
Algebraic Reasoning for Object-Oriented

Programming

Paulo Borba a, Augusto Sampaio a, Ana Cavalcanti b,
Márcio Cornélio a,1

aInformatics Center, Federal University of Pernambuco, Recife 50740-540, Brazil
bComputing Laboratory, University of Kent, Canterbury CT2 7NF, England

Abstract

We present algebraic laws for a language similar to a subset of sequential Java
that includes inheritance, recursive classes, dynamic binding, access control, type
tests and casts, assignment, but no sharing. These laws are proved sound with
respect to a weakest precondition semantics. We also show that they are complete
in the sense that they are sufficient to reduce an arbitrary program to a normal
form substantially close to an imperative program; the remaining object-oriented
constructs could be further eliminated if our language had recursive records. This
suggests that our laws are expressive enough to formally derive behaviour preserving
program transformations; we illustrate that through the derivation of provably-
correct refactorings.

1 Introduction

Programming laws [H+87] state properties of programming constructs and
are useful for reasoning about programs [Mor94], designing correct compil-
ers [JB94,Sam97], and, when interpreted as program transformations, sup-
porting informal programming practices such as refactoring [Opd92,Fow99].
Several paradigms have benefited from algebraic programming laws. The laws
of imperative programming [H+87] have been useful for providing algebraic
semantic definitions and for establishing a sound basis for formal software de-
velopment methods. The laws of OCCAM [RH88] exhibit useful properties of
concurrency and communication. Algebraic properties of functional program-
ming are elegantly addressed in [BdM97]. An algebraic approach to reasoning

1 Present address: Polytechnic School, University of Pernambuco, Recife 50750-410,
Brazil.

Preprint submitted to Elsevier Science 12 February 2004

about logic programming is presented in [SSH99]. More recently, unifying the-
ories [HH98] have been proposed to study different paradigms, considering a
variety of semantic presentations in an integrated way: denotational, opera-
tional, and algebraic.

The laws of object-oriented programming, however, are not well established.
Laws for small-grain object-oriented constructs have been considered else-
where [MS97,Lei98], but medium-grain constructs have been neglected. Some
laws have been informally discussed as refactorings [Fow99], and formalised to
the degree that they can be encoded in tools [Opd92,Rob99], but not proved
sound or complete. In summary, there is no comprehensive, provably sound,
set of laws to help developers understand and use the properties of mecha-
nisms such as classes, inheritance, and subtyping. Furthermore, some of the
laws of imperative programming are not directly applicable to corresponding
object-oriented constructs. For instance, due to dynamic binding, the laws of
procedure call are not directly valid for method call.

In this article, we describe a comprehensive set of laws for a language that is
similar to a subset of sequential Java [CN00]. It includes, classes, inheritance,
access control, dynamic binding, type tests and casts, recursion, assignment,
and many other imperative features, including specification constructs. We
adopt a copy semantics, so we do not model references or sharing. This does
simplify the semantics of the language, but the laws related to object-oriented
features do not rely on copy semantics. There is just one exception: the law
for change of data representation. Moreover, in the absence of sharing, all laws
are valid.

We present laws that deal with the imperative features of our language, but we
concentrate on laws for its object-oriented features. We prove them to be sound
with respect to a weakest precondition semantics first presented in [CN00].
Furthermore, we show that our set of laws is complete in the sense that it
is sufficient to reduce an arbitrary program to a normal form substantially
close to an imperative program; the remaining object-oriented constructs could
be further eliminated if our language had recursive records. This follows an
approach adopted for imperative and concurrent languages [H+87,RH88].

Using our laws, we describe and justify a strategy for reducing programs to
normal form. This does not suggest a compilation process; its sole purpose is
to prove a completeness result and, therefore, suggest that our set of laws is
expressive. A first version of our completeness proof is presented in [BSC03];
here we present a generalisation in the handling of recursive methods. More
importantly, we consider the soundness of our laws; this was not addressed
in [BSC03].

Besides clarifying aspects of the semantics of object-oriented constructs, the

2

major application of our laws is to formally derive more elaborate behaviour
preserving program transformations useful for optimizing or restructuring
object-oriented applications. In particular, we show how they can be used to
derive provably-correct refactorings. For that, we also use the law for change
of representation, which generalises the traditional data refinement law for a
single program module [Mor94] to class hierarchies.

This article is organized as follows. We first give an overview of the subset
of Java that we consider. After that, in Section 3, we present the algebraic
laws. In Section 4, we discuss the weakest precondition semantics of our lan-
guage and the proof of soundness of our laws. Completeness is considered in
Section 5, where we present the normal form and a reduction strategy. The
class refinement law is presented in Section 6. In Section 7 we show how the
presented laws can serve as a basis for proving refactorings. Section 8 discusses
related work and Section 9 summarises our results and topics for further re-
search. The soundness result is new; it is integrated here to slightly extended
and improved versions of previously published results [BSC03,CN00].

2 The language

The language that we study is, mostly, a subset of sequential Java [GJS96]
with a copy semantics. The language is adequate for reasoning about both
programs and specifications since it includes constructs, such as specifica-
tions statements, of Morgan’s refinement calculus [Mor94]. The syntax of
commands, in particular, is based on that of Dijkstra’s language of guarded
commands [Dij76].

A program cds •c in our language is a set of class declarations cds followed by
a main command c. Classes are declared as in the following example, where
we define a class called Client .

class Client extends object
pri name : String ; addr : Address
. . .
meth getStreet =̂ (res r : String • self .addr .getStreet(r))
meth setStreet =̂ (val s : String • self .addr .setStreet(s))
new =̂ self .addr := new Address end;

end

Subclassing and single inheritance are supported through the extends clause.
The built-in object class is a superclass of all the other classes, so the extends
clause above could have been omitted.

3

The class Client includes two private attributes: name and addr , of types
String and Address . Besides the pri qualifier for private attributes, there are
qualifiers for protected (prot) and public (pub) attributes as in Java. For sim-
plicity, the language supports no attribute redefinition and allows only public
methods, which can have value and result parameters. The list of parame-
ters of a method is separated from its body by the symbol •. The method
getStreet has a result parameter r , and setStreet has a value parameter s .
Constructors are declared by the new clause and do not have parameters.
In contrast to Java, our language adopts a simple semantics for constructors:
they are syntactic sugar for methods that are called after creating objects of
the corresponding class.

The body of methods and constructors are commands similar to those of
Morgan’s refinement calculus. Their syntax is formalised as follows:

c ∈ Com ::= le := e | c; c assignment, sequence

| x : [ψ1, ψ2] specification statement

| pc(e) parametrised command application

| if []i • ψi → ci fi conditional

| rec X • c end | X recursion, recursive call

| var x : T • c end local variable block

| avar x : T • c end angelic variable block

We allow x , e, le, and T to also denote lists of identifiers, expressions and
types; this shall be clear from the context. The expressions le that are allowed
to appear as the target of assignments and method calls, and as result argu-
ments, define the subset Le (left expressions) of valid expressions. We define
this set later in this section.

A specification statement x : [ψ1, ψ2] is useful to concisely describe a program
that can change only the variables listed in the frame x , and, when executed
in a state that satisfies its precondition ψ1, terminates in a state satisfying its
postcondition ψ2. The frame x is the list of the variables whose values may
change, and ψ1 and ψ2 are formulas of the predicate calculus. For conciseness,
we omit the standard definition of the syntax of formulas. Like the languages
adopted in other refinement calculi, we have a specification language where
programs appear as an executable subset of specifications.

Although not usually deliberately written, the following specification is useful
for reasoning.

abort = x : [false, true]

4

It is never guaranteed to terminate (precondition false). It is also useful in
program derivation or transformation to assume that a condition b holds at a
given point in the program text. This can be characterised as an assumption
of b, written as {b}, and defined as follows.

{b} = : [b, true]

If b is false, the assumption reduces to abort. Otherwise, it behaves like a
command that always terminates and does nothing, denoted by skip.

skip = : [true, true]

The empty frame guarantees that no variables are changed.

Methods are seen as parametrised commands [Bac87,CSW99], which can be
applied to a list of arguments to yield a command (the entry ‘pc(e)’ in the
description of commands). Therefore method calls are represented as the ap-
plication of parametrised commands. The syntax of parametrised commands
is defined as follows.

pc ∈ PCom ::= pds • c parameterization

| le.m | ((N)le).m method calls

| self .m | super.m

pds ∈ Pds ::= ∅ | pd | pd ; pds parameter declarations

pd ∈ Pd ::= val x : T | res x : T

The parametrised command pds • c declares parameters pds used in a com-
mand c. The parametrised command le.m is a call to a method m with target
object le. Parameters can be passed by value (keyword val) or result (res).
In the body of the getStreet method of the class Client , for instance, we have
a call to a method getStreet with target addr , and argument r . A call to a
method m on the current object must be written as self .m since self is not
optional; in the case of redefinitions, the method declared by the superclass
can be called by writing super.m.

Data types T are either primitive (bool, int, and others) or classes. We con-
sider that methods cannot be mutually recursive, but classes can.

The conditional (alternation) command is in the style of the guarded if of
Dijkstra’s language. In the BNF, we use an informal indexed notation for a
finite set of guarded commands ψi → ci separated by []. We also have recursion
and variable blocks. Angelic variables, also known as logical variables or logical
constants, are similar to standard local variables, except that its initial value
is angelically chosen to make sure c succeeds, if possible at all. For example,

5

in the program fragment

avar x : int • {x = 2}; . . . end

the variable x is assigned value 2 upon (an implicit) initialisation; otherwise,
the assumption {x = 2} would behave like abort. Angelic declarations are
not code, but they are useful for reasoning.

Our language includes typical object-oriented expressions:

e ∈ Exp ::= self | super special ‘references’

| null | new N null ‘reference’, object creation

| x | f (e) variable, built-in application

| e is N | (N)e type test, type cast

| e.x | (e; x : e) attribute selection and update

The expressions self , super, and is have similar semantics to this, super,
and instanceof (which does not require exact type matching) in Java, re-
spectively. We must write self .a to access the attribute a of the current class,
since self is not optional. The update expression (e1; x : e2) denotes a copy of
the object e1, but with the attribute x mapped to a copy of e2; this is similar
to update of arrays in Morgan’s refinement calculus [Mor94]. So, despite its
name, the update expression, similarly to the other expressions, has no side-
effects; in fact, it creates a new object instead of updating an existing one.
Variables can, however, be updated through the execution of commands, as
in o := (o; x : e), which is semantically equivalent to o.x := e, and updates
o. Expressions such as null.x and (null; x : e) cannot be successfully evalu-
ated; they yield the special value error and lead the commands in which they
appear to abort.

The left-expressions are defined as follows.

le ∈ Le ::= le1 | self .le1 | ((N)le).le1 le1 ∈ Le1 ::= x | le1.x

These are the expressions that can appear as targets of assignments, and as
result arguments; they can also appear as targets of method calls, along with
self , super, and cast expressions.

6

3 Algebraic Laws

Algebraic laws are usually presented as context-independent equations, as in
the law

(x := x) = skip

and several other laws of imperative programming [H+87,RH88]. Such laws are
compositional; they can be used, for example, as rewrite rules and program
transformations, and one can even think of more than one law being applied
simultaneously to different fragments of a program. Due to independence of a
particular context, these laws are also applicable to open programs.

The laws we propose in this section focus on the object-oriented features of
our language. These laws are mostly concerned with properties of class decla-
rations and method calls, which are inherently context-dependent, especially
when considering class hierarchies. Therefore, the proposed laws need to ad-
dress context issues. Equivalence of sets of class declarations cds1 and cds2 is
denoted by cds1 =cds,c cds2, where cds is a context of class declarations for
cds1 and cds2, and c is the main command. This is just an abbreviation for
the program equivalence cds1cds • c = cds2cds • c, which we formalise in the
next section.

These laws consider the entire context, and therefore apply to closed programs.
Nevertheless, their associated side conditions are purely syntactic. Further-
more, although the context is captured for each particular law application,
this is by no means a requirement that the context be fixed for successive
transformations. The first law introduced below allows elimination and in-
troduction of class declarations; thus its application may change the context
of a development. If, eventually, a modified context no longer satisfies the
conditions of a law previously applied, this does not invalidate the effected
transformation; it just means that in the current context the application of
the law would not be valid.

Law 1 〈class elimination〉
cds cd1 • c = cds • c

provided

(→) The class declared in cd1 is not referred to in cds or c;
(←) (1) The name of the class declared in cd1 is distinct from those of all

classes declared in cds ; (2) the superclass appearing in cd1 is either object
or declared in cds ; (3) and the attribute and method names declared by cd1

are not declared by its superclasses in cds , except in the case of method
redefinitions. 2

7

We write ‘(→)’ before the first proviso since it is only required for applications
of this law from left to right. We also write ‘(←)’, when a proviso is necessary
only for applying a law from right to left, and ‘(↔)’ when it is necessary in both
directions. This also helps to interpret each law as two behaviour preserving
transformations with different provisos.

We now present laws to manipulate attribute and method declarations, method
calls, and commands in general.

3.1 Attribute declarations

The first laws we present in this section allow us to change the declaration
of attributes. The following law relates protected and public attributes. From
left to right, it establishes that a protected attribute can be made public;
from right to left, it asserts that a public attribute can be made protected,
provided that it is only directly used by the class in which it is declared and
its subclasses. This proviso is necessary to guarantee that the law relates well-
formed programs.

Law 2 〈change visibility: from protected to public〉

class C extends D
prot a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a, for any B ≤ C , appears only in ops and in the subclasses of C in
cds . 2

We write prot a : T ; ads to denote the attribute declaration prot a : T
and all the declarations in ads , whereas ops stands for the declarations of
methods and constructors. The notation B .a refers to uses of the name a via
expressions whose static type is exactly B , as opposed to any of its subclasses.
For example, if we write that B .a does not appear in ops , we mean that ops
does not contain any expression such as e.a, for any e of type B , strictly. The
subclass relation is denoted by ≤.

Our second law relates private and public attributes.

8

Law 3 〈change visibility: from private to public〉

class C extends D
pri a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ; ads
ops

end

provided

(←) B .a, for any B ≤ C , does not appear in cds , c. 2

When applied from right to left, this law makes a public attribute private.
For that, the attribute cannot be used anywhere outside the class where it
is declared; this is enforced by the proviso. The law that allows us to change
attribute visibility from private to protected, and vice-versa, can be derived
from the above two laws.

The following law establishes that we can move a public attribute a from a
class C to a superclass B , and vice-versa. To move the attribute up to B , it is
required that this does not generate a name conflict: no subclass of B , other
than C , can declare an attribute with the same name; our language does not
allow attribute redefinition or hiding as in Java. We do not need to worry
about a being declared in B itself, as this is not possible: if it were, then C
would not be well-formed. We can move a from B to C provided that a is
used only as if it were declared in C .

Law 4 〈move attribute to superclass〉

class B extends A
ads
ops

end
class C extends B

pub a : T ; ads ′

ops ′

end

=cds,c

class B extends A
pub a : T ; ads
ops

end
class C extends B

ads ′

ops ′

end

provided

(→) The attribute name a is not declared by the subclasses of B in cds ;
(←) D .a, for any D ≤ B and D 6≤ C , does not appear in cds , c, ops , or ops ′.

2

The second proviso above, according to the special notation D .a previously
introduced, precludes an expression such as self .a from appearing in ops , but
does not preclude self .c.a, for an attribute c : C declared in B . The last

9

expression is valid in ops no matter whether a is declared in B or in C .

The following law allows us to change the class type of an attribute to a
supertype, and vice-versa.

Law 5 〈change attribute type〉

class C extends D
pub a : T ; ads
ops

end

=cds,c

class C extends D
pub a : T ′; ads
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of a in expressions of ops ,
cds and c is cast with T or any subtype of T declared in cds .

(←) (1) every expression assigned to a, in ops , cds and c, is of type T or any
subtype of T ; (2) every use of a as result argument is for a corresponding
formal parameter of type T or any subtype of T . 2

Assignable occurrences of identifiers are result arguments and targets of as-
signments. For instance, in self .a := e and le.m(self .a), the occurrences of a
are assignable, if the single parameter of m is passed by result. On the other
hand, in an assignment self .a.x := e, there is an assignable occurrence of x
but not of a. Therefore, a is required to be cast in the proviso above. The same
comment applies to a result argument self .a.x . Occurrences of identifiers as
result arguments and targets of assignments are not cast anywhere; like in
Java, this is not allowed in our language.

3.2 Method declarations

In this section we give laws related to the declaration of methods. The following
law states that we can introduce or remove a trivial method redefinition, which
amounts simply to a call to the method in the superclass.

Law 6 〈introduce method redefinition〉

10

class B extends A
ads
meth m =̂ pc
ops

end
class C extends B

ads ′

ops ′

end

=

class B extends A
ads
meth m =̂ pc
ops

end
class C extends B

ads ′

meth m =̂ super.m
ops ′

end

provided

(→) m is not declared in ops ′. 2

Strictly, we cannot define a method as meth m =̂ super.m. A method decla-
ration is an explicit parametrised command, so that, above, pc has the form
(pds • c); the redefinition of m should be meth m =̂ (pds • super.m(αpds)),
where αpds denotes the list of parameter names declared in pds . For simplicity,
however, we adopt the shorter notation meth m =̂ super.m.

The next law states that we can merge a method declaration and its redefi-
nition into a single declaration in the superclass. The resulting method uses
type tests to choose the appropriate behaviour.

Law 7 〈move redefined method to superclass〉

class B extends A
ads
meth m =̂ (pds • b)
ops

end
class C extends B

ads ′

meth m =̂ (pds • b ′)
ops ′

end

=cds,c

class B extends A
ads
meth m =̂ (pds •
if ¬(self is C) → b
[] self is C → b ′

fi)
ops

end
class C extends B

ads ′

ops ′

end

provided

(↔) (1) super and private attributes do not appear in b ′; (2) super.m does
not appear in ops ′;

(→) b ′ does not contain uncast occurrences of self nor expressions in the form

11

((C)self).a for any private attribute a in ads ′;
(←) m is not declared in ops ′. 2

The provisos concerning super are needed because its semantics may be af-
fected if it is moved from a subclass to a superclass, or vice-versa. The other
provisos ensure the validity of the programs involved. We can only move the
body of m up if it does not refer to elements of the class where it is declared
through uncast self . As mentioned in the previous section, self must be used
for calling methods and selecting attributes of the current object.

Our third method law allows us to move up in the class hierarchy a method
declaration that is not a redefinition. Our language supports method redefini-
tion but, as opposed to Java, not overloading. Hence, we cannot have different
methods in the same class, or in a class and a subclass, with the same name,
but different parameters. Our law indicates that we can move a method down
too, if this method is used only as if it were defined in the subclass.

Law 8 〈move original method to superclass〉

class B extends A
ads
ops

end
class C extends B

ads ′

meth m =̂ pc
ops ′

end

=cds,c

class B extends A
ads
meth m =̂ pc
ops

end
class C extends B

ads ′

ops ′

end

provided

(↔) (1) super and private attributes do not appear in pc; (2) m is not de-
clared in any superclass of B in cds ;

(→) (1) m is not declared in ops , and can only be declared in a class D , for
any D ≤ B and D 6≤ C , if it has the same parameters as pc; (2) pc does not
contain uncast occurrences of self nor expressions in the form ((C)self).a
for any private attribute a in ads ′;

(←) (1) m is not declared in ops ′; (2) D .m, for any D ≤ B , does not appear
in cds , c, ops or ops ′. 2

The provisos for this law are similar to those of Laws 7 and 4. Only the first
two are necessary to preserve semantics; the others guarantee that we relate
syntactically valid programs. The second proviso, associated to applications
of the law in both directions, precludes superclasses of B from defining m,
because, otherwise, when moving it, we could affect the semantics of calls
such as b.m(e), for a b storing an object of B .

12

The next two laws allow us to change the type of a parameter; they are similar
to Law 5. The first law handles value parameters.

Law 9 〈change value parameter type〉

class C extends D
ads
meth m =̂

val x : T ; pds • b
ops

end

=cds,c

class C extends D
ads
meth m =̂

val x : T ′; pds • b
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of b are
cast with T or any subtype of T ;

(←) (1) every actual parameter associated with x in ops , cds , and c is of type
T or any subtype of it; (2) every expression assigned to x in b, is of type
T or any subtype of T ; (3) every use of x as result argument in b is for a
corresponding formal parameter of type T or any subtype of T . 2

For a result parameter, we have the following law. As opposed to a value argu-
ment, the type of a result argument has to be that of the corresponding formal
parameter or a supertype of it. We cannot change the type of a parameter to
a supertype of any of the arguments used in the program.

Law 10 〈change result parameter type〉

class C extends D
ads
meth m =̂

res x : T ; pds • b
ops

end

=cds,c

class C extends D
ads
meth m =̂

res x : T ′; pds • b
ops

end

provided

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of b are
cast with T or any subtype of T ;

(→) every actual parameter associated with formal parameter x in ops , cds ,
and c is of type T ′ or any supertype of it;

(←) (1) every expression assigned to x in b is of type T or any subtype of
T ; (2) every use of x as result argument in b is for a corresponding formal
parameter of type T or any subtype of T . 2

13

The first proviso is the same as that in the previous law: it restricts the way
in which the parameter is used in the method body. The second proviso is
related to the use of arguments. The third proviso is similar to that in Law 5.

A method that is not called can be eliminated. Conversely, we can always
introduce a new method in a class.

Law 11 〈method elimination〉

class C extends D
ads
meth m =̂ pc end; ops

end

=cds,c

class C extends D
ads
ops

end

provided

(→) B .m does not appear in cds , c nor in ops , for any B such that B ≤ C .
(←) m is not declared in ops nor in any superclass or subclass of C in cds . 2

The introduction and elimination of attributes is considered in Section 6.

3.3 Method calls

The laws in this and in the next section give properties of the equivalence
relation for commands, instead of programs or class declarations as those
in the previous sections. The following law indicates that we can replace a
method call super.m in a class C by a copy of the body of m as declared
in the immediate superclass of C , provided the body does not contain super
nor private attributes.

Law 12 〈eliminate super〉
Consider that CDS is a set of two class declarations as follows.

class B extends A
ads
meth m =̂ pc
ops

end

class C extends B
ads ′

ops ′

end

14

Then we have that

cds CDS ,C B super.m = pc

provided

(→) super and the private attributes in ads do not appear in pc. 2

The notation cds CDS denotes the union of the class declarations in cds and
CDS , and ‘cds ,N B c = d ’ indicates that the equation ‘c = d ’ holds
inside class named N , in a context defined by the set of class declarations cds .
Instead of a class name, we might use main for asserting that the equality
holds inside the main program.

Law 12 is similar to the standard copy rule for procedures [Mor94]; for calls
super.m, dynamic binding does not apply. The arguments to which super.m
is applied are not touched by this law; pc ends up applied to the same argu-
ments.

In the case where a method is not redefined, and there are no visibility con-
cerns, we can use the copy rule to characterise method calls. It might be
surprising that we need only such simple laws to characterise method call
elimination. The reason is that dynamic binding is handled by Law 7 as a sep-
arate issue. Hereafter, the notation cds ,N B e : C is used to indicate that in
the class N declared in cds , the expression e has static type C . Again, instead
of a class name, we might use main for asserting that the typing holds inside
the main program.

Law 13 〈method call elimination〉
Consider that the following class declaration

class C extends D
ads
meth m =̂ pc
ops

end

is included in cds and cds ,A B le : C . Then

cds ,A B le.m(e) = {le 6= null ∧ le 6= error}; pc[le/self](e)

provided

(↔) (1) m is not redefined in cds and pc does not contain references to super;
(2) all attributes which appear in the body pc of m are public. 2

15

A method call le.m(e) aborts when le is null or error. Thus, we need the
assumption {le 6= null∧ le 6= error} on the right-hand side of the above law.
The law for a call self .m(e) is similar. As already mentioned in Section 2,
the assumption {b} behaves like skip if b is true, and as abort otherwise.
The notation pc[le/self] denotes the parametrised command pc where self is
replaced with le.

A type cast plays two major roles. At compilation time, casting is necessary
when using an expression in contexts where an object value of a given type is
expected, and this type is a strict subtype of the expression type. For example,
if x : B , C ≤ B and a is an attribute which is in C but not in B , then the
selection of this attribute using x requires a cast, as in ((C)x).a. If a is declared
in B , then the cast is not necessary for compilation, but once it is there, it
cannot simply be eliminated, because a cast also has a run time effect.

At run time, if the value of a cast expression does not have the required type,
its evaluation results in error, and the command in which it appears aborts.
In the example above, if the attribute a is in class B , although the cast could
be eliminated regarding its static effect, it still has a dynamic effect when the
object value of x happens to be of type C , but not of type B .

In order to capture the behaviour of casts, we use assumptions. The following
law deal with the elimination of type casts in targets of method calls.

Law 14 〈eliminate cast of method call〉
If cds ,A B e : B , C ≤ B and m is declared in B or in any of its superclasses
in cds , then cds ,A B ((C)e).m(e ′) = {e is C}; e.m(e ′). 2

Casts in arguments can also be eliminated, but we omit this similar law.

3.4 Commands and expressions

In the same way that the type on an attribute (Law 5) or parameter (Laws 9
and 10) can be changed if all its uses are cast, we can also change the type of
a local variable in this case.

Law 15 〈change variable type〉
cds ,A B var x : T • c end = var x : T ′ • c end

(↔) T ≤ T ′ and every non-assignable occurrence of x in expressions of c is
cast with T or any subtype of T ;

(←) (1) every expression assigned to x in c is of type T or any subtype of
T ; (2) every use of x as result argument in c is for a corresponding formal
parameter of type T or any subtype of T . 2

16

The same holds for angelic variables.

The following law formalises the fact that any expression can be cast with its
declared type.

Law 16 〈introduce trivial cast in expressions〉
If cds ,A B e : C , then cds ,A B e = (C)e. 2

For simplicity, this is formalised as a law of expressions, not commands. Nev-
ertheless, it should be considered as an abbreviation for several laws of assign-
ments, conditionals, and method calls that deal with each possible pattern of
expressions. For example, it abbreviates the following laws, all with the same
antecedent as Law 16.

cds ,A B le := e.x = le := ((C)e).x

cds ,A B e ′.m(e) = e ′.m((C)e)

This law is equally valid for left-expressions, which are a form of expression.
However, our language, like Java, does not allow casts to appear in targets
of assignments and result parameters. So Law 16 sould not be considered an
abbreviation for laws such as

cds ,A B e := e ′.x = ((C)e) := e ′.x

which are not valid since ((C)e) := e ′.x is not a command in our language,
even if e is a left expression.

Law 14, presented in the previous section, allows us to eliminate casts in
targets of method calls. We can also eliminate casts in assignments as below.

Law 17 〈eliminate cast of expressions〉
If cds ,A B le : B , e : B ′, C ≤ B ′ and B ′ ≤ B , then

cds ,A B le := (C)e = {e is C}; le := e

2

Similar laws apply to expressions in conditionals and other points of a program.

Two simple laws of type test are presented below; they are laws of expressions.
Law 18 asserts that the type test self is M is true when appearing inside a
subclass of M .

Law 18 〈is test true〉
If N ≤cds M , then cds ,N B self is M = true 2

17

In complement to Law 18, Law 19 asserts that the test self is M is false inside
a class N , provided N is not a subclass of M , and vice-versa.

Law 19 〈is test false〉
If N �cds M and M �cds N , then cds ,N B self is M = false 2

The following two laws express simple properties of the alternation command.
The first law allows us to simplify an alternation whose commands are the
same in all branches, assuming that the disjunction of all guards is true.

Law 20 〈if identical guarded commands〉
If

∨
i : 1 . . n • ψi = true, then if [] i : 1 . . n • ψi → c fi = c. 2

The other law states that the order of the guarded commands of an alternation
is immaterial.

Law 21 〈if symmetry〉
If π is any permutation of 1 . . n, then

if [] i : 1 . . n • ψi → ci fi = if [] i : 1 . . n • ψπ(i) → cπ(i) fi

2

The soundness of our laws is considered in the next section. Examples of their
use can be found in Sections 5 and 7.

4 Soundness

In order to guarantee that the laws presented in the previous section are sound,
so that the associated program transformations preserve behaviour, we use a
formal semantics to prove their validity. In this section, we first present the
typing rules of our language and a weakest precondition semantics that is
defined by induction on the typing rules [CN00]. Based on that, later in the
section, we discuss the soundness of our laws.

4.1 Typing

In many presentations of weakest precondition semantics, the typing context
is implicit, because a fixed global state is adequate for a simple imperative
language. In object-oriented languages, however, this context plays a strong
role in the semantics due to dynamic binding and visibility. We formalise a
type system for our language and define the semantics by induction on typing
judgements, as we often use typing information in semantic definitions.

18

We define a judgement Γ, Σ,N B c : com for when a command c is well-
typed in a context defined by the class declarations recorded in the typing
environment Γ, by the variables in the local signature Σ, and the class N .
The typing environment records the class names, the attributes and methods
available by declaration or inheritance in each of them, the attributes types
and visibility, the method parameters, and the inheritance relationship. The
signature records the attributes visible in N , and the parameters and local
variables in scope. The main command is regarded as part of a special class
called main. In the judgement Γ, Σ,main B c : com, the signature Σ includes
the global program variables, which represent its inputs and outputs.

We also have judgements for expressions, predicates, parametrised commands,
and programs. For expressions, the judgement Γ, Σ,N B e : T asserts that e
is well-typed and has type T in the context characterised by Γ, Σ,N . In fact, e
and T can be lists of expressions and corresponding types; the context should
make clear which one is meant. In the laws, we have used cds ,N B e : T as an
abbreviation for Γ, Σ,N B e : T , where Γ and Σ are the typing environment
and signature determined by the set of class declarations cds and the class
N . For parametrised commands, Γ, Σ,N B pc : pcom(pds) asserts that pc is
well-typed and has parameters pds .

Table 1 presents some typing rules; there, we omit the local signature Σ and
the class N when they do not change. The typing rule for self states that
its type is that of the current class N . This class name, however, should not
me main, since this actually denotes the main program, which cannot include
occurrences of self .

The type of e.x is that of the x attribute of the class N ′ of e (Γ.attr N ′ x),
provided this attribute is visible from the current class. Visibility is considered
in visib Γ N ′ N x , a condition stating that x is an attribute of N ′ visible from
inside the class N .

In (par x : T • c), we use par to denote a keyword that describes the passing
mechanism for the parameter x . This parametrised command is well-typed if
c is well-typed in the extended context that includes x in the local signature.
Even though our language does not include value-result parameters, in the
semantics, we consider an extended language with constructs that simplify
definitions. This extended language does include value-result parameters.

An assignment le := e is well-typed if its source e and its target e are well-
typed. Moreover, the type T ′ of e must be a subtype of the type T of le. For
a typing environment Γ, the subtyping relation is denoted by ≤Γ.

A method call le.m(e) is well-typed if the parametrised command le.m and the
list of arguments e are well-typed. Moreover, le.m(e) potentially modifies le.
So, to avoid aliasing, we require that the list formed by le and the result argu-

19

N 6= main

Γ,N B self : N

Γ,N B e : N ′ Γ.attr N ′ x = T visib Γ N ′ N x

Γ,N B e.x : T

Γ, (Σ; x : T) B c : com par ∈ {val, res,vres}
Γ, Σ B (par x : T • c) : pcom(par x : T)

Γ B le : T Γ B e : T ′ T ′ ≤Γ T

Γ B le := e : com

Γ B le.m : pcom(pds) Γ B e : T

sdisjoint(le, rargs pds e) aptype Γ pds e T

Γ B le.m(e) : com

Γ,main B c : com (Γ, Σ) = ((VDecs cds main); x : T) Vmeth Γ cds

x : T B cds • c : program

Table 1
Selected typing rules

ments (rargs pds e) does not have repetitions (sdisjoint(le, rargs pds e)). The
arguments e must also have types appropriate with respect to the mechanisms
by which they are passed. For instance, the type of a value argument must be
a subtype of the parameter type. This is enforced by aptype Γ pds e T .

Finally, we have a typing judgement x : T B cds • c : program for complete
programs cds • c. The context is defined simply by the global variables x . The
program cds • c is well-typed, if c is well typed in the context Γ, Σ,main,
where Γ and Σ are the typing environment and the local signature defined by
cds and x ((Γ, Σ) = ((VDecs cds main); x : T)). Moreover, the methods in
the classes in cds have to be well-typed (Vmeth Γ cds).

4.2 Semantics

As already mentioned, we define the semantics by induction on typing rules.
Nevertheless, our semantics is a function of typings, as proved in [CN00].
We present first the semantics of commands, parametrised commands, and
programs. The semantics of method calls is discussed last.

The semantics of commands and parametrised commands rely on an envi-
ronment that, for each method, records a parametrised command obtained
by adding to the declaration of the method an extra parameter, me, passed
by value-result. It provides the target object of method calls, so that we can
interpret a method body in the context of its calls.

20

The typing and visibility restrictions imposed on user programs are too strong
for the semantics. We actually base our definitions in what we call an extended
typing system. Its main difference from the typing system presented here is
that it does not enforce the visibility restrictions. These are natural for user
programs, but not for the semantics, where, for example, we evaluate the body
of a method in the context of its calls.

4.2.1 Commands and parametrised commands

For a command typing Γ, Σ,N B c : com, and an environment η, the weak-
est precondition semantics [[Γ, Σ,N B c : com]]η is a total function on pred-
icates. Many of our definitions are very similar to those of imperative lan-
guages [MRG88]. We explore a few more interesting examples.

The semantics of an assignment to a variable is very much standard; we present
the definitions in a form similar to the typing rules.

Γ B x : T Γ B e : T ′ T ′ ≤Γ T

[[Γ B x := e : com]]η ψ = (e 6= error ∧ ψ[e/x])

Since expressions like e.x are partial, as they may have value error if e is
null, above we have to require that e does not evaluate to error. The weakest
precondition that guarantees that x := e establishes a postcondition ψ is that
e does not evaluate to error, and ψ holds when x takes the value e.

Assignments can be rewritten to assignments of update expressions to vari-
ables and to self . For example, le.x := e can be written as le := (le; x : e).
Therefore, we need to give a weakest precondition semantics only to assign-
ments of the form x := e and self := e. Assignments to self are not supposed
to occur in user programs, but they arise as part of the definition of the se-
mantics of method calls and assigments such as self .x := e, which are written
as self := (self ; x : e).

The semantics of a method call of the form self .m(e) is given in terms of a
parametrised command associated to m in the environment. This command
is of the form (vres me : T ; pds • c), where the parameter me is used to
access the target of the call, pds declares the parameters of m, and c is a
version of the body of the invoked version of m that makes use of me. In the
semantics of self .m(e), this parametrised command is applied to self and e.
A parametrised command application (vres x : T • c)(le) is defined by the
variable block var l : T • l := le; c[l/x]; le := l end, where l is a fresh
variable used to hold and update the argument le. If le turns out to be self ,
as is the case in the semantics of self .m(e), we have an assignment of l to
self .

21

In these assignments, self is always assigned an object of the current class,
so that the target and the source of the assignment have the same type. Our
semantics definition, however, does not depend on this assumption.

Γ,N B e : N ′ N ′ ≤Γ N

[[Γ,N B self := e : com]]η ψ =

(∨N ′′≤ΓN ′• e isExactly N ′′ ∧ ψ[e, e.x/self , x]) with x = dom(Γ.attr N ′′)

The weakest precondition that guarantees that self := e establishes ψ is a dis-
junction over the subclasses N ′′ of the type N’ of e. The test e isExactly N
holds when the value of e is an object of class N , but not of any of its sub-
classes. Each disjunct requires ψ to hold when self takes the value e, and the
attributes x of N ′′ take the value e.x . There is no need to check that e is not
error because error isExactly N ′′ is false, for all N ′′. If self is assigned an
object of the current class, the semantics simplifies to

e 6= error ∧ ψ[e, e.x/self , x].

4.2.2 Programs

The semantics of a program is that of the main command, in the context
defined by the class declarations and the global variables.

[[Γ, Σ,main B c : com]]η = f (Γ, Σ) = ((VDecs cds main); x : T)

η = Meths Γ cds

[[x : T B cds • c : program]] = f

The environment η is determined from cds by the function Meths . It is con-
structed using fixed points to handle recursive methods. To handle mutual
recursion, a simultaneous fixed point could be taken for all methods. This,
however, would complicate proofs of laws; we, therefore, disallow mutual re-
cursion of methods, including forms that arise through dynamic binding.

Fixed points are taken for each method: if a class N declares a method
m =̂ (pds • c), we take a least fixed point in the lattice of parametrised
commands with parameters vres me : N ; pds . In this respect, (pds • c) is
regarded as a context: a function of parametrised commands to parametrised
commands. Its application to a parametrised command pc, with the same ex-
tended parameter declaration, yields the result of substituting pc for the occur-
rences of m in c. Its fixed point is associated in the environment with all classes
N ′ that inherit m from N . This approach is similar to that in [Bac87,CSW98].

22

4.2.3 Method calls

To give the semantics of a call le.m(e), we use the definitions of m in the
environment: there is one for the static class type N ′′ of le and one for each of
its subclasses. If, for example, le.m is typed as Γ,N B le.m : pcom(val x : T),
the parametrised commands associated with m in each of the subclasses N ′

of N ′′, including N ′′ itself, takes the form (vres me : N ′; val x : T • c). If we
define fN ′ as [[Γ,N B (vres me : N ′; val x : T • c)((N ′)le, e) : com]]η, then
the semantics of le.m(e) is fN ′ ψ, provided N ′ is the dynamic type of le.

In our definition below, the semantics is the disjunction, over the possible
classes N ′, of le isExactly N ′ ∧ fN ′ ψ. Thus the semantics fN ′ is used just
when it should be. The possible classes N ′ are the subclasses of N ′′.

[[Γ,N B (η N ′ m)((N ′)le, e) : com]]η = fN ′ with N ′ ≤Γ N ′′, the type of le

[[Γ,N B le.m(e) : com]]η ψ = (∨N ′≤ΓN ′′• le isExactly N ′ ∧ fN ′ψ)

The parametrised command η N ′ m has to be well-typed in the context of the
call. It refers to attributes through the me parameter. Those attributes are
not necessarily visible in the context of the call, so references to them are only
valid in the extended system, where visibility constraints do not apply. The
cast (N ′)le is needed because me is a value-result parameter of η N ′ m and
has type N ′; the argument has to have type N ′.

Even though many other studies of the semantics of method calls are available
in the literature, we are not aware of another weakest precondition semantics
for an object-oriented language. The results summarised here extend standard
work for imperative languages, and provide a suitable basis for the study of
refinement involving both programs and specifications, which we discuss in
the next section.

4.3 Refinement

Besides the definition of the semantics, in order to prove that our laws are
sound we need a suitable notion of refinement that allows us to compare
programs. Equivalence is defined as refinement in both ways.

The refinement relationship between programs is defined in a rather standard
way.

Definition 1 For sets of class declarations cds and cds ′, commands c and
c ′ with free variables x : T, (cds • c) v (cds ′ • c ′), if and only if, for all ψ,
[[x : T B (cds • c) : program]] ψ ⇒ [[x : T B (cds ′ • c ′) : program]] ψ 2

23

The free variables of a program represent its inputs and outputs; therefore, it
makes sense to compare only programs with the same set of free variables.

There are two ways in which a program can be refined: refinement of its com-
mand part and refinement of its class declarations. Refinement of commands
can also be defined in a standard way.

Definition 2 For a typing environment Γ, a signature Σ, a class N , and an
environment η, we have Γ, Σ,N , η B c v c ′ if and only if, for all predicates ψ,
[[Γ, Σ,N B c : com]]η ψ ⇒ [[Γ, Σ,N B c ′ : com]]η ψ. 2

In the laws, we use the notation cds ,N B c = c ′ as an abbreviation; the cor-
responding environments are those determined by cds and N .

A class defines a data type, so refinement of classes is related to data re-
finement. Class refinement requires that any complete program that uses the
abstract classes cdsa is refined when these classes are replaced with the alter-
native concrete classes cdsc. Program refinement, however, compares programs
that act on the global variables. Therefore, these variables cannot hold values
of the refined classes.

Definition 3 For sets of class declarations cds, cdsa, and cdsc, we define
cds B cdsa 4 cdsc if and only if (a) (cds cdsa) and (cds cdsc) are both well-
formed; (b) for all commands c that use only methods in cds and cdsa, and
whose global variables have types that are N -free, and for all classes N declared
in cdsa, if c is well-typed for cds cdsa,main, then c is also well-typed in
cds cdsc,main; and (cds cdsa • c) v (cds cdsc • c). 2

A variable of an N -free type cannot have as value or as component an object of
N or of its subclasses. For a value of a class type, we use the term component
for its attributes, the attributes of its object-valued attributes, and so on.

The semantics of a main command c with a global variable of some class with
an attribute of an abstract type N in the context cds cdsc is different from
that in the context cds cdsa, because the values handled by c in the different
contexts are different. Therefore, it does not make sense to compare them by
algorithmic refinement. The restriction to N -free global variables, however,
does not preclude the use of N as the type of (components of) local variables
of c, and also of parameters and local variables of methods called by c. The
typing requirement in the above definition ensures that the methods provided
by cdsc include those provided by cdsa, with the same signatures.

In [CN02], we prove that forwards simulation is a sound technique for class
refinement. Simulation is defined for commands in the standard way; the main
point is that the coupling invariant has to be lifted to take in account the uses
of the abstract classes in the definitions of other classes. As an example, we

24

consider that the coupling invariant ci establishes a relation between objects
of an abstract class Abs and a concrete class Conc. If Abs is the type of an
attribute of a third class Client , then a generalised coupling invariant has to be
defined to relate objects of Client in the context of Abs with objects of Conc
in the context of Conc. For parametrised commands, simulation requires that,
when applied to related arguments, they lead to related commands.

For classes, we write ci B cdsa ¹ cdsc, or cdsa ¹ci cdsc, when the class
declarations cdsa are simulated by those in cdsb, with coupling invariant ci ;
we define this relation as follows.

Definition 4 For sets of class declarations cdsa and cdsc, and a coupling
invariant ci , we have that ci Bcdsa ¹ cdsc if and only if, for all methods m of
all classes in Ns in cdsa and cdsc, we have that ci ,NsB(η Ns m) ¹ (η′ Ns m).
The environments η and η′ are those determined by cdsa and cdsc.

We write ci ,Ns B (η Ns m) ¹ (η′ Ns m) to denote that the parametrised
commands (η Ns m) and (η′ Ns m) of class Ns are related by simulation with
coupling invariant ci . The proof of simulation laws is the subject of current
work.

4.4 Example proofs

In this section, we present soundness proofs of some laws presented in Section 3
in order to exemplify how proofs are worked out in the weakest precondition
semantics of our language. These proofs assure that program transformations
accomplished by the use of the algebraic laws preserve semantics.

4.4.1 Visibility Change

The proof of Law 3 is based on Lemma 5 below; it states that the weak-
est precondition of a command is the same after changing the visibility of
an attribute from private to public. In the typing environment Γ, the at-
tribute a is private (Γ.vis N a = pri), whereas in Γ′ its visibility is pub-
lic: Γ′.vis N = Γ.vis N ⊕ {a 7→ pub}.

Lemma 5 Let Γ and Γ′ be typing environments such that Γ.vis N a = pri
and Γ′.vis N = Γ.vis N ⊕ {a 7→ pub}, but are otherwise identical.

[[Γ, Σ,N B c : com]]η ψ = [[Γ′, Σ,N B c : com]]η ψ

Proof By induction. Since the semantics is defined with basis on the extended
typing system, which does not enforce the visibility constraints, the difference

25

between Γ and Γ′ is irrelevant. 2

The proof of Law 3 is a direct consequence of Lemma 5 and the definition
of the semantics of programs. The proviso of the law guarantees that the
programs involved are well-formed, so that the construction of the typing
environments for them is well-defined, and gives rise to environments that
satisfy the hypothesis of Lemma 5.

4.4.2 Move Redefined Method to Superclass

The core of the proof of Law 7 is the lemma below. The syntactic function
meI transforms a method body (command) to make use of the extra me
parameter used in the environment. Apart from the command itself, it takes
as parameters the typing environment, and the class and name of the method.

Lemma 6 Consider a typing environment Γ, and environments η and η′ such
that

η B m = (vres me : B ; pds • meI Γ B m b)

and

η C m = (vres me : C ; pds • meI Γ C m b ′)

Moreover,

η′ B m = (vres me : B ; pds • if ¬(me is C) → meI Γ B m b

[] me is C → meI Γ B m b ′

fi)

and

η′ C m = (vres me : C ; pds • if ¬(me is C) → meI Γ C m b

[] me is C → meI Γ C m b ′

fi)

For all other classes and methods, η and η′ are equal. If B, C , b, and b ′ are
as in Law 7, then, for all classes N ,

[[Γ,N B c : com]]η ψ = [[Γ,N B c : com]]η′ ψ

Proof By induction. The different environments potentially affect the seman-
tics of method calls. If the method called is not m, then the semantics recorded

26

in η and η′ are the same, so the result is trivial. The case we consider below
is that of a call to m.

Case le.m(e)

[[Γ,N B le.m(e) : com]]η ψ

=∨N ′≤ΓN ′′• le isExactly N ′ ∧
[[Γ,N B (η N ′ m) ((N ′)le, e) : com]]η ψ [semantics]

In this definition, if le is not null or error, then le isExactly N ′′ holds for
exactly one subclass N ′′ of the type N of le. If N ′′ is B or C , then η and η′

record different semantics for m. Otherwise, the semantics are the same, and
the result is trivial.

If the exact type of le is B , we can proceed as follows.

∨N ′≤ΓN ′′• le isExactly N ′ ∧
[[Γ,N B (η N ′ m ′) ((N ′)le, e) : com]]η ψ

= [[Γ,N B (η B m) ((B)le, e) : com]]η′ ψ [assumption]

= [[Γ,N B (vres me : B ; pds • meI Γ B m b)((B)le, e) : com]]η′ ψ

[hypothesis]

= [[Γ,N B var me : B •
me := (B)le; (pds • meI Γ B m b)(e); (B)le := me

end : com]]η′ ψ

[semantics]

= [[Γ,N B var me : B •
me := (B)le;

if ¬(me is C) → (pds • meI Γ B m b)(e)

[] me is C → (pds • meI Γ B m b ′)(e)

fi;

(B)le := me

end : com]]η′ ψ

[¬(me is C) holds after me := (B)le]

27

= [[Γ,N B var me : B •
me := (B)le;

(pds • if ¬(me is C) → meI Γ B m b

[] me is C → meI Γ B m b ′

fi)(e);

(B)le := me

end : com]]η′ ψ

[me is not declared in pds]

= [[Γ,N B (vres me : B ; pds •
if ¬(me is C) → meI Γ B m b

[] me is C → meI Γ B m b ′

fi)(e) : com]]η′ ψ

[semantics]

= [[Γ,N B (η′ B m) ((B)le, e) : com]]η′ ψ [hypothesis]

= [[Γ,N B le.m(e) : com]]η′ ψ [assumption and semantics]

Some of the above steps are justified by properties of commands. They are
formalised by standard command laws, which we omit.

If the exact type of le is C , the proof is similar.

2

The proof of Law 7 is based on the semantics of programs, and on the lemma
above. The semantics of super is given by a copy-rule, but, since super is not
present in b ′ and ops ′, the different definitions of m do not affect the result of
applying such a rule. The typing environments defined by the programs are
the same, since the methods available in the classes B and C are the same in
both of them. The provisos guarantee that they are well-typed.

The environments η and η′ defined by the programs in Law 7 are as in
Lemma 6. The only final detail is that, in Lemma 6, we did not consider
the fact that, if a subclass of C does not redefine m, then its semantics in the
environment is also affected by the change. This generalisation of Lemma 6 is
rather lengthier, but its proof is similar to that presented above.

4.4.3 Method Elimination

We prove Law 11 using the following lemma. It states that the weakest precon-
dition of commands is not affected by the elimination of a method that is not

28

called in any command of any method in the environment. We define new envi-
ronments Γ′ and η′ from the environments Γ and η by removing the parameter
declaration and the parametrised command that defines the method m.

Lemma 7 Let Γ and Γ′ be such that Γ′.meth N = Γ.meth N \ {m 7→ pds ′},
but are otherwise identical. Consider also environments η and η′ such that
η′ N = η N \ {m 7→ (vres me : N ; pds ′ • meI Γ′ N m ′ c ′)}. If m is not used
in η, then,

[[Γ,N B c : com]]η ψ = [[Γ′,N B c : com]]η′ ψ

Proof By induction. As remarked, the environments Γ′ and η′ are relevant
when dealing with method calls. In this case, the called method cannot call
the method that is being removed.

Case le.m ′(e), with m ′ 6= m

[[Γ,N B le.m ′(e) : com]]η ψ

=∨N ′≤ΓN ′′• le isExactly N ′ ∧
[[Γ,N B (η N ′ m ′) ((N ′)le, e) : com]]η ψ [semantics]

=∨N ′≤Γ′N ′′• le isExactly N ′ ∧
[[Γ′,N B (η′ N ′ m ′) ((N ′)le, e) : com]]η′ ψ [hypothesis]

= [[Γ′,N B le.m ′(e) : com]]η′ ψ [semantics]

2

The proof of our law follows from the semantics of programs, and the above
lemma. The proviso guarantees that the programs are well-formed, and the
environments η and η′ that record their methods are as in the proviso of the
lemma.

4.4.4 Method Call Elimination

We can prove Law 13 as follows.

[[Γ,A B le.m(e) : com]]η ψ

= ∨N ′≤ΓC• le isExactly N ′ ∧
[[Γ,A B (η N ′ m) ((N ′)le, e) : com]]η ψ [semantics]

Provided le is not null or error, le isExactly N ′ holds for some subclass N ′′

of C .

29

Moreover, since m is not redefined in the subclasses of C , then, by the way the
environment is constructed, we have that [[Γ,A B (η N ′ m) ((N ′)le, e) : com]]η
is the same for all subclasses N ′ of C , except only for the type of the extra
me parameter. In other words, for all N ′, η N ′ m is equal to η C m, except
only that in the former, the type of me is N ′, and, in the latter, it is C .

More specifically, the value of η N ′ m is µ(vres me : N ′; pds • meI Γ N ′ m c).
As already mentioned, the command meI Γ N ′ m c is a modified version of c
that accesses the attributes of N ′ through the parameter me.

∨N ′≤ΓC• le isExactly N ′ ∧
[[Γ,A B (η N ′ m) ((N ′)le, e) : com]]η ψ

= le 6= null ∧ le 6= error ∧ [[Γ,A B (η N ′ m) ((N ′)le, e) : com]]η ψ

= le 6= null ∧ le 6= error ∧
[[Γ,A B µ(vres me : N ′; pds • meI Γ N ′ m c)((N ′)le, e) : com]]η ψ

The whole parametrised command (vres me : N ′; pds • meI Γ N ′ m c) is
regarded as a function of m. We use the unfold property of fixed points to
proceed; based on this property, any occurrences of m in meI Γ N ′ m c can
be left untouched, if they are interpreted as calls, as indeed they are in the
semantics.

[[Γ,A B µ(vres me : N ′; pds • meI Γ N ′ m c)((N ′)le, e) : com]]η ψ

= [[Γ,A B (vres me : N ′; pds • meI Γ N ′ m c)((N ′)le, e) : com]]η ψ

= [[Γ,A B var me : N ′ •
me := (N ′)le; (pds • meI Γ N ′ m c)(e); (N ′)le := me

end : com]]η ψ [semantics]

= [[Γ,A B (pds • meI Γ A m c)[le/me](e) : com]]η ψ [semantics]

= [[Γ,N ′ B (pds • c)[le/self](e) : com]]η ψ [property of meI]

If we return to the semantics of method call, we can proceed as follows.

le 6= null ∧ le 6= error ∧
[[Γ,A B µ(vres me : N ′; pds • meI Γ N ′ m c)((N ′)le, e) : com]]η ψ

= le 6= null ∧ le 6= error ∧ [[Γ,A B (pds • c)[le/self](e) : com]]η ψ

[result above]

= [[Γ,A B {le 6= null ∧ le 6= error}; (pds • c)[le/self](e) : com]]η ψ

[semantics]

This concludes our proof.

The proof of Law 9 amounts to showing that the programs are well-typed.
The semantics of a parametrised command does not depend on the type of its

30

parameters, but on it being well-typed. Therefore, the main risk in the change
of a parameter type is to render method calls ill-typed. If this is not the case,
then the semantics of the calls depend on the value of the arguments. These
are not changed in Law 9. The same comments apply to Law 10.

5 Completeness

After considering the soundness of our laws, we now show that the proposed set
of laws is comprehensive. We do that by defining a reduction strategy, based on
the laws, whose target is a normal form described in terms of a restricted subset
of our language. This normal form uses classes and inheritance only to preserve
the notion of subtyping; all classes have empty bodies, except object, which
may include attribute declarations. This suggests that our laws are expressive
enough to reason about the object-oriented structure of programs.

The definition of the normal form is as follows.

Definition 8 A program cds • c is in subtype normal form if it obeys the
following conditions.

• Each class declaration in cds, except object, has an empty body;
• The object class may include only attribute declarations, each with either

a primitive type or object.
• All local declarations in the main command c are declared with either a

primitive type or object.
• No type cast is allowed in c. 2

In a program in subtype normal form, the class object is explicitly included.
All other classes may include the inheritance and subtype clause extends,
but no declaration of methods, constructors or attributes is allowed. Figure 1
illustrates that with part of the normal form for an arithmetic expressions
interpreter structured according to the Interpreter design pattern [G+94]. The
original interpreter is shown in Figure 2.

Although this normal form preserves object-oriented features, namely the sub-
type hierarchy, object creation, and type tests, it is substantially close to an
imperative program. The class object, the only one with explicitly declared
elements, takes the form of a recursive record, as it contains only public at-
tributes. As no methods are allowed, the main command c is similar to an
imperative program, even though object creation and type test can still be
used.

For the elimination of all object-oriented features, the natural normal form

31

class object pub val : Z; leftExp, rightExp, exp : object end
class Expression end
class Value extends Expression end
class Integer extends Value end
class BinaryExpression extends Expression end
class Sum extends BinaryExpression end
class Interpreter end
• var int , n1, n2, s, v : object •

{new Integer is Integer}; n1 := new Integer ;
{n1 is Integer};
(val v : Z • {n1 is Integer}; n1.val := v)(x);
{new Integer is Integer}; n2 := new Integer ;
{n2 is Integer};
(val v : Z • {n2 is Integer}; n2.val := v)(y);
{new Sum is Sum}; s := new Sum;
{s is Sum}; {n1 is Integer}; {n2 is Integer};
(val le, re : object •
{s is Expression}; {s is BinaryExpression};
if ¬ (s is Sum) → {s is BinaryExpression}; {le is Expression};

s.leftExp := le;
{s is BinaryExpression}; {re is Expression};
s.rightExp := re

[] s is Sum → {s is BinaryExpression}; {le is Expression};
s.leftExp := le;
{s is BinaryExpression}; {re is Expression};
s.rightExp := re

fi)(n1,n2);
. . .

end

Fig. 1. Example program in normal form

is the imperative subset of our language extended with recursive records. A
reduction to such a form, which would yield a stronger completeness result,
requires some sort of a mapping from an object to a relational model; an extra
variable is necessary to keep the type information. The subtype normal form,
however, is close to an imperative program, and some of the additional laws
for a reduction to a pure imperative program are presented in Section 6.

It is important to note that the reduction of a program to normal form does
not suggest a compilation process. Its sole purpose is to show that we have a
comprehensive set of laws, which can be used to yield an equivalent program
written with a small subset of constructs. Roughly, the less constructs the bet-
ter the normal form; the same approach has been used for other programming
paradigms [H+87].

The reduction strategy involves the following major steps.

32

• Move all the attribute and method declarations in the classes of cds to the
object class;

• Change all the declarations of object identifiers to type object;
• Eliminate casts;
• Eliminate method calls and declarations.

In the remainder of this section we present the reduction strategy in detail, as
a sequence of simple and incremental steps. We illustrate the process using the
example program presented in Figure 2, but the process is actually general.
The program models an interpreter for a very simple expression language that
includes only integers and sums. The global variables (inputs and outputs) of
our program are x , y , and z of type integer; its result is the assignment to z
of x + y . This is achieved by running the interpreter.

The class Expression contains only the method eval , which is supposed to re-
turn the result of the expression evaluation. It is actually defined in Expression
as abort. Like a Java abstract class or interface, Expression defines a type,
but it is not really intended to be used for the creation of objects. Subclasses
of Expression model particular forms of expression and redefine eval .

The simplest expression is a value, which is modelled in our example by the
class Value. We are also not supposed to create objects of this class, which
again plays the role of an abstract class and does not redefine eval . Particu-
lar kinds of values are modelled as subclasses of Value; we present one such
class: Integer . It contains one private attribute, val , which holds an integer
value, set and get methods, and a redefinition of eval which simply returns
itself as result.

Binary expressions are modelled by the class BinaryExpression. The operands
are recorded by the attributes leftExp and rightExp. An example of a binary
expression is modelled by the class Sum; its evaluation method takes each
operand expression, evaluates it with a recursive call, and casts the result to
an Integer object to get the integer value it holds. The result returned is the
sum of the values so obtained.

The class Interpreter holds an expression in the attribute exp. Besides the set
and get methods, this class includes a run method, which evaluates exp. The
main command creates Integer objects n1 and n2 to hold x and y ; they are
used to create the expression s that represents x +y . An interpreter is created
and initialised with s . By running it, a value v is obtained as the result of the
evaluation of s ; the value of z is determined by the integer in v .

33

class Expression
meth eval =̂ (res x : Value • abort)

end

class Value extends Expression end

class Integer extends Value
pri val : Z
meth setVal =̂ (val v : Z • self .val := v)
meth getVal =̂ (res v : Z • v := self .val)
meth eval =̂ (res x : Value • x := self)

end

class BinaryExpression extends Expression
pri leftExp, rightExp : Expression
meth set =̂ (val le, re : Expression •

self .leftExp := le;
self .rightExp := re)

meth getLeft =̂ (res e : Expression • e := self .leftExp)
meth getRight =̂ (res e : Expression • e := self .rightExp)

end

class Sum extends BinaryExpression
meth eval =̂ (res x : Value •

var le, re : Expression; lint , rint : Z •
self .getLeft(le); le.eval(le); ((Integer)le).getVal(lint);
self .getRight(re); re.eval(re); ((Integer)re).getVal(rint);
x := new Integer ; x .setVal(lint + rint)

end)
end

class Interpreter
pri exp : Expression
meth setExp =̂ (val e : Expression • self .exp := e)
meth getExp =̂ (res e : Expression • e := self .exp)
meth run =̂ (res x : Value • self .exp.eval(x))

end

• var int : Interpreter ; n1, n2 : Integer ; s : Sum; v : Value •
n1 := new Integer ; n1.setVal(x);
n2 := new Integer ; n2.setVal(y);
s := new Sum; s.set(n1,n2);
int := new Interpreter ; int .setExp(s); int .run(v);
((Integer)v).getVal(z)

end

Fig. 2. Example program to be normalised

34

5.1 Make Attributes Public

The first major step in our reduction strategy is to move up the attributes.
Nonetheless, before that, we need to make sure that they are either public
or protected, otherwise method declarations in the subclasses might become
invalid. For simplicity, we make all attributes public so that we have to deal
only with this case in the remaining steps of the reduction process.

In order to make attributes public, we apply two laws: Law 2 to make protected
attributes public, and Law 3 to make private attributes public. In the strategy
all the laws are applied from left to right. We need to exhaustively apply these
two laws to all classes in cds . In our example, only Law 3 is effectively applied
to classes Integer , BinaryExpression, and Interpreter .

5.2 Move Attributes Up

After making all attributes public, we move them up to the object class using
Law 4. Starting from the bottom of the class hierarchy, and moving upwards,
the exhaustive application of this law moves all attributes to object. We
assume that two distinct classes are not allowed to declare attributes with the
same name. Therefore, name conflicts do not arise and the proviso of the law
is valid. Our assumption imposes no significant restriction on our approach,
since renaming can be used to meet this requirement.

In our example, the attribute val of Integer is moved to Value, from there
to Expression, and then to object. Similarly, leftExp and rightExp of the
class BinaryExpression goes up to Expression, and then to object. Finally,
exp moves from Interpreter to object. The resulting program is sketched in
Figure 3. The class object is explicitly defined to include all the attributes
of the original classes, which now do not declare any attributes; the main
program is not touched. Part of the object-oriented design is lost, but the
program still behaves as before. Recall that the purpose here is to establish the
expressiveness of the laws. In practical applications of program transformation,
like refactoring (see Section 7), the laws are applied in the reverse order.

5.3 Trivial Cast Introduction

To enable and simplify the next steps, we generate a uniform program text
in which every non-assignable expression is cast. To see why this is necessary

35

class object
pub val : Z; leftExp, rightExp : Expression; exp : Expression

end

class Expression
meth eval =̂ (res x : Value • abort)

end

class Value extends Expression end

class Integer extends Value
meth setVal =̂ (val v : Z • self .val := v)
meth getVal =̂ (res v : Z • v := self .val)
meth eval =̂ (res x : Value • x := self)

end

class BinaryExpression extends Expression
meth set =̂ (val le, re : Expression •

self .leftExp := le;
self .rightExp := re)

. . .
end

. . .

• var int : Interpreter ; n1, n2 : Integer ; s : Sum; v : Value •
n1 := new Integer ; n1.setVal(x);
n2 := new Integer ; n2.setVal(y);
s := new Sum; s.set(n1,n2);
int := new Interpreter ; int .setExp(s); int .run(v);
((Integer)v).getVal(z)

end

Fig. 3. Example program - attributes up

consider, for example, the method eval in class Integer :

meth eval =̂ (res x : Value • x := self)

We cannot move eval to the class Expression, as required in the subsequent
steps of our strategy, since the type of self in Expression is Expression, and,
therefore, the assignment x := self would be ill-typed.

Law 16 is sufficient to introduce trivial casts to non-assignable expressions in
an arbitrary program, including the main command. Figure 4 presents part of
the result of including all the needed casts in our example program. In the main
command, the global variables, which have a primitive type, are not cast. Also,
the existing cast is not touched. As a result, all non-assignable expressions are

36

class object
pub val : Z; leftExp, rightExp : Expression; exp : Expression

end
. . .

class Integer extends Value
meth setVal =̂ (val v : Z • ((Integer)self).val := v)
meth getVal =̂ (res v : Z • v := ((Integer)self).val)
meth eval =̂ (res x : Value • x := (Integer)self)

end

. . .
• var int : Interpreter ; n1, n2 : Integer ; s : Sum; v : Value •

n1 := (Integer)new Integer ; ((Integer)n1).setVal(x);
n2 := (Integer)new Integer ; ((Integer)n2).setVal(y);
s := (Sum)new Sum; ((Sum)s).set((Integer)n1, (Integer)n2);
int := (Interpreter)new Interpreter ;
((Interpreter)int).setExp((Sum)s); ((Interpreter)int).run(v);
((Integer)v).getVal(z)

end

Fig. 4. Example program - trivial cast introduction

cast, either because they were in the original program, or because casts were
introduced by the current step of our reduction strategy.

5.4 Introduce Trivial Method Redefinitions

In this step, we further unify the program text, again to simplify the next
steps. We introduce trivial method redefinitions using super. The methods of
a class include those it declares and those it inherits. An inherited method may
have a redefinition. If it does not, in this step, we provide a trivial redefinition
that simply calls the method of the superclass.

We exhaustively apply Law 6, from left to right, considering all methods of
all classes with subclasses. We start from object and move downwards in the
class hierarchy. At the end, all classes have a definition for the methods they
provide: either a trivial redefinition or that in the original program.

For our example, we include redefinitions for the method eval in the classes
Value and BinaryExpression, and for the methods set , getLeft , and getRight in
the class Sum. For instance, in class Value, we define meth eval =̂super.eval .
This is an abbreviation for meth eval =̂ (res x : Value • super.eval(x)).

37

5.5 Eliminate super

Before moving methods up, we need to make sure that their bodies do not
contain references to super, otherwise the program semantics may not be
preserved. This is because, when moving up a method that includes a method
call of the form super.m, instead of referring to a method m of the immediate
superclass C , we may end up referring to a method m of a superclass of C .
Furthermore, when we move such a method to object, the resulting program
is invalid, since super cannot appear in object.

Our approach for eliminating super relies on Law 12, which is a form of copy
rule for calls of the form super.m in a class C , based on a declaration of m
in the immediate superclass of C . Since in the previous step we introduced
a definition for all methods available in a class, a method called via super
is always declared in the immediate superclass of the class where the call
appears. Therefore, we can exhaustively apply Law 12 to eliminate all method
calls using super.

This elimination process starts at the immediate subclasses of object and
moves downwards. As the methods of object cannot refer to super, and all
attributes are already public at this point, the condition of Law 12 is valid
for the immediate subclasses of object. After eliminating super from those
classes, the condition will be valid for their immediate subclasses, and so on.

For our example, the result of the previous and of this step is shown in Figure 5.
The main command is not affected and is omitted for conciseness. All classes
explicitly define all methods that are available for their objects directly, or
rather, without using calls to the corresponding methods of the superclass.
We use the fact that (pds • (pds • c)(αpds)) is equivalent to (pds • c),
in any context; this is convenient for our use of the abbreviated notation
meth m =̂ super.m.

As our example has not originally included any occurrence of super, it might
give the impression that the previous two steps could be combined and carried
out in a single step. This is, however, not the case when the original program
already includes references to super.

5.6 Move Methods Up

After eliminating super, we can safely move methods up to object. This is
justified by Laws 7 and 8. We apply the first one when the method declaration
that we want to move up is a redefinition of a method declared in the immedi-
ate superclass. The second should be applied when the method that we want

38

class object
pub val : Z; leftExp, rightExp : Expression; exp : Expression

end
class Expression

meth eval =̂ (res x : Value • abort)
end
class Value extends Expression

meth eval =̂ (res x : Value • abort)
end
class Integer extends Value

meth setVal =̂ (val v : Z • ((Integer)self).val := v)
meth getVal =̂ (res v : Z • v := ((Integer)self).val)
meth eval =̂ (res x : Value • x := (Integer)self)

end
class BinaryExpression extends Expression

meth set =̂ (val le, re : Expression •
((BinaryExpression)self).leftExp := (Expression)le;
((BinaryExpression)self).rightExp := (Expression)re)

meth getLeft =̂ (res e : Expression •
e := (Expression)((BinaryExpression)self).leftExp)

meth getRight =̂ (res e : Expression •
e := (Expression)((BinaryExpression)self).rightExp)

meth eval =̂ (res x : Value • abort)
end
class Sum extends BinaryExpression

meth set =̂ (val le, re : Expression •
((BinaryExpression)self).leftExp := (Expression)le;
((BinaryExpression)self).rightExp := (Expression)re)

meth getLeft =̂ (res e : Expression •
e := (Expression)((BinaryExpression)self).leftExp)

meth getRight =̂ (res e : Expression •
e := (Expression)((BinaryExpression)self).rightExp)

meth eval =̂ (res x : Value •
var le, re : Expression; lint , rint : Z •

((Sum)self).getLeft(le);
((Expression)le).eval(le); ((Integer)le).getVal(lint);
((Sum)self).getRight(re);
((Expression)re).eval(re); ((Integer)re).getVal(rint);
x := (Integer)new Integer ; ((Value)x).setVal(lint + rint)

end)
end
class Interpreter

meth setExp =̂ (val e : Expression •
((Interpreter)self).exp := (Expression)e)
. . .

end

Fig. 5. Example program - eliminate super

39

to move is not a redefinition. We start applying Laws 7 and 8 from the bottom
of the class hierarchy and move upwards towards object. The application of
Law 7 introduces new occurrences of self in the program. These need to be
cast as described in Section 5.3.

Using this strategy, the conditions for applying Law 7 are always valid: at
this stage, all attributes are public and declared in object, and all method
bodies do not use the super construct. This also explains why most of the
conditions for applying Law 8 from left to right are valid. The only proviso we
need to worry about are those related to the declaration of m in B and in its
superclasses and subclasses. At this stage, every class redefines the methods in
its superclass. So, if m is declared in C , but not in B , then it is not declared in
any superclass of B . It is also not declared in any subclass of B , as, similarly
to attribute names (see Section 5.2), we can assume that method names are
only reused for redefinitions.

For our example, all the methods of Interpreter go directly to object. Fig-
ure 6 presents the result of this and the next two steps of the reduction process.
The method eval of Integer is combined with that of Value, and the resulting
method is combined with the eval method of Expression. Similarly, the eval
method of Sum is combined with that of BinaryExpression; the result is com-
bined with the extended eval method in Expression. The result is a method
definition that tests for all the possible dynamic types of an Expression object;
this method declaration is moved up to object. The set , getLeft , and getRight
methods of Sum and BinaryExpression are combined and moved all the way
up to object. The program in Figure 6 can be simplified if we consider that
an alternation of the form if b → c [] ¬ b → c fi can be simplified to c, as
this is the command to be executed regardless of the condition b (see Law 20);
other laws of alternation can also be applied to combine and simplify nested
alternations. Nevertheless, this is not relevant for the purpose of obtaining a
program in our normal form.

5.7 Change Type to object

Here we use the laws that formalise the fact that the types of attributes, vari-
ables, and parameters can be replaced with a supertype, if all non-assignable
occurrences of these identifiers in expressions are cast: Laws 5, 9, 10, and
15. The exhaustive application of these laws, instantiating the type T ′ with
object, allows the replacement of the types of all identifiers with the object
class. The provisos of the laws are valid, since we already have casts in ex-
pressions, and every class is a subclass of object. Variables of primitive types,
including global variables, which we assume to be of a primitive type, are not
affected by this reduction step.

40

class object
pub val : Z; leftExp, rightExp, exp : object;
meth setExp =̂ (val e : object •
{self is Interpreter};
{e is Expression}; self .exp := e)

meth getExp =̂ (res e : object •
{self is Interpreter}; {self .exp is Expression}; e := self .exp)

meth run =̂ (res x : object •
{self is Interpreter}; {self .exp is Expression}; self .exp.eval(x))

meth eval =̂ (res x : object •
{self is Expression};
if ¬ (self is BinaryExpression) →

{self is Expression};
if ¬ (self is Value) → abort
[] self is Value →

{self is Value};
if ¬ (self is Integer) → abort
[] self is Integer → {self is Integer}; x := self
fi

fi
[] self is BinaryExpression →

{self is BinaryExpression};
if ¬ (self is Sum) → abort
[] self is Sum →

var le, re : object; lint , rint : Z •
{self is Sum}; self .getLeft(le); {le is Expression};
le.eval(le); {re is Expression}; re.eval(re);
{re is Integer}; re.getVal(rint); {new Integer is Integer};
x := new Integer ; {x is Value}; x .setVal(lint + rint)

end
fi

fi)
meth setVal =̂ (val v : Z • {self is Integer}; self .val := v)
meth getVal =̂ (res v : Z • {self is Integer}; v := self .v)
. . .

end
class Expression end
class Value extends Expression end
class Integer extends Value end
class BinaryExpression extends Expression end
class Sum extends BinaryExpression end
class Interpreter end

Fig. 6. Example program - move methods up, change type to object, and cast
elimination

41

5.8 Cast Elimination

After the previous step, the trivial casts introduced previously are not trivial
anymore, since the types of the identifiers were changed to object. Further-
more, the program may include arbitrary casts previously introduced by a
developer. Therefore, the laws we use to eliminate casts are different from
those we use to introduce them.

Since a type cast may occur arbitrarily nested in an expression, it is convenient
to reduce expressions to a simple form, so that we can consider only a fixed
number of patterns. This form is as defined in the BNF for expressions (see
Section 2), with arbitrary expressions (denoted by e) replaced with variables.
The reduction of an arbitrary expression to this form is a reduction strategy
in itself. Nevertheless, it is a very standard one, and is not presented here; this
kind of reduction strategy can be found in [Sam97].

To deal with the elimination of casts in the remaining expression patterns,
we use Laws 17 and 14, and others that are similar and omitted here. At this
stage of our reduction strategy, all casts can be eliminated. The static role
of each cast is trivially fulfilled as a consequence of the fact that the type
of each object identifier is object, and that all methods and attributes have
been moved to the object class. Therefore, the provisos of each law are always
satisfied. As a result, the exhaustive application of these laws eliminates all
casts in the program.

5.9 Method Elimination

The purpose of this step is to eliminate all method calls and then all method
declarations, keeping in the object class only attribute declarations. For
method call elimination, we need only Law 13, which can be regarded as a
version of the the copy rule. The reason is that we deal with dynamic binding
when we move methods up to the object class. In fact, there are no method
redefinitions at this point, since all methods are in object.

In this step, we apply Law 13 exhaustively. Before doing so, however, we need
to change all recursive calls of the form le.m. We eliminate them by defining
the method m with the use of the recursive command rec X • c end, in
such a way that recursive calls become references to X . The law that can be
used to perform this change is standard and omitted.

After all calls to a method are replaced with its body using Law 13, the method
definition itself can be eliminated using Law 11. These two laws are sufficient
to eliminate all methods. There is no particular order to be followed; methods

42

var int : Interpreter ; n1, n2 : Integer ; s : Sum; v : Value •
{new Integer is Integer}; n1 := new Integer ;
{n1 is Integer}; n1.setVal(x);
{new Integer is Integer}; n2 := new Integer ;
{n2 is Integer}; n2.setVal(y);
{new Sum is Sum}; s := new Sum; {s is Sum};
{n1 is Integer}; {n2 is Integer}; s.set(n1,n2);
{new Interpreter is Interpreter}; int := new Interpreter ;
{int is Interpreter}; {s is Sum}; int .setExp(s);
{int is Interpreter}; int .run(v);
{v is Integer}; v .getVal(z)

end

Fig. 7. Example program - main command, after cast elimination

can be eliminated in any order. Even in the case where a method m invokes
a method n, it is possible to eliminate m first, since in every place where
m is invoked, we can replace this invocation by the body which includes an
invocation to n; this is no problem since n is still in scope. At this point there
are no private attributes, method redefinitions, or references to super.

A relevant subset of the generated normalised program is presented at the
beginning of the section, in Figure 1. The main command obtained just before
the elimination of methods is presented in Figure 7.

5.10 Summary of the Strategy

The main result of this work is captured by the following theorem which
summarises the overall reduction strategy.

Theorem 9 (Reduction strategy) An arbitrary program can be reduced to sub-
type normal form.

Proof: From the application of the steps described in sections 5.1–5.9, in
that order, eventually renaming attributes and methods for avoiding naming
conflicts. 2

The proof of the above theorem is straightforward because the details of the
strategy are discussed in each individual step.

Although our normal form reduction strategy provides reassurance as to the
expressiveness of our set of laws, it might be surprising that some of the laws
presented in Section 3 are not referenced here. This is a consequence of the
fact that our subtype normal form preserves classes, attributes, type tests,
and object creation. We decided to aim at this normal form because its close

43

to an imperative program and its reduction process is entirely algebraic; as
mentioned before, reduction to a pure imperative form requires some sort of
encoding of the object data model.

6 Class Refinement

In addition to the equivalence laws used by the normal form strategy, for the
transformation of programs we usually need to apply class refinement, which,
as already mentioned, is a notion related to data refinement. The traditional
techniques of data refinement deal with modules that encapsulate variables.
In our approach, this is extended to consider hierarchies of classes whose at-
tributes are not necessarily private: they can be protected or public. Law 22
below allows us to change attributes in a class, relating them with already
existing attributes by means of a coupling invariant. The application of this
law changes the bodies of the methods declared in the class and in its sub-
classes; it is a simulation law. The changes follow the traditional laws for data
refinement [Mor94].

Law 22 〈superclass attribute-coupling invariant〉

class A extends C
adsA;
ops

end cds ′

¹CI

class A extends C
adsC ;
CI (ops)

end CI (cds ′)

provided

(↔) (1) CI refers only to public and protected attributes in adsA; (2) cds ′

only contains subclasses of A.
2

By convention, the attributes denoted by adsA are abstract, whereas those
denoted by adsC are concrete. The coupling invariant CI relates abstract
and concrete attributes. The notation CI (cds ′) indicates that CI acts on the
class declarations of cds ′: it is applied to each of them. The application of
CI to a class declaration changes the methods according to the laws of data
refinement [Mor94]: every guard may assume the coupling invariant and ev-
ery command is extended by modifications to the new variables so that the
coupling invariant is maintained. These transformations are also done in the
class A; this is indicated by the notation CI (ops). The coupling invariant CI
must refer only to public and protected attributes in adsA, since it is used in
the subclasses of A.

44

The law below, which can be used to introduce and eliminate attributes, is a
direct application of the previous law.

Law 23 〈attribute elimination〉

class B extends A
pri a : T ; ads
ops

end

=cds,c

class B extends A
ads
ops

end

provided

(→) B .a does not appear in ops ;
(←) a does not appear in ads and is not declared as an attribute by a super-

class or subclass of B in cds . 2

If a private attribute is not in use inside the class in which it is declared, we
can remove it. This can be proved with an application of Law 22; the attribute
a should be regarded as the abstract attribute, there should be no concrete
attributes, and the coupling invariant should be true. As already mentioned,
the fact that simulation entails class refinement is addressed in [CN02].

Law 22, together with laws of commands and of the object-oriented fea-
tures, form a solid basis for proving more elaborate transformations of object-
oriented programs. This is illustrated in the next section.

7 Formal Refactoring

One of the main applications of the laws introduced in previous sections is
the formal derivation of refactorings. In fact, developers often wish to use
and define new refactorings. Our laws give them a basis for proving that
the transformations they define preserve behaviour and, therefore, are indeed
refactorings. In this section, we present some refactorings as refinement laws (a
more extensive list can be found in [CCS02]), and show how the laws previously
introduced are used for justifying the refactoring laws.

In the refactoring laws, we explicitly present the conditions that must be
satisfied in order to apply a refactoring. If the conditions are satisfied, the ap-
plication of a refactoring to a program yields a new program that preserves the
behaviour of the original one. As a first example, we present the refactorings
〈Pull Up Method〉 and 〈Push Down Method〉, which combine and organise re-
dundant method declarations. Here we represent these refactorings by a single
law. Applying this law from left to right corresponds to the first refactoring;
the reverse direction corresponds to the other one. The class A that appears

45

on the left hand-side of this law is the superclass of B and C , which declare a
method m defined with the same parameters and body. As they have a com-
mon superclass and the method m is the same in both classes, we can move
this method to the superclass. This helps maintenance as any modification
will occur in just one method definition.

Refactoring 1 〈Pull Up/Push Down Method〉

class A extends D
adsa
opsa

end
class B extends A

adsb
meth m =̂ (pds • b)
opsb

end
class C extends A

adsc
meth m =̂ (pds • b)
opsc

end

=cds,c

class A extends D
adsa
meth m =̂ (pds • b)
opsa

end
class B extends A

adsb
opsb

end
class C extends A

adsc
opsc

end

provided

(↔) (1) super and private attributes do not appear in b; (2) super.m does
not appear in opsb or opsc; (3) m is not declared in any superclass of
A in cds ;

(→) m is not declared in opsa, and can only be declared in a class N , for
any N ≤ A, if it has parameters pds ;

(←) (1) m is not declared in opsb or opsc; (2) N .m, for any N ≤ A and
N � B or N � C , does not appear in cds , c, opsa, opsb or opsc.

2

The provisos are similar to those of Laws 8 and 7. Notice that if the method in
B uses elements of B through self , this method could not be the same as that
of C , which clearly does not have access to B elements. We also require that
m is not defined in a superclass of A, as otherwise the method m available in
A ends up being different when we apply this refactoring.

Proof In order to derive the above refactoring, we assume that the provisos
are valid and begin the derivation with the class declarations on the left-hand
side.

46

We cast occurrences of self in b to A, so that later we can move the methods
m to A. Every command in which there is an occurrence of self is preceded
by skip, the specification statement : [true, true]. By the definition of as-
sumptions, we can write this specification statement as {true}. By Law 18,
we have that the expression self is A is true in classes B and C . Applying
this law, from right to left, we obtain the assumption {self is A}. In this way,
every command with occurrences of self is now preceded by the assumption
{self is A}. By applying Law 17, from right to left, we cast every occurrence
of self in classes B and C with A. The result is denoted by b ′.

By using Law 8, we move the method m that is declared in class B to its
superclass A, obtaining the following declarations.

class A extends D
adsa
meth m =̂ pds • b ′

opsa
end

class B extends A
adsb
opsb

end

class C extends A
adsc
meth m =̂ pds • b ′

opsc
end

The next step moves the method m declared in C to its superclass A. However,
this method is already declared in A. So, we have to use Law 7, which allows us
to move a redefined method from a subclass to its superclass. This introduces
an alternation in the method declared in the superclass, yielding the following:

class A extends D
adsa
meth m =̂ pds •
if ¬(self is C) → b ′

[] self is C → b ′

fi
opsa

end

class B extends A
adsb
opsb

end

class C extends A
adsc
opsc

end

The disjunction of the guards of the alternation we have introduced in the
previous step is true, and the same command b ′ is guarded in both branches
of the alternation. This allows us to apply Law 20 that reduces this alternation
just to the command b ′. Now we can remove the casts to A by applying Law 16,
from right to left, obtaining the original command b. With this step we finish
the proof of the refactoring 〈Pull Up/Push Down Method〉. 2

In the previous derivation, we used only the laws of Section 3, however the class

47

refinement law is often necessary, as illustrated in the proof of the following
refactoring. It allows us to move attributes from subclasses to their common
superclass. Generalizing the typical refactoring presented in the literature,
here the attributes may have different names, but their types have to be the
same. We consider public attributes as this is the most general case; private
and protected attributes can be made public using Laws 3 and 2.

Refactoring 2 〈Pull Up/Push Down Field〉

class A extends D
adsa
opsa

end
class B extends A

pub x : T ; adsb
opsb

end
class C extends A

pub y : T ; adsc
opsc

end cds ′

=cds,c

class A extends D
pub z : T ; adsa
opsa

end
class B extends A

adsb
opsb[z/x]

end
class C extends A

adsc
opsc[z/y]

end cds ′[z , z/x , y]

provided

(↔) cds contains no subclasses of B and C in which there are references
to x and y ;

(→) (1) The attribute name z is not declared in adsa, adsb, adsc, nor in
any subclass or superclass of A in cds and cds ′; (2) and the attribute
names x and y are not declared by adsb, adsc, nor by any subclass of
A in cds ; (3) N .x , for any N ≤ B , does not appear in cds or c, and
N .y , for any N ≤ C , does not appear in cds or c;

(←) (1) N .z , for any N ≤ A, N � B , and N � C , does not appear in cds
or c; (2) x (y) is not declared in adsa, adsb (adsc), nor in any subclass
or superclass of B (C) in cds and cds ′.

2

Again, the provisos guarantee that moving the attributes does not give rise to
syntactic errors. We use cds ′[z , z/x , y] to denote that occurrences of x and y
in operations of classes in cds ′ are replaced with z .

Proof Here we prove the derivation of this refactoring from left to right.
The first step is to apply Law 4 twice. The applications of this law move the
attributes x and y of classes B and C to their common superclass A; x and y
are public as required by Law 4. The result is as follows.

48

class A extends D
pub x : T , y : T ; adsa
opsa

end

class B extends A
adsb
opsb

end

class C extends A
adsc
opsc

end

For simplicity, we omit cds ′ in the derivation because modifications to the
operations of classes in cds ′ are similar to those done to opsb and opsc.

The next step is to prepare A and its subclasses for data refinement. This
preparation consists of the exhaustive application of a law that we omit here
since it is well known. This law [Mor94] transforms assignments of the form
t := self .x into a corresponding specification statement t : [true, t = self .x].
This transformation occurs in all subclasses of A in which there are occurrences
of the abstract variables x and y in assignments. After these changes, the
operations of classes A, B , and C are denoted by opsa ′, opsb ′, and opsc ′,
respectively.

We then apply Law 22, introducing the attribute z (the concrete representation
of both x and y) into A. The coupling invariant CI , relating z with x and y ,
is given by the predicate ((self is B) ⇒ z = x) ∧ ((self is C) ⇒ z = y).

class A extends D
pub z : T ;
pub x : T , y : T ; adsa
CI (opsa ′)

end

class B extends A
adsb
CI (opsb ′)

end

class C extends A
adsc
CI (opsc ′)

end

The application of CI changes guards and commands of classes A, B , and C
according to the laws of data refinement presented by Morgan [Mor94]. Guards
are augmented so that they assume the coupling invariant. The new guard
may be just a conjunction of the old guard with the coupling invariant. We
augment specifications so that the concrete variable appears in the frame of the
specification and the coupling invariant is conjoined with preconditions and
postconditions. In this way, the specification statement t : [true, t = self .x]
becomes t , z : [CI , t = self .x ∧ CI]. An assignment to an abstract variable of
the form self .x := exp is augmented to self .x , self .z := exp, exp.

Since the attributes x and y are new in class A, there are no occurrences of
them in opsa ′. Consequently, we can reduce CI (opsa ′) just to opsa by using
command laws [Mor94].

The next step is the elimination of occurrences of abstract variables in sub-
classes of A. We diminish assignments self .x , self .z := exp, exp to self .z := exp,

49

as we are replacing the variables that constitute the abstract state with the
variables that compose the concrete state.

For specification statements of the form t , z : [CI , t = self .x ∧ CI] we apply
Laws 18 and 19 to simplify the conjunction of the coupling invariant. Inside
B , the application of Law 18 reduces the test self is B to true. On the other
hand, Law 19 allows us to reduce the test self is N , for a class N that is not a
superclass or a subclass of B , to false. This simplifies the coupling invariant to
the predicate (true ⇒ z = x) ∧ (false ⇒ z = y), which is z = x . The specifi-
cation statement, at this moment, is t , z : [z = x , t = self .x ∧ z = x] which is
refined by the assignment t := self .z , or rather t := self .x [z/x], a renaming of
the original code in opsb. Guards must be rewritten using standard imperative
command laws. We proceed in the same way with the commands of C that are
augmented with concrete variables and that assume the coupling invariant.

The coupling invariant relates abstract and concrete variables via an equality
between attribute names. Therefore, the classes B and C that we obtain after
the elimination of abstract variables are the same as the original, except that
all occurrences of x and y in the commands are replaced with z .

Since the abstract attributes are no longer read or written in B or C , nor
in their subclasses, where they were originally declared, we can remove them
from A. First we apply Law 3, from right to left, in order to change the
visibility of these attributes to private. Then we apply Law 23 that allows
us to remove a private attribute that is not read or written inside the class
in which it is declared. We proceed in the same way for C . We obtain the
following class declarations.

class A extends D
pub z : T ; adsa
opsa

end

class B extends A
adsb
opsb[z/x]

end

class C extends A
adsc
opsc[z/y]

end

This finishes the proof of the refactoring 〈Pull Up Field〉. The reverse direction
corresponds to the refactoring 〈Push Down Field〉, whose proof is similar. 2

Following the approach illustrated in this section, more than 25 refactor-
ings have been formalised and proved [Cor04,CCS02]. This includes Extract
Method, which is considered the Rubicon of refactoring tools. It can be derived
by using two main laws. Law 11 introduces the declaration of the extracted
method. Law 13 replaces the occurrence of the extracted command block by
a self call to the extracted method; note that when le is self , the assump-
tion statement in Law 13 reduces to skip. Before applying Law 13, we have
to apply a couple of imperative laws for transforming a command block into
a parameterized command application. Moreover, in order to deal with ex-

50

tracted blocks that refer to super or non-public attributes, we must apply
Laws 2 and 3, which focus on attribute visibility, and then Laws 6 and 12,
which focus on the semantics of super. These laws should be applied before
and after Law 13; for instance, they are first applied to eliminate super (as
in Sections 5.4 and 5.5) and then to introduce super back into the extracted
method and other places.

8 Related Work

Algebraic laws for other programming paradigms have been addressed be-
fore [H+87,Mor94,Par90,RH88,BdM97,SSH99]. Laws for small-grain object-
oriented constructs have been considered [MS97,Lei98], but with no com-
pleteness result. A great deal of work [Eva98,E+99,LB99,GR99] has been car-
ried out on transformations of design models in the Unified Modelling Lan-
guage (UML) [BJR99], but those do not consider programming and behavioral
specification constructs. Moreover, although some of those UML transforma-
tions are proved sound with respect to a formal semantics, as far as we know,
no completeness result has been reported.

Previous work informally discuss refactorings for object-oriented programs
[Fow99], or formalize them with automation purposes only [Opd92,Rob99].
In particular, Opdyke [Opd92] formally describes the conditions that have to
be satisfied for applying a refactoring. Besides preconditions, Roberts [Rob99]
describes postconditions, which are useful for efficiently implementing mechan-
ical support for composing refactorings. Kniesel and Koch [KK04] present an
alternative approach for efficiently composing conditional program transfor-
mations, including refactorings. They consider the correctness of the precon-
ditions of the composed refactorings, assuming the correctness of some basic
refactorings. None of these works is concerned with the formal proof of refac-
torings, whereas we derive refactorings from our algebraic laws, which, when
compared with most refactorings, are simpler, separate concerns, and involve
localised changes to the code.

Bergstein [Ber91] presents a small set of primitive transformations which forms
a basis for object-preserving class reorganizations, meaning that programs ac-
cept the same inputs and produce the same outputs. The set of transformations
is shown to be correct, complete, and minimal. Bergstein’s rule for abstracting
common parts in a hierarchy can be seen as a derived rule in our framework,
not a minimal one. We presented basic laws for moving attributes and meth-
ods up and down in a hierarchy. Bergstein’s rule is similar to refactoring for
pulling up and pushing down attributes and methods. There is no argument
for completeness in terms of a normal form expressed in terms of a small set of
object-oriented constructs. As a consequence, his notion of completeness does

51

not cover all possible transformations that can be applied to object-oriented
programs. He does not present transformations for dealing with type tests and
casts as a consequence of changing the class hierarchy in his proof of complete-
ness, nor he deals with type changes. On the other hand, he goes beyond our
work when alternation vertices, which are equivalent to abstract classes, are
added or deleted from a hierarchy. In our framework, this corresponds to laws
that change the class hierarchy, but we have not presented laws for dealing
with the extends clause.

Utting [Utt92] extends the refinement calculus to support a variety of object-
oriented programming styles. He presents a model for multiple dispatch late
binding, and then specialises this model to the single dispatch case. Both
models are restricted to deal with modular reasoning, with a subtyping relation
that is not attached to inheritance. He also distinguishes types, which contain
procedures, from objects, which only contain data values; a particular model
of objects is presented in which objects are tagged with their types. Utting,
however, does not consider visibility control and recursive method calls, and,
moreover, he does not propose programming laws.

Moore and Clement [MC96] present an algorithm for inferring inheritance
hierarchies, resulting in creation or restructuring of hierarchies. The algorithm
was implemented in a re-engineering tool for the dynamically typed language
Self [US87]. They define some criteria that must be met if a hierarchy is
to be a representation of a structure that might be inferred from objects.
The criteria involve sharing of features between objects, and the use of the
fewest possible internal nodes in a hierarchy, among others. Their work is
concerned with restructuring class hierarchies from a set of objects and their
features. However, they are not concerned with the definition of laws that
allow restructuring object-oriented systems.

Moore [Moo96] considers automatic refactoring of methods for the language
Self; this is supported by the Guru tool, which restructures inheritance hi-
erarchies and refactors methods simultaneously. However, there is no formal
proof of correctness, just an empirical argument. Refactoring of methods ba-
sically deals with factoring of expressions out of methods, and the consequent
introduction of method calls in the place of the original expression. Refactor-
ing of methods is performed as part of inheritance hierarchy restructuring,
as refactoring of methods improves hierarchies by eliminating duplication of
the expressions which it factors out. Some laws we presented here deal with
moving methods up and down in a hierarchy. Method refactoring is considered
in [Cor04], along with class hierarchy refactorings.

Recently, Hoare and He’s unifying theories of programming [HH98] have been
used to give a semantics to an integration of timed CSP [Ros98] and Object-
Z [Smi99] called TCOZ [MD00]. In that model, multiple inheritance, dynamic

52

binding, and visibility are considered. In the spirit of the unifying theories
of programming, we have a relational semantics in which predicates over ob-
servation variables are used to specify relations. Information about classes is
recorded by observation variables that model a typing environment similar
to that used here. A class denotes a program that updates the typing envi-
ronment; objects are denoted by tuples that record type and attribute value
information. Laws of object-oriented programming, and refinement, do not
seem to be a concern of the authors at this stage. The semantics of TCOZ,
however, contemplates aspects of time, concurrency, and communication.

A piece of work that is complementary to our research is the mechanisation of
the normal form reduction strategy [LCS02], as well as the mechanical proofs
of some refactorings, using the Maude [Mes93] term rewriting system. Each
law is coded in Maude as a rewrite rule. The side conditions on the context
are implemented as inductive definitions on the structure of our languages’s
syntax. The reduction strategy itself is directly implemented using Maude’s
rewriting engine. Nevertheless, because the laws are not Church-Rosser nor
confluent, some additonal conditions have been included to impose an order
on the applications of the laws. Also, the laws are grouped into modules (one
for each step of the reduction strategy), so that the laws of the first step are
applied first, followed by the ones of the second step, and so on. This work
provides extra confidence on the reduction strategy, on the refactoring laws,
and on the usefulness of our laws. The example we used to illustrate the normal
form reduction strategy is a small subset of a more substantial case study that
was developed using the tool.

We are also using our laws to prove compilation rules [DCS03] that support
compiler construction in the algebraic style proposed in [Sam97]. An abstract
model of the Java Virtual Machine [LY97] is defined as the target normal
form. The reduction process based on rules allows modular compilation, as
in Java. This is possible because the compilation approach unifies source and
target languages into a single framework. Each bytcode instruction is defined
based on the effect it produces in the abstract model of the virtual machine;
this effect is defined in terms of our language constructs. Therefore, in any
step of the compilation process, every term is a fragment of a program in our
language; the fact that it is already compiled or not is just an interpretation
of the relevant syntax.

9 Conclusions

This article presents a comprehensive set of algebraic laws for object-oriented
programming. It introduces the laws and explore their soundness, complete-
ness, and application for deriving provably-correct refactorings. The article

53

actually integrates an original soundness result with slightly extended and
improved versions of previously published results on formal semantics, com-
pleteness, and derivation of refactorings [BSC03,CN00].

Although the laws presented here are for a particular language, they are of
more general utility. In particular, although our language has a copy semantics,
whereas most practical object-oriented programming languages have a refer-
ence semantics, all the laws are valid in the absence of sharing. Assignment
laws such as

(le := e1; le := e2) = (le := e2[e1/le])

rely on copy semantics, because we might have several occurrences of le in e2.
The same happens to some laws related to specification statements and other
imperative features, but these laws are not the focus of this article. On the
other hand, the object-oriented programming laws considered here do not rely
on copy semantics, except the simulation law for change of representation. To
be valid with a reference semantics, such a law would have to consider pointer
confinement issues as in [BN01], for example.

A common criticism to the algebraic style is that merely postulating algebraic
laws can give rise to complex and unexpected interactions between program-
ming constructions. This can be avoided by linking the algebraic semantics
with a mathematical model in which the laws can be verified. Our laws have
been proved sound with respect to a weakest precondition semantics [CN00],
as illustrated in the article.

Strategies for normal form reduction are usually adopted as a measure of com-
pleteness for a set of proposed laws, not as the final aim for a developer. In
fact, our strategy aims to make a program less object-oriented and does not
suggest good development practices or compilation strategies. However, when
applied in the opposite direction, the laws used to define the strategy serve as
a tool for carrying out practical applications of program transformation. Our
completeness result suggests that the laws, together with a law for refinement
of class hierarchies, are expressive enough to derive program transformations
that capture informal design practices such as refactorings. This was illus-
trated through the formalisation of two well-known refactorings as laws; this
is more extensively explored in [Cor04]. Moreover, our laws could also be used
to derive behaviour preserving transformations that decrease object-oriented
software qualities. Those might be useful, for example, for optimization.

Our strategy for normal form reduction might resemble a compilation process.
The same impression is given by similar approaches for other programming
paradigms, especially imperative programming, where we have the copy rule
for eliminating procedures. In general, however, these strategies do not quite
correspond to compilation. Most compilers do not use the copy rule to in-line

54

the procedure body; control mechanisms are used to allow a single compila-
tion of the body. Nevertheless, the copy rule is still a nice algebraic property
of imperative programs. Analogously, we can capture the properties of dy-
namic binding independently of their use for compilation. Our laws can be
used either for introducing polymorphism by dynamic binding or for compil-
ing away dynamic dispatch by using type tests. By systematically showing
how each object-oriented feature can be dealt with, or eliminated, in isola-
tion, we uncover algebraic properties of that feature with respect to the more
basic (imperative) language constructs. This provides an algebraic connection
between the imperative and object-oriented paradigms, but does not suggest
a compilation process.

Besides contributing to the formal verification of behaviour preserving trans-
formations, the results presented here might be useful for the implementation
of refactoring tools. Our laws suggest essential refactorings, which should be
provided by tools that allow the user to compose existing refactorings to define
new ones [KK04]. Similarly, executable languages for specifying new refactor-
ings from scratch [CB01] should be able to express the laws presented here.
A stronger completeness result, considering a normal form withouth object-
oriented constructs at all, could even suggest a minimal set of refactorings
to be implemented by such tools, and constructs to be provided by those
languages. This could lead to the creation of simpler tools and languages.

One aspect which became evident when defining the laws presented here is
that, associated with most of them, there are very subtle provisos which require
much attention. Uncovering the appropriate side conditions has certainly been
one of the difficult tasks of our research. This can be contrasted with more
pragmatical work in the literature which focus on the transformations without
paying much attention to correctness or completeness issues.

Perhaps another interesting issue of this research is the particular approach
taken for the normal form reduction strategy: moving all the code (attributes
and methods) all the way up to the object class. An alternative would be to
move the code down, to the classes at the bottom of the inheritance hierarchy.
This, nevertheless, has proved to be unsuitable for a systematisation based on
algebraic laws. The reason is that moving a single attribute or method from
a superclass to a subclass has great contextual impact. Moving declarations
up, on the other hand, is more controllable, as it causes less side-effects due to
subtyping and dynamic binding. The particular approach adopted has allowed
us to separate concerns to a great extent. For example, the elimination of
method invocation (Law 13) has been dissociated from dynamic binding (Law
7), as well as from the behaviour of super (Laws 12 and 6).

Although our normal form reduction strategy has uncovered an interesting set
of laws, it might be surprising that some obvious laws like class and attribute

55

elimination were not necessary in our reduction process. This is a consequence
of the fact that our subtype normal form preserves classes and attributes. An
immediate topic for further research is the extension of the reduction strategy
to target the imperative subset of the language, through the elimination of
classes, attributes, object creation, and type test. In this case, the mentioned
laws become necessary. We decided to separate these two reduction strategies
because the one presented here is purely algebraic, whereas reduction to a
pure imperative form requires some sort of encoding of the object data model.

For efficiency, it might be useful to implement a refactoring by carrying on
transformations that not necessarily preserve behaviour. In fact, this is the
approach followed by Fowler [Fow99] for describing refactorings, and by devel-
opers that do not use refactoring tools. Our approach, however, might suggest
that those refactorings could as well be expressed by composing refactorings
(behaviour preserving transformations). It would be interesting to further in-
vestigate that.

We are also considering the extension of our language to include interfaces, ex-
ceptions, and pointers, and plan to further explore the application of our laws
for teaching object-oriented programming to developers used to imperative
languages. The laws could be used, for example, to show how to better mod-
ularize an imperative program by progressively introducing object-oriented
constructs. This could be done by applying the laws in the opposite direction
applied by the normal form reduction process.

Acknowledgements

We thank our collaborator David Naumann for many discussions that sig-
nificantly contributed to the research reported here. He jointly defined with
Ana Cavalcanti the semantics of our language. We would also like to thank
Ralf Lämmel, Günter Kniesel, and the anonymous referees for making several
suggestions to improve this article. Part of the work reported here was carried
out when the first two authors were visiting the Stevens Institute of Tech-
nology. We are partially supported by the Brazilian Research Agency, CNPq,
grants 521994/96–9 (Paulo Borba), 520763/98-0 and 472204/2001-7 (Ana Cav-
alcanti), 521039/95–9 (Augusto Sampaio), and 680032/99-1 (DARE CO-OP
project, jointly funded by CNPq PROTEM-CC and the National Science
Foundation).

56

References

[Bac87] R. J. R. Back. Procedural Abstraction in the Refinement Calculus.
Technical report, Department of Computer Science, Åbo, Finland, 1987.
Ser. A No. 55.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Prentice-Hall, 1997.

[Ber91] P. L. Bergstein. Object-Preserving Class Transformations. In OOPSLA
’91 Conference Proceedings, pages 299–213. ACM Press, 1991.

[BJR99] G. Booch, I. Jacobson, and J. Rumbaugh. The Unified Modeling Language
User Guide. Addison-Wesley, 1999.

[BN01] Anindya Banerjee and David Naumann. Representation independence,
confinement and access control. In POPL2002, 2001.

[BSC03] P. H. M. Borba, A. C. A. Sampaio, and M. L. Cornélio. A Refinement
Algebra for Object-oriented Programming. In Luca Cardelli, editor,
European Conference on Object-oriented Programming 2003 — ECOOP
2003, volume 2743 of Lecture Notes in Computer Science, pages 457 – 482.
Springer-Verlag, 2003.

[CB01] Fernando Castor and Paulo Borba. A Language for Specifying Java
Transformations. In V Brazilian Symposium on Programming Languages,
pages 236–251, Curitiba, Brazil, 23rd–25th May 2001.

[CCS02] M. L. Cornélio, A. L. C. Cavalcanti, and A. C. A. Sampaio. Refactoring by
Transformation. In Proceedings of REFINE’2002, volume 70 of Eletronic
Notes in Theoretical Computer Science, 2002. Invited paper.

[CN00] A. L. C. Cavalcanti and D. A. Naumann. A Weakest Precondition
Semantics for Refinement of Object-oriented Programs. IEEE
Transactions on Software Engineering, 26(8):713 – 728, 2000.

[CN02] A. L. C. Cavalcanti and D. A. Naumann. Forward simulation for data
refinement of classes. In L. Eriksson and P. A. Lindsay, editors, FME
2002: Formal Methods — Getting IT Right, volume 2391 of Lecture Notes
in Computer Science, pages 471–490. Springer-Verlag, 2002.

[Cor04] M. L. Cornélio. Object-Oriented Refactorings and Patterns as Formal
Refinements. PhD thesis, Informatics Center, Federal University of
Pernambuco, Brazil, 2004. Ongoing work.

[CSW98] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. Procedures
and Recursion in the Refinement Calculus. Journal of the Brazilian
Computer Society, 5(1):1 – 15, 1998.

[CSW99] A. L. C. Cavalcanti, A. C. A. Sampaio, and J. C. P. Woodcock. An
Inconsistency in Procedures, Parameters, and Substitution the Refinement
Calculus. Science of Computer Programming, 33(1):87 – 96, 1999.

57

[DCS03] A. A. Duran, A. L. C. Cavalcanti, and A. C. A. Sampaio. A Strategy
for Compiling Classes, Inheritance, and Dynamic Binding. In K. Araki,
S. Gnesi, and D. Mandrioli, editors, FME 2003: Formal Methods, volume
2805 of Lecture Notes in Computer Science, pages 301 – 320. Springer-
Verlag, 2003.

[Dij76] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[E+99] A. Evans et al. The UML as a Formal Modeling Notation. In J. Bézivin
and P. Muller, editors, The Unified Modling Language, UML’98 – Beyond
the Notaion, volume 1618 of Lecture Notes in Computer Science, pages
336 – 348. Springer-Verlag, 1999.

[Eva98] A. Evans. Reasoning with UML Diagrams. In Workshop on Industrial
Strength Formal Methods, WIFT’98. IEEE Press, 1998.

[Fow99] M. Fowler. Refactoring. Addison-Wesley, 1999.

[G+94] E. Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley, 1994.

[GJS96] J. Gosling, B. Joy, and G. Steele. The Java Language Specification.
Addison-Wesley, 1996.

[GR99] M. Gogolla and M. Richters. Transformation Rules for UML Class
Diagrams. In J. Bézivin and P. Muller, editors, The Unified Modling
Language, UML’98 – Beyond the Notaion, volume 1618 of Lecture Notes
in Computer Science, pages 92 – 106. Springer-Verlag, 1999.

[H+87] C. A. R. Hoare et al. Laws of Programming. Communications of the
ACM, 30(8):672 – 686, August 1987.

[HH98] C. A. R. Hoare and J. He. Unifying Theories of Programming. Prentice-
Hall, 1998.

[JB94] He Jifeng and J. Bowen. Specification, Verification, and Prototyping of
an Optimized Compiler. Formal Aspects of Computing, 6:643 – 658, 1994.

[KK04] G. Kniesel and H. Koch. Static Composition of Refactorings. Science of
Computer Programming, 2004. To appear.

[LB99] K. Lano and J. Bicarregui. Semantics and Transformations for UML
Models. In J. Bézivin and P. Muller, editors, The Unified Modling
Language, UML’98 – Beyond the Notaion, volume 1618 of Lecture Notes
in Computer Science, pages 107 – 119. Springer-Verlag, 1999.

[LCS02] B. O. Lira, A. L. C. Cavalcanti, and A. C. A. Sampaio. Automation of
a Normal Form Reduction Strategy for Object-oriented Programming. In
Proceedings of the 5th Brazilian Workshop on Formal Methods, pages 193
– 208, Gramado, Brazil, October 2002.

58

[Lei98] K. R. M. Leino. Recursive Object Types in a Logic of Object-
oriented Programming. In C. Hankin, editor, 7th European Symposium
on Programming, volume 1381 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

[LY97] T. Lindholm and F. Yellin. The Java Virtual Machine Specification.
Addison-Wesley, 1997.

[MC96] I. Moore and T. Clement. A Simple and Efficient Algorithm for
Inferring Inheritance Hierarchies. In R. Mitchell, editor, Proceedings of
TOOLS-Europe’96, pages 173 – 184, Paris, France, 1996. Prentice-Hall,
Hertfordshire, UK.

[MD00] B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE
Transactions on Software Engineering, 26(2):150 – 177, 2000.

[Mes93] J. Meseguer. A Logical Theory of Concurrent Objects and its Realization
in the Maude Language. In G. Agha, P. Wegner, and A. Yonezawa, editors,
Object-Oriented Programming, pages 314 – 390. MIT Press, 1993.

[Moo96] I. Moore. Automatic Inheritance Hierarchy Restructuring and Method
Refactoring. In OOPSLA ’96 Conference Proceedings, pages 235 – 250.
ACM Press, 1996.

[Mor94] C. C. Morgan. Programming from Specifications. Prentice-Hall, 2nd
edition, 1994.

[MRG88] C. C. Morgan, K. Robinson, and P. H. B. Gardiner. On the
Refinement Calculus. Technical Monograph TM-PRG-70, Oxford
University Computing Laboratory, Oxford - UK, 1988.

[MS97] A. Mikhajlova and E. Sekerinski. Class refinement and Interface
refinement in Object-oriented Programs. In J. Fitzgerald, C. B. Jones, and
P. Lucas, editors, FME’97: Industrial Benefit of Formal Methods, volume
1313 of Lecture Notes in Computer Science, pages 82 – 101. Springer-
Verlag, 1997.

[Opd92] W. Opdyke. Refactoring Object-oriented Frameworks. PhD thesis,
University of Illinois at Urban Champaign, 1992.

[Par90] H. A. Partcsh. Specification and Transformation of Programs: a formal
approach to software development. Texts and Monographs in Computer
Science. Springer-Verlag, 1990.

[RH88] A. W. Roscoe and C. A. R. Hoare. The Laws of occam Programming.
Theoretical Computer Science, 60(2):177 – 229, 1988.

[Rob99] D. Roberts. Practical Analysis for Refactoring. PhD thesis, University of
Illinois at Urban Champaign, 1999.

[Ros98] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall
Series in Computer Science. Prentice-Hall, 1998.

59

[Sam97] A. C. A. Sampaio. An Algebraic Approach to Compiler Design, volume 4
of AMAST Series in Computing. World Scientific, 1997.

[Smi99] G. Smith. The Object-Z Specification Language. Kluwer Academic
Publishers, 1999.

[SSH99] S. Seres, M. Spivey, and T. Hoare. Algebra of Logic Programming. In
ICPL’99, 1999.

[US87] D. Ungar and R. B. Smith. Self: The Power of Simplicity. In OOPSLA
’87 Conference Proceedings, pages 227–242. ACM Press, 1987.

[Utt92] M. Utting. An Object-Oriented Refinement Calculus with Modular
Reasoning. PhD thesis, University of New South Wales – Kensington
– Australia, 1992.

60

