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Abstract

The design of control systems is usually based on di-
agrammatic definitions of control laws. The indepen-
dent use of Z and CSP to verify their implementations
has been successful, even for very large applications;
high levels of automation have been achieved with tools
based on a theorem prover called ProofPower. We have
extended this approach to integrate the use of Z and
CSP using a notation calledCircus; as a result, we can
handle a larger set of diagrams and prove more prop-
erties of the implementation. In this paper, we show
how we can reuse the existing tools and experience to
provide automation in the context of the new technique.
This gives us confidence in its applicability in industry.

Keywords: Z, CSP, Simulink, refinement.

1. Introduction

Typically, control systems are designed using con-
trol law diagrams, which are graphs of blocks. The con-
nections in the graph represent wires that carry signals,
and the blocks represent functions on the values of these
signals: they determine the values output through outgo-
ing wires in terms of the values input through incoming
wires. A diagram can have a continuous or a discrete
time model; we work with discrete-time diagrams, in
which signals are sampled at fixed intervals, so that in-
put and output occur in cycles.

Numerical modelling and simulation are the main
techniques for validation of control laws. More recent
work has proposed the use of logic [6, 12]. We use re-
finement for the verification of implementations, rather
than analysis of diagrams. For that, we use a model
of discrete control law diagrams based on first order
logic (Z [20]) and a process algebra (CSP [11, 17]).
Our objective is to extend an approach to verification

of control systems that has been successfully applied in
industry. We aim at covering a larger set of diagrams
and program properties, but still allow reuse of the ex-
pertise on languages and tools already available.

Simulink [1] is practically a standard as a tool to
draw and analyse control law diagrams. A translator
from discrete-time Simulink diagrams to Z specifica-
tions is presented in [3]; it is called ClawZ. Extensive
experience with its application for the verification of se-
quential Ada subprograms (procedures and functions)
used in implementations of control systems is already
available at QinetiQ [2]. The Z specifications gener-
ated by ClawZ are used to formulate refinement con-
jectures that can be proved using tools based on Proof-
Power [13]. This is a theorem prover for Z whose pow-
erful tactics allow a high degree of automation.

The Z model of a diagram defined by ClawZ cap-
tures the functionality of one cycle; it defines the out-
puts of the diagram as a function of its inputs. Con-
currency is not captured, and, in fact, the computation
embedded in the blocks can be carried out concurrently,
with order imposed only by the wiring. To verify the
architecture of parallel implementations of control law
diagrams, QinetiQ employ CSP and model checking.

As an extension of this work, we proposed aCircus
model for discrete-time Simulink diagrams [8].Cir-
cus [19] is a combination of Z, CSP, and the refine-
ment calculus [15]. We defined a translation strategy
to convert the output generated by an extended version
of ClawZ into aCircus specification, using additional
graph information about the diagram. In theCircus
model of a diagram, we capture both its functionality
and its concurrent behaviour over any number of cycles.

A calculational strategy to develop concurrent pro-
grams based on centralisedCircus specifications is pre-
sented in [9]. In [7], we proposed a different strategy to
verify that aCircus model of an Ada program refines
theCircus model of a diagram. In this case, typically,
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Figure 1. PID (Proportional Integral Derivative) controller

the massive parallelism of the diagram model is reduced
to match the architecture of the implementation.

With this technique, independent analyses of the
functionality and parallel architecture of an implemen-
tation is no longer needed. Yet, in this paper we show
that it is possible to reuse the existing technology and
expertise on the use of ProofPower and its associated
tools in the context of the integrated technique. We
provide a strategy based onCircus refinement laws to
transform the model of the calculations of outputs and
of the state updates into appropriate specifications, and
show how refinement proof carried out using Proof-
Power can be used to justify part of the verification en-
tailed by theCircus refinement strategy.

In the next section, we give a brief introduction to
Simulink diagrams and theirCircus models. In Sec-
tion 3, we discuss the features andCircus model of typ-
ical Ada implementations of control laws. An overview
of our refinement strategy is presented in Section 4. In
Section 5 we present our approach to reuse of the ex-
isting verification technique. Finally, in Section 6, we
indicate some future work.

2. Simulink diagrams andCircus

Figure 1 gives an example of a simple Simulink di-
agram for a PID (Proportional Integral Derivative) con-
troller. The rounded numbered boxes are the inputs,
namely,E, Kp, Ki, andKd, and the output,Y. The cir-
cle models a sum. The boxes labelled× are product
blocks. The boxes labelledDifferentiator andIntegra-
tor are subsystems: blocks defined by other diagrams.
For theIntegrator, for example, the diagram is that in
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Figure 2. PID Integrator

Figure 2. There, the block labelled 1/z label is a unit de-
lay, which stores the input, and outputs the value stored
in the previous cycle: it has a state.

The Z model of a diagram generated by ClawZ uses
the notation of ProofPower. It defines blocks as sets of
bindings (records), typically specified by schemas. For
the blockInt, we have the following schema.

Z

pid Int

In? : U; Out! : U

Sum: pid Int Sum;

UnitDelay : pid Int UnitDelay;

Sum.In? = In?;

Sum.In? = UnitDelay.Out!;

Out! = UnitDelay.In? = Sum.Out!

The componentIn1? represents the input of the block,
andOut1!, its output. The other components represent
the blocks in theIntegrator diagram: their types are
given by the schemas that specify those blocks. The



predicate defines the connection of the inputs and out-
puts, and identifies the input and the output of theIn-
tegrator diagram with inputs and outputs of the blocks.
The typeU is a universal type in ProofPower. In the
case of a simple block, that does not define a subsys-
tem, the only components are inputs and outputs, and
the predicate defines how the output can be calculated.

There is a library of blocks in Simulink; corre-
spondingly, there is a library of schemas in ClawZ to
define some Simulink library blocks. For example,
pid Int Sumis defined as the ClawZ library schema
Sum P2, which models aSum block with two inputs.
For blocks with state, ClawZ includes in the schemas
componentsstate, state′, and initialstate; they record
the value of the state at the beginning and at the end of
the cycle, and at the beginning of the first cycle.

Circus is a language for refinement; it includes
specification and programming constructs, which can
be freely mixed. For specification, we can use Z and
Morgan’s specification statements. To model communi-
cation and concurrency, we can use CSP. To write code,
we can use the language of guarded commands. ACir-
cus program is a sequence of paragraphs, just like in Z,
but there are also channel and process paragraphs; there
is an example in Figure 3.

The blocks, as well as the diagram itself, are de-
fined as processes inCircus. In the case of the diagram,
the process is a parallel composition of the processes for
the blocks;In the case of a block, the process lifts the
output of ClawZ toCircus. Even if the block is a sub-
system, the parallelism in its diagram is ignored. The
Circus model captures the parallelism only of the top
level diagram. For the blockInt block, for example, we
have the specification in Figure 3; it uses the schema
pid Int, which reflects the functionality of the block
structure defined in Figure 2, but not its parallelism.

In the completeCircus model, we first declare
channels to represent the inputs, outputs, and internal
wires of the top diagram. We also declare a channel
end cycle; it does not have a type, and is used for syn-
chronisation: each block process, after receiving all its
inputs and generating all its outputs, synchronises on
end cyclebefore starting the next cycle. After the chan-
nel declarations, theCircus model includes the ClawZ
library, whose definitions are used in the block pro-
cesses. These come afterwards, before the definition
of the diagram, which concludes the specification.

In Circus, parallelism is alphabetised. In the defi-
nition of the diagram process, the alphabet of the each
block process is the set of channels containing the in-
puts and outputs of the block, andend cycle; like in
CSP, the parallel processes synchronise on the inter-
section of their alphabets. In thePID example,Si

and Int are required to synchronise onend cycleand
Si out: the output channel ofSi, which is used as input
by Int. SinceSi out is internal, as it is neither an input
nor an output of the diagram, then it is hidden. Because
all internal channels are hidden, implementations of the
diagram do not need to preserve its block structure; dur-
ing refinement, we can combine or split blocks.

The specifications of the block processes are simi-
lar; Figure 3 presents the processInt for the block with
the same name. It is a basic process that encapsulates
state and exhibits behaviour. The state is defined like in
Z, using a schema:Int State; its component is the state
of the unit delay block in theIntegrator diagram.

The main recursive action at the end defines the
behaviour ofInt. It initialises the state, as defined by
the schemaInit, before iterating to execute the cycles.
In Init, the variablepid Diff UnitDelay state′ repre-
sents the value of the state component after the initiali-
sation. In the predicate ofInit, this is defined to be the
value of theinitialstatecomponent of a bindingb from
pid Int UnitDelay. This is a ClawZ schema also in-
cluded inInt; it models theUnitDelay block of theInte-
grator using the ClawZ library schemaUnitDelay g. It
takes as parameter a real number that defines the initial
value of the state of the block:initialstate. In this case,
this value is 0, in accordance with information recorded
in the diagram. The notation 0e 0 is used to represent
0 as a real number. Besidespid Int UnitDelay, Int in-
cludespid Int Sumandpid Int; these are the schemas
generated by ClawZ for theIntegrator.

In each cycle,Int calculates and produces its output
as defined byExecuteInt out, and in parallel updates
the state, as defined byInt StateUpdate. These actions
synchronise onSi out, since the input is needed to de-
fine the value of the output and of the state.

In a parallelism of actions, to avoid conflict, the
disjoint set of variables which each of the parallel ac-
tions can modify is fixed. In the parallelism between
ExecuteInt outandInt StateUpdate, ExecuteInt out
does not change the state, andInt StateUpdatechanges
the only state component; this is explicitly indi-
cated by associating them to the empty set of names
of variables ({}) and to the set containing only
pid Int UnitDelay state. Both actions can access
the initial value ofpid Int UnitDelay state, but only
Int StateUpdatecan change this value. The same con-
cerns arise for interleaving of actions.

Since pid Int is not an operation over the
state of Int, we use it to define a state opera-
tion:Calculate Int. There, we use∆Int Stateto declare
pid Int UnitDelay stateandpid Int UnitDelay state′

to represent the value of the state component before and
after the operation. We also declare the input and out-



processInt =̂ begin

stateInt State=̂ [pid Int UnitDelay state: U ]
pid Int Sum=̂ Sum P2
pid Int UnitDelay=̂ UnitDelay g(X0 =̂ 0 e 0)

pid Int
In1? :U; Out1! : U

Sum: pid Int Sum; UnitDelay: pid Int UnitDelay

Sum.In1?= In1?∧ Sum.In2?= UnitDelay.Out1! ∧ UnitDelay.In1?= Sum.Out1!
Out1! = UnitDelay.In1?

Init
Int State′

∃b : pid Int UnitDelay• pid Int UnitDelay state′ = pid Int UnitDelay.initialstate

Calculate Int
∆Int State
In1?,Out1! : U

∃b : pid Int • b.In1?= In1?∧ b.UnitDelay.state= pid Int UnitDelay state∧
b.UnitDelay.state′ = pid Int UnitDelay state′ ∧ b.Out1! = Out1!

Calculate Int out =̂ Calculate Int \ (pid Int UnitDelay state′) ∧ ΞInt State
ExecuteInt out =̂ var In1 : U • Si out?x→ In1 := x; var Out1 : U • Calculate Int out; Int out!Out1→ Skip
Calculate Int state=̂ Calculate Int \ (Out1!)
Int StateUpdatê= var In1 : U • Si out?x→ In1 := x; Calculate Int state

• (Init; µ X • (ExecuteInt out|[ {} | {|E|} | {pid Int UnitDelay state} ]| Int StateUpdate); end cycle→ X)

end

Figure 3. Circus process for the block Int

put variables; the use of the decorations ? and ! in their
names is a Z convention. In the predicate,In1 and
pid Int UnitDelay state are used to identify a bind-
ing b of pid Int. This binding defines the values of
pid Int UnitDelay state′ andOut1!.

In the specification ofExecuteInt out, we need
an operation that only calculates the outputOut1, but
does not affect the state. We useCalculate Int out,
which is specified by hidingpid Int UnitDelay state′

in the definition ofCalculate Int, and conjoining the
result with the schemaΞDiff Statethat specifies that
pid Int UnitDelay state is not modified. The ac-
tion Calculate Int state is used in Int StateUpdate.
It is defined by hiding Out1! in the definition
of Calculate Diff , so that it defines a value for
pid Int UnitDelay state′, but does not have an output.

This is a simple example. More of the complexity
of real diagrams is considered in [8].

3. Circus model for Ada implementations

The implementation of a control law diagram is
usually composed of subprograms that implement se-
quentially the functionality of a (group) of blocks, and

schedulers for these subprograms. Typically, the cycle
is split in time frames and the schedulers allocate the
execution of the subprograms to these frames.

In Figure 4 we present the package (module) archi-
tecture of an Ada implementation of the PID. The pack-
agesExec 0, Exec 1, Exec 2, andExec 3 are the
main programs that are executed in parallel. In each of
them, there is an initialisation of variables followed by
a loop whose iterations last for the duration of a time
frame, and schedule some subprograms.

Each main program is associated with a sched-
uler: F Sch, Task 1, Task 2, or Task 3. The
subprograms that implement the blocks are in the pack-
agePID, which is implemented using another package
Discrete. The programExec 0 does not usePID
because it only maintains timing information: its sched-
ule,F Sch keeps a frame counter. The other schedulers
actually allocate the subprograms ofPID to frames.

The structure of packages of the Ada program is
not preserved in itsCircus model because the module
construct ofCircus, process, represents an independent
flow of execution. In theCircus model of the PID im-
plementation, for example, we have a process for each
of its main programs:Exec0, Exec1, Exec2, andExec3.
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Figure 4. Architecture of the Ada implementa-
tion

In each of them, inputs and outputs are communicated
via the channels identified in the model of the diagram.
Also, new internal channels are created to communicate
shared variables; specifically, we need channelsDsh
andIsh to communicate two shared variablesD andI .
Finally, the scheduling is modelled using synchronisa-
tion onend cycleand on an extra channelframe, even
though in the Ada program the scheduling uses vari-
ables to record time periods and a delay command.

Except for the need to match inputs and outputs
to channels, and to identify shared and time variables,
most of theCircus model can be calculated from the
program, but we leave this as future work. Identifying
the correspondence between the program variables and
the wires of the diagram, and consequently, the chan-
nels of theCircus model is an activity already under-
taken as part of the current verification process.

In Figure 5 we presentExec0. Its state component
cur f corresponds to the Ada variable that records the
number of the current frame. Its type,FrameIndex, con-
tains only the numbers 1 and 2. Sincecur f is shared,
it is output through the new channelframe. The struc-
ture of the main action is determined by the number of
frames, and the scheduling: after the initialisation, in
each frame, its number is output, then a conditional uses
that information to invoke the actions to be executed.
(In Exec0, no action is scheduled.) In the end of the
second frame, there is a synchronisation onend cycle.
Finally, the frame number is updated.

The processesExec2 and Exec3 implement the
groups of blocksSi andInt, andDiff andSd (Figure 1).
The processExec2 is in Figure 6. Its state components
are the variables that are used inExec 2; and the ac-
tions correspond to the procedures used inExec 2.
The frame scheduling is factored out in a procedure
Step. In contrast withExec 0, the number of the cur-
rent frame is input, rather than output. Before the pro-
cedureCalc Integral is called, its inputs are received in
interleaving. Since the variableI is shared, its value is
communicated at the beginning of the second frame.

The processExec1 is similar toExec2 andExec3.

processExec0 =̂ begin
state[cur f : FrameIndex]
Init F =̂ cur f := 1
Next F =̂ cur f := (cur f mod2)+1
• Init; µ X • frame!cur f →

if(cur f = 1) → Skip
[] (cur f = 2) → end cycle→ Skip
fi;
Next F; X

end

Figure 5. Circus model of Exec 0

The main difference is that itsStepprocedure inputs
rather than outputs the values of the shared variables;
also, it produces the output at the end of the cycle.

The model of the complete program is the parallel
composition ofExec0, Exec1, Exec2, andExec3, syn-
chronising on their common channels; the new chan-
nels frame, Dsh, and Ish are hidden. The structure of
this rather small example is representative of real con-
trol systems in its approach to scheduling and sharing.

4. Refinement strategy

A Simulink diagram has a hierarchical structure.
We can assume that, at the top level, there is always
a diagram with a single block that takes all the inputs
and produces all the outputs. For all interesting exam-
ples, this is a single subsystem block that is specified
by another diagram. Like for the PID, this may include
further subsystem blocks, and, in this case, yet another
level of diagrams is used. There is no limit to the num-
ber of diagrams that can be used to specify a control
law; and they can be organised across several levels.

TheCircus model of a top level diagram is a single
process that lifts the ClawZ output. For the verifica-
tion of a sequential implementation, this is a suitable
model. For the verification of a parallel implementa-
tion, however, theCircus model of the diagram in the
second level is likely to be more adequate. In fact, the
best starting point is a model of a diagram in which all
blocks that are implemented by different subprograms
are explicitly drawn, rather than hidden in subsystem
blocks. Typically, to draw this diagram, we need to re-
arrange the hierarchy of diagrams.

In the case of the PID, the model of the diagram in
Figure 1 is adequate to verify the parallel implementa-
tion presented in Section 4. Since the implementations
of Diff and Int are sequential, there is no need to ex-
pand their diagrams. If we did so, theCircus model
of the diagram would include extra processes and chan-
nels corresponding to the blocks and wires in those di-
agrams. No doubt, this model would be equivalent to
that of the smaller diagram in Figure 1, since the ex-



processExec2 =̂ begin
state[Error,Ki, I : U]
Init Integral =̂ I := 0.0
Integ=̂ (val Input,K : U; res Output: U • Output:= Output+K × Input)
Calc Integral =̂ Integ(Error,Ki, I)
Step=̂ frame?f → if(f = 1) → ((E?x→ Error := x) ||[{Error } | {Ki } ]|| (Ki?x→ Kd := x)); Calc Integral

[] (f = 2) → Ish!I → end cycle→ Skip
fi

• Init Integral; µ X • Step; X
end

Figure 6. Circus model of Exec 2

tra channels would be internal. The verification based
on it, however, would require more effort to remove the
parallelism that is not present in the implementation.

Our verification strategy comprises four phases that
progressively collapse the parallelism of the diagram
model to match the architecture of the implementation.

P1 Write the main action of each block process as a
a recursion that iteratively takes the inputs in in-
terleaving, calculates the outputs and updates the
state, communicates the outputs in interleaving,
and synchronise onend cycle.

P2 Collapse the parallelism between the processes of
the blocks that are implemented by a single sub-
program, and write the main action of the resulting
processes in the form described in phaseP1.

P3 For each of the processes created in phaseP2, in-
troduce the action that specifies the corresponding
subprogram, and prove that the calculations can be
refined by a call to that action.

P4 Collapse the parallelism between the processes
that are scheduled in the same task.

Each phase of the strategy can be accomplished apply-
ing Circus refinement laws. In [7] we explain the pro-
cedure. Here, we explain how we can use ProofPower
and its associated tools to carry out phaseP3.

For the PID example, in phaseP1, the main action
of Int is written as follows.

Init; µ X • Si out?x→ In1 := x;
Calculate Int out; Calculate Int state;
Int out!Out1→ Skip; end cycle→ X

The variablesIn1 andOut1 are now state components.
Since there is only one input and one output, no inter-
leaving is needed.

In phaseP2, we identify the subprograms that
implement blocks. For each that implements more
than one, we create a single process by collapsing
the parallelism between the processes for the blocks.
In Exec 2, for example, we identify the procedure
Calc Integral which implementsSi and Int. We

create a processSiInt by collapsingSi andInt, and re-
fine its main action to be written as follows.

Init;
µ X • (E?x→ pid Si In1 := x) ||| (Ki?x→ pid Si In2 := x);

pid Si; pid Int In1 := pid Si Out1;
Calculate Int out; Calculate Int state;
Sd out!pid Sd out→ end cycle→ X

Inputs are taken fromE andKi in interleaving; for con-
ciseness, we omit the name sets. Afterwards, the calcu-
lations of bothSi andInt are performed, and the output
of Sd is produced. The output ofSi is the input ofInt;
since this is an internal communication, it is removed.

In phaseP3, we refine the main action of each pro-
cess that corresponds to a subprogram: we introduce the
declaration and a call to the action that models the sub-
program. For that, we match the variables of the pro-
gram to those of the model. Since the model variables
correspond to wires and block states, this means match-
ing the program variables to diagram components.

In the case ofSiInt, we introduce the definition of
Calc Integralas the following call.

Integ(pid Si In1,pid Si In2,pid Int UnitDelay state)

Actually, first we introduceIntegso that it can be used
in Calc Integral. SinceIntegdoes not refer to program
variables, we define it just as shown in Figure 6.

What we need to prove is the following refinement.
(

pid Si; pid Int In1 := pid Si Out1;
Calculate Int out; Calculate Int state

)

v
Calc Integral

(1)

In the next section, we show how we carry out this proof
using ProofPowerZ. With this result, we can write the
main action ofSiInt as follows.

Init;
µ X • (E?x→ pid Si In1 := x) ||| (Ki?x→ pid Si In2 := x);

Calc Integral;
Sd out!pid Sd out→ end cycle→ X

At this point, we can simplifySiInt by removing the



actions that are no longer used: the ClawZ schemas.
In phaseP4, we group the subprogram processes in

task processes, and rewrite their main actions to use the
frame definition.

5. Using ProofPower

Using ProofPower, we can prove that a specifica-
tion statement that specifies the functionality of a (group
of) blocks in terms of the program variables can be re-
fined by Ada commands. The specification statement
is constructed using the output of ClawZ for the group
of blocks and identifying how the variables of the pro-
gram correspond to components of the diagram. The
Ada commands are those in the body of the subprogram
that implements the group of blocks.

For Integ, the following conjecture is provable.

∆Output:





∃ Integ System•
Si.In1?= Input∧ Si.In2?= K ∧
Int.UnitDelay.state= Output0 ∧
Int.UnitDelay.state′ = Output∧
Int.Out1! = Output





v
Output:= Output+K × Input

(2)

In the specification,∆Outputdefines that the parameter
Outputcan be modified. The predicate is a quantifica-
tion over a schemaInteg System.

Integ System
Int : pid Int; Si : pid Si

Int.In1?= si.Out1!

This schema is generated by ClawZ if we indicate that
Si and Int form an artificial subsystem: a group of
blocks that define a subsystem, even though they do not
correspond to a subsystem block. In the predicate of
the specification statement in (2), the inputs, output, and
state components of the artificial subsystem are identi-
fied with parameters ofInteg. Like in the refinement
calculus,Output0 refers to the initial value ofOutput.
The refinement conjecture states that such a system can
be implemented by the body ofInteg. Our aim is to use
this result to prove the refinement in (1). For that, we
carry out the following steps.

1. Match the procedure parameters to model vari-
ables. Implicitly, we are matching wires and block
states in the diagram to procedure parameters.

Int the example of theIntegprocedure,Input corre-
sponds topid Si In1, K to pid Si In2, andOutput
to pid Int UnitDelay stateandpid Int Out1.

2. Introduce the parameter declarations, taking the
corresponding model variables as arguments.In
Circus, the treatment of parametrised procedures is
based on Back’s parametrised commands [4], which
have been incorporated in a refinement calculus for
Z [10]. In this context, we can refine any program to
an instantiation of a parametrised command as long
as proper renamings are carried. For, the specifica-
tion in (1), which from now on we nameSiIntC for
conciseness, we proceed as follows.

(val Input,K : U; vres Output: U •

SiIntC





Input/pid Si In1?,
K/pid Si In2?,
Output/pid Int UnitDelay state,
Output′/pid Int UnitDelay state′,





)(pid Si In1?,pid Si In2?,pid Int UnitDelay state)

The renamings rewriteSiIntC in terms of the pa-
rameters, but the instantiation of arguments means
that the program acts on the model variables, just
as SiIntC does. We observe thatOutput is only
matched topid Int UnitDelay state. Later, we have
to record the extra relationship topid Int Out1.

3. Remove state components that are not matched
to procedure parameters from the state. A state
component is a variable that is in scope in the main
action of a process; we can remove its declaration
from the state and introduce a corresponding variable
block in the main action.

In our example, we need to removepid Si Out1,
pid Int In1, andpid Int Out1 from the state. The
first two components record the value communicated
internally bySi to Int. This communication is elimi-
nated in a sequential implementation. The last com-
ponent matchesOutput, but sinceOutput matches
two variables, one is left out for now.

4. Reduce the scope of the variable block to in-
clude only the calculations and updates. This can
be achieved with standard variable block laws. In
our example, the body of the block is reduced to
SiIntC[Input/pid Si In1?, ...].

5. Reduce the calculations and updates to a schema.
This requires specific laws to flatten sequences. One
of the them is presented below.

Law 5.1 (schema-assign-seq)

[∆S| p]; x := e
=

[∆S| ∃x0 • p[x0/x′ ] ∧ x′ = e[x0/x]′ ]

provided x,x′ ∈ αS

It flattens a sequence of a schema that defines an op-
eration over a stateS that includes a variablex, and



an assignment tox. The value defined forx by the
original schema is given the namex0 and hidden in
the predicate of the resulting schema.

In this step, we use this law and others like this in the
following way.

(a) Join out and stateschemas back together.
In our specification, we have the sequence
Calculate Int out; Calculate Int state. The
sequence operator is not the schema calculus op-
erator, but the command constructor. By remov-
ing it, we get the schemaCalculate Int (Fig-
ure 3), which liftspid Int.

(b) Eliminate assignments. For that, we use the
law above, or another similar law that applies
when the assignment comes first in the se-
quence. The assignments correspond to pas-
sages of values from a block to another through
the internal wires. The equality that arises
from the assignments in the resulting schema
should be kept: they should not, for instance,
be used to eliminate quantifiers using the one-
point rule. In our example, we keep the equality
pid Int In1′ = pid Si Out1′.

(c) Flatten remaining sequences. The left se-
quences involve only schemas. The ClawZ
schemas should be incorporated, but not ex-
panded. In our example, we do not expand the
schemapid Si: the ClawZ model ofSi.

The final result of this step for our example is the
schema shown below.

Step5
pid Int In1,pid Int In1′,
pid Int UnitDelay state,
pid Int UnitDelay state′

pid Si In1?,pid Si In2?,
pid Si Out1!,pid Int Out1! : U

pid Si∧ pid Int In1′ = pid Si Out1′



∃b : pid Int •
b.In1?= pid Int In1′

b.UnitDelay.state=
pid Int UnitDelay state

b.UnitDelay.state′ =
pid Int UnitDelay state′

b.Out1! = pid Int Out1!





It acts on a state that includes all the variables
in scope in the main action. We do not deco-
ratepid Int In1 with a ? because its final value is
changed, so it is not an input variable in this schema.

6. Remove renamings and variable block.This can
be achieved by turning them into an existential quan-

tification: for the renamings, we use the one-point-
rule, and for variable blocks, we use the law below.

Law 5.2 (var-schema-hiding)

(var x : T • SExp) = SExp\ (x,x′)

A schema hiding is an existential quantification. For
our example, the result is sketched below.

Step6
Output,Output′, Input,K : U

∃pid Int In1,pid Int In1′,pid Si Out1!, ... •
pid Si In1?= Input∧ pid Si In2?= K ∧
... ∧
...predicate ofStep5...

7. Rename the dashedIn variables to use the
? decoration. This is possible because the
undashed variables are not free in the quanti-
fied predicate, so we can eliminate their quan-
tification, and change the name of the dashed
variables. In the example, the quantification
becomes∃pid Int In1?,pid Si Out1!, ... : U • ...
We cannot renamepid Int In1′ without eliminat-
ing pid Int In1 beforehand because, inCircus,
pid Int In1 andpid Int In1? are the same variable.
There are no input and output variables, only state
components and local variables; the ? and ! decora-
tions are used for compatibility with Z.

8. Express quantification using simplified ClawZ
schemas.We introduce schemas that contain just the
declaration part of the ClawZ schemas for the blocks.
Forpid Int, we declare the schema below.

pid IntD
In1?,Out1! : U

Sum: pid Int Sum
UnitDelay: pid Int UnitDelay

We also declare a schemapid SiD.

The quantification can be expressed in terms of these
schemas: there is a direct correspondence between
the quantified variables and their components. After
all, it was these schemas that were used to construct
the model in the first place. For example, the compo-
nentIn1? ofpid IntD corresponds topid Int In1?.



Part of the rewritten predicate is shown below.

∃ Int : pid IntD; Si : pid SiD•
Si.In1?= Input∧ Si.In2?= K ∧
... ∧
pid Si[Si.In1?/pid Si In1?, ...] ∧
Int.In1?= Si.Out1! ∧



∃b : pid Int •
b.In1?= Int.In1?
b.UnitDelay.state= Int.UnitDelay.state
b.UnitDelay.state′ = Int.UnitDelay.state′

b.Out1! = pid.Int.Out1!





9. Check that the quantified variables are elements
of the proper ClawZ schema. In the example, we
need to check thatInt andSi are bindings ofpid Int
andpid Si, and not simplypid IntD andpid SiDas
declared. We need to consider two cases.

(a) The block has a state.In this case, an existen-
tial quantification over a binding of the ClawZ
schema defines the variable. This is due to the
way in which state is handled in theCircus
model using the state in the ClawZ schemas. In
our example,Int gives an illustration.

Since the blocks are deterministic, the quantified
predicate allows us to conclude that the binding
is equal to the quantified variable:b = Int in the
example. With that, the one-point rule can be
used to eliminate the existential quantification
and conclude thatInt ∈ pid Int.

(b) The block does not have a state.In this case,
instead of an existential quantification, a renam-
ing of the original schema defines the quantified
variable:Si and pid Si illustrate the situation.
The renaming explicitly states that the quanti-
fied variable satisfies the property of the ClawZ
schema. A more concise way of expressing this
is to say that the variable belongs to the type de-
fined by the ClawZ schema. In the example, we
can writeSi∈ pid Si.

As a result, we can simplify the predicate of the
schema, by giving stronger declarations for the vari-
ables. In our example, the result is as follows.

∃ Int : pid Int; Si : pid Si•
Si.In1?= Input∧ Si.In2?= K ∧
Int.UnitDelay.state= Output∧
Int.UnitDelay.state′ = Output′ ∧
Int.In1?= Si.Out1!

10. Transform schema into a specification statement.
This can be accomplished with a law of the Z re-
finement calculus; they are all valid inCircus. The

result is almost exactly the specification statement
used in the current verification technique (see (2)),
but the components and the predicate of the artificial
subsystem schema are explicitly included.

11. Declare the artificial subsystem schema and use it
in the specification. This is a simple application of
predicate calculus to change the quantification.

12. Record missing correspondences between param-
eters and model variables.If any of the parameters
represented more than one diagram component (or
equivalently, model variable), only one of the cor-
respondences was used. We can now strengthen the
postcondition of the specification statement to record
the others.

In the example, we did not record the correspon-
dence betweenOutput and pid Int Out1. If we
strengthen the postcondition of the specification
statement with the conjunctInt.Out1! = Output, we
record the relationship.

13. Use ProofPower.The specification statement is now
exactly that constructed using the current approach.
So, the refinement can be proved using ProofPower;
it justifies the replacement of the specification state-
ment with the procedure body.

14. Introduce the procedure call. This is now a direct
application of the copy rule.

Except for the actual use of ProofPower, and the need
to match program variables to diagram components, all
the steps of this procedure can be automated.

6. Conclusions

We have presented an approach to reuse existing
tools and expertise in the verification of control systems
in the context of a technique that covers both the se-
quential subprograms and the schedulers of an imple-
mentation. It is based on a notation that integrates Z
and CSP, and, as such, can formalise the functionality
and the parallelism in diagrams and their implementa-
tions. We use a single model of the diagram, and a uni-
fied verification technique.

Our approach is a procedure for application of re-
finement laws; using a tactic language [16], we can au-
tomate it. All the steps of this procedure are justified
by refinement laws. If the application of any of them
fails, there is an error in the program, or in our interpre-
tation of how the procedures and variables correspond
to components of the diagram.

The majority of the proof obligations generated are
related to the implementation of the functionality of the
blocks. We have shown how these can be discharged
using the tools and proof tactics already available. Ex-



perience shows that they can discharge 95% to 98% of
the proof obligations automatically.

The needed information concerning the relation-
ship between wires of the diagram and variables of the
program and of the model, and between blocks and
procedures, is also required by the existing verification
technique. Therefore, the feasibility of producing this
information is already confirmed for real examples.

In [5], a weakest precondition semantics is used
to validate Simulink diagrams; a PID controller is
also considered as an example. Assertion reasoning is
also used in [18] to analyse Stateflow diagrams. The
work in [14] considers dataflow networks with feedback
looks, which are similar to control diagrams, although
parallelism has to be explicitly indicated. The reasoning
technique is also based on predicate transformers.

Our example is simple, and further case studies are
in our plans for future work. In any case, the PID verifi-
cation illustrates the issues involved in the use of Proof-
Power and its associated tools. They are applied in the
third phase of our refinement strategy to processes gen-
erated in the second phase by collapsing two or more
block processes. Our approach handles sequences of
assignments and schemas that define the functionality
of a group of blocks. The processes generated in the
second phase of our strategy are always of this form.

Automation is essential for the success of a verifi-
cation technique. Diagrams can span over hundreds of
pages, and it is not feasible to handle them without tool
support. We plan to automate the rest of our strategy us-
ing a refinement tool and tactics based on ProofPower.

We are also working on tools forCircus. Of par-
ticular relevance to verification of control systems is the
Circus model checker. It follows the approach adopted
by FDR for CSP, but integrates the use of theorem prov-
ing to handle proof obligations generated by the data
part of theCircus programs. An important piece of fu-
ture work is to investigate its application to prove the
refinement conjectures generated by our strategy. Cur-
rently, the use of FDR is limited by the size of the mod-
els of the control diagrams and of the schedulers. The
use ofCircus guides the combined use of traditional
techniques of model checking and theorem proving and
is likely to lead to a high level of automation.
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