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Abstract of control systems that has been successfully applied in
industry. We aim at covering a larger set of diagrams
The design of control systems is usually based on di- and program properties, but still allow reuse of the ex-
agrammatic definitions of control laws. The indepen- per[ise on |anguages and tools a|ready available.
dent use of Z and CSP to verify their implementations Simulink [1] is practically a standard as a tool to

has been successful, even for very large applications; qraw and analyse control law diagrams. A translator
high levels of automation have been achieved with tools f.om discrete-time Simulink diagrams to Z specifica-

based on a theorem prover called ProofPower. We have ijons s presented in [3]; it is called ClawZ. Extensive

extended this approach to integrate the use of Z and gyperience with its application for the verification of se-
CSP using a notation calledircus; as aresult, we can  qential Ada subprograms (procedures and functions)
handle a larger set of diagrams and prove more prop- sed in implementations of control systems is already

erties of the implementation. In this paper, we show gyajjaple at QinetiQ [2]. The Z specifications gener-
how we can reuse the existing tools and experience to 4404 by ClawZ are used to formulate refinement con-
provide automation in the context of the new technique. jectures that can be proved using tools based on Proof-

This gives us confidence in its applicability in industry.  power [13]. This is a theorem prover for Z whose pow-

Keywords: Z, CSP, Simulink, refinement. erful tactics allow a high degree of automation.

The Z model of a diagram defined by ClawZ cap-

tures the functionality of one cycle; it defines the out-

1. Introduction puts of the diagram as a function of its inputs. Con-
currency is not captured, and, in fact, the computation
Typically, control systems are designed using con- €mbedded in the blocks can be carried out concurrently,

trol law diagrams, which are graphs of blocks. The con- With order imposed only by the wiring. To verify the
nections in the graph represent wires that carry signals, architecture of parallel implementations of control law
and the blocks represent functions on the values of these diagrams, QinetiQ employ CSP and model checking.
signals: they determine the values output through outgo- As an extension of this work, we propose@iacus
ing wires in terms of the values input through incoming model for discrete-time Simulink diagrams [8[Cir-
wires. A diagram can have a continuous or a discrete cus [19] is a combination of Z, CSP, and the refine-
time model; we work with discrete-time diagrams, in ment calculus [15]. We defined a translation strategy
which signals are sampled at fixed intervals, so that in- to convert the output generated by an extended version
put and output occur in cycles. of ClawZ into aCircus specification, using additional
Numerical modelling and simulation are the main graph information about the diagram. In tl#cus
techniques for validation of control laws. More recent model of a diagram, we capture both its functionality
work has proposed the use of logic [6, 12]. We use re- and its concurrent behaviour over any number of cycles.
finement for the verification of implementations, rather A calculational strategy to develop concurrent pro-
than analysis of diagrams. For that, we use a model grams based on centralis€itcus specifications is pre-
of discrete control law diagrams based on first order sented in [9]. In [7], we proposed a different strategy to
logic (Z [20]) and a process algebra (CSP [11, 17]). verify that aCircus model of an Ada program refines
Our objective is to extend an approach to verification the Circus model of a diagram. In this case, typically,
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Figure 1. PID (Proportional Integral Derivative) controller

the massive parallelism of the diagram model is reduced Sum

to match the architecture of the implementation. ¢.)
With this technique, independent analyses of the " L ot

functionality and parallel architecture of an implemen- e

tation is no longer needed. Yet, in this paper we show Unit Delay

that it is possible to reuse the existing technology and
expertise on the use of ProofPower and its associated
tools in the context of the integrated technique. We
provide a strategy based @ircus refinement laws to
transform the model of the calculations of outputs and Figure 2. There, the block labelled 1/z label is a unit de-

of the state updates into appropriate specifications, and |ay, which stores the input, and outputs the value stored
show how refinement proof carried out using Proof- in the previous cycle: it has a state.

Figure 2. PID Integrator

Power can be used to justify part of the verification en- The Z model of a diagram generated by ClawZ uses
tailed by theCircus refinement strategy. the notation of ProofPower. It defines blocks as sets of

In the next section, we give a brief introductionto  bindings (records), typically specified by schemas. For
Simulink diagrams and thei€Circus models. In Sec- the blockint, we have the following schema.

tion 3, we discuss the features adiicus model of typ-

ical Ada implementations of control laws. An overview —* pid__Int
of our refinement strategy is presented in Section 4. In '_Im'? ‘U Out! : U
Section 5 we present our approach to reuse of the ex- o o

isting verification technique. Finally, in Section 6, we Sum: pid_int_Sum

indicate some future work. UnitDelay : pid__Int__UnitDelay;

2. Simulink diagrams and Circus sumini? = In1?:

Suminz2? = UnitDelayOuti!;

Figure 1 gives an example of a simple Simulink di- Outi! = UnitDelayIn1? = SumOut1!

agram for a PID (Proportional Integral Derivative) con-
troller. The rounded numbered boxes are the inputs,
namely,E, Kp, Ki, andKd, and the outputy. The cir-

cle models a sum. The boxes labelledare product The componeninl? represents the input of the block,
blocks. The boxes labellddifferentiator andintegra- andOutl!, its output. The other components represent
tor are subsystems: blocks defined by other diagrams. the blocks in thelntegrator diagram: their types are
For thelntegrator, for example, the diagram is that in  given by the schemas that specify those blocks. The




predicate defines the connection of the inputs and out- andInt are required to synchronise @md_cycle and

puts, and identifies the input and the output of the
tegrator diagram with inputs and outputs of the blocks.
The typeU is a universal type in ProofPower. In the

case of a simple block, that does not define a subsys-

Siout the output channel dBi, which is used as input
by Int. SinceSi_outis internal, as it is neither an input
nor an output of the diagram, then it is hidden. Because
all internal channels are hidden, implementations of the

tem, the only components are inputs and outputs, and diagram do not need to preserve its block structure; dur-

the predicate defines how the output can be calculated.
There is a library of blocks in Simulink; corre-

spondingly, there is a library of schemas in ClawZ to
define some Simulink library blocks. For example,
pid__Int__Sumis defined as the ClawZ library schema
SumP2, which models &um block with two inputs.
For blocks with state, ClawZ includes in the schemas
componentstate staté, andinitialstate they record

ing refinement, we can combine or split blocks.

The specifications of the block processes are simi-
lar; Figure 3 presents the procdssfor the block with
the same name. It is a basic process that encapsulates
state and exhibits behaviour. The state is defined like in
Z, using a schemant_State its component is the state
of the unit delay block in théntegrator diagram.

The main recursive action at the end defines the

the value of the state at the beginning and at the end of behaviour ofint. It initialises the state, as defined by

the cycle, and at the beginning of the first cycle.

Circus is a language for refinement; it includes
specification and programming constructs, which can
be freely mixed. For specification, we can use Z and
Morgan'’s specification statements. To model communi-

cation and concurrency, we can use CSP. To write code,

we can use the language of guarded commandsirA
cus program is a sequence of paragraphs, just like in Z,

the schemanit, before iterating to execute the cycles.
In Init, the variablepid_Diff _UnitDelay staté repre-
sents the value of the state component after the initiali-
sation. In the predicate @fit, this is defined to be the
value of theinitialstate component of a binding from
pid_Int_UnitDelay. This is a ClawZ schema also in-
cluded inint; it models thdJnitDelay block of thelnte-
grator using the ClawZ library schemanitDelay_g. It

but there are also channel and process paragraphs; therdakes as parameter a real number that defines the initial

is an example in Figure 3.

The blocks, as well as the diagram itself, are de-
fined as processes@ircus. In the case of the diagram,

value of the state of the bloclknitialstate. In this case,
this value is 0, in accordance with information recorded
in the diagram. The notation®0 is used to represent

the process is a parallel composition of the processes for 0 as a real number. Besidp&l_Int_UnitDelay, Int in-

the blocks;In the case of a block, the process lifts the
output of ClawZ toCircus. Even if the block is a sub-
system, the parallelism in its diagram is ignored. The
Circus model captures the parallelism only of the top
level diagram. For the blocdkt block, for example, we

cludespid_Int_Sumandpid_Int; these are the schemas
generated by ClawZ for thategrator.

In each cyclelnt calculates and produces its output
as defined by¥xecutelnt_out, and in parallel updates
the state, as defined byt _StateUpdateThese actions

have the specification in Figure 3; it uses the schema synchronise orsiout, since the input is needed to de-

pid—Int, which reflects the functionality of the block
structure defined in Figure 2, but not its parallelism.

In the completeCircus model, we first declare

fine the value of the output and of the state.
In a parallelism of actions, to avoid conflict, the
disjoint set of variables which each of the parallel ac-

channels to represent the inputs, outputs, and internal tions can modify is fixed. In the parallelism between

wires of the top diagram. We also declare a channel
end_cycle it does not have a type, and is used for syn-
chronisation: each block process, after receiving all its

Executelnt_outandint_StateUpdatgExecutelnt_out
does not change the state, dntd StateUpdatehanges
the only state component; this is explicitly indi-

inputs and generating all its outputs, synchronises on cated by associating them to the empty set of names

end_cyclebefore starting the next cycle. After the chan-
nel declarations, th€ircus model includes the ClawZ
library, whose definitions are used in the block pro-

of variables {}) and to the set containing only
pid_Int_UnitDelay state Both actions can access
the initial value ofpid_Int_UnitDelay_state but only

cesses. These come afterwards, before the definition Int_StateUpdatean change this value. The same con-

of the diagram, which concludes the specification.
In Circus, parallelism is alphabetised. In the defi-

cerns arise for interleaving of actions.
Since pid_Int is not an operation over the

nition of the diagram process, the alphabet of the each state of Int, we use it to define a state opera-
block process is the set of channels containing the in- tion: Calculate Int. There, we usAlnt_Stateto declare

puts and outputs of the block, amehd cycle like in

pid_Int_UnitDelay stateandpid_Int_UnitDelay staté

CSP, the parallel processes synchronise on the inter- to represent the value of the state component before and

section of their alphabets. In theID example, Si

after the operation. We also declare the input and out-



processint = begin

stateInt_State= [pid_Int_UnitDelay_state: U]
pid_Int_Sum= Sum P2
pid_Int_UnitDelay= UnitDelay_g(X0=0e0)

__pid_Int
In1?:U; Outl!: U
Sum: pid_Int_Sum UnitDelay: pid_Int_UnitDelay

Outl! = UnitDelay.In1?

Suminl?=In1? A Sumin2?= UnitDelay.Outl! A UnitDelay.In1?= SumOutl!

__Init

Int_Staté

Jb: pid_Int_UnitDelaye pid_Int_UnitDelay staté = pid_Int_UnitDelay.initialstate

__Calculate.Int

Alnt_State
In1?,0utl! : U

3b: pid_Int e b.In1?=In1? A b.UnitDelay.state= pid_Int_UnitDelay_staten
b.UnitDelay.staté = pid_Int_UnitDelay_staté A b.Outl! = Outl!

Calculate_Int_out= Calculate_Int \ (pid_Int_UnitDelay_staté) A =Int_State
Executelnt_out=var Inl:U e SiLout?x — Inl :=x; var Outl : U e Calculate_Int_out; Int_out Outl — Skip

Calculate Int_state= Calculate_Int \ (Outl!)

Int_StateUpdate= var In1: U e Si_out?x — Inl := x; Calculate_Int_state

e (Init; uX e (Executelnt_out| {} | {|E[} | { pid_Int_UnitDelay_state} ]| Int_StateUpdatg end.cycle— X)

end

Figure 3. Circus process for the block Int

put variables; the use of the decorations ? and ! in their
names is a Z convention. In the predicatel and
pid_Int_UnitDelay_state are used to identify a bind-
ing b of pid_Int. This binding defines the values of
pid_Int_UnitDelay staté andOutl!.

In the specification oExecutelnt_out, we need
an operation that only calculates the out@uitl, but
does not affect the state. We uSalculate Int_out,
which is specified by hidingid_Int_UnitDelay_staté
in the definition ofCalculate.Int, and conjoining the
result with the schemaDiff _Statethat specifies that
pid_Int_UnitDelay_state is not modified. The ac-
tion Calculate Int_state is used inInt_StateUpdate
It is defined by hiding Outl! in the definition
of Calculate Diff, so that it defines a value for
pid_Int_UnitDelay staté, but does not have an output.

This is a simple example. More of the complexity
of real diagrams is considered in [8].

3. Circus model for Ada implementations

The implementation of a control law diagram is
usually composed of subprograms that implement se-
quentially the functionality of a (group) of blocks, and

schedulers for these subprograms. Typically, the cycle
is split in time frames and the schedulers allocate the
execution of the subprograms to these frames.

In Figure 4 we present the package (module) archi-
tecture of an Ada implementation of the PID. The pack-
agesxec_0, Exec_1, Exec_2, andExec _3 are the
main programs that are executed in parallel. In each of
them, there is an initialisation of variables followed by
a loop whose iterations last for the duration of a time
frame, and schedule some subprograms.

Each main program is associated with a sched-
uler: F_Sch, Task_1, Task_2, or Task_3. The
subprograms that implement the blocks are in the pack-
agePI D, which is implemented using another package
Di screte. The progranExec_0 does not us@l D
because it only maintains timing information: its sched-
ule,F_Sch keeps a frame counter. The other schedulers
actually allocate the subprogramsRifD to frames.

The structure of packages of the Ada program is
not preserved in it€ircus model because the module
construct ofCircus, process, represents an independent
flow of execution. In theCircus model of the PID im-
plementation, for example, we have a process for each
of its main programsExeg, Exeq, Exee, andExeg.



lexec_o I1{Exec_1] |1[Exec_2] || [Exec 3|

|F_Sch| |Tosk_1| |Tosk_2| |Tosk_3|

| PID |—|DiscreTe|

Figure 4. Architecture of the Ada implementa-
tion

In each of them, inputs and outputs are communicated
via the channels identified in the model of the diagram.
Also, new internal channels are created to communicate
shared variables; specifically, we need chaniixdt
andlIsh to communicate two shared variablBsand|.
Finally, the scheduling is modelled using synchronisa-
tion onend_cycleand on an extra channighme even
though in the Ada program the scheduling uses vari-
ables to record time periods and a delay command.
Except for the need to match inputs and outputs
to channels, and to identify shared and time variables,
most of theCircus model can be calculated from the
program, but we leave this as future work. Identifying

processExeg = begin
state [cur_f : Framelndek
Init_LF=cur_f:=1
NextF = cur_f := (cur_f mod2) + 1
e Init; 4 X e framdcur_f —
if (cur_f = 1) — Skip
[ (cur_f = 2) — end_cycle— Skip
fi;
NextF; X
end

Figure 5. Circus model of Exec_0

The main difference is that itStepprocedure inputs
rather than outputs the values of the shared variables;
also, it produces the output at the end of the cycle.

The model of the complete program is the parallel
composition ofExe@, Exeqg, Exeg, and Exeg, syn-
chronising on their common channels; the new chan-
nelsframe Dsh, andlsh are hidden. The structure of
this rather small example is representative of real con-
trol systems in its approach to scheduling and sharing.

4. Refinement strategy

A Simulink diagram has a hierarchical structure.
We can assume that, at the top level, there is always

the correspondence between the program variables anda diagram with a single block that takes all the inputs

the wires of the diagram, and consequently, the chan-
nels of theCircus model is an activity already under-
taken as part of the current verification process.

In Figure 5 we preseriExe@. Its state component
cur_f corresponds to the Ada variable that records the
number of the current frame. Its tygegamelndexcon-
tains only the numbers 1 and 2. Sinog_f is shared,
it is output through the new channfeghme The struc-
ture of the main action is determined by the number of
frames, and the scheduling: after the initialisation, in
each frame, its number is output, then a conditional uses
that information to invoke the actions to be executed.
(In Exe@, no action is scheduled.) In the end of the
second frame, there is a synchronisatioreon_cycle
Finally, the frame number is updated.

The processe€xee and Exeg implement the
groups of blocksi andInt, andDiff andSd (Figure 1).
The proces&xee is in Figure 6. Its state components
are the variables that are useddrec _2; and the ac-
tions correspond to the procedures usedexec _2.
The frame scheduling is factored out in a procedure
Step In contrast withExec O, the number of the cur-
rent frame is input, rather than output. Before the pro-
cedureCalc_Integralis called, its inputs are received in
interleaving. Since the variableis shared, its value is
communicated at the beginning of the second frame.

The procesgxeq is similar toExeg and Exeg.

and produces all the outputs. For all interesting exam-
ples, this is a single subsystem block that is specified
by another diagram. Like for the PID, this may include
further subsystem blocks, and, in this case, yet another
level of diagrams is used. There is no limit to the num-
ber of diagrams that can be used to specify a control
law; and they can be organised across several levels.

TheCircus model of a top level diagram is a single
process that lifts the ClawZ output. For the verifica-
tion of a sequential implementation, this is a suitable
model. For the verification of a parallel implementa-
tion, however, theCircus model of the diagram in the
second level is likely to be more adequate. In fact, the
best starting point is a model of a diagram in which all
blocks that are implemented by different subprograms
are explicitly drawn, rather than hidden in subsystem
blocks. Typically, to draw this diagram, we need to re-
arrange the hierarchy of diagrams.

In the case of the PID, the model of the diagram in
Figure 1 is adequate to verify the parallel implementa-
tion presented in Section 4. Since the implementations
of Diff and Int are sequential, there is no need to ex-
pand their diagrams. If we did so, ti@&rcus model
of the diagram would include extra processes and chan-
nels corresponding to the blocks and wires in those di-
agrams. No doubt, this model would be equivalent to
that of the smaller diagram in Figure 1, since the ex-



processExee = begin
state [Error,Ki,| : U]
Init_Integral=1 := 0.0

Integ= (val Input K : U; res Output: U e Output:= Output+ K x Input)

Calc_Integral = Integ(Error,Ki, 1)

Step= frameX — if (f = 1) — ((E? — Error :=x) [{Error } | {Ki }]| (Ki?x — Kd :=x)); Calc_Integral
| (f =2) — Ishll — end_cycle— Skip

fi
e Init_Integral, u X e Step X
end

Figure 6. Circus model of Exec_2

tra channels would be internal. The verification based
on it, however, would require more effort to remove the
parallelism that is not present in the implementation.
Our verification strategy comprises four phases that
progressively collapse the parallelism of the diagram
model to match the architecture of the implementation.

P1 Write the main action of each block process as a
a recursion that iteratively takes the inputs in in-
terleaving, calculates the outputs and updates the
state, communicates the outputs in interleaving,
and synchronise oend_cycle

P2 Collapse the parallelism between the processes of
the blocks that are implemented by a single sub-
program, and write the main action of the resulting
processes in the form described in phBde

P3 For each of the processes created in phrizen-
troduce the action that specifies the corresponding
subprogram, and prove that the calculations can be
refined by a call to that action.

P4 Collapse the parallelism between the processes
that are scheduled in the same task.

Each phase of the strategy can be accomplished apply-
ing Circus refinement laws. In [7] we explain the pro-
cedure. Here, we explain how we can use ProofPower
and its associated tools to carry out phBSe

For the PID example, in pha§¥, the main action
of Int is written as follows.

Init; uX e SLoutx — Inl :=x;
Calculate_Int_out, Calculate_Int_state
Int_outtOutl — Skipg end_cycle— X

The variablegnl andOutl are now state components.
Since there is only one input and one output, no inter-
leaving is needed.

In phaseP2, we identify the subprograms that
implement blocks. For each that implements more
than one, we create a single process by collapsing
the parallelism between the processes for the blocks.
In Exec_2, for example, we identify the procedure
Cal c_I nt egral which implementsSi andInt. We

create a procesSilnt by collapsingSi andint, and re-
fine its main action to be written as follows.

Init;

1 X e (EX— pid_SLIn1 :=X) || (Ki?X — pid_SLIn2 := x);
pid_Si; pid_Int_In1 := pid_Si_Outl;
Calculate_Int_out, Calculate_Int_state
Sd_out! pid_Sd_out— end_cycle— X

Inputs are taken fror& andKi in interleaving; for con-
ciseness, we omit the name sets. Afterwards, the calcu-
lations of bothSiandInt are performed, and the output
of Sdis produced. The output @i is the input ofint;
since this is an internal communication, it is removed.

In phaseP3, we refine the main action of each pro-
cess that corresponds to a subprogram: we introduce the
declaration and a call to the action that models the sub-
program. For that, we match the variables of the pro-
gram to those of the model. Since the model variables
correspond to wires and block states, this means match-
ing the program variables to diagram components.

In the case oSilnt, we introduce the definition of
Calc_Integralas the following call.

Integ(pid_SLIn1,pid_SiIn2, pid_Int_UnitDelay state

Actually, first we introducéntegso that it can be used
in Calc_Integral. Sincelntegdoes not refer to program
variables, we define it just as shown in Figure 6.

What we need to prove is the following refinement.

( ) o

Calc_Integral
In the next section, we show how we carry out this proof
using ProofPowerZ. With this result, we can write the
main action ofSilntas follows.

pid_Si; pid_Int_In1 := pid_Si_ Outl;
Calculate_Int_out; Calculate_Int_state
C

Init;
X e (E?x — pid_SiInl :=x) || (Ki?>x — pid_SLINn2 := Xx);
Calc_Integral;
Sd_out pid_Sd_out — end_cycle— X

At this point, we can simplifySilnt by removing the



actions that are no longer used: the ClawZ schemas. 2.

In phaseP4, we group the subprogram processes in
task processes, and rewrite their main actions to use the
frame definition.

5. Using ProofPower

Using ProofPower, we can prove that a specifica-
tion statement that specifies the functionality of a (group
of) blocks in terms of the program variables can be re-
fined by Ada commands. The specification statement
is constructed using the output of ClawZ for the group
of blocks and identifying how the variables of the pro-
gram correspond to components of the diagram. The
Ada commands are those in the body of the subprogram
that implements the group of blocks.

For Integ, the following conjecture is provable.

JlInteg_Systens
Siln1?=InputA Si.In2?=K A

AOutput: Int.UnitDelay.state= Outpug A
Int.UnitDelay.staté = OutputA (2)
Int.Outl! = Output 3

(-
Output:= Output+ K x Input

In the specificationpOutputdefines that the parameter
Outputcan be modified. The predicate is a quantifica-
tion over a scheminteg System

__Integ_System
Int: pid_Int; Si: pid_Si

Int.In1?= si.Outl!

This schema is generated by ClawZ if we indicate that

Si and Int form an artificial subsystem: a group of 4.

blocks that define a subsystem, even though they do not
correspond to a subsystem block. In the predicate of
the specification statementin (2), the inputs, output, and
state components of the artificial subsystem are identi-

fied with parameters dinteg Like in the refinement 5.

calculus,Outpuyp refers to the initial value oOutput

The refinement conjecture states that such a system can
be implemented by the body bfteg Our aim is to use

this result to prove the refinement in (1). For that, we
carry out the following steps.

1. Match the procedure parameters to model vari-
ables. Implicitly, we are matching wires and block
states in the diagram to procedure parameters.

Int the example of thénteg procedure|nput corre-
sponds tpid_Si_In1, K to pid_Si_In2, andOutput
to pid_Int_UnitDelay stateandpid_Int_Outl.

Introduce the parameter declarations, taking the
corresponding model variables as argumentsin
Circus, the treatment of parametrised procedures is
based on Back’s parametrised commands [4], which
have been incorporated in a refinement calculus for
Z [10]. In this context, we can refine any program to
an instantiation of a parametrised command as long
as proper renamings are carried. For, the specifica-
tion in (1), which from now on we nam@ilntC for
conciseness, we proceed as follows.

(val Input K : U; vres Output: U e
Input/pid_SiLIn1?,

K/pid_SLIn2?,
Output/pid_Int_UnitDelay_state
Output /pid_Int_UnitDelay_staté,
)(pid_SLIn1? pid_SL In27? pid_Int_UnitDelay_state

SilntC

The renamings rewrit&ilntC in terms of the pa-
rameters, but the instantiation of arguments means
that the program acts on the model variables, just
as SilntC does. We observe thautput is only
matched tgid_Int_UnitDelay state Later, we have

to record the extra relationship pad_Int_Outl.

. Remove state components that are not matched

to procedure parameters from the state A state
component is a variable that is in scope in the main
action of a process; we can remove its declaration
from the state and introduce a corresponding variable
block in the main action.

In our example, we need to remopéd_Si Outl,
pid_Int_In1, andpid_Int_Outl from the state. The
first two components record the value communicated
internally bySito Int. This communication is elimi-
nated in a sequential implementation. The last com-
ponent matche®utput but sinceOutput matches
two variables, one is left out for now.

Reduce the scope of the variable block to in-
clude only the calculations and updatesThis can

be achieved with standard variable block laws. In
our example, the body of the block is reduced to
SilntC[Input/pid_SLIn1?,...].

Reduce the calculations and updates to a schema
This requires specific laws to flatten sequences. One
of the them is presented below.

Law 5.1 (schema-assign-seq)

[AS|p]; x:=e

[AS[ 3x0 @ p[x0/X ] A X = €[x0/X]']
provided x,xX € aS

It flattens a sequence of a schema that defines an op-
eration over a stat8 that includes a variable and



an assignment ta. The value defined fox by the
original schema is given the namg and hidden in
the predicate of the resulting schema.

In this step, we use this law and others like this in the
following way.

(a) Join _out and _stateschemas back together.

In our specification, we have the sequence
Calculate_Int_out, Calculate_Int_state The
sequence operator is not the schema calculus op-
erator, but the command constructor. By remov-
ing it, we get the schem@alculate_Int (Fig-

ure 3), which liftspid_Int.

(b) Eliminate assignments. For that, we use the
law above, or another similar law that applies
when the assignment comes first in the se-
quence. The assignments correspond to pas-
sages of values from a block to another through
the internal wires. The equality that arises
from the assignments in the resulting schema
should be kept: they should not, for instance,
be used to eliminate quantifiers using the one-

point rule. In our example, we keep the equality 7.

pid_Int_In1" = pid_Si_Outl’.

(c) Flatten remaining sequences. The left se-
quences involve only schemas. The ClawZ
schemas should be incorporated, but not ex-
panded. In our example, we do not expand the
schemaid_Si: the ClawZ model oBi.

The final result of this step for our example is the
schema shown below.

__Step
pid_Int_In1, pid_Int_In1’,
pid_Int_UnitDelay_state
pid_Int_UnitDelay staté
pid_Si_In1? pid_Si_In2?,
pid_Si_Outl!, pid_Int_Outl! : U

pid_SiA pid_Int_In1" = pid_Si_Outl’
Jb: pid_Int e

b.In1?= pid_Int_In’

b.UnitDelay.state=
pid_Int_UnitDelay_state

b.UnitDelay.staté =
pid_Int_UnitDelay staté

b.Outl! = pid_Int_Outl!

It acts on a state that includes all the variables
in scope in the main action. We do not deco-
rate pid_Int_In1 with a ? because its final value is
changed, soitis not an input variable in this schema.
. Remove renamings and variable block.This can

be achieved by turning them into an existential quan-

tification: for the renamings, we use the one-point-
rule, and for variable blocks, we use the law below.

Law 5.2 (var-schema-hiding)
(var x: T e SExp = SExp\ (x,X)

A schema hiding is an existential quantification. For
our example, the result is sketched below.

__Sted
Output Output, Input K : U

Ipid_Int_In1, pid_Int_In1’, pid_Si_Outl!,... e
pid_SLINn1?= Input A pid_SLIN2?7=K A
A
...predicate ofStefb...

Rename the dashedIn variables to use the

? decoration. This is possible because the
undashed variables are not free in the quanti-
fied predicate, so we can eliminate their quan-
tification, and change the name of the dashed
variables. In the example, the quantification
becomes3pid_Int_In1? pid_Si Outl!,... : U e ...

We cannot renam@id_Int_In1’ without eliminat-
ing pid_Int_In1 beforehand because, i@ircus,
pid_Int_In1 andpid_Int_In1? are the same variable.
There are no input and output variables, only state
components and local variables; the ? and ! decora-
tions are used for compatibility with Z.

. Express quantification using simplified ClawZ

schemasWe introduce schemas that contain just the
declaration part of the ClawZ schemas for the blocks.
Forpid_Int, we declare the schema below.

pid_IntD
In1? Outl!: U

Sum: pid—Int_Sum
UnitDelay: pid_—lInt__UnitDelay

We also declare a scherpal_SiD.

The quantification can be expressed in terms of these
schemas: there is a direct correspondence between
the quantified variables and their components. After
all, it was these schemas that were used to construct
the model in the first place. For example, the compo-
nentinl? of pid_IntD corresponds teid_Int_In1?.



Part of the rewritten predicate is shown below.

JInt: pid_IntD; Si: pid_SiD e

Siln1?= InputA Siln2?=K A

A

pid_Si[SiIn1?/pid_SLIn1? ...] A

Int.In1?= Si.Outl! A

Jb: pid_int e

b.In1?=Int.In1?
b.UnitDelay.state= Int.UnitDelay.state
b.UnitDelay.staté = Int.UnitDelay.staté
b.Outl! = pid.Int.Outl!

9. Check that the quantified variables are elements
of the proper ClawZ schema. In the example, we
need to check thdht andSiare bindings opid_Int
andpid_Si, and not simplypid_IntD andpid_SiD as
declared. We need to consider two cases.

(a) The block has a state.In this case, an existen-
tial quantification over a binding of the Clawz
schema defines the variable. This is due to the
way in which state is handled in th@ircus
model using the state in the ClawZ schemas. In
our example|nt gives an illustration.

Since the blocks are deterministic, the quantified
predicate allows us to conclude that the binding
is equal to the quantified variable= Int in the
example. With that, the one-point rule can be
used to eliminate the existential quantification
and conclude thdnt € pid_Int.

(b) The block does not have a stateln this case,
instead of an existential quantification, a renam-
ing of the original schema defines the quantified
variable: Si and pid_Si illustrate the situation.
The renaming explicitly states that the quanti-
fied variable satisfies the property of the ClawzZ
schema. A more concise way of expressing this
is to say that the variable belongs to the type de-
fined by the ClawZ schema. In the example, we
can writeSi € pid_Si.

As a result, we can simplify the predicate of the
schema, by giving stronger declarations for the vari-
ables. In our example, the result is as follows.

JInt: pid_Int; Si: pid_Sie
SiIn1?= InputA Siln2?=K A
Int.UnitDelay.state= OutputA
Int.UnitDelay.staté = Output A
Int.In1?= Si.Outl!

10. Transform schema into a specification statement.
This can be accomplished with a law of the Z re-
finement calculus; they are all valid @ircus. The

result is almost exactly the specification statement
used in the current verification technique (see (2)),
but the components and the predicate of the artificial
subsystem schema are explicitly included.

Declare the artificial subsystem schema and use it
in the specification. This is a simple application of
predicate calculus to change the quantification.

Record missing correspondences between param-
eters and model variablesIf any of the parameters
represented more than one diagram component (or
equivalently, model variable), only one of the cor-
respondences was used. We can now strengthen the
postcondition of the specification statement to record
the others.

In the example, we did not record the correspon-
dence betweerOutput and pid_Int_Outl. If we
strengthen the postcondition of the specification
statement with the conjunatt.Outl! = Output we
record the relationship.

Use ProofPower.The specification statement is now
exactly that constructed using the current approach.
So, the refinement can be proved using ProofPower;
it justifies the replacement of the specification state-
ment with the procedure body.

Introduce the procedure call. This is now a direct
application of the copy rule.

11.

12.

13.

14.

Except for the actual use of ProofPower, and the need
to match program variables to diagram components, all
the steps of this procedure can be automated.

6. Conclusions

We have presented an approach to reuse existing
tools and expertise in the verification of control systems
in the context of a technique that covers both the se-
quential subprograms and the schedulers of an imple-
mentation. It is based on a notation that integrates Z
and CSP, and, as such, can formalise the functionality
and the parallelism in diagrams and their implementa-
tions. We use a single model of the diagram, and a uni-
fied verification technique.

Our approach is a procedure for application of re-
finement laws; using a tactic language [16], we can au-
tomate it. All the steps of this procedure are justified
by refinement laws. If the application of any of them
fails, there is an error in the program, or in our interpre-
tation of how the procedures and variables correspond
to components of the diagram.

The majority of the proof obligations generated are
related to the implementation of the functionality of the
blocks. We have shown how these can be discharged
using the tools and proof tactics already available. Ex-
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