NAT2TEST Tool: from Natural Language
Requirements to Test Cases based on CSP

Gustavo Carvalho!, Fldvia Barros', Ana Carvalho?
Ana Cavalcanti®, Alexandre Mota!, and Augusto Sampaio?

! Universidade Federal de Pernambuco - Centro de Informética, 50740-560, Brazil
2 Universidade Federal de Pernambuco - NTI, 50670-901, Brazil
3 University of York - Department of Computer Science, YO10 5GH, UK
1 {ghpc, fab, acm, acas}@cin.ufpe.br,
ana.alves@ufpe.br,

3 ana. cavalcanti@york.ac.uk

Abstract. Formal models are increasingly being used as input for au-
tomated test-generation strategies. However, typically the requirements
are captured as English text, and these formal models are not readily
available. With this in mind, we have devised a strategy (NAT2TEST)
to obtain formal models from natural language requirements automati-
cally, particularly to generate sound test cases. Our strategy is extensible,
since we consider an intermediate and hidden formal characterisation of
the system behaviour from which other formal notations can be derived.
Here, we present the NAT2TEST tool, which implements our strategy.

Keywords: natural-language requirements, test-case generation, tool

1 Introduction

In 2009, the Federal Aviation Administration (FAA) published a report [7] that
discusses current practices concerning requirements engineering management. It
states that at the very beginning of system development, typically only natural-
language (NL) requirements are documented.

In this light, we have investigated automatic strategies to obtain formal mod-
els from NL requirements aiming to generate sound test cases. Automation is
essential for this task, since we cannot expect that practitioners will always
have formal modelling knowledge. To accomplish our goal, we have devised a
strategy (NATural language requirements to TEST cases — NAT2TEST) that
generates test cases from NL requirements based on different internal and hid-
den formalisms: Software Cost Reduction — SCR (NAT2TESTscr [8]), Internal
Model Representation —IMR (NAT2TEST 1y [1I), and Communicating Sequen-
tial Processes — CSP (NAT2TEST csp [M]).

Each instance of the NAT2TEST strategy has its own benefits and limita-
tions. NAT2TEST scr encodes the system behaviour as SCR specifications and,
thus, one can use SCR-based tools, such as T—VE(ﬂ to generate test cases and

4 http://wuw.t-vec.com/

http://www.t-vec.com/

2 Gustavo Carvalho et al.

test drivers. Although time can be manually encoded, it is not a native element
of SCR specifications on T-VEC. Differently, NAT2TEST jj;r translates require-
ments into the RT—TesteIH internal notation, which natively considers discrete
and continuous time representations. NAT2TEST ¢gp distinguishes itself by us-
ing refinement checking, instead of specific algorithms, for generating test cases.
In such case, the test-generation approach can be proved sound. However, its
performance might be worse than the one of specific algorithms.

Differently from previous works, where technical aspects of the NAT2TEST
strategy are discussed, our focus here is on the NAT2TEST too]ﬁ that auto-
mates generation of test cases, particularly when using CSP as an internal and
hidden formalism. Therefore, besides discussing implementation aspects, we pro-
vide here an overview of the functionalities supported by this tool. Section
presents an overview of our strategy. Section [3| details the NAT2TEST tool,
including its user interface, functionalities and overall architecture. Section
addresses related work. Section [5| presents our conclusions and future work.

2 The NAT2TEST Strategy

Our strategy is tailored to generate tests for Data-Flow Reactive Systems (DFRS):
a class of embedded systems whose inputs and outputs are always available as
digital signals. The input signals can be seen as data provided by sensors, whereas
the output data are provided to system actuators. These systems can also have
timed-based behaviour, which may be discrete or continuous.

NAT2TEST receives as input system requirements written using the SysReq-
CNL, a Controlled Natural Language (CNL) specially tailored for editing unam-
biguous requirements of data-flow reactive systems. As output, it produces test
cases. Our test-generation strategy comprises a number of phases. The three ini-
tial phases are fixed: (1) syntactic analysis, (2) semantic analysis, and (3) DFRS
generation; the remaining phases depend on the internal formalism.

The syntactic analysis phase receives as input the system requirements, and
performs two tasks: it verifies whether these requirements are in accordance with
the SysReq-CNL grammar, besides generating syntactic trees for each correctly
edited requirement. The second phase maps these syntax trees into an informal
NL semantic representation. Afterwards, the third phase derives an intermedi-
ate formal characterization of the system behaviour from which other formal
notations can be derived (currently, SCR, IMR and CSP). The possibility of
exploring different formal notations allows analyses from several perspectives,
using different languages and tools, besides making our strategy extensible.

Here, we focus on the use of CSP to generate test cases. In this context, we
have two additional phases. First, the DFRS model is encoded as CSP processes.
Then, with the aid of the FDRIZ] and Z3 toolsﬂ test cases are generated.

® https://www.verified.de/products/rt-tester/

8 Available for download at: http://www.cin.ufpe.br/~ghpc/
" FDR tool — http://www.cs.ox.ac.uk/projects/fdr/

8 73 tool — http://z3.codeplex.com/

https://www.verified.de/products/rt-tester/
http://www.cin.ufpe.br/~ghpc/
http://www.cs.ox.ac.uk/projects/fdr/
http://z3.codeplex.com/

NAT2TEST Tool: from Natural Language Requirements to Test Cases 3
3 The NAT2TEST Tool

The tool is written in Java (it is multi-platform), and its Graphical User Interface
(GUI) is built using the Eclipse RCPﬂ Figure [1| shows the tool interface.

EeEsaB B o % Q |8 NAT2TEST ®
H Navigation View 3 = B ||@ General Info [2REQO01 | ®-Variablesand Types |¥YFunctions | Animation |[C) CSPmCode | Test Cases % = g
¥ & Vending Machine Requirements Selected Requirements
B Gereralinfo REQOO1 REQO04
\E:] Reqvulrements REQQO2 =
& Aliases REQUO3
[REQ0D1 REOOS <
[REQO02
2 REQ003
(5 REQ004 # Test cases per requirement |1
2 REQOOS
[Dictionary Generate Test Cases - CSPm
v Data-flow Reactive System Test Cases Test Case Data
= Variables and Types te_REQ004_1 Time I:the_coffee_request I:the_coin_sensor O: the_system_mode O:the_coffee_machine_output
Functions 0.0 false false 1 | 0
#¢ Animation 1.0 False true) o
iscr 2.0 false false 0 0
¥ leJ csPm 3.0 true false 3 0
& Test Cases 13.0 false false 1 1
Bl Console 5 |- Variables Instances = ff-=108

NAT2TEST - CONSOLE
[rest Case: tc REQE84 1
TIME the coffee_request button the coin sensor the system mode the coffee machine output
0.0 false fals

0 false true ©
.0 false false ©
0 true false 3
3.0 false false 1

Fig.1: The NAT2TEST tool

Each phase of the strategy is realised by a different component. Figure
shows a diagram of the tool architecture, which follows a traditional layered
structure: presentation, business, and data layers. The first one comprises edi-
tors that interact with the business layer via the LocalFacade. The business layer
has a set of controllers that are responsible for interacting with the components
that realise each phase of the strategy. Besides that, it also persists data (i.e.,
requirements and dictionaries) via Business Objects (BO) and Data Access Ob-
jects (DAO). We do not persist other elements (e.g., the DFRS model), as they
can be automatically derived from the requirements very efficiently.

An explanation on how to use the tool is available on its help. In the fol-
lowing sections we describe each component in terms of implementation details
and functionalities provided. To illustrate the tool, we consider a Vending Ma-
chine (VM) (adapted from [9]). Initially, the VM is in an idle state. When it
receives a coin, it goes to the choice state. After inserting a coin, when the coffee
option is selected, the system goes to the weak or strong coffee state. If coffee is
selected within 30 seconds after inserting the coin, the system goes to the weak
coffee state. Otherwise, it goes to the strong coffee state. The time required to
produce a weak coffee is also different from that of a strong coffee.

9 http://wiki.eclipse.org/index.php/Rich_Client_Platform

http://wiki.eclipse.org/index.php/Rich_Client_Platform

4 Gustavo Carvalho et al.

pkg

ProjEditor Req ditor TCEditor

——
=] ILocalFacade <<subsystem>=
<<subsystem=>> TC-Generator
CNL-Parser

T
743 I
—= ! LT !
o
i
<<subsystem>> ! - 4 !
¥ ProjController ReqController DicController DFRSControllér- .SCRControlter IMRController, CSPController TCController
RF-Generator T i 3C g 5 T i
.. N ~. N I
< N ~ N I
/N ProjBO ReqBC Sy Sl S \l/
! N le Sl o
i ~ -~
! ~ Sy .l | <<subsystem>= \ <<subsystem>>
I ~ N
N \ SCR-Generator | CSP-G i
! ProjDAO O 1 O [rewro O \ | e
I — I — | |
| 1 iPropao ' IRegpao [———1 IDicDAG \ N]
! : A ! Ly Bl !
| — L ; <<subsystem>> !
| Project Requirement Dictionary ' ; IMR-Generator
' Vo '
| ‘ [1 I x | —= 2] ‘
I
e " ___ <esubsyster>> L |

DFRS-Generator

Fig.2: The NAT2TEST tool architecture.

3.1 CNL-Parser Component

The CNL-Parser analyses the system requirements according to the SysReq-
CNL grammar, yielding the corresponding syntax trees. This CNL allows writing
requirements that have the form of action statements guarded by conditions [3].
For a concrete example, consider the following valid requirement for the VM:
“When the system mode is idle, and the coin sensor changes to true, the coffee
machine system shall: reset the request timer, assign choice to the system mode”.

First, each word is classified into its corresponding lexical class by a POS-
Tagger (Parts-Of-Speech Tagger), based on a domain-specific dictionary. In NL
the same lexeme may bear more than one classification (e.g., “change” may be
a noun or a verb). In our work, we implemented a customized POS-Tagger that
searches all possible classifications of each lexeme. For parsing we implemented
a version of the Generalized LR (GLR) algorithm [I2]. It generalizes the tra-
ditional LALR (Look-Ahead LR parser) algorithm to handle non-deterministic
and ambiguous grammars. When the parser identifies more than one possible
syntax tree, the user needs to remove the ambiguity before proceeding.

The tool provides other functionalities, such as editing the domain-specific
dictionary, besides using aliases to promote text reuse (in Figure by clicking on
Dictionary and Aliases, respectively). It is also capable of assisting the user while
writing the requirements by informing the next expected grammatical classes.

3.2 RF-Generator Component

The second processing phase receives as input the generated syntax tree, and
delivers the requirement semantic representation. In this work, we adopt the

NAT2TEST Tool: from Natural Language Requirements to Test Cases 5

Case Grammar theory [§] to represent meaning. In this theory, a sentence is
analysed in terms of the semantic (Thematic) Roles (TR) played by each word,
or group of words in the sentence. The verb is the main element of the sentence,
and it determines its possible semantic relations with the other words in the
sentences, that is, the role that each word plays with respect to the action or
state described by the verb.

The verb’s associated TRs are aggregated into a structure named as Case
Frame (CF). Each verb in a requirement NL specification gives rise to a different
CF. All derived CF's are joined afterwards to compose what we call a Requirement
Frame (RF). In this work, we consider nine thematic roles [3], for instance, agent:
entity who performs the action; patient: entity who is affected by the action; and
to-value: the patient value after action completion.

This component is implemented using the visitor pattern to analyse the syn-
tax trees, considering the inference rules defined in [3], which associate words
with the corresponding TRs. In Figure[l] one can see the inferred TRs for a given
requirement by clicking on the respective requirement identifier (e.g., REQ0001).

3.3 DFRS-Generator Component

The DFRS model [2] provides a formal representation of the requirements seman-
tics, which has a symbolic and an expanded representation. Briefly, the symbolic
version is a 6-tuple: (I, O, T, gcvar, sy, F'). Inputs (I) and outputs (O) are sys-
tem variables, whereas timers (7') are used to model temporal behaviour. The
global clock is gcvar, a variable whose values are non-negative numbers repre-
senting a discrete or a dense (continuous) time. The element sy is the initial
state. The last element (F') represents a set of functions, each one describing the
behaviour of one system component. The expanded DFRS comprises a (possibly
infinite) set of states, and a transition relation between states. This expanded
representation is built by applying the elements of F' to the initial state to define
function transitions and letting the time evolve to define delay transitions.

The symbolic DFRS is automatically generated by the DFRS-Generator,
which identifies its constituent components from the RFs. First, variables (in-
puts, outputs and timers) are obtained from the contents of the thematic role
patient. Their types are inferred considering the values mentioned by roles such
as the to-value. Then, we create an initial state considering initial default val-
ues (like 0 for integers, and false for booleans, for instance). Nevertheless, the
tool allows the user to edit the initial values.

Afterwards, we encode the conditions and actions described by the require-
ments as functions. The tool keeps traceability information between the require-
ments and the function entries. The requirement shown in Section |3.1]is encoded
as the guard: — (prev(the_coin_sensor) = true) A the_coin_sensor = true A
the_system_mode = 1, where 1 represents the idle state, and prev denotes the
value in the previous state), and the following assignments the_request_timer :=
gc, the_system_mode := 0, where gc refers to the system global clock, and 0 to
the choice state. The tool also supports validation of the requirements by ani-
mating DFRS models (in Figure|l] by clicking on Animation).

6 Gustavo Carvalho et al.

3.4 CSPj;-Generator Component

This component encodes DFRSs as CSP processes. It describes in CSP how the
expanded DFRS is obtained from the symbolic one. First, processes are created
to represent a shared (global) memory, which comprises the values of the DFRS
inputs and outputs. Time is modelled symbolically to prevent state explosion
when compiling the CSP specification and generating the corresponding LTS.
When some behaviour depends on the amount of time elapsed, we just assume
that the delay occurred satisfies the temporal constraints, and we perform a
specific event to represent this assumption. Later, we use Z3 to find concrete
values for delays that satisfy these constraints (see Section .

The tool creates a CSP process for each function of the symbolic DFRS. We
also keep traceability with the original requirements by means of events named
after their identifier. When these events occur, it implicitly states that the sys-
tem is presenting the behaviour described by the corresponding requirement.
Besides being one of our alternatives for generating test cases, the CSP model
allows the automatic verification of important properties concerning the require-
ments, and thus providing more confidence in the system specification, namely:
completeness, consistency, and reachability. More information is available in [4].
In Figure |1} one can see the obtained CSP specification by clicking on CSPm.

3.5 TC-Generator Component

This component accomplishes the ultimate goal of the NAT2TEST strategy: the
generation of test cases. It is done in two steps: (1) the enumeration of symbolic
test cases via FDR, and (2) the instantiation of time-related events via Z3. The
enumeration of test cases is performed with the aid of a TCIE script, which is
based on the traces enumeration technique presented in [10].

Due to the potential large (possibly infinite) number of test cases, we con-
sider coverage criteria (e.g., maximum number of test cases, coverage of nodes or
transitions of the LTS, requirement coverage) to guide the test-generation pro-
cess. Here, we consider requirement coverage: one can select which requirements
should be covered by the generated test cases. To meet this criterion the tool
searches for traces that have the event named after the requirement identifier.

Using FDR, the NAT2TEST tool enumerates traces that meet the cover-
age criteria. Basically, we can split the events of these traces into three distinct
groups: input, output, and time-related events (delays and resets). From the first
two, the tool infers the stimuli provided to the system, as well as the expected
response. In this way, we obtain a symbolic test case as it still lacks time in-
formation. The proper test case is obtained with the aid of Z3. From the reset
and delay events we automatically generate a satisfiability problem. More specif-
ically, there is a mapping from each time-related event that appears in the trace
to a time constraint that needs to be fulfilled. Z3 is then used to find solutions
(delays) that satisfy these constraints.

19 http://www.tcl.tk/

http://www.tcl.tk/

NAT2TEST Tool: from Natural Language Requirements to Test Cases 7

Figure [1} presented in Section [3] shows the screen where the user can select
which requirements the test cases are going to cover, as well as inspect the gener-
ated test cases, which are presented in a tabular form. The test case depicted in
Figure [1] tests the following scenario: first, the coin sensor becomes true (1.0s),
leading the system to the choice state (the_system_mode = 0). Later (3.0s),
the user presses the coffee request button (the_coffee_request = true); after 10
seconds, the machine produces weak coffee (the_coffee_machine_output = 1).

4 Related Work

In the related literature, other approaches generate test cases from NL specifi-
cations. In [B], requirements are written in the quasi-natural language Gherkin.
Tests are generated with the aid of a model-based testing tool. In order to ob-
tain executable test cases, clauses from the specification are manually associated
with code, which is not required by us. Nevertheless, we generate executable test
cases, since they represent data to be sent and monitored from sensors and actua-
tors. Furthermore, we also consider time aspects when generating tests. While [5]
addresses test generation for web applications, we focus on embedded systems.

In [I1], after defining a dictionary, test cases are generated from plain text,
with no need of an underlying CNL, which brings flexibility, but also more user
intervention. It is necessary to identify and partition system inputs and outputs
manually. In our work, they are automatically identified from thematic roles.
Similarly to our approach, time is considered as an element of testing in [I1].

Some works impose a more standardised writing form and, thus, rely on less
user intervention. In [6] requirements need to be written according to a strict if-
then template, which, however, can be used to represent time properties, besides
generating tests. In our work, the SysReq-CNL provides a more flexible writing
structure. In [I0] a similar sentence structure is also considered. However, it
generates non-executable test cases, besides not considering time aspects.

The absence of user intervention in our strategy is due to the compromise
reached by the SysReq-CNL. As we focus on the domain of embedded systems,
whose behaviour can be described as actions guarded by conditions, we can
impose some restrictions, while allowing the requirements to be expressed as a
textual specification. However, these restrictions make our approach not suitable
for writing requirements that do not adhere to this format of actions and guards.

5 Conclusions

We presented the NAT2TEST tool, which supports the automatic generation
of test cases from natural-language requirements, which might consider discrete
or continuous temporal properties. This is achieved possibly using commercial
tools (like T-VEC and RT-Tester) or based on a formal conformance relation
using tools like FDR and Z3, in which case the test generation is proved sound.
As future work, we envisage the following tasks: (1) apply compression and

Gustavo Carvalho et al.

optimisation techniques to enhance the performance of our strategy, and (2)
extend our approach to consider NL descriptions of hybrid systems.

Acknowledgments. This work was carried out with the support of the CNPq
(Brazil), INE™] and the grants: FACEPE 573964,/2008-4, APQ-1037-1.03/08,
CNPq 573964/2008-4 and 476821/2011-8.

References

1.

10.

11.

12.

11

Carvalho, G., Barros, F., Lapschies, F., Schulze, U., Peleska, J.: Model-Based Test-
ing from Controlled Natural Language Requirements. In: Artho, C., lveczky, P.C.
(eds.) Formal Techniques for Safety-Critical Systems, Communications in Com-

puter and Information Science, vol. 419, pp. 19-35. Springer International Pub-
lishing (2014)

. Carvalho, G., Carvalho, A., Rocha, E., Cavalcanti, A., Sampaio, A.: A Formal

Model for Natural-Language Timed Requirements of Reactive Systems. In: Merz,
S., Pang, J. (eds.) Formal Methods and Software Engineering, International Confer-
ence on Formal Engineering Methods ICFEM, Lecture Notes in Computer Science,
vol. 8829, pp. 43-58. Springer International Publishing (2014)

Carvalho, G., Falcao, D., Barros, F., Sampaio, A., Mota, A., Motta, L., Black-
burn, M.: NAT2TESTscr: Test case generation from natural language require-
ments based on SCR specifications. Science of Computer Programming 95, Part
3(0), 275 — 297 (2014)

Carvalho, G., Sampaio, A., Mota, A.: A CSP Timed Input-Output Relation and a
Strategy for Mechanised Conformance Verification. In: Formal Methods and Soft-
ware Engineering, LNCS, vol. 8144, pp. 148-164. Springer Berlin Heidelberg (2013)
Colombo, C., Micallef, M., Scerri, M.: Verifying Web Applications: From Business
Level Specifications to Automated Model-Based Testing. In: Proceedings Ninth
Workshop on Model-Based Testing, MBT 2014, Grenoble, France, 6 April 2014.
pp. 14-28 (2014)

Esser, M., Struss, P.: Obtaining Models for Test Generation from Natural-Language
like Functional Specifications. In: International Workshop on Principles of Diag-
nosis. pp. 75-82 (2007)

FAA: Requirements Engineering Management Findings Report. Tech. rep., U.S.
Department of Transportation - Federal Aviation Administration (2009)
Fillmore, C.J.: The Case for Case. In: Bach, Harms (eds.) Universals in Linguistic
Theory, pp. 1-88. New York: Holt, Rinehart, and Winston (1968)

Larsen, K., Mikucionis, M., Nielsen, B.: Online Testing of Real-time Systems us-
ing Uppaal: Status and Future Work. In: Perspectives of Model-Based Testing -
Dagstuhl Seminar. vol. 04371 (2004)

Nogueira, S., Sampaio, A., Mota, A.: Test generation from state based use case
models. Formal Aspects of Computing 26(3), 441-490 (2014)

Santiago Junior, V., Vijaykumar, N.L.: Generating Model-based Test Cases from
Natural Language Requirements for Space Application Software. Software Quality
Journal 20, 77-143 (2012)

Tomita, M.: Efficient Parsing for Natural Language. Kluwer Academic Publishers
(1986)

WWW.ines.org.br

www.ines.org.br

	NAT2TEST Tool: from Natural Language Requirements to Test Cases
	Introduction
	The NAT2TEST Strategy
	The NAT2TEST Tool
	CNL-Parser Component
	RF-Generator Component
	DFRS-Generator Component
	CSPM-Generator Component
	TC-Generator Component

	Related Work
	Conclusions

