
A Graphical Interface to an E-mail
Filing, Filtering and Management Tool

Adam J Thornburn

Supervisor: Dr. Alistair D N Edwards

March 2001

Abstract

Adam J Thornburn Page 2 of 46

Abstract

The automated e-mail filing, filtering and management tool designed and
implemented by Russell Odom is a powerful and useful tool for managing e-mail
without forcing the user to utilise the filtering tools provided by their choice of e-mail
client.

Odom’s tool allows flexible scripts to be written to manage the way that incoming e-
mail is filtered and managed. Use of the tool allows a very flexible and powerful e-
mail management system to be implemented without restricting the end-user’s choice
of e-mail client, or forcing them to re-write the filtering rules whenever they change or
reinstall their e-mail client software.

Whilst the scripting language is as simple as it is powerful, it does require a basic
level of programming experience that most e-mail users will not possess in today’s
connected society where an increasingly large percentage of the population use e-
mail for day-to-day communications.

This report describes the design and implementation of a Graphical User Interface
(GUI) to enable users with little or no programming knowledge to produce scripts for
use with Odom’s tool.

Contents

Adam J Thornburn Page 3 of 46

Contents

Abstract ..2

Contents...3

Introduction...5

Background ...5

Aims and objectives ...5

Assumptions ...6

Research ..7

Structure of an e -mail ..7

Uses of filtering software...7

Outlook 2000 Filters...9

Netscape 6 Filters ... 11

Opera 5 Filters ... 13

Other e-mail clients ... 14

Languages.. 14

User Interface design ... 16

Microsoft MSDN User Interface Deign Guidelines .. 17

Wizards ... 20

Design.. 22

Chosen language .. 22

Interface approach .. 22

Condition specification ... 24

Action specification ... 25

Revised language specification .. 25

Contents

Adam J Thornburn Page 4 of 46

Data structure ..26

Interface ..27

Dialog design ...27

Implementation ..29

Language..29

Program structure..29

Parser/data structure ..29

Dialogs ..30

Testing ...38

Platform...38

Syntax checking ..38

User testing ..38

Tasks...38

Results ..39

desirable to test more people ..39

Conclusion and Recommendations...40

Success of the project ..40

Improvements ..40

Lessons learned ..41

Glossary ..42

Bibliography and references..43

Acknowledgements..44

Appendix A ...45

BNF specification of Odom’s filter language...45

Appendix B ...46

Code listing ...46

Introduction

Adam J Thornburn Page 5 of 46

Introduction

Background

Odom’s tool is a powerful and client independent way of managing e-mail, filtering
spam (unwanted messages) and providing many different types of auto-responders
to deal with many situations such as generic away messages (i.e. on holiday,
extended business trip), or to provide a standard response to certain types of mail.

The tool is ideally suited for implementation on a Unix based mail server, processing
messages for each user as they arrive. Users can operate different e-mail clients to
each other, upgrade to the latest version or never check their mail, whilst their mail
filters are processed seamlessly in the background.

Unfortunately a prerequisite of using the tool is a basic knowledge of programming
and programming languages, in order to make use of the scripting language required
to define filters.

The user is clearly in the best position to decide which (if any) filters would suit their
needs best, and therefore it is important that any user of the e-mail tool be able to
specify the filters that they desire, whether they have a previous background in
programming languages. Even for a user with a basic understanding of the concepts
involved in writing a script for the tool, much a of the power of writing the scripts by
hand would be rendered irrelevant by a system that allowed them to specify quickly
and simply basic filter rules without having to learn and debug the scripting language
themselves.

Aims and objectives

This project aims to generate a practical solution to this problem by implementing a a
Graphical User Interface (GUI) which will allow the user to generate a series of filters
using a simple, easily understood graphical application which will automatically
generate the required script files to implement the rules.

The project will assume that Odom’s tool is going to be installed and configured by
experienced technical support staff in such a way as each user on a mail server will
have a file in their user-space, which defines the filters that will be applied to the
users personal mailbox.

The project will try to identify the way most users approach the task of filtering their e-
mail, and implement an interface, which is simple and effective to use with little or no
tuition, whilst retaining as much of the original power of the scripting language as
possible.

The final implementation should allow the user to specify the same rules as they
could when writing the script files by hand, but without a steep learning curve, with

Introduction

Adam J Thornburn Page 6 of 46

most commonly used filters being applied with a few keystrokes, and more complex
rules using the same straightforward system.

Assumptions

This project will assume that Odom’s tool will be implemented on a Unix based e-mail
server in such a way as all mail arriving at the server will be passed through a unique
filter specification for each user. This set-up would be implemented by technical
support staff and therefore is not relevant to this report. It should be noted however
that the pipeline structure of Odom’s tool lends itself ideally to this kind of installation.

Each user would create a filter file based on Odom’s filter grammar which would
specify their individual filter preferences. This method would make the filtering system
completely independent of the e-mail client, and would allow the processing of the
user’s mail without any interaction (i.e. checking mail) on the user’s behalf.

It is also assumed that the user’s desktop platform will be Microsoft Windows and
that the version will be new enough to include the interface first utilised in Windows
’95 but largely unchanged in Windows 98 and ME, Windows 2000 and the
forthcoming Windows XP.

Based on these assumptions this report will concentrate on the development of a
Microsoft Windows based solution to the design and implementation of a Graphical
User Interface (GUI) for producing the filter files required by Odom’s tool.

Research

Adam J Thornburn Page 7 of 46

Research

Structure of an e-mail

The mechanics and structure of an e-mail are not relevant to this report, except to
determine the varieties of filter a user might wish to specify, Odom’s report and
implementation handles this issue, and it is sufficient within the scope of this report to
understand that an e-mail contains two parts, a header and a body. The header
consists of numerous fields such as to, from and subject. The fields that are available
to this implementation are described later in this report when we look at the grammar
used by Odom’s tool. The body of the e-mail is simply the message text, which is
usually formatted as plain text, or increasingly in Hyper Text Mark-up Language
(HTML), which is the language used to format web pages. The formatting of the body
again does not apply to this report as it will not affect our implementation of the GUI.

Uses of filtering software

Understandably other people were reluctant to allow that author free reign of their
personal mailing systems to establish the sorts of filters that they were implementing
in everyday use. Therefore these suggestions are based largely on my personal
mailing habits and experience of mailing systems I have used or configured in
business and home environments, in both professional and personal capacities.

Spam: Many people in both business and home environments receive a large
number of un-requested mailings on a regular basis. These mails are know as Spam,
and a large amount of user’s time is wasted determining the value of these mails and
then removing them from their inbox. Once a user has become the subject of spam
mailings, it is very difficult to avoid continuing to receive the mailings. Unlike mailing
lists these e-mails are unsolicited and therefore give you no option to unsubscribe
from their lists, which may be passed freely, or sold between one spamming again
and another.

The only way to be certain to remove a user’s address from all Spam mailing lists is
to give that user a new address. This, however can be very inconvenient, not just
spamming agents will be aware of this address, but also all of that user’s legitimate
contacts will also know and be used to that address. Given that the user cannot
change their address, it would be very useful if the e-mail filtering tool could be used
to catch and remove spam mailings before the user is forced to sift through all the
mails. If the user is concerned that important mails may be deleted the system could
instead put mailings it believes to be spam mail to the lowest possible priority so that
the user can concentrate on more relevant mails first.

Research

Adam J Thornburn Page 8 of 46

Auto responders: If a user is going to be away from their computer for an extended
period of time (i.e. when they are on holiday), or if the user receives many mailings
related to a similar subject (i.e. in a technical support role), then it may be useful for a
generic message to be returned to the sender until such time as the user can send a
more personal response. A filter could be used to catch messages to which this
applies and send a predefined message to the sender before filing the message as
normal for future attention.

Multiple mailboxes: Many e-mail users, that author included receive many e-mails
each day. In order to make these e-mails easier to find and organise it is possible to
use more than one named mailbox, and Odom’s tool

Research

Adam J Thornburn Page 9 of 46

Outlook 2000 Filters

Outlook 2000 has a powerful filter system built directly in to the program. On the
surface the system of filter specification is quite intuitive. There is a long list of
possible rules to choose from. Selecting one of these rules gives a textual description
of the action this rule will perform with the variable options (such as folder to move to,
or the contents of a specific field) underlined. Clicking on an underlined option gives
the user the option to define those variables.

Figure 1 – Outlook 2000 filter specificaton

In practice this system can be quite confusing to use, the large number of initial
options can be confusing and may lead to the wrong rule being chosen for a specific
task. There are also several ways of creating the same rule from different parts of the
application which whilst useful to a more experienced user could be considered less
that intuitive by a novice to the system.

The advantages of this system are the use of simple English statements to describe
the functionality of a filter. This means that establishing exactly what purpose a filter
was created for is a simple process. However the large number of options presented
to the user at each stage in order to provide a full compliment of filter types using this
interface may cancel out this benefit.

Another possible drawback is that Microsoft has used a specially designed interface
component (the textual description with underlined variables) which users may not be
familiar with, and may find confusing.

Research

Adam J Thornburn Page 10 of 46

It is worth noting that of the e-mail clients considered in the report, Microsoft’s is the
only application to offer context sensitive help within its rule creation interface. This
may be due to the more complex nature of Microsoft’s interface, but the fact the
neither Netscape nor Opera offer any sort of assistance outside of the online manual
may be an oversight when catering for less advanced users.

Figure 2 – Outlook filter specification

Research

Adam J Thornburn Page 11 of 46

Netscape 6 Filters

Netscape’s filter system remains largely unchanged from that implemented in version
4 of the program. The filter interface is composed of just two different windows. The
first is a list of the individual filters by name. This allows new filters to be created and
existing filters to be edited or deleted. It also allows the order in which filters are
applied to incoming mail to be altered.

Figure 3 – Netscape 6 filter list

The second window defines the structure of the filter and is straightforward in use.
The main option for each filter is whether just one or all of the conditions must be
satisfied for the rule to be applied.

Any number of conditions may be defined for each filter, each condition is composed
of a field to check, the type of match to be made and the value to compare it with. For
example a user might specify the following condition:

From equals ted@piebald.com

Where the field to check is the ‘from’ field, the match type is ‘equals’ and the value to
compare with is ‘ted@piebald.com’.

Only one action may be specified for each filter, and typically each action has a type
and value. The type defines the sort of action to be performed if the conditions are
met (i.e. move message to a folder) and the value depends on the action type, so in
the case of a move to folder action, the value will specify to which folder the message
should be moved.

Research

Adam J Thornburn Page 12 of 46

The process of creating a new filter is straightforward and intuitive, despite
Netscape’s use of a proprietary interface design in version 6 of their Internet suite.

Selecting ‘new’ from the main filters window brings up the filter rules dialog box
(shown above), which allows the complete specification of a filter from one window.
The name of the filter, along with the type, any number of conditions and the action
performed if the conditions are met are specified and ‘OK’ is clicked.

Figure 4 – Netscape 6 filter specificaton

The filter is then added to the list in the main filters dialog. From there this filter can
be deleted, edited, or its position within the list of filters changed.

Research

Adam J Thornburn Page 13 of 46

Opera 5 Filters

The mail client within Opera 5 uses a single dialog approach for the interface to its
main filter specification. It is the most limited system of all the e-mail clients examined
in this report.

Unlike Microsoft Outlook 2000 and Netscape 6, Opera only allows a limited number
of conditions to be specified for a each filter. A filter may have only one condition, or
it may have two conditions, with the option of whether both or just one condition must
be met.

Even more limiting is the fact that there are only two types of action which may be
applied for any given filter, to play a sound and to move the message to a specific
folder. Either or both of these actions may be specified, but there is no scope for auto
responders, or other more complicated and advanced filters.

Figure 5 – Opera 5 filter specification

The interface looks a little cluttered as the information, which is spread across two
dialogs under Netscape, is presented in only one in Opera. This does not make the
interface considerably more difficult to use, but this is testament to the limited number
of options available to the user.

Another drawback of the Opera single dialog interface is that of the cancel button. In
the event of an error the cancel button (or escape key) can be used to close that
dialog without saving any changes. It is however unclear within this interface if after
creating several new filters, whether pressing cancel will delete all of these filters, or
just clear any changes to the current filter.

Research

Adam J Thornburn Page 14 of 46

Other e-mail clients

There are many other mainstream e-mail clients available both for Windows and for
other operating platforms. The filtering systems implemented in such clients as
Eudora, Pegasus, Outlook Express, were either non-existent, or not sufficiently
unique to warrant inclusion here.

Clients for platforms other than Microsoft Windows were not considered, as the
interface would not be based on Microsoft Windows’ standards.

Languages

The language chosen to implement the GUI need not be especially powerful as there
will be little complex processing performed by the application. It is more important
that the interface can be readily created, altered and tested. It is therefore expected
that a Rapid Application Development (RAD) tool will be used for the final
implementation.

The following languages/development environments were considered for the
implementation of the GUI,

?? Perl

?? C/C++

?? Java

?? Visual Basic

?? HTML/XML/JavaScript

?? Delphi

Despite Odom’s tool being based around Perl, it would be entirely inappropriate to
attempt to produce a GUI using this tool. Perl is mainly used to manipulate
information often in conjunction with web-based forms, and whilst this is one possible
solution, it does not allow the RAD envisaged by the author.

Similar difficulties apply to C/C++. Whilst both Borland/Inprise and Microsoft have
advanced and powerful Integrated Development Environments (IDEs) available for
the C++ language, they still over complicate the process of producing a Graphical
User Interface in favour of power and flexibility.

For these reasons both Perl and all C derivatives were not considered for the final
implementation, however the other languages were considered in more depth.

Research

Adam J Thornburn Page 15 of 46

Java: This language has the advantage of being a cross-platform; this would allow
the final implementation to run on any platform capable of supporting Java applets.
The drawbacks however are quite complex. Interfaces for Java under Windows (the
target platform) can take two forms.

When using Java within the Microsoft J++ environment, standard Windows controls
are available which will work under Windows but not on other platforms, which
removes the benefits of a cross-platform languages, but allows a standard interface
to be developed.

Another option is to use Swing components, which is a library of GUI components
designed for use across operating system platforms. This would allow the
development of a cross-platform implementation, but would introduce non-standard
components to the implementation, which might make the implementation less
intuitive to a basic Windows user, which is the target audience.

Visual Basic: This is a RAD tool, based on the original BASIC language and
extended for use under Windows. It is the most widely used programming tool in the
world, because of its easy of use and short development cycle.

Whilst Visual Basic executables are not the most efficient possible and rely on
several run-time libraries for execution, it has the advantage of almost instant
compilation within the IDE and a drag and drop interface design tool that makes
producing the interface to an application more like a drawing package than a
programming tool.

This is very powerful for designing user interfaces, as all of the standard Windows
components are available and can be created, deleted, resized and edited in a
simple and most importantly quick manner.

This tool is ideally suited to the project as it will allow easy reconfiguration of the
interface as development of the implementation progresses, whilst the inefficiencies
of the executables will be rendered irrelevant by the minimal amount of processing
actually required by the application.

There is also the advantage that the author is familiar with this tool.

HTML/XML/JavaScript: A solution could be created using a web browser to display
the interface, with the actual GUI designed in HTML and Dynamic HTML (DHTML)
with the processing and interface control handled with browser scripting language
JavaScript.

Advantages of this approach would be the cross-platform nature of the web, and the
graphical and less restrictive format of HTML. However design and usability on the
web are controversial topics, as it is difficult to find a balance between style and
usability. For a project such as this, usability will come from familiarity with the
interface concepts, and as such it is probable that a standard Windows interface
would be more intuitive than a web based one.

Research

Adam J Thornburn Page 16 of 46

Delphi: This IDE from Borland/Inprise is similar in use to Visual Basic, with the focus
on Rapid Application Development, and a similar style interface for creating the
interface and specifying properties, methods and events for each component.

Rather then using BASIC as the underlying language, Borland have chosen Object
Pascal instead, Borland have also chosen to avoid run-time dependencies and
include a high quality native code compiler as part of the package. This makes Delphi
executables, smaller and more efficient than Visual Basic equivalents.

User Interface design

The most important aspect of the design process is the graphical interface presented
to the user. This interface must be as powerful as possible whilst retaining an intuitive
method of working that will be obvious to any user familiar with the Microsoft
Windows way of working.

Having considered the different approaches to the problem of a filtering interface
chosen by other developers, it is clear that there are many different methods, some
more intuitive than others. It can also be observed that each interface utilises
different components to present the options and information available. Some use
standard windows components, others, including Microsoft’s offering, utilise a
proprietary method.

When designing an interface there are some (often flaunted) guidelines available
from Microsoft specifying general rules for the layout of a Windows dialog. These
rules are only a rough guide and measurements are approximate, but these rules if
followed should result in a clear interface readily accessible due to its familiar
appearance and functionality.

By following standard design protocols less explanation of the function of each
control will be necessary, resulting in an uncluttered and functional interface.

Research

Adam J Thornburn Page 17 of 46

Microsoft MSDN User Interface Deign Guidelines

Included below are relevant extracts from the ‘Windows User Experience’ book on
the Microsoft website. There is considerably more content on the site than would be
appropriate to include here, for further reading on this subject consult the Microsoft
website at the address(es) show in the references section.

Measurements in this section are given in Dialog Units (DLUs). One horizontal dialog
unit is equal to one-fourth of the average character width for the current system font.
One vertical dialog unit is equal to one-eighth of an average character height for the
current system font. The default height for most single-line controls is 14 DLUs

Size of Common Dialog Box Controls

Control Height (DLUs) Width (DLUs)

Dialog boxes and property
sheets

263 max. (for 640 x 480
screen resolution)
218
215
188

263 max. (for 640 x 480 screen
resolution)
252
227
212

(For property sheets, heights include 25 DLUs for property sheet button bars.)

Command buttons 14 50

Check boxes 10 As wide as needed

Drop-down combo box and
drop-down list

10
Size to match other drop-down combo
boxes and text boxes

Option buttons 10 As wide as needed

Text boxes 14
Size to match other drop-down combo
boxes and text boxes

Text labels 8 per line of text As wide as needed

Other screen text 8 per line of text As wide as needed

Research

Adam J Thornburn Page 18 of 46

The diagrams below show the standard spacing and alignment of controls in a dialog,
once again, these are not strict rules but indicate a general method of alignment and
positioning which should be adhered to.

Figure 6 – Microsoft design guidelines

Figure 7

Research

Adam J Thornburn Page 19 of 46

Spacing Between Interface Items

Interface items Use this spacing (DLUs)

Dialog box margins 7 on all sides

Between paragraphs of text 7

Between text labels and their associated
controls (for example, text boxes and list
boxes)

3

Between related controls 4

Between unrelated controls 7

First control in a group box 11 down from the top of the group box; align
vertically to the group box title

Between controls in a group box 4; align vertically to the group box title

Between horizontally or vertically arranged
buttons

4; align vertically to the group box title

From the left edge of a group box 9; if the group box is left-aligned, controls are 16
from the left edge of the dialog box or property
page

Last control in a group box 7 above the bottom of the group box

Smallest space between controls 2

Text label beside a button 3 down from the top of the button

Check box, list box, or option button beside a
button

2 down from the top of the button

Research

Adam J Thornburn Page 20 of 46

Wizards

Microsoft also provides style guides for wizards, which may be useful given the
nature of the project. A wizard is a step-by-step tool typically for simplifying some
operation by breaking it up into several steps each in its own dialog. The diagram
below shows the standard layout for a wizard dialog.

Figure 8 – Microsoft wizard design guidelines

Wizard dialogs are an especially useful tool for small applications where an intuitive
interface is essential. There is an area at the top of each dialog for a short description
of what function the controls on the dialog perform, dispensing with the need for
complex and separate help files or manuals. Their interface is also consistent with
certain buttons expected to appear on each dialog for easy navigation through the
steps.

Microsoft’s extensive use of wizards in its newer operating systems (Windows 98,
ME, 2000) and software, mean that most Windows users are familiar with this
method of configuration

User’s familiarity with the now standard wizard format has led other developers to
design their products around this standard interface. Notably InstallSHEILD the
industry leading tool for producing custom installation routines for software now
outputs installer programs with a wizard driven interface.

Research

Adam J Thornburn Page 21 of 46

With such a proliferation of small applications based on a standard interface such as
this it is safe to assume that most if not all Windows users will have encountered this
style of interface in the past, and will have a reasonable expectation of how it will
function.

Design

Adam J Thornburn Page 22 of 46

Design

Chosen language

Of all the languages discussed in the previous section, the two most appropriate for
this implementation are Visual Basic and Delphi. They are both Rapid Application
Development tools, in both cases with emphasis on easy interface development. In
both cases the interface is ‘drawn’ from a standard set of Windows components.

This means that both tools are ideal for the creation of simple Windows applications,
with intuitive interfaces, which will use methods familiar to Windows users.

Delphi has the advantage of more efficient compilation, and no run-time
dependencies. However the author has previous knowledge of Visual Basic, and the
tool is more readily available.

With these factors in mind Visual Basic was chosen as the tool for development.
Visual Basic allows fast interface development using the standard windows
components, with the underlying BASIC language being simple to use, yet powerful
enough for the purpose.

Interface approach

The general approach to the design of the interface needs to be one that is familiar to
the end user. There are any number of way of laying out the same controls on a
dialog, many of which may be quite intuitive and straight forward to use. However for
the most effective interface a design which is already familiar to Windows users
would be the best solution. Some example of this are outlined below.

Tabbed dialog: Many preferences and configuration menus use this method for
presenting a large number of options to the user. Controls are grouped by function
using horizontal rules or group boxes.

Advantages: Many options can be placed on a single dialog with multiple tabs,
allowing a central point from which to work, with no need to switch from one dialog to
another repeatedly.

Disadvantages: This method can lead to a cluttered interface which may confuse the
user.

Standard Windows wizard: This style of interface as discussed in the previous
section is common across many of Microsoft and other developer’s software. It is a

Design

Adam J Thornburn Page 23 of 46

convenient way of presenting a step-by-step process to the end user whilst retaining
an uncluttered interface.

Advantages: Having each step on a separate dialog creates an uncluttered interface.
This allows fewer controls per dialog, with all the controls relating to one function of
the application. In the scope of this project a separate dialog might be specified for:
new filters, creating conditions, creating actions and final output.

Disadvantages: The user is forced to switch between dialogs to make changes to
different aspects of the filter configuration.

Two-dialog approach: This is similar to the Netscape filters interface. One dialog
presents a list of existing filters, with options for new filters, deleting filters, editing
filters and changing the order of filters. The other dialog is an all encompassing filter
creation window. It allows the specification of filter information (i.e. name,
description), conditions and actions all from the same dialog.

Advantages: Few dialogs, therefore less confusing window switching, creation of a
filter is handled by only one dialog.

Disadvantages: When many conditions or actions are specified the filter creation
dialog may become very cluttered and complex to use.

Chosen approach: The chosen solution is based mainly on the standard Windows
wizard, as its familiar and uncluttered interface should allow for the most intuitive and
powerful design.

Attributes of other possible designs may be included; in particular a tabbed dialog
approach will be considered and contrasted in more detail.

Design

Adam J Thornburn Page 24 of 46

Condition specification

With the overall design confirmed, it is important that the interface is as powerful as
possible whilst retaining an intuitive flexible interface. Odom stated in his own report
that the disadvantages of Netscape 4’s filter interface included weak specification of
conditions, and the imposition of only a single action per filter. In Netscape 4 all
conditions in a filer must be satisfied for the action to be applied.

Netscape 6 improved upon the condition specification by allowing a choice of
allowing only one condition to be met or requiring all conditions to be met for each
filter. Clearly this is still considerably less flexible that Odom’s filter language (see
appendix A) which allows conditions to be specified with any combination of ‘and’
and ‘or’ clauses.

Attempting to create a user interface which duplicates Odom’s rules for the
specification of conditions is clearly unfeasible, at best any interface created would
be extremely complex and unwieldy in use, and most likely would require the user to
define their conditions in syntax similar to Odom’s own implementation.

Some power and versatility must therefore be lost from the filter specification in order
to create an effective interface, which is significantly easier to use than Odom’s
language. A system similar to that employed by Netscape 6 was chosen, which
would allow the specification of any number of conditions as defined by Odom but
only permitting two permutations of condition checking. Either all conditions but be
met or only one condition must be met in order for the filter to be applied.

This reduces the complexity of the interface at the expense of some power, but it can
be assumed that any user requiring more power than would be made available would
be sufficiently experienced to directly employ Odom’s filter language or that in
exceptional circumstances technical support staff would assist that user with their
difficulty.

Aside from these changes conditions will be applied as Odom’s specification, with all
match types and fields available to the user.

To further reduce the complexity of the interface the functionality to choose a file for
the match values in a condition will be removed. This functionality allows a user to
specify a file containing, for example, a list of addresses to match against. Allowing
this within the scope of a graphical interface would make condition specification more
complex rather than less, as the user would need to create a separate external file
rather than performing all functions within the interface itself. Again it is reasonable to
do this as the reduced functionality would rarely affect a less experienced user for
whom this interface is being developed.

Design

Adam J Thornburn Page 25 of 46

Action specification

Based on the assumption that the interface will be aimed at less experienced users
working in a Windows based environment there are several actions in Odom’s
specification which are not appropriate for inclusion here. These are the ‘pipe_to’ and
‘system’ actions, which could have unexpected and serious side effect if misused or
used incorrectly. Therefore these options will not be made available from the
interface.

Unlike the Netscape implementation, which has been the basis for the condition
specification, the implementation will allow for any number of actions as specified by
Odom. This will allow much more power than is available in the Netscape
implementation, as complex actions may be specified such as filing a message for
later attention whilst sending an automated reply to alert the sender that their
message has been received and will be processed in due course.

Revised language specification

Below is the original language specification devised by Odom, revised with the
changes outlined above. This is the language that the final implementation of the
user interface will be based upon.

filters ::= filter | filter filters
 | filter_head filter_spec
filter_head ::= [filter name]
 | [filter name disabled]

filter_spec ::= if condition then actions end

name ::= string
condition ::= expr

 | NOT condition
 | (condition AND condition)

 | (condition OR condition)

actions ::= action | action actions
expr ::= field match_type words | true | false

action ::= file_message filename
 | reply when filename address

 | forward_message filename address
 | exit
field ::= from | to | cc | reply-to | subject

 | any_header | body | any | content | domain | sender
match_type ::= contains | equals | starts | ends

words ::= word | word words

Design

Adam J Thornburn Page 26 of 46

word ::= “string”
when ::= once | always
address ::= sender | postmaster | sender@domain

Data structure

This filters must be represented internally whilst the user is creating working. When
the user has completed the set of filters, this data structure will be parsed and output
as plain text following the specification above. This data structure should be as close
to the final language output as possible whilst still retaining the ability to be easily
modified and extended under execution.

Visual basic allows for user defined types to be created, and as a filter file can be
broken into smaller subsections, types may be defined to internally represent those
sections.

A filter file contains filters. Each filter contains both conditions and actions. The
simplest way to represent this is to create types for conditions and actions with
respective properties and make these types subtypes of a filter type.

The properties of a filter are:

?? Name

?? Enabled/disabled

?? Description (not part of the specification, but may be useful)

?? Type (all conditions must be satisfied – AND, one or more conditions must be
satisfied – OR)

There will be a list of conditions for each filter; each of these conditions will have the
following properties:

?? Field

?? Match type

?? Value (word list)

There will also be a list of actions for each filter, these actions will each have these
properties:

?? Action type

?? Filename

?? Address

Design

Adam J Thornburn Page 27 of 46

Using these properties it is a trivial task to create a simple data structure in Visual
Basic which can store the contents of a set of filters in an hierarchical array of user
types which can be expanded as the user adds new filters, conditions or actions, and
edited at will until the user is satisfied with the filters they have defined. At this point a
simple function will traverse the array and output a text file following the
specifications above.

Interface

The chosen interface style is a standard Windows wizard because of the clear step-
by-step nature of the task. The basic steps are filter specification, condition
specification, action specification and final processing, and the diagram below shows
the flow between these states.

Figure 9 – Flow diagram for the stages of filter creation

It can be seen from this diagram that 4 dialogs are required; create filters, create
conditions, create actions and final processing. A separate dialog for the start state is
not required, the application could begin at the create filters stage; however it may be
useful to include an introductory dialog with a brief explanation of the process to
avoid cluttering the other dialogs with unnecessary instructions.

Dialog design

Create filters:

This is the first functional dialog the user will encounter, as with all the other dialogs
the user will encounter it will have a white area at the top for a set of brief instruction
describing the dialogs purpose and how it should be used.

Also required are a list of existing filters, buttons for adding, deleting and editing
filters and a text field to enter a name for new filters.

At the bottom of the dialog, there will be finish and exit buttons. Exit will end
execution of the program without saving any work done, fishing will move the user to

Design

Adam J Thornburn Page 28 of 46

the final process dialog, where the filter script will be created. The user must create at
least one filter before this button will operate.

Create conditions

Aside from the standard instructions and exit buttons, there will a next button which
will move the user to the actions dialog, a cancel button which will cancel the creation
of the current filter and a list showing the existing conditions for this filter. The next
button should not operate until at least one condition has been created.

Two radio buttons will allow the selection of the filter type. For the actual specification
of each condition there will be a control for the field, match type and match value. As
the field and match type have a pre-defined number of possible values they will be
implemented as dropdown lists, match value will be a simple text box where values
are separated with a space.

Create actions

This dialog will be very similar to the conditions dialog. There will be next and cancel
buttons, a list of existing actions, add, edit, and delete buttons. For the specification
of each filter there must be a dropdown list of possible actions, some actions will
require an address field and some actions will require a filename field. Both of these
will be standard text fields. Only the relevant fields will be made available depending
on the action type selected. The filename field should also have a browse button
which will allow selection of the relevant file using a Microsoft common dialog for all
actions except ‘file_message’ where the filename refers to a Unix mailbox, and this
should be specified as a simple string (i.e. inbox, personal, university, etc.).

Final processing

This dialog needs just one button to output the file to a predefined location for use by
Odom’s tool. It is envisaged that a configuration file created by technical support staff
would specify the location of this file. For the purpose of this report output will be
directed to a multi-line textbox on this dialog to allow for easy analysis of the output.

Implementation

Adam J Thornburn Page 29 of 46

Implementation

Language

The program was implemented in Microsoft Visual Basic Version 6. This is the most
up-to-date version available at this time, and includes support for all standard
commonly used Windows controls.

Program structure

The data structure and parsing function were included in a separate module called
parser.bas. Each dialog is of identical size and initially appears in the centre of the
screen to ensure that the user’s focus is drawn to the currently active dialog. Non-
active dialogs are disabled or hidden to prevent accidental editing out of sequence.

The program begins by displaying the start dialog. This shows a brief overview of the
application, and initialises the data structure. The dialogs are moved through
following the flow described in figure 9.

Parser/data structure

Based on the properties defined for the data structure earlier the following types and
arrays were defined:

Public Type tCondition
 type As String
 field As String
 value As String
End Type

Public Type tAction
 action As String
 filename As String
 address As String
End Type

Public Type tFilters
 name As String
 type As String
 description as string
 enabled as boolean
 conditions() As tCondition
 actions() As tAction
End Type

Public theFilters() As tFilters

Implementation

Adam J Thornburn Page 30 of 46

This creates a public array theFilters, which is accessible from all dialogs. The array
is of type tFilters, which has the properties name, type, description and enabled. It
also contains two further arrays, conditions and actions. This allows each filter in
theFilters to contain any number of conditions and actions.

The conditions array in each filter is of type tCondition, which has the properties:
type, field and value, whilst the actions array has the properties: action, filename and
address.

The parsing function parseFilters traverses the data structure and returns a string
containing the scripting language as specified by Odom.

Dialogs

Each dialog contains the controls described in the design section of this report. The
conditions and actions dialogs are designed with almost identical layouts to make the
interface as easy to learn as possible for the user.

There were three stages of implementation, after each stage a basic user test was
conducted along with analysis by the author. After each phase the interface was
updated to reflect the discoveries about the accessibility of the interface.

Phase one: Initially a rough interface was developed with many more dialogs than
previously discussed. The conditions and actions stages were split over two dialogs
each with one dialog to show a list of existing conditions/actions, and another for the
actual specification of the rules. This was a fully working verson although the
interface was severely limited.

Implementation

Adam J Thornburn Page 31 of 46

The images below show the initial design o f the condition specification dialogs.

Figure 10 - Initial design of condition specification dialogs

Figure 11

Implementation

Adam J Thornburn Page 32 of 46

Phase two: This implementation was an experiment with an interface employing a
tabbed dialog approach. This phase was never fully completed as after the initial
design was completed it was decided that too much information was included on one
dialog.

With filter, condition and action specification all on one dialog it was envisaged that
the user would find moving between the different stages more free flowing and less
restrictive, however the amount of options and information made for a cluttered and
unwieldy interface which strayed too far for the guidelines for wizard design to be
intuitive.

The images below show the main dialog with each of the three tabs selected.

Figure 12 - Tabbed dialog approach filter specification

Implementation

Adam J Thornburn Page 33 of 46

Figure 13 - Tabbed dialog approach with condition specification

Implementation

Adam J Thornburn Page 34 of 46

Figure 14 - tabbed dialog approach with action specification

Implementation

Adam J Thornburn Page 35 of 46

Phase three: This is the final implementation, and builds upon the successes and
failures of the previous two implementations. The interface is based as planned on
phase one, but considerably overhauled.

Consolidating the contents into three main dialogs has reduced any confusion
caused by the large number of dialogs, present in the initial implementation. There
are now filters, conditions and actions dialogs as specified in the design section.

These dialogs now include both the existing filters/conditions/actions as well as the
controls for creating new instances. As well as reducing the number of dialogs this
helps prevent duplication, as the user can see what rules they have already designed
when specifying new ones.

The controls are grouped in frames on the dialogs, this is not essential as each
dialog only contains controls relevant to one section of the wizard, but they help draw
the users eye to the most important aspects of the dialog.

The images below show all of the dialogs available in the final implementation.

Implementation

Adam J Thornburn Page 36 of 46

Implementation

Adam J Thornburn Page 37 of 46

Testing

Adam J Thornburn Page 38 of 46

Testing

Platform

The tests were run on a Pentium II 450 based PC with 128MB RAM, running
Microsoft Windows 2000. The edition Visual Basic used for the final implementation
was version 6. Where the application would normally have output the scripts to a
plain text file for use by Odom’s mail filtering tool, the results were instead displayed
in a multi-line textbox on the final dialog. This was to make the out put easier to
check as the interface was never actually used with Odom’s tool, due to the
complexity of setting up and using a Unix mail server. Instead the output was
checked to ensure it was syntactically valid.

Syntax checking

In order to ensure that the output generated by the application was valid for use with
Odom’s tool, numerous fictitious filters were created and the output analysed by hand
to ensure that it followed the specifications set out by Odom, and included in this
report in appendix A. It was for this reason that the parsing function ‘parseFilters’
output the correct amount of white space, as although Odom’s tool ignores white
spaces in the filter text it makes it much easier for a human to check the output by
hand.

User testing

Several inexperienced computer users, who used e-mail on a Windows based
platform on a regular basis were asked to create filters using the tool, with no
assistance from the author.

The users started the task with the tool loaded and displaying the initial dialog. No
other applications were loaded, and users were asked only to use the program
running.

Tasks

For testing each user was asked to create a filter file containing three filters.

Filter 1: Create a filter which will file any messages from adam@inverse.freeuk.com
or ajt111@cs.york.ac.uk in a file called ‘self’

Filter 2: Create a filter which will take any messages that contain the word ‘bonus’ in
any field or ‘$$$’ in the subject field and file them in a file called ‘spam’

Filter 3: Create a filter which will return the message contained in the file ‘faq.txt’ to
the sender of messages addressed to ‘faq@helpme.com’

Testing

Adam J Thornburn Page 39 of 46

Results

The users were first asked to create these filters on the initial implementation, which
whilst fully functional was missing some vital parts of the interface. None of the users
tested were able to complete the tasks, as was expected, but none the less their
feedback was useful in confirming the authors intended final interface.

The users confirmed that the large number of dialogs was confusing at that it would
be useful to be able to see a list of filters/conditions/actions at the same time as
creating new ones.

They also commented on the inconsistent layout and the fact that the interface
looked generally untidy. This was to expected from the initial implementation. One
omission that was particularly pertinent was when attempting filter 3 the users were
all uncertain how to return a message to the sender, as it was not made clear the the
keyword required in the address field was ‘sender.’

To overcome this problem in the final implementation, the address textbox on the
actions dialog was replaced with a dropdown list, with ‘sender’ and ‘postmaster’
keywords. This allowed the users to type an address of their choice, or slect from one
of the two possible keyword addresses implemented by Odom.

No tests were run on the tabbed dialog implementation as the author felt the interface
to be too confusing , and a working version was never developed.

The tests were repeated for the final implementation, and whilst largely successful,
led to several minor refinements. Some difficulties were raised due to the incomplete
implementation, which meant that if a mistake was made and an action confirmed
there was no way of removing the erroneous entry. This is not a flaw with the
interface as such, but an issue of implementation with will be discussed later.

Several users raised the issue of the way the lists of conditions and actions were
displayed. This was in a three column format as seen in the tabbed dialog
implementation, which simply showed the entries for each field. The users felt this did
not scan as well as the plain English method used to specify the conditions as seen
in the conditions dialog. For this reason the lists were replaced in both the conditions
and actions dialogs with a plain English description of each condition and action
generated from the fields stored in the internal representation.

desirable to test more people

Only six people were used during testing due to limitations of time and practicality. A
much larger test sample and longer development period would have allowed for a
considerably more refined interface. However the time was not available to fully
complete the implementation, and as such a larger test was neither possible nor
appropriate.

Conclusion and Recommendations

Adam J Thornburn Page 40 of 46

Conclusion and Recommendations

Success of the project

The final implementation is still incomplete, but the implementation as it stands
appears bug free, and effective. Odom’s tool was designed to be extremely flexible in
its implementation, and the graphical interface places severe restriction upon that
flexibility. Whilst this might appear limiting the interface is aimed at less experienced
users, with little or no programming experience. As such the advanced power that is
unavailable through the interface would be of little relevance or use to the target
audience.

The implementation can still be utilised for:

?? Creating auto-responders for many different situations

?? Filing mail to different mailboxes depending on many different attributes

?? Handling basic spam messages.

It is accepted that in many cases some testing of the filters would be required to
obtain the desired effects, this is not just a limitation of this interface, but also of
Odom’s tool and indeed many other mailing packages.

The author intends to complete development of the application until such point as all
the intended functionality is actually implemented. This may be because his is
stubborn.

Improvements

The application could be vastly improved if it were more tightly integrated with
Odom’s tool, if for example there was a predefined file-space where Odom’s tool
would look for default filter files for the user, and where auto-responder messages
could be stored, then this location could be placed in a configuration file for each
user.

With this in place the program could offer the functionality to produce the files to be
used with the ‘reply’ action within the application, and handle the file creation and
modification on the user’s behalf.

This would also create scope for the current filters to be loaded into the application
when it is loaded, preventing the user from having to recreate all their filters to
change or add just one new filter after the current data has been processed.

Conclusion and Recommendations

Adam J Thornburn Page 41 of 46

It might also be beneficial to create shortcuts to commonly created filters, auto
responders, spam filtering, etc. which would offer a separate wizard tailored
specifically to those tasks.

More powerful condition specification would be desirable using any combination of
AND/OR clauses. This is currently a difficult task to implement in a graphical
environment due to the design of Odom’s filter language. However improvements to
this specification suggested in Odom’s own report would make this task easier.

Lessons learned

Creating a fully functional user interface can be more complex than expected, very
small factors affect the overall usability of an interface, and often unexpected results
can occur from seemingly trivial errors.

The author has learned much about user interface design from this project, despite
considerable experience in the field of web design, application interfaces require a
much different approach, as the user looks for very different things in an application
and an information resource.

Glossary, Acronyms and Abbreviations

Adam J Thornburn Page 42 of 46

Glossary

TO BE DONE!

Bibliography and References

Adam J Thornburn Page 43 of 46

Bibliography and references

ALSO TO BE DONE!!!!

Odom, NS, IE, Opera, UID…

http://www.msdn.microsoft.com/ui/

http://www.msdn.microsoft.com/library/default.asp?URL=/library/books/winguide/ch1
4e.htm

Acknowledgements

Adam J Thornburn Page 44 of 46

Acknowledgements

Lots of people, my supervisor, my friends, caffeine, comfy chairs, and pasta.

Appendix A

Adam J Thornburn Page 45 of 46

Appendix A

BNF specification of Odom’s filter language

The following is the BNF specification of the scripting language developed and
implemented by Odom to define filters to be used by his mail-filtering tool. This is the
language that must be produced by the application this report describes.

filters ::= filter | filter filters
filter ::= [include filename]

 | filter_head filter_spec
filter_head ::= [filter name]

 | [filter name disabled]
filter_spec ::= if condition then actions end

name ::= string
condition ::= expr
 | NOT condition

 | (condition AND condition)
 | (condition OR condition)

actions ::= action | action actions
expr ::= field match_type words | true | false
action ::= file_message filename

 | reply when filename address
 | forward_message filename address
 | pipe_to system command

 | system system command
 | exit

field ::= from | to | cc | reply-to | subject
 | any_header | body | any | content | domain | sender
match_type ::= contains | equals | starts | ends

words ::= word | word words
word ::= “string” | {filename}
when ::= once | always

address ::= sender | postmaster | sender@domain

Appendix B

Adam J Thornburn Page 46 of 46

Appendix B

Code listing

