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Abstract. Cyber-physical systems (CPSs) are often treated modularly
to tackle both complexity and heterogeneity; and their validation may
be done modularly by co-simulation: the coupling of the individual sub-
system simulations. This modular approach underlies the FMI standard.
This paper presents an approach to verify both healthiness and well-
formedness of an architectural design, expressed using a profile of SysML,
as a prelude to FMI co-simulation. This checks the conformity of com-
ponent connectors and the absence of algebraic loops, necessary for co-
simulation convergence. Verification of these properties involves theo-
rem proving and model-checking using: Fragmenta, a formal theory
for representing typed visual models, with its mechanisation in the Is-
abelle/HOL proof assistant, and the CSP process algebra and its FDR3
model-checker. The paper’s contributions lie in: a SysML profile for ar-
chitectural modelling supporting multi-modelling and co-simulation; our
approach to check the adequacy of a SysML model for co-simulation
using theorem proving and model-checking; our verification and trans-
formation workbench for typed visual models based on Fragmenta and
Isabelle; an approach to detect algebraic loops using CSP and FDR3;
and a comparison of approaches to the detection of algebraic loops.
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1 Introduction

Cyber-physical systems (CPSs) are designed to actively engage with the physical
world in which they reside. They tend to be heterogenous: their subsystems
tackle a wide variety of domains (such as, mechanical, hydraulic, analogue and
a plethora of software domains) that mix phenomena of both continuous and
discrete nature, typical of physical and software systems, respectively.

CPSs are often handled modularly to tackle both heterogeneity and complex-
ity. To effectively separate concerns, the global model of the system is decom-
posed into subsystems, each typically focussed on a particular phenomenon or
domain and tackled by the most appropriate modelling technique. Simulation,
the standard validation technique of CPSs, is often carried out modularly also,
using co-simulation [18] – the coupling of subsystem simulations. This constitutes
the backdrop of the industrial Functional Mockup Interface (FMI) standard [5,4]
for co-simulation of components built using distinct modelling tools.
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This paper presents an approach to formally verify the well-formedness and
healthiness of SysML CPS architectural designs as a prelude to co-simulation.
The designs are described using INTO-SysML [3], a profile for multi-modelling
and FMI co-simulation. The well-formedness checks verify that designs comply
with all the required constraints of the INTO-SysML meta-model; this includes
connector conformity, which checks the adequacy of the connections between
SysML blocks (denoting components) with respect to the types of the ports
being wired. The healthiness checks concern detection of algebraic loops, a feed-
back loop resulting in instantaneous cyclic dependencies; this is relevant because
a desirable property of co-simulation, which often reduces to coupling of simula-
tors, is convergence – whether numerical simulations approximates the solution
–, which is dependent on the structure of the subsystems and cannot be guar-
anteed if this structure contains algebraic loops [18,6]. The work presented here
demonstrates the capabilities of our verification workbench for modelling lan-
guages and engineering theories, which rests on Fragmenta [2], a theory to
formally represent designs of visual modelling languages, and its accompanying
mechanisation in the Isabelle proof assistant [22], and the CSP process alge-
bra [13] with its accompanying FDR3 refinement-checker [12].

Contributions. The paper’s contributions are as follows:

– A novel SysML profile for architectural modelling of CPSs that tackles het-
erogeneity by providing support for multi-modelling and co-simulation in
compliance with the FMI standard.

– An approach to statically check the adequacy of a SysML architectural model
for co-simulation, supporting connector conformity and algebraic loops de-
tection, by using a theorem prover and a model-checker.

– A prototyping environment for Fragmenta [3], a mathematical theory to
represent typed visual models, based on the proof assistant Isabelle/HOL
that enables model verification and transformation.

– A CSP-based solution to the detection of algebraic loops, which is based on
a novel approach to represent graphs in CSP.

– An evaluation of approaches to the detection of algebraic loops.

Outline. The remainder of the paper gives some background on Fragmenta
and CSP (Section 2). It presents our approach to represent architectural designs
in INTO-SysML, highlighting verification of well-formedness (Section 3), and our
approach for representing directed graphs in CSP and detecting algebraic loops
through a FDR3 refinement check (Section 4). It evaluates our CSP-based ap-
proach (Section 5). Finally, the paper discusses its results (Section 6), compares
them against related work (Section 7) and draws the conclusions (Section 8).

2 Background

We give some background on two main ingredients of the work presented here:
Fragmenta and CSP.
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Fig. 1: Some fragments of metamodel of INTO-SysML.

2.1 Fragmenta and its Isabelle Mechanisation

Fragmenta [2] is a graph-based theory to represent modularised (or frag-
mented) typed class models. It is based on the algebraic theory of graphs and
their morphisms [8]. Fragmenta represents designs of visual modelling lan-
guages whose structure is defined by class metamodels – domain-specific lan-
guages (DSLs) – and their resulting instance models. Its overall models are a
collection of sub-models called fragments. Type and instance models are related
through morphisms. A major novelty lies in Fragmenta’s proxies – represen-
tatives of other nodes. A fragment is as a graph that supports proxies.

Figure 1 portrays five fragments and one global fragment graph (GFG) from
INTO-SysML’s metamodel. It highlights how fragments build up on other frag-
ments either in a bottom-up (through imports) or top-down (through contin-
ues) fashion and the use of proxies for inter-fragment referencing. Importing is
bottom-up because the bigger fragments are built from smaller ones. Continua-
tion is top-down because it starts by specifying a summary model (or a skeleton)
with points of continuation, represented as proxies, to be continued by other
fragments. Fragment F PTypes is an increment to F Common; node Type

from F Common is referenced through the proxy with same name; likewise in
F Props with proxy NamedElement. Fragment F AD, which summarises meta-



4

model of INTO-SysML architecture diagrams (ADs), is a continuing fragment;
F VTypes continues F AD. The GFG (MM GFG) describes the continues and
imports relations between fragments.

Fragmenta proposes two composition operators: (a) union composition
(∪F ) merges fragments without resolving the proxies, and (b) colimit compo-
sition (based on category theory) joins fragments by resolving the proxies.

The theory introduces the following sets (see [2] for details):

– Fr , of well-formed fragments, requires that: (a) the underlying graph is well-
formed, (b) the inheritance hierarchy is acyclic, (c) the source of composition
relations has multiplicity 1 or 0 . . 1 and (d) proxies do not inherit4. All
fragments in Fig. 1 are members of Fr .

– GFGr , of acyclic GFGs – MM GFG (Fig. 1) ∈ GFGr .
– Mdl , of all well-formed models, requires that the model’s fragments are dis-

joint. A model M is a tuple (GFG , fd), made up of a GFG ∈ GFGr and a
total function fd : NsGFG → Fr mapping GFG nodes to fragments. INTO-
SysML’s metamodel, partially described in Fig. 1, is a member of Mdl .

– F1→F F2, of all well-formed fragment morphisms, which impose the required
graph commuting constraints in the setting of fragments.

– FrTy , of well-formed typed fragments FT = (F ,TF , ty); F and TF are
instance and type fragments, respectively: F ,TF ∈ Fr , and ty ∈ F →F TF .

– FrTyConf , of conformant fragments, a subset of FrTy , imposes the following
constraints on instances: abstract nodes may not have direct instances, con-
tainments are not shared, instance relations satisfy metamodel multiplicities,
and instances of containments form a forest.

– MdlTy , of all well-formed typed models MT = (M ,TM , ty), where M and
TM are instance and type models –M ,TM ∈ Mdl –, and the type morphism
is conformant – (UFs M ,UFs TM , ty) ∈ FrTyConf , where UFs makes a
single fragment out of the union of model fragments.

Fragmenta’s Isabelle mechanisation5 provides a verification and transfor-
mation environment for metamodel designs. One can check that:

– The individual fragments of both model and metamodel are locally consistent
and well-formed. For fragment F Common of Fig. 1, for instance, we need
to prove ⊢F Common ∈ Fr6; likewise for the remaining fragments.

– GFGs are well-formed also. For GFG of Fig. 1: ⊢MM GFG ∈ GFGr .
– Overall models and metamodels are also consistent and well-formed. For the

metamodel INTO SysML of Fig. 1: ⊢ INTO SysML ∈ Mdl .
– Instance models conform to the constraints imposed by the type model.

Section 3 gives further details on INTO-SysML inside Fragmenta/Isabelle.

4 A local check that ensures the compositionality of Fragmenta’s union operator.
5 Available at https://github.com/namalio/Fragmenta
6 Such membership predicates are represented in Isabelle as functions to booleans and
they capture the well-formedness constraints associated with a Fragmenta set.

https://github.com/namalio/Fragmenta
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2.2 CSP and FDR3

The CSP process algebra [13] describes communicating processes and interaction-
driven computations. CSP’s major structuring concept, the process, represents
a self-contained component made up of interfaces to enable interaction with a
multitude of environments.

Processes communicate by transmitting information along channels. A CSP
channel carries messages and has, therefore, a set of associated events, corre-
sponding to all messages that may be transmitted. Process expressions are built
using a number of operators, which include:

– Event prefixing, expressed as e → P , describes a process that expects event
e and then behaves as process P .

– External choice, P1 2 P2, gives the environment the choice of events offered
by P1 and P2. Replicated external choice 2 i : N • P(i) composes the
resulting processes using external choice.

– Internal choice, P1 ⊓ P2, non-deterministically chooses to act like P1 or P2.
– Parallel composition, P1 ∥

A

P2, executes the two processes in parallel synchro-

nising on the set of events A.

FDR3 [12] is CSP’s refinement checker. It checks refinement according to CSP’s
denotational models (including traces, failures and failures-divergences), and
other properties, including deadlock- and livelock-freedom, and determinism.

3 Architectural Modelling in INTO-SysML

The Systems Modelling Language (SysML) [25] is a general-purpose notation for
systems engineering that builds up on the Unified Modelling Language (UML).
The INTO-SysML profile [3] customises SysML for architectural modelling in a
setting of multi-modelling and FMI co-simulation. It embraces the many themes
of the INTO-CPS project7, namely, tool interoperability, heterogeneity, holistic
modelling and co-simulation, and constitutes the gateway into modelling in the
INTO-CPS approach.

The profile introduces specialisations of SysML blocks (known as stereotypes)
to represent different types of CPS components, constituting the building blocks
that enable a hierarchical description of the CPS architectures that we need.
A component is a logical or conceptual unit of the system, corresponding to
a software or a physical entity. The profile’s component constructs comprise:
System, EComponent (encapsulating component) and POComponent (part-of
component). A system is decomposed into subsystems (represented as ECompo-

nents), which are further decomposed into POComponents. EComponents and
POComponents may be further classified as Subsystem (a collection of inner
components), Cyber (an atomic unit that inhabits the digital or logical world)

7 The INTO-CPS project aims to create an integrated “tool chain” for comprehensive
model-based design of CPSs. For further information, see http://into-cps.au.dk/

http://into-cps.au.dk/
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(a) INTO-SysML AD (b) INTO-SysML CD

Fig. 2: The INTO-SysML model of the water tanks system

or Physical (an atom unit pertaining to the physical world). Furthermore, their
characterising phenomena may be classified as discrete or continuous.

Currently, INTO-SysML comprises two diagram types: architecture diagrams
(ADs) and connections diagrams (CDs), specialising SysML block definition and
internal block definition diagrams, respectively. They are as follows (see Fig 2):

– ADs (see Fig. 2a) describe a decomposition in terms of the types of system
components and their relations. They emphasise multi-modelling: certain
components encapsulate a model built using some modelling tool (such as
VDM/RT [20], 20-sim [17] or Open Modelica [11]).

– CDs (see Fig. 2b) are AD instances. They convey the configuration of the
system’s components, highlighting flow and connectedness.

drain

source

Tank

Valve!

!

Fig. 3: Water Tanks system.

The water tanks system, sketched in Fig. 3, is
this paper’s running example. A source of water
fills a tank whose water outflow is controlled by
a valve; when the valve is open the water flows
into the drain. The valve, managed by a software
controller, is opened or closed depending on the
tank’s water level. We also consider a variant of
this system with the drain connected to the tank.

Fig. 2 portrays the architectural model of water
tanks, built using INTO-SysML’s Modelio imple-
mentation8. The AD of Fig. 2a is as follows:

8 Available from http://forge.modelio.org/projects/intocps-modelio34.

http://forge.modelio.org/projects/intocps-modelio34
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– The overall system (WaterTankSys) comprises two major subsystems, Wa-

terTank and Controller, which are EComponents – they encapsulate sep-
arate models. WaterTank deals with continuous phenomena modelled in
Open Modelica. Controller is discrete and modelled in VDM/RT.

– WaterTank has three physical sub-components: Source, Tank and Drain –
they are POComponents (part-of of a subsystem).

– Enumeration ValveState captures the valve’s state. Unit types FlowRate

and Height, built from reals, deal with flow rates and water levels.
– Each component provides flow ports to enable communication and the flow

of material; the outputs indicate the inputs ports on which they depend.

CD of Fig. 2b describes the system instance (WTSys) composed of one Water-

Tank (WT) with its sub-components. The Controller instance (C) receives the
water height from WT and, in return, directs WT to open or close the valve.

3.1 Well-formedness Checking using Fragmenta/Isabelle

Many things are checked in order to deem a INTO-SysML model, such as one of
Fig. 2, consistent, well-formed and type conformant. Such checks are performed
on the Fragmenta typed representation illustrated in Fig. 4. Fig. 4b gives the
Fragmenta representation of CD in Fig. 2b and Fig 4a is the metamodel of
INTO-SysML CDs; the correspondence from CD to metamodel, entailed by the
type morphism, is represented as labels with numbers. In Fig. 4b, the proxies
reference elements from the AD of Fig. 2a, nodes labelled 4 correspond to the
connectors of the CD, and those labelled 5 correspond to ports.

From the Fragmenta base sets of Section 2.1, we build a set of well-formed
INTO-SysML models INTO Mdls, catering for all profile-specific invariants.
The AD invariants are: (i) there is one system block, (ii) EComponents are
not nested, and (iii) POComponents are contained by EComponents. The CD
invariants are: (iv) instance ports are correctly typed with respect to AD flow
ports, (v) connection’s flow types correspond to types consistent with the ports
being connected (conformity of connectors), and (vi) the CD satisfies multiplic-
ities imposed by AD.

The model of Fig. 2, referred as M WTs, is subject to the following checks:

– Fragments of AD and CD are well-formed: ⊢F AD ∈ Fr , ⊢F CD ∈ Fr .
– The model’s GFG is well-formed: ⊢GFG WTs ∈ GFGr .
– Overall model is well formed: ⊢M WTs ∈ Mdl .
– M WTs must be a valid INTO-SysML model. Given a type morphism ty (il-

lustrated in Fig 4b), we prove: ⊢(M WTs, ty) ∈ INTO Mdls, which entails
⊢(M WTs, INTO SysML, ty) ∈ MdlTy .

These are the checks required for any INTO-SysML model.

3.2 Fragmenta/Isabelle as a Transformation Engine

To enable usage of model-checkers, Fragmenta/Isabelle is used as a transfor-
mation engine in the algebraic loops check, which finds cycles in a topology of
dependencies in instantaneous component communication (Fig. 5).
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Fig. 4: Metamodel, models and typing morphism (numbered labels) in Frag-
menta illustrated with INTO-SysML CDs

Fig. 5a portrays a self-cycle component that is algebraic loop free. Output
y1 of A is connected to A’s input u2, but this does not entail an algebraic loop.
The topology in Fig. 5b, on the other hand, contains an algebraic loop.

Finding algebraic loops equates to detecting cycles in a directed graph de-
scribing port dependancy relations. An edge between two ports indicates that
the target node is instantaneously dependent on the source. This constitutes
a port dependancy graph (PDG), illustrated in Fig. 5c, which portrays a PDG
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with an algebraic loop corresponding to the variant of the INTO-SysML model
of Fig. 2 that connects the Drain to the Tank (dwo to win).

INTO_MDLs PDG CSPm

Into_SysML_ToPDG
toCSP

Fig. 6: From INTO-
SysML models to CSPm

The Isabelle mechanisation introduces a function
that produces a PDG from a INTO-SysML model.
The resulting PDG, obtained from the ports and
connections of CD and the internal dependancies be-
tween output and input port types of AD, is derived
from both metamodel and model. Another function
takes the PDG and produces the CSPm specification

to be checked in FDR3. This is summarised in the diagram of functions of Fig. 6.

4 Algebraic Loop Verification using CSP
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Fig. 7: A PDG with labelled
nodes and edges

We represent graphs in CSP and detect cycles
on them via a traces-refinement check executed
in the FDR3 refinement checker9. This is illus-
trated with the PDG of Fig. 7 (derived from
model of Fig. 2), containing labelled edges and
numbers assigned to nodes with outgoing edges.
We represent edges as CSP channels and nodes
as CSP processes. The edges result in the follow-
ing channel declaration:

channel sw win,win wout ,wout dwi , tvi wout ,
wtvi tvi , vo wtvi ,wli vo, . . .

The overall graph is a CSP process constructed from sub-processes representing
each node. The node processes are an external choice of CSP prefixed expressions
for each edge that starts at the node. They offer the events on the corresponding
channel and then behave as the process at the end of the edge. An edge to a sink
node (no outgoing edges) results in a transition to SKIP . The main process is

9 https://www.cs.ox.ac.uk/projects/fdr/

https://www.cs.ox.ac.uk/projects/fdr/
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the external choice of all sub-processes. The process for PDG of Fig. 7 is:

PortDependancyGraph =
letP(1) = sw win → P(2)

P(2) = win wout → P(3)
P(3) = wout dwi → SKIP
...

within2 i : 1..9 • P(i)

Cycles are detected through traces refinement. The abstract CSP process to be
refined defines all finite paths whose size is at most the number of edges in the
graph (those that can be built by combining the graph’s edges):

edges = {sw win,win wout ,wout dwi , tvi wout ,wtvi tvi , vo wtvi , . . .}
Limited =

letLimited0(E ,n) =

ifn > 0 then2 e : E • e → Limited0(E ,n − 1) ⊓ SKIP else STOP

withinLimited0(edges, 9)

The traces refinement check to be executed in FDR3 is then:

assertLimited ⊑T PortDependancyGraph

All counter-examples are cycles. The function toCSP of Fragmenta/Isabelle
(Section 3.2) yields CSP specifications as outlined above. For the PDG of Fig. 7,
FDR3 gives no counter-examples; for Fig. 5c FDR3 yields one counter-example.

5 Evaluation

FDR3 is a tool based on model-checking, a verification technique whose drawback
is scalability. We compare our CSP approach to detect algebraic loops (Section 4)
against one approach based on Alloy [14] and one graph algorithm [15], to gauge
scalability.

5.1 Experimental Setup

Scalability is evaluated against growing PDGs based on the water tanks running
example (Fig. 3). We keep adding tanks to a base water tanks systems to produce
systems of cascading water tanks having two versions: one with algebraic loops
(drain is connected to first tank) and one without (as per Fig. 3).

The generation of files to execute in either FDR3, Alloy 410 or the imple-
mentation of Johnson’s algorithm in JGraphT11, involves Isabelle functions that
yield PDGs given the number of tanks. We then define functions from PDGs

10 http://alloy.mit.edu/alloy/download.html.
11 A Java library of graph algorithms – https://github.com/jgrapht/jgrapht.

http://alloy.mit.edu/alloy/download.html
https://github.com/jgrapht/jgrapht
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to the abstract syntax of CSP (as per Section 4), Alloy (see below) and Graph
ML12 as per diagram of Fig. 813.

PDG

Alloy

CSPm

toAlloy

toCSP

GraphML

WaterTanksn

WaterTanks_loopn

ℕ
toGraphML

Fig. 8: The experiment’s genera-
tion functions

The graph checks and data collection were
performed by a Java program that reads the
files and calls either Alloy 4 (using the min-
isat SAT solver), FDR3 or JGraphT, executed
on a MacBook Pro with a 2.5 GHz Intel core
i7 processor and 16GB RAM memory. The re-
sulting data was subject to a statistical analy-
sis carried out in the R statistical package [24].

5.2 The Alloy Model

Alloy [14] is a declarative modeling language based on first-order logic with tran-
sitive closure. It is used for data modelling and provides an automatic bounded
analysis of a model. Our Alloy model of PDGs is based on the signature Port :

abstract sig Port {tgt : set Port}{tgt ̸= this}

Above, we declare a set of Port instances – abstract says that Port has no
instances of its own and that all its instances belong to its extensions (subsets)
– with the relation tgt between Ports declared to be non-reflexive: the tgt of
some Port cannot be itself (this).

The actual nodes of the PDG of Fig. 7 extend Port:

one sig sw, win , wout , dwi , wl, wlo , wli , vo, wlvi , tvi

extends Port {}

Above, the nodes are singletons (constraint one) that subset Port (extends).

The following Alloy fact defines the edges of the graph:

fact {sw.tgt = win

win.tgt = wout

wout.tgt = dwi

no dwi.tgt . . . }
assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, each edge is declared through relation tgt: sw.tgt =win says that there
is an edge from sw to win – operator . is the relational image –, win.tgt =wout

says that there is an edge from win to wout, and no dwi.tgt says that dwi has no
outgoing edges (set is empty).

Finally, we assert the acyclicity of the relation tgt representing the PDG and
declare the command to check the assertion:

12 A standard for graphs exchange that enables a direct representation of PDGs –
http://graphml.graphdrawing.org/.

13 The Isabelle file that performs the generation, the actual generated files, and the
Java code that runs the three approaches, can be found at http://bit.ly/1WKTIC7.

http://graphml.graphdrawing.org/
http://bit.ly/1WKTIC7
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Algebraic loops: Alloy vs CSP
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Algebraic loops: CSP vs Johnson Algorithm
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Fig. 9: The performances of the Alloy and CSP solutions (seconds on the ordinate
and number of nodes of a graph on the abscissa)

assert AcyclicTgt {no ^tgt & iden}

check AcyclicTgt for 10

Above, the assertion says that there can be no elements (operator no) in the set
resulting from the intersection (operator & ) of the relation’s transitive closure
(^tgt) with the identity relation (iden). The check command includes a scope
declaration: the analysis should consider at most 10 PDG nodes.

5.3 Comparisons

The plots of Fig. 9 depict the data obtained from running the experiments.
They display the number of nodes of the analysed graph in the abscissa and the
duration of the check (in seconds) in the ordinate.

Fig. 9a shows that there is an overwhelming difference in favour of CSP
against Alloy. CSP’s maximum duration is 8.58s, Alloy’s is 652.59s. The two
approaches start to diverge with small to medium size graphs (number of nodes
> 17). The p-value, obtained from the paired data plotted in Fig. 9a using
the Wilcoxon statistical test14, of < 2.2−16 (< 0.001) indicates a very large
difference. We derived estimates of functions that fit the data of both Alloy
and CSP to yield estimates of time complexity: Alloy has complexity O(Exp),
whereas CSP has complexity O(n3) – n is number of nodes of graph.

Fig. 9b, on the other hand, shows that Johnson’s algorithm performs sub-
stantially better than CSP. The former’s maximum duration is 0.02s, CSP’s is

14 It is a non-parametric test that compares the two sampled distributions without
assuming that they follow the normal distribution.
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164.98s. The p-value of < 2.2−16 (< 0.001) signals a very large difference. The
estimated function that fits the data endorses the algorithm’s linearity claim.

6 Discussion

The following discusses the results presented in the paper.

A prelude to co-simulation. The work presented here statically checks an
architectural design of a CPS in preparation for co-simulation. This is done at
the high-level architectural design to provide early warnings of any issues so
that the appropriate remedial action can be taken. It is a preliminary check –
done before delving into the details of global co-simulation and local modelling
and analysis of each component – to ensure that the models to be co-simulated
are, among other things, free of connector inconformities and algebraic loops.
These checks are performed using the Isabelle proof assistant and the FDR3
model-checker; both constitute an intimate part of our verification toolset.

Into-SysML profile. The paper presents a profile of SysML (defined in [3]), de-
signed as a DSL, for architectural modelling of CPSs supporting multi-modelling
and FMI co-simulation. The profile embodies an implicit systems decomposition
paradigm driven by multi-modelling: the overall system architecture is a decom-
position of subsystems (E-components), encapsulating their own models, which
are further decomposed into POComponents to give an account of the inner
structure of each subsystem. The profile enables a holistic algebraic loop analy-
sis that considers the inner details of each subsystem. Guidance on the definition
of SysML models for multi-modelling is provided in [10], aiding CPS engineers
in modelling a CPS architecture both holistically and in a decomposed form
suitable for co-simulation.

The profile’s design caters for FMI co-simulation. The E-component subsys-
tems of the architecture result in FMI’s Functional Mock-up Units (FMUs) to be
co-simulated; FMUs are generated by the corresponding modelling framework.

Fragmenta/Isabelle as prototyping environment. The profile’s DSL design
was brought to life by Fragmenta and its accompanying Isabelle mechanisation.
Fragmenta/Isabelle, built as part of the work presented here, constitutes a
prototyping environment built on top of Fragmenta’s mathematical theory
that provides reasoning and transformation capabilities for metamodels and their
instances. As this paper demonstrates, it can be used in real-world settings;
ideally, however, Fragmenta designs should be specialised and optimised as
part of fully fledged visual modelling environments.

Algebraic loops. The algebraic loops healthiness check is performed on a graph
describing the instantaneous dependencies between ports extracted from INTO-
CPS architectural models; external port connections are derived from the CD
and internal ones from the AD. Internal and external port dependencies of the
INTO-SysML model must be consistent with the underlying model equations.

It is interesting to contrast the two model-based approaches to check alge-
braic loops. Alloy represents a graph directly (Section 5.2) as a relation between
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nodes; the property to check is stated as an ordinary relational calculus formula.
The CSP approach (Section 4), on the other hand, is edge-oriented to suit CSP’s
communication model based on channels; a graph is the communications estab-
lished between nodes (CSP processes) chosen from the environment (external
choice); the property is expressed in an ingenious, but less evident way: through
an abstract process and a traces refinement check.

FDR3 and Alloy 4 are both based on model-checking; however, the CSP
solution outperforms Alloy overwhelmingly. Alloy’s exponential time complex-
ity is attributed to the complexity of SAT whose worst-case time complexity is
exponential [21,19] – the Alloy solution resorts to the transitive closure, a com-
putationally demanding operation (specialised algorithms do it in O(n3)). An
important factor in CSP’s lower O(n3) time complexity lies in the use of traces
refinement, founded on the simplest denotational model of CSP and with the
least expensive time complexity – polynomial according to [16].

Our CSP solution is beaten by Johnson’s algorithm, but it is used in our ver-
ification approach, which employs FDR3 for more sophisticated checks of FMI
co-simulations [1]. It is difficult for general-purpose model-checking to outper-
form specialised algorithms taking advantage of problem specificities.

The experimental setup varies size but not structure, which remains essen-
tially the same throughout the different water tanks systems. However, as the re-
sults show, this is enough to expose differences; furthermore, as discussed above,
the obtained results are consistent with theoretical results.

7 Related Work

Feldman et al [9] generate FMI model descriptions from Rhapsody SysML mod-
els and FMUs from statecharts to enable integration with continuous models.
Unlike our work, this does not define a profile embodying a paradigm designed
for multi-modelling and FMI-co-simulation; furthermore, formal static checks
covering connector conformity and absence of algebraic loops are not covered.
Pohlmann et al [23] propose a UML-based DSL for real-time systems; FMI FMUs
are generated from model components described as real-time statecharts; our
work specialises the SysML block diagrams, a standard notation for architec-
tural modelling, and supports multi-modelling.

This paper applies the Fragmenta theory presented in [2] to a real-world
problem. This required an extension to the Isabelle/HOL theory of [2], devel-
oped to prove that paper’s main theorem. This extension builds an infrastructure
to support automated verification and transformation for visual modelling lan-
guages. Fragmenta/Isabelle constitutes a prototyping environment supporting
all the novel aspects of Fragmenta, namely: a formal theory of proxies and
its verified theory of decomposition and the support for fragmentation strate-
gies. This is the first time that the novel theory of modularity with its Isabelle
mechanisation is applied to a real-world application. To our knowledge, this is
also the first prototyping environment based on a proof assistant that provides
formal reasoning and transformation capabilities for visual models.
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The approach to connector conformity used here is based on typing. It sup-
ports sub-typing according to the inheritance relations specified in the meta-
model; for instance, in INTO-SysML, natural numbers may be used when in-
tegers are expected because the metamodel says that the former is a subtype
of the latter. This is checked as part of Fragmenta’s typing morphisms. This
is different from the connector compatibility of [7], which performs validations
based on interface contracts, a relation between allowed inputs and outputs [26].

Broman et al [6] require that FMI component networks are algebraic-loop
free as a pre-condition to the deterministic composition results of their FMI
master algorithms, proposing port-dependency graphs as a means to perform
such checks. Unlike the work presented here, [6] does not study different ap-
proaches to detect algebraic loops; it suggests algorithms that topologically sort
a graph, which yield an error if the graph has a cycle. Our algebraic loop analysis
provides actual cycles as feedback to designers.

8 Conclusions

This paper has presented our approach to check a SysML model in preparation
for co-simulation. This involves checking the consistency and well-formedness
of the INTO-SysML model, which involves checking the conformance of the
model with respect to its metamodel based on Fragmenta’s representation.
The actual checks are carried out using Fragmenta’s Isabelle mechanisation,
ensuring, among other things, connector conformity. The paper then showed how
the INTO-SysML models could be transformed into other modelling languages to
perform a check for the absence of algebraic loops using Fragmenta’s Isabelle
mechanisation as a transformation engine. The paper presented a novel CSP
approach to detect algebraic loops by checking a traces refinement in FDR3.
The paper’s evaluation highlighted how our CSP approach based on refinement-
checking performs well when compared with an Alloy SAT-based model-checking
approach, but that it does not perform better than a special-purpose graph
algorithm. The work presented in this paper is done in tandem with the effort
on the formal semantics of FMI in CSP [1].
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