state. For example, blocks labelled 1/z are unit delay blocks.
They store the value of the input signal, and output the value stored in the
previous cycle. In each cycle, the output depends on the values of the inputs and
of the state that may be held in the blocks, but other factors may be relevant.

For example, subsystems may be conditionally executed: an action subsystem
has an activate input and is executed when it is true; an enabled subsystem has



an enabling input and is executed when its value is greater than zero. When a
subsystem is not executed, its outputs can either be held at their previous value
or reset to an initial value. Any state contained in blocks within the subsystem
is held until the subsystem is about to be executed again, at which point the
states can be held or reset to an initial value. Merge blocks take a number of
inputs and produce one output: the most recently calculated input.

In the next section, we present two models for control diagrams provided by
two tools. ClawZ uses Z to provide a relational model for blocks, which covers
state, but not concurrency and the behaviour of conditionally executed subsys-
tems and merge blocks. ClaSP, on the other hand, cannot capture functionality.

3 ClawZ, ClaSP, and Circus

ClawZ characterises each block of a Simulink diagram, including constants, as a
set of bindings, typically defined as a schema. In the Z specification of a diagram,
there is a set of bindings for each block, and a set of bindings corresponding to
the whole diagram. Part of the output of ClawZ for the PID diagram in Figure 1
is presented in Figure 3; the Z notation is that adopted by ProofPower.

The schema pidspec declares the inputs and the outputs of the diagram, and
includes (the schemas that specify) the blocks. The predicate of pidspec (omitted)
specifies how the inputs and outputs of the diagram and of each of the blocks
are connected. The type U is a universal type in ProofPower.

We present only the definition of the Differentiator; it is a schema that declares
the inputs and outputs of the Differentiator block, and each of the blocks in its
diagram (Figure 2). The predicate, which is similar to that of pidspec, equates,
for instance, the inputs of the Product block to an input of the whole block and
the output of the Sum block.

ClawZ includes a library of block definitions. The Product block of the Dif-

ferentiator is defined in terms of the library block Product M 2. The Unit Delay

block specification uses UnitDelay g; it is a function that takes a binding that
defines the initial value of the unit delay state, and gives a set of bindings. In
ProofPower, there is support for real numbers: 0 e 0 is the real number 0.

ClaSP provides a simple characterisation of the wiring in a diagram; it ignores
the calculations performed by the blocks. The output of ClaSP is not really a
CSP specification, but a set of pairs that is used as argument for a CSP process
that defines the concurrent behaviour of the diagram. The set includes one pair
for each block in the diagram: the first element of the pair is the set of input
signals of the block, and the second element is a sequence of output signals.

The output of ClaSP for the PID is shown in Figure 4. To make model
checking practical, the CSP process that uses this set of pair determines an order
of execution for the blocks; this is why the outputs are identified by sequences.
The massive parallelism intrinsic in a block diagram leads to processes that have
a large number of states and are difficult to model check.

Circus is a language for refinement; it includes specification constructs from
Z and Morgan’s refinement calculus [13], CSP constructs to model communica-
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pidspec Differentiator Product =̂ Product M

Z

pidspec Differentiator UnitDelay =̂ UnitDelay g (X =̂  e )

Z

pidspec Differentiator

In? : U ; In? : U ;

Product : pidspec Differentiator Product;

Sum : pidspec Differentiator Sum;

UnitDelay : pidspec Differentiator UnitDelay;

Out! : U

Out! = Product.Out!;

Product.In? = In? ∧ Product.In? = Sum.Out!;

Sum.In? = UnitDelay.Out!;

UnitDelay.In? = Sum.In? = In?

Z

pidspec

In? : U ; In? : U ; In? : U ; In? : U ; In? : U ; In? : U ; In? : U ; In? : U ;

Constant : pidspec Constant; Constant : pidspec Constant;

Differentiator : pidspec Differentiator;

...

Out! : U

...

Fig. 3. ClawZ output for the PID (ProofPower notation)

tion and concurrency, and Dijkstra’s language of guarded commands. A Circus

program is a sequence of paragraphs, just like in Z, but they also include channel
and process declarations. Section 6 gives examples.

A process encapsulates state and exhibits behaviour. Like a Circus program,
an explicit definition of a process is a sequence of paragraphs; Figure 6 has an
example. A distinguished paragraph introduces the state schema. At the end,
a main action specifies the behaviour of the process. Actions are (composed
of) Z operations, CSP processes, and guarded commands. Typically, a process
includes several paragraphs to define actions that are combined in the main
action to specify the behaviour of the process. Processes can be combined using
CSP operators: choice, parallelism, hiding, and others.

Communications are events, just like in CSP; if their occurrence entails a
state change, a state operation needs to be used. If a Z operation is used outside
its precondition, it diverges, just like in Z. Guards can be explicitly defined.

Parallelism is alphabetised; we can either define a synchronisation set or the
alphabet of the parallel processes. A synchronisation set determines the channels
for which communication requires synchronisation. The alphabet of a process is



{ ( {FMVPE }, 〈Differentiator out 〉 ), ( {FMVPE ,DFMVGI }, 〈Product1 out 〉 ),
( {FMVPE ,Sum3 out }, 〈Sum2 out 〉 ), ( {FMVPV ,DFMVGF }, 〈Product out 〉 ),
( {Product1 out }, 〈 Integrator out 〉 ), ( {DFM 2MN ,Product out }, 〈 Sum4 out 〉 ),
( {DFM 2MX ,Product out }, 〈 Sum5 out 〉 ),
( {CFMCMX ,CFMCMN ,Sum1 out }, 〈FMTMCD 〉 ),
( { differentiator out , Sum2 out }, 〈Sum1 out 〉 ),
( { integrator out , Sum5 out , Sum4 out }, 〈Limit1 out 〉 ),
( {Limit1 out , Product1 out }, 〈 Sum3 out 〉 ) }

Fig. 4. ClaSP output for the PID

the set of channels that it can use; synchronisation is required for the channels
in the intersection of alphabetised parallel processes. In the case of actions, there
is a concern about conflicting access to the state. The parallel composition of
actions A1 and A2 with a synchronisation set cs is written A1 |[ ns1 | cs | ns2 ]|A2,
where ns1 and ns2 are disjoint sets of names of state components. Both A1 and
A2 have access to the initial value of all state components; however, A1 can only
modify the components named in ns1, and A2 can only modify those in ns2. The
same concerns apply for interleaving of actions.

A refinement calculus and strategy is available for Circus [6]. The strategy
aims at calculating concurrent implementations from centralised specifications.
Using the Circus refinement theory, we can implement and reason about the
Circus model of a diagram. Examples are considered in Section 7.

4 Extensions to ClawZ

The translation of diagrams to Circus is based on the output of extended versions
of ClawZ and ClaSP. ClawZ is extended to include action and enabled subsys-
tems, and merge blocks; they are representative in the treatment of conditional
execution and order of arrival of inputs. In the translation of an action subsys-
tem, we need a record of the enabling condition and the value of its outputs
separately. The schema that records the enabling condition is named after the
block with the suffix Enabling. Schemas with suffix Enabled and Disabled
define the values of the outputs in the case the system is enabled and in the case
the system is disabled. The schema that defines the subsystem combines these
schemas. For enabled subsystems, the strategy is similar.

The definition of a merge block is nondeterministic, and requires information
about whether the inputs have been computed or not, and their order of arrival.
Below, we present the definition of a merge block with two inputs In1? and
In2?. Two extra inputs In1Computed? and In2Computed? determine whether
the values input have been freshly calculated or are just default or held values.
The boolean type BOOL is available in ProofPower, although it is not part of
Standard Z. The component arrOrder is a sequence of input indexes that defines
the order of arrival of the inputs. The single output is Out1!.

If a block has a state, its Z specification would typically involve three schemas
to define the state, the initial state, and the calculation of outputs. The ClawZ



library, however, includes many block definitions, and, for clarity and simplicity,
it groups the definition of each block in a single schema. Components state,
state ′, and initials tate record the value of the state at the beginning of each
cycle, and its initial value. This is the approach we adopt in Merge2.

Merge2
In1?, In2? : U

In1Computed?, In2Computed? : BOOL
arrOrder : seq 1 . . . 2
state, state ′, initial state : U

Out1! : U

initial state = (0 e 0)
In1Computed? ∧ ¬ In2Computed? ⇒ Out1! = In2? = state ′

In2Computed? ∧ ¬ In1Computed? ⇒ Out1! = In1? = state ′

¬ In1Computed? ∧ ¬ In2Computed? ⇒ Out1! = state = state ′

In1Computed? ∧ In2Computed? ⇒
last arrOrder = 1 ⇒ Out1! = In1? = state ′ ∧
last arrOrder = 2 ⇒ Out1! = In2? = state ′

The extra information (In1Computed?, In2Computed?, and arrOrder) required
by Merge2 is determined in the Circus specification.

5 Extensions to ClaSP

ClaSP is extended to incorporate a more elaborate view of blocks, since it consid-
ers that a block produces all its outputs once it receives all its inputs. There are,
however, even basic blocks, like the unit delay, which can produce its output be-
fore it receives its input. (This is currently handled by assuming some arbitrary
input.) Although ClaSP models all the possible flows of execution, it cannot
show the relationship between the order of input signals and an output value.
This means that some information about parallelism in a Simulink diagram can
be lost making automated verification impossible in some circumstances.

We use Z to characterise the form of the output of the extended version
of ClaSP. Again, it is not actually a CSP process, but information about the
structure of the diagram that is used to define the Circus specification.

We use given sets NAME , Signal , and Block to represent the valid specifi-
cation names, and the sets of signal and block names used in the diagram. For
a given diagram, the output produced by ClaSP gives the name of the diagram,
its inputs and outputs, and a characterisation of each of its blocks.

ClaSPOutput
spec : NAME
inputs , outputs : P Signal
blocks : Block → BlockWiring

The wiring of a block defines its inputs, outputs, and the dependencies between



them; these determine the independent flows of execution that can arise to cal-
culate different outputs.

Values of a free type Enabled are used to record whether a flow of execution
is always enabled or enabling depends on the values of some special input sig-
nals: Enabled ::= always | esigs << P Signal >>. In a flow, the order in which
the signals are received may be relevant. We also need to know the signals that
a flow requires (rinps), and the outputs that it produces (pouts).

Flow =̂ [ enabled : Enabled ; ordered : BOOL; rinps , pouts : PSignal ]

The block wiring information includes the order of the inputs and outputs to
establish a correspondence between the inputs and outputs of the ClawZ schema
that defines the functionality of the block and the signals in the diagram.

BlockWiring
inps , outs : seq Signal
flows : PFlow

∀ f : flows | f .enabled ∈ ran esigs • (esigs∼ f .enabled) ⊆ ran inps
(∀ f : flows • f .rinps ⊆ ran inps) ∧

⋃
{ f : flows • f .pouts } = ran outs

∀ f1, f2 : flows • f1 6= f2 ⇒ f1.pouts ∩ f2.pouts = ∅

The invariant establishes that the enabling signals and the required inputs of a
flow are inputs of the block, and every output of the diagram is an output of a
flow. For inputs, we do not have the same restriction, as there may be inputs
that are not required to produce outputs; a unit delay block is a simple example.
Finally, different flows should produce distinct outputs.

Part of the extended ClaSP output for the PID diagram is in Figure 5.
The blocks are very simple: they have one flow, which is always enabled, and
whose output does not depend on the input order. The constants are also blocks,
with no inputs, and just one output. Even though blocks like the Differentiator

represent a diagram, from the point of view of the PID, it is just a block. The
internal communications that take place inside the Differentiator are ignored.

This does not mean, however, that ClaSP does not need to inspect the sub-
systems to determine the model of a diagram. A subsystem can, for example,
have several flows of execution, or have a behaviour that depends on the order
of the inputs are received. This information can only be determined by applying
ClaSP to the blocks of the subsystem.

6 Translation strategy

The starting points for the translation are a ClaSPOutput which we call clasp,
and a Z specification, called clawz, produced by the extended version of ClawZ.
We refer to a definition D in clawz as clawz.D.

The Circus specification of a diagram first declares all signals as channels.
It also declares a synchronisation channel end cycle; after taking all its inputs



〈| spec 7→ pidspec,

inputs 7→ {FMVPE ,DFMVGI ,FMVPV , DFMVGF ,

DFM 2MN ,DFM 2MX ,CFMCMX ,CFMCMN },
output 7→ {FMTMCD },
blocks 7→ {Differentiator 7→ 〈| inps 7→ 〈FMVPE ,Constant1 out 〉,

outs 7→ 〈Differentiator out 〉
flows 7→ { 〈| enabled 7→ always, ordered 7→ false

rinps 7→ {FMVPE ,Constant1 out },
pouts 7→ {Differentiator out } |〉 } |〉,

Constant1 7→ 〈| inps 7→ 〈 〉, outs 7→ 〈Constant1 out 〉
flows 7→ { 〈| enabled 7→ always, ordered 7→ false

rinps 7→ { },
pouts 7→ {Constant1 out } |〉 } |〉,

Sum1 7→ 〈| inps 7→ 〈Differentiator out , Sum2 out 〉, outs 7→ 〈 Sum1 out 〉
flows 7→ { 〈| enabled 7→ always, ordered 7→ false

rinps 7→ {Differentiator out , Sum2 out },
pouts 7→ {Sum1 out } |〉 } |〉, . . . } |〉

Fig. 5. Extended ClaSP output for the PID

and producing all its outputs, each block of a diagram waits to synchronise on
end cycle before proceeding to the next cycle. In this way, all blocks are kept in
phase. The Circus specification corresponding to the PID starts as follows.

channel FMVPE ,Differentiator out , . . . ,CFMCMX ,CFMCMN , . . . : U

channel end cycle;

Next, the Circus specification includes the ClawZ library, which is used in clawz.

6.1 The diagram

Blocks and diagrams are defined as processes. The whole diagram is a process
called clasp.spec, which is defined as the parallel execution of all the blocks.

process clasp.spec =̂
( ‖B : Block • B) \ (Signal \ (clasp.inputs ∪ clasp.outputs) )

The alphabet of each block includes its inputs and outputs, and end cycle. For
conciseness, we use sets and sequences of signals to define channel sets in Circus.

αB = ran(clasp.blocks B).inps ∪ ran(clasp.blocks B).outs ∪ { end cycle }

The synchronisation required by the parallelism determines the possible flows of
execution for the diagram. For the PID , we have the process sketched below.

process pidspec =̂
(Differentiator {|FMVPE ,Constant1 out ,Differentiator out , end cycle|}

||
Sum1 {|Differentiator out ,Sum2 out ,Sum1 out , end cycle |} . . .)

\ {|Constant1 out ,Differentiator out ,Sum2 out , . . . , end cycle |}

The processes that represent the Differentiator and the Sum1 blocks are required



to synchronise on the channels Differentiator out and end cycle (the intersec-
tion of their alphabets); the processes for Sum1 and Limit2 are required to syn-
chronise on Sum1 out and end cycle; and so on. Because the internal channels
are hidden, in an implementation, we do not need to have a separate process for
each block; refinement can lead to combination and splitting of blocks.

6.2 The blocks

The process that corresponds to a block B is defined explicitly, independently
of whether the block is simple, like Sum1, or a subsystem, like Differentiator .
In clasp we have a record the outputs of a subsystem that may be produced
independently and in parallel, but not of internal communications. For example,
to model the interaction between the blocks of the Differentiator in Figure 2, we
need to translate that diagram; the translation of the PID diagram in Figure 1
does not include them. In the next section we discuss the relation between the
Circus process that models the Differentiator in the translation of the PID and
the Circus process obtained by translation the Differentiator diagram.

We first consider the translation of a block whose flows are always enabled
and do not depend on the order of the inputs. The state of the B process includes
a component for each component named state used in the definition of B in clawz.

process B =̂ begin

state B State
def1 state : T1; . . .defn state : Tn

Each defi is a definition in clawz such that clawz.B involves defi, and defi is a set
of bindings with a component of type Ti called state. We define formally what
it means for clawz.B to involve defi.

Definition 1. A type T1 involves a type T2 if and only if (i) T1 = T2; or
(ii) exits a type T3 such that T1 = PT3, and T3 involves T2; or (iii) there are
types T3, . . . ,Tn , such that T1 = T3 × . . .Tn , and any of the Ti involves T2; or
(iv) T1 is a schema with a component whose type involves T2.

For example, the schema pidspec Differentiator characterises the PID Differen-

tiator; it has a component UnitDelay of type pidspec Differentiator UnitDelay,
which is a set of bindings with a component called state defined by UnitDelay g.
So, the process pidspec Differentiator defined in Figure 6 has a state component
called pidspec Differentiator UnitDelay state.

After the state declaration, we include clawz.B and all the definitions in clawz

that it uses. The initialisation of the state is based on the clawz specification.

Init
B State ′

∃ b : defi • defi state′ = b.initial state

A component defi state, corresponding to a state component of a definition defi



process pidspec Differentiator =̂ begin

state

pidspec Differentiator State =̂ [ pidspec Differentiator UnitDelay state : U ]

pidspec Differentiator UnitDelay from Figure 3 and other definitions it uses.

Init

pidspec Differentiator State ′

∃ b : pidspec Differentiator UnitDelay •
pidspec Differentiator UnitDelay state ′ = b.initial state

Calculate pidspec Differentiator

∆pidspec Differentiator State; In1?, In2?,Out1! : U

∃ b : pidspec Differentiator •
b.In1? = In1? ∧ b.In2? = In2? ∧
b.UnitDelay .state = pidspec Differentiator UnitDelay state ∧
b.UnitDelay .state ′ = pidspec Differentiator UnitDelay state ′ ∧
b.Out1! = Out1!

Calculate pidspec Differentiator out =̂
Calculate pidspec Differentiator \ (pidspec Differentiator UnitDelay state ′) ∧
Ξpidspec Differentiator State

Execute Differentiator out =̂
var In1, In2 : U •

(FMVPE?x → In1 := x ) ||[ {In1} | {In2} ]|| (Constant1 out?x → In2 := x );
var Out1 : U •

Calculate pidspec Differentiator out ; Differentiator out !Out1 → Skip

Calculate pidspec Differentiator State =̂
Calculate pidspec Differentiator \ (Out1!)

StateUpdate =̂
var In1, In2 : U •

(FMVPE?x → In1 := x ) ||[ {In1} | {In2} ]|| (Constant1 out?x → In2 := x );
Calculate pidspec Differentiator State;

• Init ;
µX • (Execute Differentiator out |[ { }

| {|FMVPE ,Constant1 out |} |
{ pidspec Differentiator UnitDelay state } ]| StateUpdate );

end cycle → X

end

Fig. 6. Circus process for the block Differentiator



in clawz, is initialised with the value of the component initial state of that
definition. We identify a binding b of type defi, whose value for initial state
defines the initial value of defi state. For example, if defi is a unit delay, defi is a
set whose bindings all have the same value for initial state: that in the diagram.

The main action starts with the initialisation, and recursively proceeds in
parallel to execute each of the flows and update the state, before synchronising
on end cycle. The flows proceed independently, but the block can only start a
new cycle when all the flows, (and all the blocks of the diagram) have finished.

• Init ;
µ X • (Flows |[ { } | rInps | {|αB State|} ]| StateUpdate ); end cycle → X

end

The flows do not update the state, and so the action Flows is associated with
the empty set of state component names; on the other hand, StateUpdate is
associated with the set B State including all state components. When an input
is received, it needs to be made available to the flows and to the action that
updates the state, and so they synchronise. The set rInps contains all the inputs
required by at least one flow of B .

rInps =̂
⋃
{ f : (clasp.blocks B).flows • f.rinps }

As already observed, not all inputs are required by a flow; the input of a unit
delay block is a simple example.

The action Flows executes the flows in (clasp.blocks B).flows in parallel.

Flows =̂ ||| f : (clasp.blocks B).flows { } | f.rinps ∪ f.pouts • Execute f

They do not change any of the state components; they only produce outputs.
Their alphabets are the required inputs and the produced outputs.

In the Differentiator, there is only one flow, so the interleaving in Flows is re-
duced to a single process Execute Differentiator out (Figure 6). It synchronises
with the action StateUpdate on the inputs FMVPE and Constant1 out .

For each flow f, the action Execute f takes the required inputs, and then
calculates and produces the outputs.

Execute f =̂ var Ini : U •

||| inp : f.rinps { Ini } • inp?x → Ini := x;
var Outj : U •

CalculateOutputs; ||| out : f.pouts • out!Outj → Skip

First, Execute f declares local variables to record the values of the inputs; we de-
clare a variable Ini when the i-th input is required by the flow: (clasp.blocks B).inps i ∈
f.rinps. Similarly, to calculate the outputs, Execute f declares variables Outj for
each output produced by f: those in f.pouts. In Execute Differentiator out there
are two input variables In1 and In2, and one output variable Out1.

The inputs are received in any order, through each of the channels inp in
f.rinps. The value x of the input is recorded in the corresponding variable Ini.



Similarly, outputs are sent in any order through the channels in f.pouts. In our
example, since there is only one output, the interleaving is reduced to one action.

The definition clawz.B specifies the state changes and the outputs of B, but it
is not an operation over the state B State. We define a schema Calculate B that
lifts clawz.B to B State. It includes the input and output variables; Z decorations
are used, since Circus allows us to keep the Z style and refer to local variables as
inputs or outputs. In Calculate B, we identify a binding b of type clawz.B using
the input values in Ini to determine the value of the Ini? components of b, and
the state components to determine the value of the corresponding components
of b. The new value of the state and the output are defined by b.

Calculate B

∆B State; Ini?, Outj! : U

∃ b : clawz.B • b.Ini? = Ini? ∧ b.defi.state = defi state ∧
b.defi.state′ = defi state′ ∧ b.Outj! = Outj!

If B has a state component defi state, it is because clawz.B includes a component
defi with a state component. To define the schema CalculateOutputs, we hide the
final value of the state in Calculate B, and conjoin the result with Ξ B State to
establish that no state component is modified.

The action that updates the state takes all the inputs.

StateUpdate =̂ var Ini : U •

||| inp : (clasp.blocks B).inps{ Ini } • inp?x → Ini := x;
CalculateState;

In principle, all the inputs in (clasp.blocks B).inps are needed. The definition of
CalculateState uses Calculate B; it simply hides the output variables. An example
is presented in Figure 6: Calculate pidspec Differentiator State.

6.3 Enabling conditions and order of inputs

For flows that have enabling conditions or depend on the order of the inputs,
Execute f needs to be changed. For lack of space, we do not present the defini-
tions in detail. To capture the order of the inputs, the interleaving in Execute f

needs to be replaced with a recursive action that takes any of the outstanding
inputs at each step and records its value and index in a sequence. It terminates
once all inputs have been received. The resulting sequence of indexes is used as
an extra parameter for the calculation of outputs and state updates.

The presence of action and enabled subsystems leads to the possibility that
some outputs are not computed. In this case, for every output signal o, we
need two channels: o, as explained before, and oComputed of type BOOL. The
communication of outputs in Execute f needs to be defined as follows.

||| o : f.pouts • o!Outj → oComputed!true → Skip

If o is an internal channel, so should be oComputed. If f is a flow that is not



always enabled, it needs to use the Enabling schema produced by ClawZ to
determine whether an output should be computed or not. Blocks that need that
information should declare oComputed in its alphabet.

7 Refinement

In the translation of a diagram, a block that corresponds to a subsystem is
regarded mostly as a black box. As already said, even though we consider flows
of execution and requirements to record the order of arrival of the inputs of
a subsystems, we do not model its internal communications. We can, however,
translate the diagram that corresponds to a subsystem. For example, in the PID
diagram, Differentiator is a block; in the translation of the PID, it is defined as
a the single process (Figure 6). If, on the other hand, we consider the diagram
that specifies this block (Figure 2), we get the following Circus output.

process Differentiator =̂
(Sum{| a, b,Sum out , end cycle |}

||
Product{| c,Sum out , output , end cycle |}

||
UnitDelay{| a, b, end cycle |}) \ {|Sum out , b |}

For lack of space, we have to omit the processes Sum, Product , and UnitDelay
that model the blocks in Figure 2. This new process refines pidspec Differentiator
in Figure 6, given that the channels are renamed properly.

pidspec Differentiator
v

Differentiator [a, output := FMVPE ,Differentiator out ]

The renaming is needed because the diagram of a block does not keep the original
names of inputs and outputs. The Circus refinement calculus can be used to prove
this refinement; it is a typical derivation of a distributed implementation from
a centralised specification. The state does not require refinement; the major
effort is in expressing the recursive main action of pidspec Differentiator as a
parallelism. In [15] we tackle a similar problem in an industrial case study.

A refinement relationship should hold every time we translate a diagram and
a subsystem corresponding to one of its blocks. The implementation obtained
follows the architecture of the diagram, with a process for each of the blocks. As
already said, however, this is not the only possible implementation.

Refinement can also be used to reason about diagrams. For example, an
action subsystem that takes its input from a block whose output always satisfies
the condition of the action subsystem can become a simple subsystem. To prove
that, we can calculate the Circus model, refine it to simplify the process that
defines the action subsystem, and translate it back to a diagram. We can use the
same approach to eliminate unnecessary blocks. To make this approach appealing
to engineers, however, we need to provide a lot of automation. The algebraic
approach of a refinement calculus is, therefore, very appropriate.



8 Conclusions

We have presented a semantics for discrete-time Simulink diagrams using a com-
bination of Z and CSP called Circus. Our model captures the functionality of a
diagram over any number of cycles, and the inherent parallelism between blocks.
Cyclic diagrams involving feedback loops are also covered. There are several com-
binations of Z with a process algebra [8]; Circus is distinctive in its refinement
theory. Our semantics opens the possibility of reasoning about control law dia-
grams using refinement. We discussed some examples, based on a PID controller.

PID controllers are considered in [3], where weakest preconditions are used for
reasoning about control systems; the technique can be extended to handle static
analysis of programs and concurrency. In [12], Mahony used Isabelle/HOL tools
to mechanise an assertion reasoning technique based on predicate transformers
for dataflow networks with feedback loops. This is a graphical notation like
control law diagrams; however, parallelism needs to be indicated explicitly.

The technique proposed in [4] is a Hoare logic to reason about the frequency
response of continuous-time control systems. Continuous systems are also con-
sidered in [10], with a focus on timing analysis, as opposed to functionality and
concurrency. Our interest is on program verification, rather than system analysis,
but extension of our model to include multirate diagrams is in our plans.

We are working on the implementation of CliC, a tool to automate the trans-
lation strategy presented here. We are also working on a theorem prover and a
model checker for Circus, all based on ProofPower. These tools will be a powerful
resource in the analysis of control diagrams and their implementation.

In [5], a translation from discrete-time Simulink diagrams to Lustre is pre-
sented. It formalises the typing system of Simulink and type-checks diagrams
before the translation; it also handles multirate diagrams. The results seem to
be complementary to those obtained with ClawZ, which assumes that all signals
have type double, and can only cope with single rate diagrams, but with a larger
number of block types. Lustre is a functional programming language, and ClawZ
aims at supporting verification by refinement of Ada programs.

Additional experience with refinement of Circus models for control law dia-
grams will lead to a suite of refinement laws that are adequate to this domain of
application. For example, powerful laws should be available to prove the refine-
ment of pidspec Differentiator discussed in the previous section. The proposal,
proof, and tool support for the application of these laws is in our agenda of work.

A Simulink model can include a stateflow block, which is defined by a diagram
that has local data and includes finite state machines, flow-diagram notations,
and state-transition diagrams. The finite state machine reacts to events trig-
gered in the Simulink model; the reactions lead to state changes that affect the
behavior of the Simulink model. Stateflow diagrams are studied in [18, 17]. We
will investigate the use of Circus to model stateflow diagrams; it seems promis-
ing as Circus can cope with both the data and reactive aspects of the problem.
Ultimately, we want to cover the whole of the Simulink notation in a uniform
framework for program verification based on Circus.
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