
Safety-Critical Java Virtual Machine Services

James Baxter
University of York, UK
jeb531@york.ac.uk

Ana Cavalcanti
University of York, UK

ana.cavalcanti@york.ac.uk
Andy Wellings

University of York, UK
andy.wellings@york.ac.uk

Leo Freitas
Newcastle University, UK
leo.freitas@ncl.ac.uk

ABSTRACT
To ensure that Safety-Critical Java (SCJ) programs run cor-
rectly and safely, the virtual machine they run on must be
shown to operate correctly. To the best of our knowledge,
however, currently we do not even have a clear specification
of the requirements for such a virtual machine. In this pa-
per, we present an identification of these requirements for
the SCJ API and infrastructure, based on the requirements
of the SCJ standard and on consideration of existing vir-
tual machines for SCJ. Formal methods provide a powerful
tool in modelling and eliciting requirements, and establish-
ing correctness of implementations. We also present here a
formal model of the requirements written in the Circus spec-
ification language, which has already been used in a tech-
nique for verification of SCJ programs. Our work is a con-
tribution to establishing a framework for the development
of fully verified systems using SCJ.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-purpose
and Application-based Systems—real-time and embedded sys-
tems; D.3.4 [Programming Languages]: Processors—run-
time environments, Safety-Critical Java

General Terms
Design, Verification

1. INTRODUCTION
The development of the Safety-Critical Java (SCJ) speci-

fication [17] has been motivated by the need to create certi-
fiable real-time applications in Java. While the SCJ specifi-
cation covers all aspects of the SCJ API and infrastructure,
there is no explicit account of requirements for an SCJ vir-
tual machine (SCJVM). Yet, the underlying virtual machine
must also be correct in order to fulfil properly the certifiabil-
ity requirements of safety-critical systems. Even in systems
that do not have a full virtual machine there must still be

c© The authors 2015. This is the author’s version of the work. It is posted here
for your personal use. Not for redistribution. The definitive Version of Record was
published in Proceedings of the 13th International Workshop on Java Technologies for
Real-time and Embedded Systems, http://dx.doi.org/10.1145/2822304.2822307.

some runtime environment to support the running of the
SCJ bytecode that is required to be correct.

There is already an accepted specification of the standard
Java Virtual Machine (JVM) [15] with widely used imple-
mentations. The JVM provides an environment for the exe-
cution of multithreaded Java programs that have been com-
piled into Java bytecode. The environment consists of three
main components: a bytecode interpreter, a memory man-
ager that supports a garbage-collected heap (including the
method area), and a scheduler that shares the underlying
processing resources amongst the threads.

Work has already been done on the semantics of Java byte-
code and verification of standard JVMs [4, 12, 25]. However,
SCJ has a number of differences from standard Java. Firstly,
the SCJ memory model, abandons the garbage collector in
favour of a scoped memory model. Garbage collection is
less predictable and often quite complex, and so unsuitable
for some of the strictest certifiability requirements of safety-
critical systems. By contrast, the scoped memory model
provides greater predictability on when memory is freed as
it can be determined when a given scope is left and triggers
deallocation. The SCJ approach to scheduling differs from
that of standard Java, using a preemptive priority scheduling
approach rather than the loosely specified priority schedul-
ing system used for Java threads. These differences mean
that the standard JVM is unsuitable for running SCJ pro-
grams. A specialised virtual machine is required.

Various virtual machines have been created that can run
SCJ programs, including Fiji VM [21], icecap HVM [24],
OVM [1], HVMTP [18] and PERC Pico [2, 22]. The Fiji
VM and icecap HVM both take the approach of precom-
piling Java bytecode to C in order to allow for faster run-
ning programs that use fewer memory resources. Fiji VM
is, however, not specifically concerned with SCJ; it is rather
designed to run general real-time Java programs.

By contrast, icecap has been designed specifically to run
SCJ programs. It includes an implementation of the SCJ
libraries, although they cannot be easily decoupled from the
virtual machine itself. In addition, icecap also provides a
lightweight Java bytecode interpreter and allows for inter-
preted code to be mixed with compiled code. HVMTP is
a modification of the icecap HVM’s bytecode interpreter to
improve time predictability and ensure that bytecode in-
structions are executed in constant time.

OVM follows the approach of precompiling code for per-
formance reasons, similar to Fiji VM and icecap HVM, but
translates Java to C++ instead of bytecode to C. OVM pre-
dates SCJ; it is written to implement the Real-Time Specifi-

cation for Java (RTSJ) [10], though it can still support SCJ
programs as SCJ is based on a subset of RTSJ.

PERC Pico is a product of Atego based on early ideas for
SCJ, but uses its own system of Java metadata annotations
to ensure the safety of scoped memory. PERC Pico does not
support the current SCJ standard.

In summary, as far as we know, there is one implementa-
tion of an SCJVM publicly available: icecap.

It is and, typically, virtual machines for SCJ will be, de-
signed to be very small and fast so as to be able to run
on embedded systems. While these are important goals in
an embedded virtual machine implementation, the resultant
virtual machines tend to be complex and so hard to verify.
There does not yet appear to be any work on verification
of an SCJVM. Moreover, not even the requirements of an
SCJVM, which must be clearly identified before verification
can commence, are currently agreed on.

In addition to providing a reference to verify against, a
specification of the requirements for an SCJVM also al-
lows for greater portability of SCJ infrastructure implemen-
tations. With an accepted specification of the services to
be provided by an SCJVM, the SCJ infrastructure can be
developed without specific concerns about target operating
systems and platforms. Separating the requirements of an
SCJVM from the requirements of the SCJ infrastructure also
potentially allows for greater reusability, reducing the bur-
den of proving the correctness of different implementations
of SCJ. There are also benefits in that the requirements of
the underlying operating system can be identified. In this
way, the minimal necessary features of the operating system
can be implemented as part of a hardware abstraction layer,
rather than a fully fledged operating system. This may be
important given the resource constraints of embedded sys-
tems.

In this paper, we present a detailed specification for an
SCJVM. We identify the main components and describe the
API that they should provide to support the implementation
of the SCJ infrastructure and of other components.

We have designed and specified our API by inspecting
the SCJ standard and extracting the implicit requirements
imposed on an SCJVM by the requirements on the API and
infrastructure. The requirements have also been validated
and completed by considering the icecap implementation.
There has already been much research into the semantics
of Java bytecode [4, 12, 25] and bytecode for SCJ does not
greatly differ from that of standard Java [15]. So we have
focused on the services required by an SCJVM.

The SCJ specification defines three compliance levels to
which programs and implementations may conform. Level
0 is the simplest compliance level. It is intended for pro-
grams following a cyclic executive approach. Level 1 lifts
several of the restrictions of level 0, allowing handlers that
may trigger in response to external events and preempt one
another. Level 2 is the most complex compliance level, al-
lowing access to real-time threads and suspension via wait()

and notify(). There is almost no difference in the virtual
machine requirements for each level, so the virtual machine
presented here supports level 2 programs, although we do
not consider the multiprocessor facilities available at level 2.

In characterising the SCJVM, it is useful to have the spec-
ification in some formal notation. The development of a
formal specification is challenging as the formal notation is
more precise than the informal text that is found in the SCJ

specification. On the other hand, it provides several bene-
fits. Firstly, it gives precise guidance for those implementing
an SCJVM and the SCJ API. Moreover, the effort to extract
a formal specification from the implicit requirements of the
SCJ specification has had the benefit of uncovering areas
where it is insufficiently specified. Here, we briefly describe
a formal specification of the virtual machine services in the
Circus specification language [20].

In summary, our contributions are a specification of an
API for an SCJVM, together with a formal model. This
specification identifies the lower-level services that should
be provided by an SCJVM to permit portable SCJ imple-
mentations to be written. The provision of the formal model
states the requirements more precisely and facilitates proof
of correctness of an SCJVM.

The structure of this paper is as follows. Section 2 presents
an overview of Safety-Critical Java and its differences from
standard Java, giving a more detailed explanation of why
a specialised virtual machine is needed for SCJ. Section 3
contains the informal specification of the SCJVM services
that we have identified. An overview of Circus and the formal
model is then presented in Section 4. Finally, Section 5
discusses our conclusions, the relation of this work to similar
work, and directions of future work.

2. SAFETY-CRITICAL JAVA
Safety-Critical Java is a variant of Java designed for writ-

ing programs for which certifiability is an important concern.
SCJ is based on the Real-Time Specification for Java, which
augments the standard Java scheduler and garbage-collected
heap with more predictable priority-scheduled event han-
dlers and scoped memory areas. The modification that SCJ
makes to the RTSJ is to remove the aspects of RTSJ that
make certification difficult, including standard Java threads
and the garbage collector. This leads to scheduling and
memory management models that are very different to the
models for standard Java and that, therefore, require spe-
cialised virtual machines to support them.

An SCJ program consists of one or more missions, which
are collections of schedulable objects that are scheduled by
SCJ’s priority scheduler. Missions are run in an order de-
termined by the mission sequencer supplied by an SCJ pro-
gram. Running a mission consists of starting each of the
schedulable objects in the mission, waiting for a request to
terminate the mission, then terminating each of the schedu-
lable objects in the mission. The schedulable objects within
a mission are event handlers that are released either peri-
odically, at set intervals of time, aperiodically, in response
to a software release request, or once at a specific point in
time (though handlers that are released once can have a new
release time set, allowing them to be released again).

Each schedulable object has a priority and the highest
priority object that is eligible to run at each point in time
is the object that runs. This allows for simpler reasoning
about order of execution of schedulable objects and allows
for more urgent tasks to preempt less urgent tasks.

SCJ allows for assigning schedulable objects to “schedul-
ing allocation domains”, consisting of one or more proces-
sors. At level 1, each domain is restricted to a single pro-
cessor. Hence, in scheduling terms, the system is fully par-
titioned. This allows for mature single processor schedula-
bility analysis to be applied to each domain (although the
calculation of the blocking times when accessing global syn-

chronised methods is different than on a single processor
system, due to the potential for remote blocking [7]).

SCJ deals with memory in terms of memory areas, which
are Java objects that provide an interface to blocks of phys-
ical memory called backing stores. Memory allocations in
SCJ are performed in the backing store of the memory area
designated as the current allocation context. Each schedu-
lable object has a memory area associated with it that is
used as the default allocation context during a release of
that object, and is cleared after each release. Each mission
also has a mission memory area that can be used as an allo-
cation context by the schedulable objects of that mission, to
provide space for objects that persist for the duration of the
mission or that need to be shared between schedulable ob-
jects. There is also an immortal memory area where objects
can be allocated if they are needed for the entire running of
the program (they are never freed).

This system of memory areas makes it easy to predict
when memory is freed, which cannot be easily done with a
garbage-collected heap. Furthermore, this memory model
cannot be achieved with a standard JVM as it does not pro-
vide memory outside of the heap for allocation and lacks
a notion of allocation context. The memory manager also
needs to provide a means of accessing raw memory for the
purposes of device access, but that section of the SCJ stan-
dard is not yet finalised so we will not cover it here. It can,
however, be seen that any system of raw memory access is
not supported by most standard JVMs.

A further requirement of SCJ is that dynamic class load-
ing is not allowed; all classes used by the program must be
loaded when the program starts. This is because dynamic
class loading may introduce time overheads that are hard to
predict and additional code paths that complicate certifica-
tion. SCJ also disallows object finalisers as it is not always
easy to predict when they are run.

Because of these features of SCJ, a specialised virtual ma-
chine that provides support for allocation in memory areas
and preemptive scheduling is required for SCJ.

3. SERVICES OF AN SCJVM
Figure 1 shows the components that are required of an

SCJVM. The core execution environment handles the run-
ning of Java bytecode. The SCJVM services support, for
example, scheduling and memory management, that is, ser-
vices that are required to support the SCJ infrastructure
and the core execution environment.

The core execution environment is not required to use any
particular means to run the bytecode. It may interpret byte-
code instructions, just-in-time compile the bytecode, or exe-
cute native code precompiled from Java bytecode (in which
case the compiler is regarded as part of the core execution
environment). As mentioned previously, we do not go into
detail about the core execution environment here. Its speci-
fication is basically the semantics of Java bytecode, which is
mostly the same for SCJ. It should also be noted that class
loading is treated as part of the core execution environment,
and so it is bound by the requirement in the SCJ standard
to load all classes at virtual machine startup.

As can be seen from Figure 1, we group the SCJVM ser-
vices to characterise three main components:

• the memory manager, which manages backing stores
for memory areas and allocation within them;

• the scheduler, which manages threads and interrupts
that allow for implementation of SCJ event handlers;
and

• the real-time clock, which provides an interface to the
system real-time clock.

Each of these services is used either by the core execution
environment or by the SCJ infrastructure; some of the ser-
vices also rely on each other. For example, the scheduler
must update the allocation context in the memory manager
when performing a thread switch.

The SCJVM services make use of low-level operating sys-
tem services to access hardware. These operating system
services may be supplied by a full-featured operating sys-
tem on which the SCJVM runs or may simply be a minimal
set of services required to run the virtual machine. The lat-
ter case is desirable for low-end embedded systems that lack
the resources to run a general operating system.

3.1 Memory Manager API
The SCJVM memory manager deals with the raw blocks

of memory used as backing stores for the memory areas of
SCJ. The memory areas themselves are Java objects, and
so are dealt with by the core execution environment and
accessed through the SCJ API, instead of directly via the
virtual machine. This is in line with what is specified in
the SCJ standard and also done for RTSJ. Backing stores
are assumed to have unique identifiers that can be used to
refer to them; these identifiers can be simply pointers to the
physical blocks of memory used for backing stores.

There is initially one backing store, called the root back-
ing store, which has its size set when the SCJVM starts up
to cover all the memory available for allocation in backing
stores. The root backing store is not allowed to be resized or
destroyed, so that there is always a fixed base for the layout
of memory. The root backing store is intended to be used as
the backing store for the immortal memory area. A backing
store may have other backing stores nested within it, so that
a possible memory layout is as shown in Figure 2. In this
example, the backing store of the mission memory is nested
within the root backing store, and the backing stores for the
per-release memory of each schedulable object in a mission
is nested within the mission memory’s backing store.

The operations of the memory manager API are sum-
marised in Table 1. In addition to the inputs and outputs
described there, there should also be some system of report-
ing erroneous inputs, whether that be exceptions, global er-
ror flags or particular return values signalling errors. The
conditions that cause an error to be reported are listed.

The root backing store described above is always available
to the SCJ infrastructure through the getRootBackingStore
operation. An SCJ program, on the other hand, does not
have direct access to the root backing store except through
memory areas provided by the infrastructure.

In addition to managing the layout of backing stores in
general, the memory manager must track the current allo-
cation context. The operations getCurrentAllocationCon-
text and setCurrentAllocationContext provide a means
to get and set the current allocation context. The func-
tionality of changing the allocation context is used by the
methods of the SCJ API that allow code to be run with a dif-
ferent memory area as allocation context, such as execute-

InAreaOf() and enterPrivateMemory(). The memory man-

SCJ Application

SCJ Infrastructure
and API

SCJ
Virtual Machine

Core
Execution

Environment

Operating System/Hardware Abstraction Layer

VM Services
Memory
Manager Scheduler

Real-time
Clock

Figure 1: Structure of the SCJVM and its relation to the SCJ infrastructure and the operating sys-
tem/hardware abstraction layer.

Root Backing Store
(Immortal Memory)

Mission Memory

Per-release
Memory

Per-release Memory

Nested Private Memory

Figure 2: An example memory layout

ager stores each thread’s allocation context and queries the
scheduler as to which thread is current when it performs
operations affecting the current allocation context.

It is possible to obtain information about the used and
available space in a given backing store using the opera-
tions getTotalSize, getUsedSize, and getFreeSize. This
information is made available to SCJ programs through the
interface provided by memory areas defined in the infras-
tructure.

Another query that can be made concerning backing stores
is that of which backing store a particular memory address
lies in. This information can be obtained by the find-

BackingStore operation and is required by the infrastruc-
ture for obtaining the memory area of a given object.

Allocation within backing stores is possible through the
allocateMemory operation, which allocates blocks of mem-
ory within the current allocation context. This operation
is provided in order for the core execution environment to
implement the new bytecode instruction and should not be
directly available to the program or infrastructure. Alloca-
tions within backing stores must not cause fragmentation, so
as to fulfil real-time predictability requirements. The opera-
tion allocateMemory must also zero the memory it allocates,
in order to match the semantics of new.

Allocation of backing stores is provided by makeBacking-

Store, which is available to the infrastructure for use when
creating new memory areas. A new backing store is created
nested within the specified backing store. The infrastructure
is responsible for storing the backing store identifier returned
by makeBackingStore. Backing store allocation must be
done in constant time without fragmentation.

Deallocation of memory in backing stores cannot be done
directly as that could introduce fragmentation and would de-
feat the scoped memory model of SCJ. Instead, the SCJVM
provides for clearing a backing store when the memory area
it serves is no longer in use. This functionality is provided
by the operation clearBackingStore, which clears the spec-
ified backing store, deallocating all objects and nested back-
ing stores within it. It is not necessary to track exactly
which objects are deallocated by this operation as SCJ does

not have object finalisers. The clearing of a backing store
includes the clearing of all backing stores nested within it.
Since a backing store is not necessarily aware of what back-
ing stores are nested within it, its nested backing stores’
memory is freed with the rest of the backing store. This
would create a problem if the parent backing store is cleared
while another thread is using a backing store within it as an
allocation context. However, such a situation should not
occur as the backing stores of mission memory and immor-
tal memory are the only backing stores that contain back-
ing stores in use by different threads. The mission memory
is only cleared when all the event handler threads within
the mission have finished and the immortal memory should
never be cleared. This is handled as an error case, since
it cannot be guaranteed in general and relies on the API
implementation functioning correctly.

The last operation on backing stores is their resizing. This
is provided for by resizeBackingStore but, as resizing a
backing store presents a lot of difficulties in terms of frag-
mentation, there are several restrictions. In addition to be-
ing a valid backing store and there being enough space in the
parent backing store for the resizing to take place, a backing
store to be resized must not be the root backing store, and
must be empty and the only backing store within its parent.
However, this operation should only be needed for resizing
of the mission memory in between missions and resizing of
a nested private memory when it is reentered. In both these
cases all the needed restrictions hold.

The memory manager must also manage stacks, which are
placed in a separate area of memory to the backing stores.
The operations createStack and destroyStack allow for
stacks to be created and destroyed. The stack space must
not be fragmented, which is a requirement that can be met
since stacks for threads are allocated together when a mis-
sion is initialised and destroyed together when the mission
ends. That remains true at level 2 where nested missions are
permitted, since the nested mission’s stacks are allocated af-
ter the stacks of its parent mission and are destroyed before
the parent mission ends. Like backing stores, stacks are re-
ferred to by unique identifiers that may simply be pointers

Operation Inputs Outputs Error Conditions
getRootBackingStore (none) backing store identifier (none)
getCurrentAllocationContext (none) backing store identifier no current thread allocation context
setCurrentAllocationContext backing store identifier (none) invalid identifier

no current thread allocation context
getTotalSize backing store identifier size in bytes invalid identifier
getUsedSize backing store identifier size in bytes invalid identifier
getFreeSize backing store identifier size in bytes invalid identifier
findBackingStore memory pointer backing store identifier no backing store found
allocateMemory size in bytes memory pointer insufficient free memory

no current thread allocation context
makeBackingStore backing store identifier

size in bytes
backing store identifier invalid identifier

insufficient free memory
no current thread allocation context

clearBackingStore backing store identifier (none) nested backing store in use
no current thread allocation context

resizeBackingStore backing store identifier
size in bytes

(none) invalid identifier
backing store in use
backing store is root
backing store not empty
backing store not only child
insufficient free space
no space for memory overhead

createStack size in bytes stack identifier insufficient free space
destroyStack stack identifier (none) invalid identifier

stack space fragmentation

Table 1: The operations of the SCJVM memory manager

to the space allocated for the stack.

3.2 Scheduler API
The SCJVM scheduler manages the scheduling of threads,

which are abstract lines of execution, each with its own stack
and current allocation context. These threads should be
used to implement the event handlers of SCJ, with each
event handler being bound to a single thread. The opera-
tions of the scheduler are summarised in Table 2.

Each thread is scheduled according to a priority level. The
SCJ standard requires that there be at least 28 priorities
and separates them into hardware and software priorities,
with hardware priorities being higher than software priori-
ties. The range of priorities that an SCJVM actually sup-
ports may vary between different implementations within
these restrictions. To allow the range of supported priorities
to be determined and support corresponding methods in the
SCJ API, the minimum and maximum hardware and soft-
ware priority levels can be obtained with getMaxSoftware-

Priority, getMinSoftwarePriority, getMaxHardwarePri-

ority, and getMinHardwarePriority. The SCJVM chooses
a default normal software priority for threads, that can be
queried through the getNormSoftwarePriority operation.

Initially there is one thread running, which is called the
main thread. The main thread is created when the SCJVM
starts and has an implementation-defined priority. The main
thread can be suspended by the infrastructure when it is not
needed and resumed when it is needed again (using opera-
tions described in the sequel). This allows it to be used for
setting up the SCJ application and missions, then suspended
during mission execution. The main thread’s identifier can
be retrieved using the getMainThread operation.

Threads other than the main thread can be created by
the makeThread operation, which takes the entry point and
priority level of the thread to be created, as well as a back-
ing store as the allocation context and a stack. This opera-
tion returns the identifier of the newly created thread, which

must be stored by the infrastructure. The SCJVM does not
distinguish between the different thread-release conditions,
so for periodic and one-shot threads the infrastructure must
set a timer separately using the real-time clock API when a
thread is created. The only priorities allowed for threads are
the software priorities, as hardware priorities are reserved for
interrupts. The backing store supplied is only used to set
the backing store in the memory manager when the thread
starts and is not stored by the scheduler.

The SCJVM threads that are eligible to run must be
scheduled as if they are placed in queues with one queue
for each priority. At each moment in time, the thread at the
front of the highest priority non-empty queue is running. A
thread becomes eligible to run after it is started, and stops
being eligible to run when it is blocked. A thread is started
using the startThread operation and must be started by the
infrastructure when its enclosing mission starts. The reason
for the separation between thread creation and thread start-
ing is to ensure that threads all start together after mission
initialisation has been completely finished.

The identifier of the currently running thread can be ob-
tained through getCurrentThread. This operation may be
used by the infrastructure as part of obtaining the current
schedulable object, but is mainly intended for use by the
memory manager to discern the current allocation context.

A thread can suspend itself, causing it to become blocked,
and be resumed on command from another thread, causing it
to become eligible to run again, by the operations suspend-
Thread and resumeThread. A thread must not be holding
any locks when it suspends. These operations are only visi-
ble to the program through wait() and notify() at level 2.
These operations are also used in hardware communication,
when a thread must wait for the hardware to complete a
request, and to implement thread release, whereby a thread
remains suspended until released.

A thread that has been created can then be destroyed with
the destroyThread operation, which removes the thread

Operation Inputs Outputs Error Conditions
getMaxSoftwarePriority (none) priority level (none)
getMinSoftwarePriority (none) priority level (none)
getNormSoftwarePriority (none) priority level (none)
getMaxHardwarePriority (none) priority level (none)
getMinHardwarePriority (none) priority level (none)
getMainThread (none) thread identifier (none)
makeThread entry point

priority level
backing store identifier
stack identifier

thread identifier (none)

startThread thread identifier (none) invalid identifier
thread already started

getCurrentThread (none) thread identifier (none)
destroyThread thread identifier (none) invalid identifier

thread not destroyable
suspendThread (none) (none) thread cannot be blocked

thread holds locks
resumeThread thread identifier (none) invalid identifier

thread not blocked
setPriorityCeiling pointer to object

priority level
(none) invalid priority

takeLock pointer to object (none) lock in use
releaseLock pointer to object (none) lock not held
attachInterruptHandler interrupt identifier

entry point
(none) (none)

detachInterruptHandler interrupt identifier (none) (none)
getInterruptPriority interrupt identifier priority level (none)
disableInterrupts (none) (none) (none)
enableInterrupts (none) (none) (none)

Table 2: The operations of the SCJVM scheduler

from the scheduler. Destroying a thread does not automat-
ically destroy its stack or the backing store being used as
its allocation context. The SCJ infrastructure should not
destroy a thread while it is running as a thread should only
be destroyed when the mission it is part of is ending. The
infrastructure should instead ensure that all threads in a
mission are suspended before destroying them.

The SCJVM must support priority ceiling emulation. This
is handled by the setPriorityCeiling operation that asso-
ciates a priority ceiling value to an object. An object that
does not have its priority ceiling explicitly set has a prior-
ity ceiling equal to the default ceiling. This should be the
highest software priority, but it is possible for an SCJVM to
have an option to change the default priority ceiling. The
SCJVM scheduler does not require a notion of object in or-
der to associate priority ceilings to objects since an object’s
pointer can be used as an opaque identifier.

The operations for taking and releasing locks are takeLock
and releaseLock. A thread can only take a lock if its active
priority and the ceiling priorities of any other objects it holds
the locks for are less than or equal to the ceiling priority of
the object the lock is being taken on. Only one thread can
take a given object’s lock at a time. When a lock is taken,
the thread’s active priority is raised to the object’s priority
ceiling. When a thread releases a lock, the thread’s active
priority is lowered to its previous active priority. The thread
may hold nested locks on multiple objects.

The SCJVM scheduler must also manage interrupts, as
interrupt handlers have priorities (though these should be
in the hardware priority range) and so must be dealt with
within the priority scheduling model. An interrupt han-
dler can be attached to a given interrupt using the attach-

InterruptHandler operation, and an interrupt’s handler can

be removed with the detachInterruptHandler operation.
An interrupt with no handler attached to it is ignored. The
clock interrupt coming from the hardware is handled by the
SCJVM clock (see Section 3.3) and converted into a clock
interrupt that is passed to the scheduler for handling by
the attached interrupt handler (which should simply call the
triggerAlarm() method of Clock).

Each interrupt has a priority associated with it, which is
set by the SCJVM on startup and cannot be changed by
the application. These interrupt priorities must be hard-
ware priorities. An interrupt handler interrupts any lower-
priority interrupt handler and any running threads, and
blocks lower-priority interrupt handlers from running until
it has finished. The priority associated with each interrupt
can be obtained by the getInterruptPriority operation.

Interrupts can be disabled using the disableInterrupts

operation and re-enabled using the enableInterrupts op-
eration. While interrupts are disabled no interrupt handlers
can run, but it is implementation-defined as to whether or
not interrupts fired while interrupts are disabled are lost.

3.3 Real-time Clock API
The SCJVM must manage the system real-time clock, pro-

viding an interface that allows for the time to be read and
alarms to be set to trigger time-based events. The operations
of the SCJVM real-time clock are summarised in Table 3.

The main function of the real-time clock API is to pro-
vide access to the system time through the getSystemTime

operation. The SCJ API deals with time values in terms of
milliseconds-nanoseconds pairs. That should also be the for-
mat for time values passed to and from the SCJVM though
another format could be used. The system time may be mea-
sured from January 1, 1970 or from the system start time

Operation Inputs Outputs Error Conditions
getSystemTime (none) time (none)
getSystemTimePrecision (none) time precision (none)
setAlarm time (none) time in past
clearAlarm (none) (none) (none)

Table 3: The operations of the SCJVM real-time clock

(in case there is no reliable means of determining the date
and time), and so may not correspond to wall-clock time.

The time between ticks of the system clock (its preci-
sion) must be made available through the getSystemTime-

Precision operation. The clock’s precision must not change.
The SCJVM must also provide a facility to set an alarm

that sends a clock interrupt to the scheduler when a specific
time is reached. This facility is provided by the setAlarm

operation, which accepts an absolute time value at which
the alarm should trigger. The time passed to setAlarm is
required to not be in the past. Running code at a specified
relative time offset should be handled by the infrastructure.
Once an alarm has triggered, it is removed and a new alarm
must be set in order to perform events periodically.

The current alarm (if any) can be cleared using the clear-
Alarm operation. Attempting to clear the alarm when there
is no alarm set does nothing.

4. FORMAL MODEL
The formal model of the SCJVM is written in the Circus

specification language [20]. Circus is based on CSP [23],
which is used to specify processes that communicate over
channels, and the Z notation [27], which is used to specify
state and data operations. In this section, we present a
brief explanation of Circus and an overview of our model.
We then present part of the memory manager model. The
complete model can be found in [3]. It is type checked with
Community Z Tools and we have started to prove some basic
properties of the memory manager using Z/Eves.

A Circus specification is made up of processes that com-
municate over channels. These channels may carry values of
a particular type, or may be used as flags for synchronisa-
tion or signalling between processes. Each process may have
state, and is made up of actions that operate on that state
and communicate over channels.

In our model, each of the components of the SCJVM
shown in Figure 1 is specified by a single process whose
channels represent the services they provide. The whole
collection of VM services are then specified by a parallel
composition of the memory manager, scheduler and clock
processes. In this case, parallelism is used to define a con-
junction of requirements: those for each of the components.

The processes synchronise on the channels they share,
specified in the sets MMSInterface and RTCSInterface. The
set MMSInterface is the interface between the memory man-
ager and the scheduler, which contains a channel to get
the current thread from the scheduler, and channels to in-
form the memory manager of the creation and destruction of
threads. The interface between the real-time clock and the
scheduler, RTCSInterface, contains a channel to pass the
clock interrupt to the scheduler for handling. The channels
in the set VMServicesInternals are used for communication
between the SCJVM components and are hidden. So, the
only channels that can be used to communicate with the
SCJVM services are those representing the services in Ta-

bles 1, 2 and 3, and those used for communication with the
core execution environment.

VMServices =̂
((MemoryManager J MMSInterface K Scheduler)

JRTCSInterface K RealtimeClock)

\VMServicesInternals

The parallel composition of VMServices with a process rep-
resenting the core execution environment (which, as men-
tioned, we do not specify here) specifies the full SCJVM.

Our model of the scheduler is similar to other formal mod-
els of priority schedulers [9, 11, 13, 14], and the real-time
clock specification is fairly simple and just manages the cur-
rent time and any alarm that may be set. We, therefore,
do not detail the scheduler and clock models. Instead, we
present part of the memory manager model. We show the
memory manager state and some of the operations.

The memory manager specification begins by declaring a
type, MemoryAddress, of memory addresses to be the set
of natural numbers. This then allows for specification of a
type, ContiguousMemory , that contains contiguous ranges
of memory addresses and is used to specify that backing
stores must not be fragmented.

MemoryAddress == N
ContiguousMemory ==
{m : PMemoryAddress |
∃ a, b : MemoryAddress • m = a . . b }

Backing stores are identified by the elements of the type
BackingStoreID . These are opaque identifiers and there are
no constraints on BackingStoreID .

To specify backing stores, we first define a notion of mem-
ory block. The schema MemoryBlock represents a memory
block via a record that stores the used, free and total mem-
ory. This aspect of backing stores is separated out because
it is also used in specifying the stack space. The variables
used and free correspond to the areas of used and free mem-
ory, while total represents the whole memory area covered
by the MemoryBlock . We note that free and total are re-
quired to be contiguous to enforce the requirement that there
must be no fragmentation whereas used is simply specified
to be a set of memory addresses. There are two invariants
on MemoryBlock , identified by the predicates in the schema
below. The first invariant simply specifies that used and free
must be contained in total , but it does not require them to
cover total as there may be additional memory overhead.
The second invariant requires used and free to be disjoint.

MemoryBlock
free, total : ContiguousMemory
used : PMemoryAddress

used ∪ free ⊆ total
used ∩ free = ∅

A MemoryBlock is initialised by the MemoryBlockInit op-
eration, omitted here. It accepts as an input a contiguous
area of memory for the memory block and set the values
such that the memory block is initally empty.

As an example of an operation on a MemoryBlock , we
present MBAllocate, the operation that allocates memory
within a MemoryBlock . This operation takes as input size?,
the requested size of the allocated memory, and outputs an
area of contiguous memory called allocated !. There is a pre-
condition on this operation: size? must be smaller than the
size of free, to ensure that there is enough free space to ful-
fil the allocation request. The output, allocated !, is then
specified to be of the requested size and contained within
free. The final state used ′ is obtained by adding allocated !
to used and free ′ is obtained by removing allocated ! from
free. Finally, it is specified that total does not change.

MBAllocate
∆MemoryBlock
size? : N
allocated ! : ContiguousMemory

size? ≤ # free
allocated ! = size? ∧ allocated ! ⊆ free
used ′ = used ∪ allocated !
free ′ = free \ allocated !
total ′ = total

With MemoryBlock specified, the remaining parts of the
backing store state are added in the schema BackingStore,
which is a MemoryBlock with a variable, self , to store its
own identifier and a finite set, children, of the identifiers of
its immediate children. The invariants specify that it cannot
be a child of itself and that the overhead, left loosely spec-
ified in MemoryBlock , must have a size equal to some con-
stant backingStoreOverhead . The invariants inherited from
MemoryBlock are also required to hold.

BackingStore
MemoryBlock
self : BackingStoreID
children : FBackingStoreID

self 6∈ children
total =

used + # free + backingStoreOverhead

A BackingStore is initialised by the BackingStoreInit opera-
tion, which behaves similarly to MemoryBlockInit with the
additional precondition that the size of the provided memory
area must be larger than backingStoreOverhead .

An example of a BackingStore operation is the operation
of allocating space for a new child backing store within its
parent, given by the the schema BSAllocateChild below.

BSAllocateChild
∆BackingStore
MBAllocate
childID ! : BackingStoreID

childID ! 6∈ children ∧ childID ! 6= self
children ′ = children ∪ {childID !}
self ′ = self

This operation is defined using MBAllocate, but has an ad-
ditional output, childID !, which is the identifier of the newly

allocated child, and specifies how the extra state components
in BackingStore are updated. The new child’s identifier is
specified to not be the identifier of an existing child or of
the backing store itself. The final value of children ′ is speci-
fied to include childID ! as well as the identifiers in children,
and self does not change. This operation is used to define a
robust operation, RBSAllocateChild , that handles the case
where the precondition defined in MBAllocate does not hold
by outputting a value report !, which is either a reported
error or the value okay .

Backing stores are managed by the global memory man-
ager, the state of which is given by the schema below. The
global memory manager state contains a partial function,
stores, that relates backing store identifiers to the backing
stores, along with the identifier rootBackingStore of the root
backing store, and a relation, childRelation, between back-
ing store identifiers and the identifiers of their direct chil-
dren. The global state also contains a map, threadACs, from
thread identifiers to their allocation context, which is used,
together with information obtained from the scheduler, to
perform operations on the current allocation context.

The relationships between the backing stores are specified
by the invariants of this state as defined by the predicates
in the schema below. The first invariant specifies that the
root backing store must be a valid identifier, that is, in the
domain of stores (this is implied by the sixth invariant, but
is written separately for clarity). The second invariant re-
quires that the value of self for each backing store is its
own identifier. The third invariant requires that a backing
store’s children are all disjoint and contained in that back-
ing store’s used memory. The fourth invariant requires that
the thread allocation contexts be valid backing stores. The
fifth invariant defines childRelation, using the set of chil-
dren in the backing store record to form a relation between
backing store identifiers. The sixth invariant uses the re-
flexive transitive closure childRelation ∗ of childRelation to
specify that every known backing store must be a (direct or
indirect) child of the root backing store or the root back-
ing store itself. Lastly, the seventh invariant specifies that
no backing store can be a (direct or indirect) child of itself;
childRelation + is the transitive closure of childRelation.

GlobalMemoryManager
stores : BackingStoreID 7→ BackingStore
childRelation :

BackingStoreID ↔ BackingStoreID
rootBackingStore : BackingStoreID
threadACs : ThreadID 7→ BackingStoreID

rootBackingStore ∈ dom stores
∀ b : dom stores • (stores b).self = b
∀ b : ran stores • ∃m : P b.used •

(λ x : b.children • (stores x).total)
partition m

ran threadACs ⊆ dom stores
childRelation =

⋃
{i : dom stores •

{j : (stores i).children • (i , j)}}
dom stores =

(childRelation ∗) L {rootBackingStore} M
∀ s : dom stores • s 6∈ childRelation + L{s} M

The operations on the memory manager are specified using
the Z idiom of promotion, which allows operations on a lo-
cal state to be lifted to operations on a global state. This

allows simple operations on the backing store records to be
used to update the backing stores in the stores function. As
an example we present the GlobalMakeBS schema that spec-
ifies the creation of a backing store within another, which is
ultimately used to specify the makeBackingStore operation.

Much of this operation’s complexity comes from the fact
that it is promoting two operations: RBSAllocateChild and
BackingStoreInit . The allocation occurs in the current al-
location context, identified by the input allocationContext?.
It is determined by obtaining the current thread from the
scheduler, looking up its allocation context and passing it as
an input to the operation specified by the Z schema.

The first condition on the operation requires that the al-
location context be a valid backing store. After that, the ex-
istential quantifiers introduce variables local to the schema,
specifying the size of the allocated backing store, actualSize,
to include some implementation-defined overhead.

The variables childID ! and childAddresses! are identified
with outputs of the promoted operation RBSAllocateChild
that have the same names. The initial state for the pro-
moted operation is taken from the backing store in stores,
and the final state is placed in the variable parent . The out-
put childID ! is required to not be the identifier of another
backing store. It is required that no error be reported in the
error reporting variable report !.

The second operation promoted is BackingStoreInit . The
variables actualSize, childAddresses! and childID ! are passed
to it as inputs via renaming. The final state of the promoted
operation is stored in child . The final states of both back-
ing stores, parent and child are stored in the stores function,
with childID ! being used as the identifier of child . The spec-
ification of the operation ends by stating that all other state
variables remain the same.

GlobalMakeBS
∆GlobalMemoryManager
size? : N
allocationContext? : BackingStoreID

allocationContext? ∈ dom stores
∃ actualSize : N |

actualSize = size? + backingStoreOverhead •
∃ childID ! : BackingStoreID •
∃ allocated ! : ContiguousMemory •
∃ parent , child : BackingStore •

(∃∆BackingStore; report ! : Report |
RBSAllocateChild [actualSize/size?] •
θBackingStore =

stores allocationContext? ∧
parent = θBackingStore ′ ∧
childID ! 6∈ dom stores ∧
report ! = okay) ∧

(∃BackingStore ′; report ! : Report |
BackingStoreInit [allocated !/addresses?] •
child = θBackingStore ′) ∧

stores ′ = stores⊕
{allocationContext? 7→ parent ,
childID ! 7→ child}

rootBackingStore ′ = rootBackingStore
childRelation ′ = childRelation
threadACs ′ = threadACs

Other global memory manager operations are similarly spec-
ified using promotion. Operations on stacks are specified

separately, using a specification based on MemoryBlock . The
Z schemas that specify the operations are used to define
Circus actions that are used in the memory manager pro-
cess, with the inputs and outputs communicated over chan-
nels. For the operation described above, the Circus action
is MakeBackingStore, which accepts input on the channel
MMmakeBackingStore and returns its output on the chan-
nel MMmakeBackingStoreRet .

5. CONCLUSIONS AND RELATED WORK
In this paper we have presented the requirements of an

SCJVM, identified by examining the SCJ standard and con-
sidering existing implementations. One of the authors has
been involved in the SCJ standard specification, and this has
allowed us to obtain clarifications on the occasions where
the requirements on the SCJVM interface were unclear. Of
course, we cannot guarantee that these requirements are
complete and, hence we welcome comments indicating omis-
sions from the community. Furthermore, the interface we de-
fine is not the only interface that can be designed to meet the
overall requirements. However, we contend that any SCJVM
must provide the functionality specified here in some way.

We have also presented a formal model of an SCJVM,
written in Circus. Our future efforts in using our formal
model of the requirements can also lead to their further elab-
oration. For example, in our overview of our Circus formal
model of the requirements, we have focused on the memory
manager. One of the main design goals of the SCJ specifi-
cation in this area has been to “enable the development of
SCJ applications that are not vulnerable to reliability fail-
ures due to memory fragmentation” [17]. A correct SCJVM
that follows the requirements specified here and that is used
in conjunction with a correct implementation of the SCJ
infrastructure is guaranteed to deliver fragmentation free
memory management. A proof of properties of our model
and a verification of an SCJVM implementation can well
lead to identification of additional requirements.

This work is done in the context of a wider effort to apply
formal methods to Safety-Critical Java. There has already
been work done on generating correct SCJ programs from
Circus models [6], as well as work on formalising the SCJ
memory model [5]. Those works aim at ensuring that SCJ
programs can be verified.

There has also been work on modelling virtual machines
for Java, and on the formal correctness of compilers tar-
geting those virtual machines. Some of the most complete
work in that area was by Stärk, Schmid and Börger [25],
who present a model of the full Java language and virtual
machine, along with a formally verified compiler, although
for an old version of Java. Other work has also been done on
modelling the JVM and Java compilation using refinement
techniques [8], similar to those used in the works mentioned
above on generating SCJ programs from Circus models. Ad-
ditionally there has been work considering machine-checked
models of Java virtual machines and compilers [16, 19, 26].

This work can be viewed as the next stage of the effort
to provide complete formal verification for SCJ, as a correct
program that has been compiled correctly must run on a
correct virtual machine for the whole system to be correct.

Future work includes further consideration of the core ex-
ecution environment and the application of formal methods
to the approach of compilation to native code that many
virtual machines for SCJ take. We will also tackle the veri-

fication of icecap against the model presented here and the
possible construction of a correct SCJVM from this model.

Acknowledgements This work is supported by EPSRC
Grant EP/H017461/1. No new primary data were created
during this study.

6. REFERENCES
[1] A. Armbruster, J. Baker, A. Cunei, C. Flack,

D. Holmes, F. Pizlo, E. Pla, M. Prochazka, and
J. Vitek. A real-time Java virtual machine with
applications in avionics. ACM Trans. Embed. Comput.
Syst., 7(1):5:1–5:49, Dec. 2007.

[2] Atego. Atego Perc Pico - Products - Atego.
http://www.atego.com/products/atego-perc-pico/,
2015.

[3] J. Baxter. Requirements for Safety-Critical Java
Virtual Machines. Technical report, University of
York, 2015.
http://www.cs.york.ac.uk/circus/publications/

techreports/reports/scjvm-requirements.pdf.

[4] P. Bertelsen. Dynamic semantics of Java bytecode.
Future Gener. Comp. Sy., 16(7):841–850, 2000.

[5] A. Cavalcanti, A. Wellings, and J. Woodcock. The
Safety-Critical Java memory model: A formal account.
In M. Butler and W. Schulte, editors, FM 2011:
Formal Methods, volume 6664 of Lect. Notes Comput.
Sc., pages 246–261. Springer Berlin Heidelberg, 2011.

[6] A. Cavalcanti, F. Zeyda, A. Wellings, J. Woodcock,
and K. Wei. Safety-Critical Java programs from Circus
models. Real-Time Syst., 49(5):614–667, Sept. 2013.

[7] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM Comput.
Surv., 43(4):35, 2011.

[8] A. Duran, A. Cavalcanti, and A. Sampaio. An
algebraic approach to the design of compilers for
object-oriented languages. Form. Asp. Comput.,
22(5):489–535, 2010.

[9] J. F. Ferreira, C. Gherghina, G. He, S. Qin, and
W.-N. Chin. Automated verification of the FreeRTOS
scheduler in Hiip/Sleek. Int. J. Software Tools
Technol. Trans., 16(4):381–397, 2014.

[10] J. Gosling and G. Bollella. The Real-Time
Specification for Java. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

[11] A. Gotsman and H. Yang. Modular verification of
preemptive os kernels. J. Funct. Program., 23:452–514,
2013.

[12] M. Jones. The functions of Java bytecode. In
Workshop on the Formal Underpinnings of the Java
Paradigm, 1998.

[13] G. Klein, J. Andronick, K. Elphinstone, T. Murray,
T. Sewell, R. Kolanski, and G. Heiser. Comprehensive
formal verification of an OS microkernel. ACM Trans.
Comput. Syst., 32(1):2:1–2:70, Feb. 2014.

[14] D. Lime and O. Roux. Formal verification of real-time
systems with preemptive scheduling. Real-Time Syst.,
41(2):118–151, 2009.

[15] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley.
The Java virtual machine specification. Pearson
Education, 2014.

[16] A. Lochbihler. A Machine-Checked, Type-Safe Model
of Java Concurrency: Language, Virtual Machine,
Memory Model, and Verified Compiler. KIT Scientific
Publishing, 2012.

[17] D. Locke, B. S. Andersen, B. Brosgol, M. Fulton,
T. Henties, J. J. Hunt, J. O. Nielsen, K. Nilsen,
M. Schoeberl, J. Tokar, J. Vitek, A. Wellings, et al.
Safety-Critical Java Technology Specification. The
Open Group, Jun 2013.

[18] K. S. Luckow, B. Thomsen, and S. E. Korsholm.
HVMTP: A time predictable and portable Java
virtual machine for hard real-time embedded systems.
In Proceedings of the 12th International Workshop on
Java Technologies for Real-time and Embedded
Systems, JTRES ’14, pages 107:107–107:116, New
York, NY, USA, 2014. ACM.

[19] T. Nipkow, D. von Oheimb, and C. Pusch. µjava:
Embedding a programming language in a theorem
prover. In F. L. Bauer and R. Steinbrüggen, editors,
Foundations of Secure Computation, volume 175 of
NATO Science Series F: Computer and Systems
Sciences, pages 117–144. IOS Press, 2000.

[20] M. V. M. Oliveira, A. L. C. Cavalcanti, and J. C. P.
Woodcock. A UTP Semantics for Circus. Formal
Aspects of Computing, 21(1-2):3–32, 2009.

[21] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on
resource-constrained platforms with Fiji VM. In
Proceedings of the 7th International Workshop on
Java Technologies for Real-Time and Embedded
Systems, JTRES ’09, pages 110–119, New York, NY,
USA, 2009. ACM.

[22] M. Richard-Foy, T. Schoofs, E. Jenn, L. Gauthier, and
K. Nilsen. Use of PERC Pico for safety critical Java.
In Conference Proceedings: Embedded Real-Time
Software and Systems, Toulouse, France, 2010.

[23] A. W. Roscoe. Understanding Concurrent Systems.
Texts in Computer Science. Springer, 2011.

[24] H. Søndergaard, S. E. Korsholm, and A. P. Ravn.
Safety-critical Java for low-end embedded platforms.
In M. Schoeberl and A. Wellings, editors, Proceedings
of the 10th International Workshop on Java
Technologies for Real-time and Embedded Systems,
JTRES ’12, pages 44–53. ACM, 2012.

[25] R. Stärk, J. Schmid, and E. Börger. Java and the Java
Virtual Machine. Springer-Verlag, 2001.

[26] M. Strecker. Formal verification of a Java compiler in
Isabelle. In A. Voronkov, editor, Automated Deduction
— CADE-18, pages 63–77. Springer, 2002.

[27] J. Woodcock and J. Davies. Using Z: specification,
refinement, and proof. Prentice-Hall, Inc., 1996.

