
Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 1

Alexander Shenton

14 March 2001

This is the report on a project submitted for the
degree of Computer Systems and Software
Engineering in the Department of Computer

Science at the University of York

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 2

Abstract
This report details the design and testing of a text compression algorithm for
SMS messages. Few existing algorithms could produce compressed output
that was readable without any training. The method employed here was a
simple two-stage process, making common abbreviations and then stripping
the remaining of words of all but leading and trailing vowels. The algorithm
was written in Perl.

A questionnaire, presented as a web page, was used to measure the accuracy
and speed of comprehension of 80 subjects. 15 of these 80 were presented
uncompressed statements as a control. The results show, that the algorithm
produces around 25% compression, but that comprehension speed and
accuracy for the compressed statements are significantly less than speed and
accuracy for the uncompressed statements.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 3

Contents
CONTENTS ...1
PREAMBLE ...5
INITIAL THOUGHTS ..6
READING..7

Existing Algorithms...7
How Humans Read ...12
The effect of leading and trailing vowels..14

THE ALGORITHM ...15
Choices..15
Phoneme based compression ..16
Examples of Phoneme Compression...16
Phoneme based compression – advantages and disadvantages17
Vowel removal ..18
Common abbreviations versus vowel removal19
Vowel removal – advantages and disadvantages19
Hybrid method ..20
Hybrid System – Advantages and Disadvantages.................................20

IMPLEMENTATION ISSUES ..23
The questionnaire..27
Question Design..30

RESULTS ..31
Statistics for the Control Group..32
Statistics for the Test Group ...34
Accuracy ...37
Time...37

PROBLEMS ...38
CONCLUSION..39
FURTHER WORK ...40
ACKNOWLEDGEMENTS...41
REFERENCES ..41
APPENDICES...43
APPENDIX 1: COMPRESSION ALGORITHM CODE...44
APPENDIX 2 : EXPERIMENT CODE ..48
APPENDIX 2 : QUESTIONS USED IN THE EXPERIMENT58

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 4

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 5

Preamble
Modern devices with small displays, such as PDAs (Personal Digital
Assistants), mobile telephones (particularly those with WAP capability) and
GPS (Global Positioning System) receivers, could benefit from some
method of fitting the maximum amount of information on to the screen at
one time. The task was to devise and evaluate an algorithm that could
compress text so that more can be fit on the screen while retaining
readability, i.e. maximising information while minimising characters.

The most common form of small display is the ubiquitous mobile telephone.
SMS (Short Message Service) is a text messaging system defined within the
digital GSM mobile `phone standard, and is a popular system with high
public exposure. It has various properties, but the most relevant to this
project is the fact that SMS text messages are limited to 160 characters.

SMS is a technology with massive market infiltration. In the last two years,
mobile messaging has really taken off, particularly since the introduction of
pre-pay mobile telephones. In December 2000 an estimated 20 billion text
messages were sent worldwide, a seven-fold increase on the same period the
previous year. Monthly figures are increasing an average 1000% year-on-
year (All figures from the Guardian).

However, though 24 million messages are sent in Britain each day, there are
definite limits to its usefulness. 160 characters, though it may sound a lot, is
actually quite limiting in terms of content. While no one is likely to be
sending novellas by text message, it can be difficult to fit much information
into a single text message. For this reason, SMS users frequently abbreviate
words and use shortened phrases that can, to the uninitiated, look like
complete gobbledegook. An automated system that could compress
messages, while retaining readability so that comprehension is high even
among infrequent ‘texters’, might be useful.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 6

Initial Thoughts

First it should be specified just what is meant by compression. In this case,
the term refers to the minimisation of the number of characters in a
message, while retaining a readable message.

The following quote is taken from
http://www.utpress.utoronto.ca/editorial/castingoff.htm:

"Character counts are actual, whereas word counts are
hypothetical" (Martin, Book Design: A Practical Introduction, Van
Nostrand Reinhold, 1989, pg. 115). Although the average length of
the English word plus the space which follows it is generally given
to be six characters, in actual fact it will vary depending on the
reading level of the text. A scholarly text will typically have longer
words than most books for general readership. Therefore, word
counts can fluctuate wildly depending on which standard is being
used and are generally inaccurate.

All compression rates in this document are measured by character, for the
reasons given above and because mobile telephones typically have
character-based LCD displays.

The type of information to be compressed has a bearing on the algorithm: for
example, if compressing place names for a GPS receiver, a simple database
of common abbreviations for the places might be sufficient (e.g. B’ham for
Birmingham, Salop for Shropshire). This may soon become unpractical if
we expand into the more general English language of SMS messages.

 A major problem is that the English language is extremely irregular. If we
look at the simple mechanical process involved in the two place-name
examples above, we can see that that the rules used there are very specific.
‘Salop’ has virtually no relation to the word ‘Shropshire’, being a common
abbreviation for historical reasons. Giving the algorithm a tutoring in history
and social culture is obviously not a particularly useful suggestion.

On the other hand, because it is descended from so many sources, English is
full of redundancy. American English has, in many words, stripped away
some of this character redundancy. Consider the American ‘color’ versus the
international English ‘colour’. While some might prefer the English spelling,
the American version conveys the same information in fewer characters.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 7

Reading

Existing Algorithms
There are a few existing text compression systems. I was able to find the
following three:

Email2SMS
This program was written in Perl by Adam Spiers using the
Lingua::EN::Squeeze module (documentation for which can be found at
www.new.ox.ac.uk/~adam/computing/email2sms/Lingua_EN_Squeeze.html
) The homepage for the program itself is
http://www.new.ox.ac.uk/~adam/computing/email2sms/

The result achieved by this program is something of the form:

comp.lang.perl.announce

moderator$[thiIsAutmtedMsgFromPrlScript.]/Postng

4Cmp.lng.prl.nnnceHasBenRcivAndQueu.I/wSndUMsgWhenIChoseT

oEithrAcceptOr

RejectPostngITryToProcPostngAtLstOncEverySevenDD,ButGenrlyIt

HasBenLot+/

OftnThan(wthnMINIfImOn-lin,F_xmple).AprovedChartSay

(this example is taken from the email2sms page). While this has the
advantage of high compression rates, (up to 60% is claimed) it is really quite
unreadable and confusing at first glance.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 8

The compression rate is variable. In the following examples, taken from the
lingua::en::squeeze module documentation page, we go from zero
compression:

You can use this module e.g. to preprocess text before it is sent to
electronic media that has some maximum text size limit. For
example pagers have an arbitrary text size limit, typically 200
characters, which you want to fill as much as possible.
Alternatively you may have GSM cellular phone which is capable
of receiving Short Messages (SMS), whose message size limit is
160 characters. For demonstration of this module's SqueezeText()
function , the description text of this paragraph has been converted
below. See yourself if it's readable (Yes, it takes some time to get
used to). The compress ratio is typically 30-40%

…to medium compression:

u _n use thi mod e.g. to prprce txt bfre i_s snt to
elrnic mda has som max txt siz lim. f_xmple pag
hv abitry txt siz lim, tpcly 200 chr, W/ u wnt
to fll as mch as psbleAlternatvly u may hv GSM cllar P8
w_s cpble of rcivng Short msg (SMS), WS/ msg siz
lim is 160 chr. 4 demonstrton of thi mods SquezText
fnc , dsc txt of thi prgra has ben cnvd_ blow
See uself if i_s redble (Yes, it tak som T to get usdto
compr rat is tpcly 30-40

…to full compression:

u_nUseThiModE.g.ToPrprceTxtBfreI_sSntTo
elrnicMdaHasSomMaxTxtSizLim.F_xmplePag
hvAbitryTxtSizLim,Tpcly200Chr,W/UWnt
toFllAsMchAsPsbleAlternatvlyUMayHvGSMCllarP8
w_sCpbleOfRcivngShortMsg(SMS),WS/MsgSiz
limIs160Chr.4DemonstrtonOfThiModsSquezText
fnc,DscTxtOfThiPrgraHasBenCnvd_Blow
SeeUselfIfI_sRedble(Yes,ItTakSomTToGetUsdto
comprRatIsTpcly30-40

Training improves ones ability to read messages compressed in this way, but
this is of no use to first time users. The algorithm to be designed should
produce more instantly accessible outputs, which could be read with
practically no practice.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 9

Microsoft Intellishrink
Microsoft has devised a plug-in for Outlook (part of Microsoft Office) to
deal with mobile devices. This plug-in, still in beta form at time of writing,
is called Microsoft Intellishrink, and can be used to compress messages in a
very similar way to that intended for this project. The following is from the
Microsoft Outlook Mobile Manager web page located at
http://www.microsoft.com/office/outlook/mobile/default.htm:

Benefit from Mobility Made Simple
Using natural language processing, Outlook Mobile Manager
automatically compresses large messages so you receive only the
most important message data on your mobile device. Microsoft
Intellishrink™, a text compression system, lets you choose options
such as removing spaces, replacing long words with known
abbreviations, removing punctuation, and even removing vowels.

A sample of the compressed text can be seen in the following image, also
from the same page:

Microsoft’s system seems to be designed for forwarding emails to mobile
devices, and employs an interesting and simple scalable compression
algorithm. This algorithm was discovered after the algorithm used for this
project was devised, and any similarities are coincidental.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 10

AmikaNow! Highlights
AmikaNow! Corp has developed a system using a different idea to simple
word-by-word compression. The ‘Highlights’ system automatically
summarises emails for communication to mobile devices. The following
article is from Computerwire - October 26, 2000, found on AmikaNow!’s
web site at
www.amikanow.com/newsroom/NewsPostings/wowfi/WOW!Wireless.htm:

AmikaNow! Corp claimed a breakthrough in wireless email
delivery at Internet World Fall 2000 on Wednesday, demonstrating
a system that can automatically summarize an email and forward
the results to a wireless device.

The software uses artificial intelligence to precis the contents of an
email so that it [can] be sent as a short message - or several short
messages - of around 15 words. This means that the information
can be sent to, and easily read, on an SMS or WAP phone or an
interactive pager. The technology is expected to be on the market
in the first quarter of next year.

The AI agent looks for patterns in emails and summarizes what it
considers is important content for the wireless message system. "A
lot of English text and style of writing is redundant," said
AmikaNow's founder, president and CEO, Sue Abu-Hakima,
explaining how a 250-word email can be boiled down to a 160
character text message. In case the user wants more detail, the
system can also forward the entire email, if requested.

AmikaNow will offer the service through its AmikaFreedom.com
web site, which can pull emails from corporate servers as long as
they support the POP3 or IMAP mail protocols, Abu-Hakima said.
The software can also be downloaded and used as a Microsoft
Exchange plug-in, which might be preferable for users behind a
firewall. She said she expects to see the AI engine built into unified
messaging systems eventually.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 11

An example of the Highlights system can be found at
https://www.amikafreedom.com/afc1/amikafreedom.com/example.htm

It is reproduced here.

Original email:

Highlights generated:

While this is an interesting system, it is more appropriate for converting
emails to SMS than conversion of SMS messages sent between telephones.

Of the programs surveyed here, the Intellishrink system is closest to the
system desired. Indeed, the final algorithm used here is very similar to
Intellishrink in operation.

No literature was found on the measuring of comprehension of compressed
text.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 12

How Humans Read
It seemed logical to consult texts on reading in order to better understand the
process that the algorithm would be catering for.

The process of reading is not fully understood at anything above the purely
mechanical level. As we read, our eyes skitter across the page or screen in
jumpy steps called saccades, fixating on lumps of text of about 8-10
characters in size (though this is obviously dependent on the size of the text)
at a time before moving on. Interestingly, it appears that a serial scan of
characters (i.e. one in which characters are read one at a time until a whole
word is created, which is then comprehended) does not take place. Indeed,
evidence suggests that in some cases whole words are understood faster than
lone characters, which implies that some kind of physical pattern matching
takes place – that is, the shape of the word helps us to comprehend it. This is
supported by experiments that show that words in all capital letters are read
more slowly than words in all lower case – we are more familiar with words
in lower case, so we match them faster.

There is evidence that the sound of the words we read is relevant to the
speed at which we read them. Unpronounceable ‘words’ like ‘kwjkhgy’ are
read far more slowly than pronounceable pseudowords such as ‘fronk’.

“Baron and Thurston (1973), showed that performance [of reading
speed and comprehension] on legal nonwords is very good indeed,
relative to true words, and vastly better than performance on
illegal nonwords.” – Psychology of reading, p87.

It should be noted here that this experiment was (obviously) performed
without performing any meaning analysis. The test subjects were simply
memorising the words and repeating them. These non-words had no
meaning, whereas the non-words produced in compression of English text
will have meaning. Both decoding and meaning analysis require attention.

“The point of the … argument is that if the decoding half of the
conflict could be made truly automatic, then attention could be
reserved for where it belongs… with the meaning.” – Psychology
of reading, p106.

This fact could be exploited – words that still ‘flow’ after compression
would be more easily read than those that are completely unpronounceable
would. Unfortunately, this could also have detrimental effects, both in
reduced compression and in the fact that a word that has been compressed in
such a way as to render it more readable might be more easily mistaken for
another word when it reaches the comprehension process. Perhaps it would
be better to ignore this rather artificial method of compression. Since read
words are sub-vocalised, it might be better to attempt to retain the original
sound of the word in the compressed artefact.

Alex Shenton
Reference

Alex Shenton
Reference

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 13

There are a few methods of doing this. Journalistic shorthand uses a system
that encodes words by their phonemes, massively compressing them.
Unfortunately, it requires extensive training to be able to read and
comprehend shorthand, whereas we want the reader to be able to
comprehend compressed messages with absolutely no training (they may
improve with practice, but it is important that initial comprehension be
high). A simple system would be to strip vowels from words. In most words,
consonants provide the bulk of the sound, with vowels only filling out the
sound – for example, ‘willing’ is still perfectly readable as ‘wllng’. This has
the advantage that much of the visual appearance of the original word is
preserved, which may help readers in the ‘pattern-matching’ part of the
reading process. In some words vowels are a greater part of the structure,
particularly where they begin the word – for example the ‘a’ in ‘atypical’
completely changes the meaning (negating it) and sound of the word.
Therefore, it would be wise to retain leading vowels, in order to keep
comprehension high.

Sometimes trailing vowels, too, form a more important part of the structure:
take for example the words ‘compost’ and ‘composite’. Removing the
vowels from these gives ‘cmpst’ in both cases, which increases the cognitive
burden on the reader as they have to use contextual knowledge to work out
what the compressed string represents. In this case, of course, the two
meanings are quite different, and this problem is liable to be quite simple.
However, keeping the trailing ‘e’ and the problem is rendered simpler. There
are a large number of words in the English language that are terminated in an
‘e’, and appending an ‘e’ can frequently change the meaning and sound of a
word, such as

sit site

(primary school children learning English are taught about ‘magic e’ because
of this property.) Note that in the table below, ‘cmpste’ could still mean
‘campsite’, but hopefully other words will be rendered unambiguous!

Of course, ‘e’ is not the only vowel in which words may end. Words of Latin
origin, such as quota, also possess a trailing vowel that alters their sound.
The table shows several possible confusions that can arise from a lack of a
trailing vowel in this case.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 14

The effect of leading and trailing vowels

Word All vowels removed Vowels removed but
leading & trailing
vowels retained

atypical typcl atypcl

compost cmpst cmpst

composite cmpst cmpste

quit qt qt

quota qt qta

quite qt qte

Comprehension of words is aided by the context in which they are found. A
phenomenon known as ‘syntactic priming’ enables us to comprehend better
words that are contextually related to recently heard words. This is a useful
fact because it means that if two words compress to the same thing, then the
context in which they were sent should assist comprehension – this is, of
course, already used in English where we frequently come across words with
two or more meanings, but are able to ascertain the correct one from context.
For example, the word ‘set’ has a multitude of meanings: ‘Set the table’,
‘Train set’, ‘Game, set and match’, ‘The jelly has set’ etc.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 15

The Algorithm

The intention is result oriented: we do not care how we get there, but we do
care what the result is. Given an input string, the algorithm should output a
string with the following properties.

• Maximum possible compression in order that more can be fit on to a
screen or into a single SMS message at one time. This is the same for
our purposes as maximum information density, which is frequently
best altered by changing the structure of a sentence. To do this
automatically would require complicated natural language
processing.

• Maximum possible ‘readability’. More specifically, high
comprehension rates by our test subjects.

• Maximum possible speed/ ease of reading. Though this is linked to
comprehension, it is not inextricable. It might be possible to send a
message that can be deciphered with one hundred percent
comprehension, but which takes eight hours with a pen and pencil to
decipher (the simplest example of this would be a system whereby
every word in the dictionary is numbered, and the message consists
of these numerical codes. This would give high compression and
comprehension but would be utterly impractical.) The algorithm is
aimed at ‘the layman’, and should produce results that are readable
without any special prior knowledge or training.

Choices

Given the information we have about reading, the algorithm could follow
several possible directions. Most interesting of those considered are:

1. A phoneme based system.

2. A simple vowel removal system.

3. A hybrid system.

All of these options result in some loss of information. In every case the
compression process is a unidirectional function: no inverse function exists
to decompress their output to the unique, original input. This is to be
expected from a simple encoding system.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 16

Phoneme based compression
A phoneme-based system would preserve the sound of words by putting
shortened phoneme representations in the place of character strings that
represented those phonemes.

For example, the commonly used abbreviation of ‘later’ uses a phoneme
system (shown in table below) and the common abbreviation of ‘see’ is ‘C’,
in which a single character replaces the three previously employed. Use of
the American pronunciation for the letter ‘Z’ (‘zee’, as opposed to the
British ‘zed’) is also common, as in the last two entries in the table below,
the latter of which is famously used by the LaZ Boy (Lazy Boy) furniture
company. The ‘zee’ sound crops up frequently in the language, whereas the
syllable ‘zed’ is extremely rare (in such words as ‘grazed’ and ‘amazed’ the
‘zed’ section is pronounced more like ‘zud’ than ‘zed’, missing out the
vowel sound almost completely).

Examples of Phoneme Compression
Word Compression using a phoneme

system

later l8r (or l8er)

see C

seedy CD

random r&om

easy EZ

lazy LaZ

Phoneme parsers exist that could examine strings and then output the
phonemes that make up these strings. Such parsers are used in text-to-speech
synthesizers, for example.

It is important for the purposes of this project that the resulting output is
easy to read by an untrained user, so a heavily encoded phoneme string
would not be ideal. As previously mentioned, this is very much like
journalistic shorthand, which takes years of training to learn. Instead, the
phoneme stream would have to be combined with the original string in the
way used in the examples above, i.e. one in which the reader forms the
originally intended sounds when he sub-vocalises the string.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 17

The output from a phoneme parser could be passed to a find/replace
algorithm that replaced certain phonemes with simple, easily understood
representations. The output from this would then be combined with the
original string input to produce results similar to those above.

Using this, we should achieve something like this:

‘Wait for me!’ ‘w8 4 me!’: Compression rate = 33%

Or, even better:

‘See you for tea at eight’ ‘C U 4 T @ 8’: Compression rate = 54.2%

One problem with this system is that there are few phonemes that compress
to a simple, single character, representation, so the compression that we
could achieve is not as high as we might imagine (though with certain
phrases and a good choice of words it can be very high, as seen above). In
addition, the output can start to look badly spelt, rather than compressed, if
we strive for a high compression rate. This is dependant on the precise
implementation chosen. It may be possible to avoid this effect, though this
may entail a loss of compression.

Phoneme based compression – advantages and
disadvantages

Advantages Disadvantages

Potentially high compression Highly inconsistent compression
rates

Maintains the sound of the word Destroys the shape of the word

Comparatively low information loss Some phonemes are uncompressible

 Damages flow of sentences

 High cognitive load on user

 Difficult to implement

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 18

Vowel removal

This method is particularly simple, but surprisingly effective. This system
has already been discussed, and it has been mentioned that it may be wise to
retain leading and trailing vowels. This sort of algorithm can be
implemented in a single mechanical pass over the input string. We do not
need to restrict the algorithm to removing vowels, other redundant characters
such as duplicated consonants might be removed, and of course certain less
important punctuation symbols (hyphens, apostrophes, etc. Certainly
apostrophes, as these do not affect the flow of a sentence). We might even
go so far as to remove all punctuation, including spaces, as the mail2sms
program does. Each word would have its initial letter capitalized in order
that the boundaries between words should be visible. Using the text in this
document as an example, spaces make up about 16% of the total characters,
so their removal could have a large effect. Spaces are extremely important in
the structure of English, however, so it may be unwise to delete them.
Consider the following sentences:

This is a particularly brief and simple example of the effect that removing
spaces has on even simple, uncompressed sentences.

ThisIsAParticularlyBriefAndSimpleExampleOfTheEffectThatRemovingSpace
sHasOnEvenSimpleUncompressedSentences.

The latter is noticeably more difficult to read. Spaces assist in the visual
‘chunking’ process, helping the eye to spot word boundaries. While practice
may assist in the deciphering of sentences containing no spaces, it is not a
nice solution.

If we disregard the removal of spaces, then, how good is the vowel removal
solution?

If you take a close look at this sentence, you will find that it is free of vowels.

If yu tke a clse lk at ths sntnce, yu wll fnd tht it is fre of vwls.

Besides being false, the sentence has the following properties; the
compression is fair at 17%, and the result is quite readable. Because the use
of vowels in English words is quite evenly distributed (the proportion of
vowels to consonants in most English writing is fairly stable), this method
gives a consistent compression level, which is an improvement over the
phoneme system.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 19

A casual reader looking at the above examples, however, might ask why
‘you’ has been abbreviated to ‘yu’, and ‘at’ is unabbreviated. Both of these
have better, more common and therefore possibly simpler abbreviations.
Also, consider ‘it is’, which could easily be shortened to ‘its’ (apostrophe
dropped for further reduction in size) while retaining all of its meaning.

Common abbreviations versus vowel removal
Word Common abbreviation Abbreviation using

simple vowel-removal
system

you U yu

at @ at (unabbreviated)

and & and (unabbreviated)

All of the words in this table are common and have commonly used
abbreviations, yet all are abbreviated differently (or not at all) by the vowel
removal system. While the use of non-standard abbreviations is not a
problem as long as they are understandable, there is obviously a better way
to compress many common words.

Vowel removal – advantages and disadvantages

Advantages Disadvantages

Very simple to implement Imperfect output for some common
words

Consistent compression rates Some different words compress to
identical strings

Moderate cognitive load on the user Does not always retain word’s sound

Retains much of original word’s
shape

Larger information loss than
phoneme system.

Retains some sentence flow

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 20

Hybrid method

Strictly speaking, this system is not a true hybrid of the other two, though
the result is similar to that which might be expected from such a system.

It would be useful to combine the advantages of the vowel removal system
with some sort of database of common abbreviations that could be used to
heal some of vowel-removal’s deficiencies. Many of the common
abbreviations are in fact based on phoneme sounds, so this method could be
considered a hybrid of the other two methods. In addition, it would have the
ability to perform common abbreviations that were not phonemically based,
such as the ‘it is’ mentioned in the previous section, and others such as ‘can
not’ and ‘he would’. While it is likely that SMS users would use these
abbreviations themselves when typing in their message, making them
automatic as well could assist the users. Longer abbreviations than two
words, such as AFAIK (As Far As I Know) are expected to be performed by
the user (though it may be possible to extend the algorithm to cope with
these).

The method is very simple, being the same as the vowel removal system,
except that the mechanical vowel removal stage is preceded by a stage that
scans the input string for commonly abbreviated terms, then replaces them
with their normal replacements. This is the method that was chosen for the
final algorithm.

Hybrid System – Advantages and Disadvantages
Advantages Disadvantages

Simple to implement Does not always retain word sound

Consistent compression rates Some different words compress to
identical strings

Retains much of the word structure

Moderate cognitive load on the user

The ideal compression rate would be high, as in this example, already seen
with the phoneme system:

‘See you for tea at eight’ ‘C U 4 T @ 8’: Compression rate = 54.2%

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 21

Hoping to achieve this compression rate consistently is idealistic in the
extreme: very few words compress to single character representations
(though several common words do, which is useful). More likely would be
something like:

‘Meet you tonight at eight for tea at the Café Swanky, be there, Ted’ ‘Mt
U 2nite @ 8 4 T @ the Cfe Swnky, B thre, Td’: Compression rate = 31.3%

This is closer to the level of compression that would be achieved in general
use (though it still plays to the algorithm’s strengths somewhat, and as such
may represent a higher level of compression than might be found in the
general case). The actual compression rate achieved will depend entirely on
the content of the original message, as some phrases will be more amenable
to compression with this algorithm than others. Nevertheless, assuming a
constant compression of at least 10% (which seems reasonable) then we can
fit an extra 16 characters into an SMS message. With the average word
length in English being between four and five letters, this might mean up to
four more words. In practice, the algorithm generates on average 20 – 30%
compression, or roughly 8-12 extra words per message.

Note that the word ‘the’ is left uncompressed in this example. ‘The’ is a very
common word, so compressing this might lead to a noticeable increase in
overall compression. It has been suggested that people skip over this word as
a routine strategy when reading: ‘the’ has been shown to receive “…reliably
fewer fixations than one would expect, even fewer than other three-letter
words (O’Regan, 1979)”(Psychology of Reading, P. 13). However, another
experiment “discourages the view that people skip over THE as a routine
strategy” and that people are “actually better at detecting misspellings in the
word THE than in other words” (both quotes from Psychology of Reading,
P. 82). For this reason it was decided to leave the word ‘the’ uncompressed.

In the final algorithm, then, two types of compression are employed. The
first is compression by a data dictionary of common abbreviations, for
example:

See C

You U

At @

Could have Could’ve

…and a few other simple abbreviations, like

One 1

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 22

Two 2

The second compression is purely mechanical. Consonants form the most
important part of the structure of words, with vowels usually only carrying
the sound and enabling it to flow when pronounced. As previously
discussed, the exception to this is when a vowel is in place as the initial or
terminating letter of a word.

Pairs of identical consonants may also be unnecessary, where one will
suffice, though this has not been implemented in an effort to retain more of
the original structure of the word. Therefore, simply, the algorithm removes
all vowels except those that commence or terminate a word, for example

Prs of idntcl cnsnnts my also be unncssry, whre one wll sffce, thgh ths hs nt
bn implmntd in an effrt to rtn mre of the orgnl strctre of the wrd. Thrfre,
smply, the algrthm rmvs all vwls excpt thse tht cmmnce or trmnte a wrd.

The above is a replication of the two sentences that precede it (and,
incidentally, a 20% compression of the originals).

With both methods used on the above example, we get…

Prs of idntcl cnsnnts my also B unncssry, whre 1 wll sffce, thgh ths hs nt bn
implmntd in an effrt 2 rtn mre of the orgnl strctre of the wrd. Thrfre, smply,
the algrthm rmvs all vwls excpt thse tht cmmnce or trmnte a wrd.

This is 22% compression. Clearly, in this case, most of the compression
takes place in the mechanical section. This result has gone from 283
characters to 221. Note also that in practice, most SMS users would not
bother to put apostrophes in their messages (this is probably in part due to
the tiresome text input method on most mobile telephones).

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 23

Implementation Issues

For the purposes of this project, speed was not a major issue to be
considered in implementing the algorithm. It can be safely assumed that only
the slowest, worst constructed programming language would take a
noticeably long time to compress a message of around 160 characters using
the algorithm.

Obviously, in a ‘real-world’ situation, efficiency and execution speed might
become more important: for example if a server were processing many
hundreds of messages at high speed. Even with the current minimal
processing of messages, networks frequently have problems with SMS that
can lead to slow delivery of messages, particularly at periods of high traffic
such as the New Year. On the other hand, compression is more likely to be
implemented at the handset level, where the user can see the results of
compression before sending the message.

Perl seemed the most appropriate language for implementation of the
algorithm. Perl (short for Practical Extraction and Report Language) is an
interpreted language which, to quote Schwartz and Christiansen in
‘Programming Perl’, is

 “…designed to assist the programmer with common tasks that are
probably too heavy or portability-sensitive for the shell, and yet too
weird or short-lived or complicated to code in C or some other
UNIX glue language.”

The language has powerful constructs, particularly for string manipulation,
that allow simple implementation of the algorithm. Most usefully, Perl
contains a built in regular expression search and replace system. In addition,
Perl is traditionally used in CGI scripting for the web, and it was always the
intention to produce a web-page interface for the experiment to test the
effectiveness of the algorithm. The ‘hash’ construct, an array of strings each
of which is associated with another string, is particularly useful and is a
basic construct of the language.

The code given here takes its input as the contents of a file, and puts its
output on standard out, along with a step-by-step description of all the
processing involved. While this is clearly not an ideal interface for actual
text messaging, it sufficed for the purposes of this experiment, and is easily
modified for other forms of I/O. Neither the length of the input message nor
the length of the output is measured, so either or both could be beyond the
SMS limits.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 24

The first part of the code is a ‘hash’ called stab (short for STandard
ABbreviations). This is used to implement the standard abbreviations
function that is the first pass over the input. The input string is taken in a
word at a time and compared with the hash table. If it matches, the word is
replaced with its abbreviation and flagged so that it is not abbreviated further
in the second pass. The flag used is the ASCII ‘bell’ symbol, represented by
‘\a’, though any non-printable ASCII character could be used. SMS supports
accented characters, so it does not use the ASCII system, but Perl runs
ASCII natively, and for English ASCII can produce most possible phrases
(the most notable lack being the pound sterling symbol £). If the word
cannot be abbreviated immediately, the next word is appended (with a space)
and this is compared with the hash table to check for abbreviations. If it
matches, it is flagged as before. If no standard abbreviations can be found,
the program proceeds to the next stage of processing.

The stab table is held in the code to make it easier to read. Ideally, it would
be stored in an external file where the user would be able to add personal
entries (known abbreviations for their friends’ names, for example). This is
simple to do with Perl.

The mechanical vowel removal is performed using Perl’s regular expression
matching and substitution. First, the word is checked to see whether it is
flagged. If so, the flag is removed, but processing passes on to the next
word. This is so that standard abbreviations are not processed further. If the
word is not flagged, it is checked to see whether it begins or ends in a vowel.
If so, the variable $prefix or $suffix is set appropriately. After this stage, all
vowels are removed, using the single Perl statement: s/[aeiou]+//g

The initial ‘s’ means that substitution is to take place. The token to be
substituted is that between the first forward slash and the next, and it is to be
replaced by the token between the second forward slash and the last. In this
case, we replace any lowercase vowel or combination of lowercase vowels
with nothing, effectively deleting them. The final ‘g’ indicates that this
process is to be repeated throughout the word.

After being stripped of vowels, the word has its prefix and suffix appended
back on to it.

Only lowercase vowels are removed. This allows a user to specify that a
word is not to be compressed by leaving it in capitals. In general, capitalised
words signify importance, so any possible misunderstanding that
compression might cause can be relieved by capitalising the word. If this
function is to be removed, the trailing ‘g’ in the substitute statement can be
joined by an ‘i’, which commands the statement to ignore case.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 25

The mechanical process makes a mistake in the case of lone vowels, where
the first and last letters of the word are both vowels because there is only one
letter. As this only occurs in two valid English words, ‘I’ and ‘a’, they have
been included in the hash table at the start of the program so that they are
flagged and not mechanically processed.

The complete code for the algorithm can be found in appendix 1.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 26

Experiment

Once the algorithm had been implemented, it needed to be tested. Recalling
the intentions of the algorithm:

• Maximal compression

• Maximal speed of reading

• Maximal comprehension

Compression is fixed as only one compression strategy is used. Compression
rate is variable dependent on the exact input phrase, but averages around
25%, which is a fair rate.

Therefore, we needed to measure comprehension rates and deciphering
speed. Because a large quantity of data was required, the difficulties of a
directly administered experiment, such as an interview session, were too
great. Instead, a questionnaire approach was chosen. To encourage
participation in the questionnaire, it was decided to make it more interactive
than a simple ‘sheet-of-paper’ system. The test content would be delivered
via a web page, produced dynamically from a Perl script. This also allowed a
timing system to be used, a feature more traditionally associated with
directly administered experiments that is impossible with a mail-shot
questionnaire.

On viewing the introductory page, each participant was allocated a unique
anonymous identifier (a number). Results were only stored on completion of
the test, when they were all sent to a text file named after the identifier. This
was done to prevent half-complete results from entering the system, where
they might produce confusion. Since every set of results would be complete,
automated tools could be used to extract the data.

It should be noted that no dynamic compression was performed in the
experiment. All phrases were pre-compressed and stored statically in a data
file from which the experiment drew the questions.

The complete code for the script that produced the questionnaire can be
found in appendix 2.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 27

The questionnaire
The questionnaire introduced itself with a page of instructions informing the
participant of the nature of the test, and that it was to be timed. It stressed,
however, that accuracy was more important than time, so that the user
should not rush.

Questions were multiple-choice, the correct answer being selected with the
mouse and committed by clicking on ‘Continue’. Following initial tests, it
became apparent that users were having difficulty with the question style:
the explanation provided at the start of the experiment did not prepare them
sufficiently for the style of questions that they would encounter. One subject
suggested that giving an example question and indicating its correct answer
might be useful, and this was duly implemented.

Early test also indicated that users wanted to know how well they had
performed. One subject suggested that a rating system would provide a good
incentive to pass on the URL of the experiment page to the others in order to
compete. A rating system was implemented, and may indeed have positively
affected the quantity of results received, as the page got far more ‘hits’ than
expected.

On moving on from the introductory page, a few simple yes/no questions
were asked of the subjects:

1. Do you own a mobile telephone?

2. Do you regularly use SMS (text) messages?

3. Would you be interested in using an automated compression
algorithm for your text messages?

This data is used to determine the subject’s familiarity with text messaging,
to see if that was a factor in their ability to read the compressed messages.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 28

The age group of the user was then determined from the following discrete
ranges: 0 – 17, 18 – 25, 26 – 35 and 35+. This was done for two reasons:

• To determine roughly the proportion of students performing the test.
Subjects were pointed in the direction of the experiment via emails or
via a message alerting them to its presence on a newsgroup.
Consequently, it was expected that most of the people performing the
experiment would be students at York. In order to attract further
subjects, a rating system gave the user their ‘score’ (percentage of
questions answered correctly) at the end of the test, and a message
suggested that they challenge their friends to beat their score. While a
box asking the subject to select their occupation would perform this
task more efficiently, it brings in increased complexity to the
analysis, and the purpose of this experiment was to measure
comprehension, rather than to survey SMS users in great detail.

• To determine what age group most commonly uses SMS. There is
certainly anecdotal evidence that, as one might expect, younger
people were the first to take up the new technology. According to the
Guardian newspaper, SMS text messaging… “is mostly used by tech-
savvy types aged 24 or less who are attracted by the low cost and the
fact that what they have to say does not necessarily require a full
telephone conversation” (John Cassy, Guardian, Thursday January
4th 2001), but it would be interesting to see whether other age groups
had also embraced text messaging. In addition, one might expect
younger people to be more interested in a new compression
technology.

The experiment then proceeds to a series of simple comprehension
questions. These are of the form:

Phrase: I just want to thank you for the gifts. They were fantastic, and I love
the teddy!

Compressed as: I jst wnt 2 thnk U 4 the gfts. Thy wre fntstc, & I lve the tddy!

• I went to think about gifts for you. I saw a fantastic teddy.

• Thank you for the gifts, they were great, especially the teddy.

• I went to think about gifts for you and Todd.

• Thank you for the futuristic gifts, I love the tidy.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 29

The subject sees either the compressed sentence or the uncompressed
version (the uncompressed data is used as control data). They must then
select which of the following four options most accurately paraphrases the
meaning of the first sentence. The answer they gave is recorded, and a
Javascript script is used to record the time it took them to select that answer
(strictly speaking, the time recorded is the time from the page appearing
until the ‘submit’ button is pressed, but this should give a result that is very
similar to the comprehension time). Tests were not performed under
controlled conditions, which may cause errors in the results though the
subjects were warned that time was a factor.

Four options were provided to remove the psychological tendency that
flustered experiment subjects have to select the middle option in an odd-
numbered set, selecting, for example, option two of three or three of five.

There were sixteen of these questions in all. This number was a compromise
between the quantity of data collected and user frustration at the length of
time required to perform the test. It took users an average of about six
minutes to perform the test with this number of questions.

Every fifth person to take the test was given a control version of the test. In
this version, the same question set was used, but the statements displayed to
the user were the uncompressed versions of the test statements. This was
done to determine what comprehension level is achieved without
compression, and therefore the relative change in comprehension when a
message is compressed using the algorithm. Although one might expect
100% comprehension when reading ‘normal’ messages, the control group
can help determine the background level of inaccuracy in the test subjects.

The decision to limit the control group to a far smaller group than the test
group was made because it was feared that the experiment would be visited
by very few participants. The most interesting results would be those derived
from the subjects taking the compressed version of the test, so the test was
set up so that more of these results would be collected. Ideally, perhaps, the
two groups would be of equal size (though this has no effect on the viability
of the statistical analysis technique that was used).

Participants were slightly more likely to give up if they found that they were
performing the control version of the test. In the case where the participant
gave up, no data was stored.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 30

Question Design
Since comprehension questions such as these are typically used in
examining the comprehension of foreign languages, it seemed that there
might be some standard question sets or styles of questioning that could be
used.

A psycholinguistics expert, Dr G. Altman of the Psychology Department,
University of York, was contacted for advice. He suggested that, though
question sets for testing the comprehension levels of aphasics do exist, it was
better to make up new questions for this test than to use an existing set, so
this is what was done.

The question statements are unrelated to each other, being random quotes
from a variety of books and periodicals, snatches of song lyrics, or
imaginary scenarios. Questions were deliberately not tailored to a ‘typical
SMS style’, such as messages planning meetings (though one of the
examples is just that). SMS is potentially extremely general in its use, so the
phrases chosen were as different as possible. Some of the questions are
specifically targeted at the algorithm’s weaknesses, specifically the
following:

Phrase: Welcome to the mix and match world of composites.

Compressed as: Wlcme 2 the mx & mtch wrld of cmpsts.

• Welcome to the mix and match world of composts.

• Welcome to the mix and match world of campsites.

• Welcome to the mix and match world of composites.

• Welcome to the mix and match wielder of composites

The compressed phrase would result if any of the first three statements were
compressed, so they are all correct, although the third answer is the actual
statement that was compressed and this answer was used as the marker for
judging accuracy in the rating system.

The correct answer for the question might be a perfect copy of the master
statement, or a paraphrasing. Both styles were used, though most questions
used the former.

The complete list of questions can be found in appendix 3.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 31

Results

Eighty people performed the test in total, with fifteen of these performing
the control test. While one might expect exactly 20% of the results to be
control results, the experiment gave the users the option of giving up before
the results were stored, so there is one fewer set of control results than might
be expected.

Age distribution across the two sets was heavily weighted toward the 18 –
25 age group, which meant that no correlation test on age against speed or
accuracy could be performed.

As might be expected, the control group were more accurate. Mean accuracy
for the group reading compressed messages was 87.3%, while the control
group achieved a mean of 94.8% accuracy, a difference of 7.5%.

Mean time for the compressed group was 21565ms per question. For the
control group this was 15761 ms per question, a difference of 5804 ms, or
nearly six seconds per question.

Besides performing faster on average, the control group were faster on every
question, though to varying degrees.

To check for statistical significance to the results, the t-test was used.

() ()

() ()

+

−+−

−+

−

−
=

∑ ∑∑ ∑

2121

2

2
22

2
1

2
12

1

21

11
11 nnnn

n
x

x
n
x

x

MMt

Where:

M1 = Mean for the first group

M2 = Mean for the second group

x1 = The results for the first group

x2 = The results for the second group

n1 = Number of subjects in first group

n2 = Number of subjects in second group

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 32

Statistics for the Control Group

Total subjects: 15

Age distribution for control group:
Age group Number of subjects
0 – 17 0
18 – 25 13
26 – 35 1
35+ 1

Times:
Question number Mean time (ms)
1 14709
2 11469
3 25224
4 9992
5 19388
6 14555
7 17884
8 19732
9 14713
10 26035
11 19067
12 16748
13 9758
14 16673
15 18825
16 13704

Total time = 267936 ms
Mean time for control group = 16746.0 ms

Sum of squares of times = 2756472788.8

Percentage accuracy:
Total percentage correct = 1422
Mean accuracy = 94.8%
Sum of percentage squares = 135084

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 33

SMS users within the control group
SMS users: 12
Interested in a compression algorithm: 5
Percentage interested in a compression algorithm: 42

Times:
Question number Mean time (ms)
1 14687
2 11100
3 24472
4 9935
5 19287
6 13862
7 17471
8 19666
9 13799
10 27210
11 18944
12 17288
13 9734
14 16718
15 17993
16 13138

Total time = 265304 ms
Mean time = 16581.5 ms

Sum of squares = 4751751607.6

Percentage accuracy:
Total percentage for SMS users = 1140
Mean accuracy = 95%
Sum of percentage squares = 108504

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 34

Statistics for the Test Group

Total subjects: 65

Age distribution for test group:
Age group Number of subjects
0 – 17 1
18 – 25 60
26 – 35 3
35+ 1

Times:
Question number Mean time (ms)
1 18915
2 26143
3 27777
4 10028
5 23399
6 18190
7 24211
8 25157
9 20918
10 30551
11 26023
12 25310
13 20310
14 30399
15 25108
16 14159

Total time = 366598 ms
Mean time = 22912.4 ms

Sum of squares of times = 5156913428.5

Percentage Correct:
Total of percentages = 5672
Mean accuracy = 87.3%
Sum of percentage squares = 508352

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 35

SMS users within the test group:
SMS users: 46
Interested in a compression algorithm: 29
Percentage interested in a compression algorithm: 63

Times:
Question number Mean time (ms)
1 20031
2 26852
3 28883
4 10703
5 23903
6 19858
7 26741
8 27437
9 22372
10 32589
11 26451
12 26495
13 19682
14 3792
15 25735
16 14789

Total time = 386311 ms
Mean time = 24144.5 ms

Sum of squares = 9879060152.1

Percentage accuracy:
Total of percentages for SMS users = 4007
Mean accuracy = 87.1%
Sum of percentage squares = 353285

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 36

Non-SMS users within the test group:
Non-SMS users: 18

Question number Mean time (ms)
1 17081
2 25784
3 26493
4 8861
5 23411
6 14937
7 19089
8 20727
9 18325
10 27004
11 26308
12 23652
13 22924
14 23368
15 24896
16 13334

Total time = 336192 ms
Mean time = 21012.0 ms

Sum of squares = 7487846085.8

Percentage accuracy:
Total of percentages = 1665
Mean accuracy = 92.5%
Sum of percentage squares = 155067

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 37

Accuracy
All subjects
When the t-test was used for the ‘percentage correct’ statistic, the t value
came out as –1.9874. The sign of the t value is ignored.

This means that there is a statistically significant reduction in accuracy when
reading messages compressed with the algorithm, with the significance at
the 5% level.

SMS Users
Within the test group, SMS users were compared against non-SMS users.
The t value produced is 0.9341. This means that there is no statistically
significant difference between the accuracy of the two groups.

Time
All subjects
When the t-test was used for the timing statistics, the t value came out as
5.840.

This means that there is a statistically significant difference in time between
the control group and the test group. Compressing messages significantly
increases the time required to comprehend them, with the significance at the
0.05% level.

SMS Users
Within the test group, SMS users were compared against non-SMS users.
The t value produced is 0.485808. This means that there is no statistically
significant difference between the accuracy of the two groups.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 38

Problems

There were a number of minor problems with the experiment that may have
affected the fairness or validity of the results.

1. As mentioned, the timing system was slightly inaccurate. The script
that measured the time taken started as soon as the page loaded. In
some situations, this could be before the subject was able to see the
question, which will have skewed the timing system. The pages were
very simple plain-text HTML in order to reduce downloading times,
and most of the hits were probably from local machines (within the
york.ac.uk domain), which should minimise errors due to this
potential problem. A more accurate system might have been to use a
Java program that waited until it got all the data before showing the
question, simultaneously starting the timer.

2. In addition, the timing only stopped when the user clicked the
‘submit’ button on each page, not precisely when the user has their
answer. This would appear to be reasonable however, as it signifies
when the user has committed to an answer, and is probably the only
practicable method for terminating timing.

3. Most of the subjects for the test were science students from York
University, which is hardly the most representative slice of the
population. The majority were probably Computer Science and
Biochemistry students in the 18 – 25 age group. Most were SMS
users. Future experiments would use more randomised test groups.

4. Conditions for the experiment were not tightly controlled. Though
users were given a description of the form of the experiment, it is not
clear how many read this. In addition, it was possible to cheat at the
test by either simply using the browser’s ‘Back’ command, or even
through direct manipulation of the data, which was appended to the
URL of the page as the user progressed. Ideally, the ‘Post’ method
for forms would have been used so that the user would not be able to
see the results in the URL and could not manipulate them, but this
failed to work with the Perl code for the experiment.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 39

Conclusion

Though the algorithm created produced a consistent compression of around
25%, there was a trade-in for accuracy and speed of comprehension of the
generated messages.

Comprehension speed took the most significant loss, with an extremely
strong positive correlation in speed reduction when reading compressed
messages as compared using the t-test. The speed at which messages are
read is rarely a factor in SMS, but a low speed is indicative of high cognitive
load which makes the reading process more irritating.

The results were somewhat less strong for accuracy, but still highly
significant. Accuracy levels for comprehending compressed messages were
quite high compared to accuracy comprehending the same messages in an
uncompressed form, but the difference was relevant.

It appears that existing SMS users are no better or worse able to decipher
messages compressed with this algorithm than people who do not frequently
use SMS messaging are. This shows that deciphering of the algorithm does
not benefit from prior use of short text messages. On the other hand, since
many of the questions were of an unusual style (unlikely to actually be sent
as text messages in common use) these results may require further
investigation.

While the algorithm generates output that is significantly less easy to
comprehend than uncompressed text, this does not render it useless. It may
still be easy enough to comprehend for general use, though it should never
be used where correct understanding of the fine details of a message is
critical.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 40

Further work

The user should be able to modify their own data dictionary to include
further abbreviations that they know (such as names). This would further
increase compression rates on common messages for that user.

Give the algorithm the ability to perform abbreviations of strings with more
than two words (several words, such as ‘As Far As I Know AFAIK’).
These are less likely to be known by inexperienced texters, but usually the
abbreviation is reversible, so that the abbreviated string is sent, but it could
be automatically unabbreviated when the user receives it in order that full
comprehension is achieved.

A better hybridisation method between the phoneme and vowel removal
systems may exist. Certain substrings in English are always pronounced in
the same way, and these could be automatically replaced, rather than the
abbreviation being performed at the whole word level as it is in the current
algorithm. For example:

ate 8

zy Z

ew U

In a sentence such as ‘My view of the crates was hazy’ both of these could
be replaced:

My vU of the cr8s was haZ.

If this is then combined with the standard abbreviations (not used in this
example) and vowel removal we get:

My viU of the cr8s ws haZ.

Further experimentation with a more randomly chosen group of subjects to
see if the same trends occur across, for example, different age groups, would
be interesting.

If the experiment were to be performed again, a better timing system would
be useful, perhaps with a Java applet that allowed the user to view each
question when ready. It might also be useful to more accurately control
conditions. It would be interesting to simulate a character-limited display so
that the subject must scroll to see the entire message, as they would have to
with a telephone.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 41

Acknowledgements
Mr. A Ormerod for assistance with Perl programming for the web.
Dr. Gerry Altman in Psychology for answering questions about
comprehension questions.
Dr. Alistair Edwards in Computer Science for his suggestions.

References
Web Links:
Email2SMS homepage
www.new.ox.ac.uk/~adam/computing/email2sms/

Lingua::EN::Squeeze page
www.new.ox.ac.uk/~adam/computing/email2sms/Lingua_EN_Squeeze.html

Microsoft Intellishrink
http://www.microsoft.com/office/outlook/mobile/default.htm

AmikaNow! Highlights press release
www.amikanow.com/newsroom/NewsPostings/wowfi/WOW!Wireless.htm

AmikaNow! Highlights example
https://www.amikafreedom.com/afc1/amikafreedom.com/example.htm

Reading and Comprehension Processes:
The Psychology of Reading – An Introduction, 2nd Edition. Crowder and
Wagner, Oxford University Press, 1992.

Comprehension Processes in Reading. Balota, Flores d’Arcais, Rayner,
Lawrence Erlbaum Associates Inc, 1990.

Experiment Design:
Real World Research. Robson, Blackwell Publishers,1993.

Statistics:
Learning to Use Statistical Test in Psychology, Greene and D’Oliveira,
Open University Press, 1982

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 42

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 43

Appendices

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 44

Appendix 1: Compression Algorithm code
#! /usr/bin/perl -w

#Variable names are highlighted in BOLD font. Comments (like this) are
in #italic bold

This is a limited version of an abbreviation table.
There are probably numerous obvious omissions from this table
#Note that all replacements are flagged with the bell character (‘\a’)

%stab = (
 "you", "U\a",
 "are", "R\a",
 "to", "2\a",
 "see", "C\a",
 "be", "B\a",
 "tea", "T\a",
 "a", "a\a", #Required because of the regular expressions
 "I", "I\a",
 "at", "@\a",
 "for", "4\a",
 "any", "NE\a",
 "and", "&\a",
 "at", "@\a",
 "tonight", "2nite\a",
 "today", "2day\a",
 "one", "1\a",
 "two", "2\a",
 "three", "3\a",
 "four", "4\a",
 "five", "5\a",
 "six", "6\a",
 "seven", "7\a",
 "eight", "8\a",
 "nine", "9\a",
 "ten", "10\a",
 "Monday", "Mon.\a",
 "Tuesday", "Tues.\a",
 "Wednesday", "Wed.\a",
 "Thursday", "Thurs.\a",
 "Friday", "Fri.\a",
 "Saturday", "Sat.\a",
 "Sunday", "Sun.\a",
 "could have", "couldve\a",
 "would have", "wouldve\a"
);

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 45

#The following section handles input from a file, including splitting it into
#chunks of one word in size. Newlines in the input file are not tolerated.
print ("Please specify the file you wish to shrink: ");
$file = <STDIN>;
chomp $file;

 open (INPUT, "$file") || die "Can't open file!!: $!";
 print ("File opened...\n");

 @file = <INPUT>;

 close (INPUT) || die "Unable to close file!!: $!";
 print ("File closed...\n");

 $initial_size = length($file[0]);

 @split = split (/ /, "@file");
 $size = @split;

#The replacement of standard abbreviations is handled here
 $iterator = 0;
 while ($iterator < $size) {
 if(defined($stab{$split[$iterator]})) {
 print ("$stab{$split[$iterator]}" . " ");
 $intermediate[$iterator] =
("$stab{$split[$iterator]}");
 }
 else {

$pair = ("$split[$iterator]" . " " ."$split[($iterator +
1)]");

 if (defined($stab{$pair})) {
 print ("$stab{$pair} ");
 $intermediate[$iterator] = ("$stab{$pair}");
 $iterator++;
 $intermediate[$iterator] = ("INVALID\t");
#The space previously filled by the second word in a pair is replaced by the
#string ‘INVALID\t’. This is later stripped out.
 }
 else {
 print("$split[$iterator]" . " ");
 $intermediate[$iterator] =
("$split[$iterator]");
 }
 }
 $iterator++;
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 46

#Mechanical processing using regular expressions begins
 $iterator = 0;
 $word = $intermediate[0];
 $final_string = ("");
 $size = @intermediate;

 while ($iterator < $size) {
 $word = $intermediate[$iterator];
 if ($word =~m/\t/) {
#Ignore completely words tagged with /t
 $iterator++;
 }
 elsif ($word =~ m/\a/) {
#Ignore word if flagged as already abbreviated
 $word =~ s/\a//; #Remove the flag
 print ("$word ");
 $final_string = ("$final_string" . "$word ");
 $iterator++;
 }
 else {
 $prefix = '';

#If word begins with vowel
 if ($word =~ m/(^[aeiou])/) {
 $prefix = $1;
 }
 $suffix = '';

#If word ends with vowel
 if ($word =~ m/([aeiou]$)/) {
 $suffix = $1;
 }

 $punctuation = '';

#If word ends in punctuation
 if ($word =~ m/([\!\?\.\:\-]$)/) {
 $punctuation = $1;
 }
 $word =~ s/[aeiou\'\!\?\.\:\-]+//g; #Remove ALL vowels

 print ("$prefix"."$word"."$suffix" . "$punctuation ");

$final_string = ("$final_string".
"$prefix"."$word"."$suffix" . "$punctuation ");

 $iterator++;
 }
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 47

 $final_string =~ s/($)//; #Remove trailing spaces
 $final_size = length($final_string);
 $compression_rate = ((($initial_size - $final_size) / $initial_size)
* 100);
#Output some useful data
 print ("Original size was $initial_size characters.\n");
 print ("Final size is $final_size.\n");
 print ("Compression rate is $compression_rate %\n");

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 48

Appendix 2 : Experiment code
#!/york/bin/gnu/perl

%FORM=&read_input;

if (!defined($FORM{"page_number"})) #Introductory page
 {
 #Get a unique user number
 open(FH, "/usr/as152/web/cgi-bin/user_counter") or die
"can't open user_counter: $!";
 &lock(FH);
 $user_number = <FH> || 0;
 close FH;

 $user_number = $user_number+1;

 open(FH, ">/usr/as152/web/cgi-bin/user_counter") or die
"can't open user_counter: $!";
 (print FH $user_number, "\n") or die "can't write
user_counter: $!";
 &unlock(FH);
 close FH;

 print "Content-type: text/html\n\n";
 print "
<HTML>
<TITLE>SMS Experiment</TITLE>
<CENTER>
<H1>Welcome.</H1>
<H2>Please read the following carefully:</H2>
</CENTER>
<HR>
<P>First, thank you for giving up a few moments of your time to participate
in
this experiment. I have devised an algorithm that compresses message text,
hopefully while retaining readability

The structure is as follows: First you will be shown an introductory
page asking you about 'You and SMS'. Then, you will be shown a series of
statements and asked to select which of the statements below it most
accurately describes the meaning of the first statement. Note that the 'word-
for word' meaning is not necessarily going to be one of the options: a
paraphrasing may be closer to the correct result.

For most people the first message will be compressed, but every fifth
user will be performing a control experiment, in which the first message will
not be compressed. So don't worry if it looks far too easy, as I need control
results for this experiment.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 49

Response time is a factor, but accuracy is more important, so
please don't rush. At the end you will be rated on your performance.</P>
<HR><P>Here is an example of the style of question you will encounter:
 <P>Given the following statement:</P>
 <H2>Ths is an exmple tst stmnt</H2>

Which of the following statements do you feel best describes
the statement above?

 <FORM>
 <INPUT TYPE=radio NAME=test VALUE=1>This is an exemplary
toasted stamina.

 <INPUT TYPE=radio NAME=test VALUE=2>This test statement is
an example.

 <INPUT TYPE=radio NAME=test VALUE=3>This toast is
exemplary.

 <INPUT TYPE=radio NAME=test VALUE=4>This shall test your
stamina.

 </FORM>

In this case the correct answer is the second answer.

 When you are ready, click 'Continue' below to start the experiment.
<FORM METHOD=GET ACTION=cgiexperiment2.pl>
<INPUT TYPE=hidden NAME=page_number VALUE=1>
<INPUT TYPE=hidden NAME=user_number VALUE=$user_number>
<INPUT TYPE=submit VALUE=Continue>
</FORM>
</HTML>
 ";
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 50

elsif ($FORM{"page_number"} == 1) #If first page
 {
 $user_number = $FORM{"user_number"};
 print "Content-type: text/html\n\n";

 print "
<HTML>
<TITLE>You and SMS</TITLE>
<BODY>
This is page number 1 of 18.
<P>Please answer the questions below before moving on to the next part of
the experiment.</P>
<FORM METHOD=get ACTION=cgiexperiment2.pl>
Please select your age group:
<SELECT NAME=age_group>
<OPTION VALUE=1>0-17
<OPTION VALUE=2 SELECTED>18-25
<OPTION VALUE=3>26-35
<OPTION VALUE=4>35+
</SELECT>

Please tick all the options which apply to you:

<INPUT TYPE=hidden NAME=page_number VALUE=2>
<INPUT TYPE=hidden NAME=user_number VALUE=$user_number>
<INPUT TYPE=checkbox NAME=has_phone VALUE=yes>I own a mobile
telephone.

<INPUT TYPE=checkbox NAME=uses_sms VALUE=yes>I use SMS (text
messaging) services regularly.

<INPUT TYPE=checkbox NAME=interested VALUE=yes>I would be
interested in an automatic message compression system.

<INPUT TYPE=submit VALUE=Continue>
</FORM>
</BODY>
</HTML>
 ";
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 51

elsif ($FORM{"page_number"} < 18) #This number must be 2 above
the number of questions
 {
 open (WORDSLIST, "/usr/as152/web/cgi-bin/compressed") || die
"Can't open wordslist!!!: $!";
 @FILE_CONTENTS = <WORDSLIST>;
 close WORDSLIST;

 #File contents are accessed via the following array syntax:
 #print $FILE_CONTENTS[1];

 #Unique user identifier from the initial page
 $user_number = $FORM{"user_number"};

 $page_number = ($FORM{"page_number"} + 1);
 $actual_page = ($page_number - 1);

 #Calculating where in the file to look for the statements

 if ($user_number % 5)
 {

#UnCompressed statement
 $statement = ((($actual_page -2) * 6) + 1);
 $option1 = ($statement + 1);
 }
 else {

#Compressed statement
 $statement = ((($actual_page -2) * 6));
 $option1 = ($statement + 2);
 }
 $option2 = ($option1 + 1);
 $option3 = ($option2 + 1);
 $option4 = ($option3 + 1);

 #Hidden values from the 'questionnaire' page
 $age_group = $FORM{"age_group"};
 $has_phone = $FORM{"has_phone"};
 $uses_sms = $FORM{"uses_sms"};
 $interested = $FORM{"interested"};

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 52

print "Content-type: text/html\n\n";
print "
<HTML>

<SCRIPT LANGUAGE=javascript>
 timeA = new Date();

 function get_time_taken()
 {
 timeB = new Date();
 timeDifference = timeB - timeA;
 document.forms[0].question$actual_page_time_taken.value
= timeDifference;
 }

 function start_timer()
 {
 timeA = new Date();
 }
</SCRIPT>

<TITLE>SMS Experiment: Questions.</TITLE>
<BODY onload='start_timer()' NAME=the_form>
 This is page $actual_page of 18
<P>Given the following statement:</P>
<H2>$FILE_CONTENTS[$statement]</H2>

Which of the following statements do you feel best describes the
statement above?

<FORM onSubmit='get_time_taken()' ACTION=cgiexperiment2.pl
METHOD=put>
<INPUT TYPE=hidden NAME=page_number VALUE=$page_number>

<INPUT TYPE=hidden NAME=user_number VALUE=$user_number>

<INPUT TYPE=hidden NAME=age_group VALUE=$age_group>
<INPUT TYPE=hidden NAME=has_phone VALUE=$has_phone>
<INPUT TYPE=hidden NAME=uses_sms VALUE=$uses_sms>
<INPUT TYPE=hidden NAME=interested VALUE=$interested>

<INPUT TYPE=radio NAME=question$actual_page
VALUE=1>$FILE_CONTENTS[$option1]

<INPUT TYPE=radio NAME=question$actual_page
VALUE=2>$FILE_CONTENTS[$option2]

<INPUT TYPE=radio NAME=question$actual_page
VALUE=3>$FILE_CONTENTS[$option3]

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 53

<INPUT TYPE=radio NAME=question$actual_page
VALUE=4>$FILE_CONTENTS[$option4]

<INPUT TYPE=hidden NAME=question$actual_page_time_taken>

 ";

#All previous question answers are stored as hidden variables in the
HTML
 foreach $key (sort keys %FORM) {
 if (substr($key, 0, 8) eq "question"){
 print "<INPUT TYPE=hidden NAME=$key
VALUE=$FORM{$key}>\n";
 }
 }

 print "

<INPUT TYPE=submit VALUE=Next>
</FORM>
</BODY>
</HTML>
 ";

 }

#Last page displayed
else {
 #Calculate the user’s accuracy
 $correct = 0;
 if ($FORM{"question2"} == 2)
 {
 $correct++;
 }
 if ($FORM{"question3"} == 2)
 {
 $correct++;
 }
 if ($FORM{"question4"} == 1)
 {
 $correct++;
 }
 if ($FORM{"question5"} == 2)
 {
 $correct++;
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 54

 if ($FORM{"question6"} == 3)
 {
 $correct++;
 }
 if ($FORM{"question7"} == 3)
 {
 $correct++;
 }
 if ($FORM{"question8"} == 4)
 {
 $correct++;
 }
 if ($FORM{"question9"} == 2)
 {
 $correct++;
 }
 if ($FORM{"question10"} == 1)
 {
 $correct++;
 }
 if ($FORM{"question11"} == 4)
 {
 $correct++;
 }
 if ($FORM{"question12"} == 2)
 {
 $correct++;
 }
 if ($FORM{"question13"} == 4)
 {
 $correct++;
 }
 if ($FORM{"question14"} == 3)
 {
 $correct++;
 }
 if ($FORM{"question15"} == 4)
 {
 $correct++;
 }
 if ($FORM{"question16"} == 1)
 {
 $correct++;
 }
 if ($FORM{"question17"} == 2)
 {
 $correct++;

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 55

 }

 $percent_correct = (($correct / 16) * 100);

$percentage = sprintf "%.0f" , $percent_correct;

 #Write all the results to a file named after the user_ID
 $user_number = $FORM{"user_number"};
 open (OUTPUT, ">/usr/as152/web/cgi-bin/$user_number") || die
"Can't open output file $user_number! $!";
 foreach $key (sort keys %FORM) {

print OUTPUT "<INPUT TYPE=hidden NAME=$key
VALUE=$FORM{$key}>\n";

 }
 print OUTPUT "Percent correct overall: $percentage\n";
 close (OUTPUT) || die "Can't close output file $user_number! $!";

 print "Content-type: text/html\n\n";
 print "
<HTML>
<TITLE>Thank you for performing the experiment.</TITLE>
<BODY>
<CENTER><H1>Thank you.</H1></CENTER>
<HR>
<P>You got $correct of 16 questions right, which means you were
$percentage% accurate.</P>
Today's rating system: Name of rating system<P>Your rating:<H2>";
 if ($percent_correct <= 10)
 {
 print "HTML assessing extremely poor performance”;
 }
 elsif ($percent_correct <= 25)
 {
 print "HTML assessing poor performance ";
 }
 elsif ($percent_correct <= 50)
 {
 print "HTML assessing fairly poor performance";
 }
 elsif ($percent_correct <= 75)
 {
 print "HTML assessing ‘not bad’";
 }
 elsif ($percent_correct <= 90)
 {
 print "HTML assessing ‘very good’";
 }

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 56

 elsif ($percent_correct < 100)
 {
 print "HTML assessing ‘extremely good’”;
 }
 elsif ($percent_correct == 100)
 {
 print "HTML assessing ‘perfect’";
 }
 print "</H2></P>
<P>Your results have now been stored. Your assistance is most
appreciated.

<I>Please do not attempt the experiment again, as this is likely to harm
my results.</I>

Instead why not encourage your friends to have a go, and compare
ratings?</P>
<HR>
Comments? Then mail me!
</BODY>
</HTML>
 ";
 exit 0;
}
exit 1;

sub read_input
{
 local ($buffer, @pairs, $pair, $name, $value, %FORM);
 # Read in text
 #$ENV{'REQUEST_METHOD'} =~ tr/a-z/A-Z/;
 #if ($ENV{'REQUEST_METHOD'} eq "POST")
 #{
 # read(STDIN, $buffer, $ENV{'CONTENT_LENGTH'});
 #} else
 #{
 $buffer = $ENV{'QUERY_STRING'};
 #}
 # Split information into name/value pairs
 @pairs = split(/&/, $buffer);
 foreach $pair (@pairs)
 {
 ($name, $value) = split(/=/, $pair);
 $value =~ tr/+/ /;
 $value =~ s/%(..)/pack("C", hex($1))/eg;
 $FORM{$name} = $value;
 }
 %FORM;
}

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 57

sub lock {
$LOCK_EX=2;
 local($file)=@_;
 flock($file, $LOCK_EX);
}

sub unlock {
$LOCK_UN=8;
 local($file)=@_;
 flock($file, $LOCK_UN);
}

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 58

Appendix 2 : Questions used in the experiment
Phrase: I just want to thank you for the gifts. They were fantastic, and I love
the teddy!
Compressed as: I jst wnt 2 thnk U 4 the gfts. Thy wre fntstc, & I lve the
tddy!
Compression rate: 22%

• I went to think about gifts for you. I saw a fantastic teddy.
• Thank you for the gifts, they were great, especially the teddy.
• I went to think about gifts for you and Todd.
• Thank you for the futuristic gifts, I love the tidy.

Note: This one is particularly hard, with some nasty high vowel-consonant
ratio words (and bad grammar).
Phrase: The pipes leaked real bad again last night. The kitchen is soaked.
Compressed as: The pps lkd rl bd agn lst nght. The ktchn is skd.
Compression rate: 26%

• The Pope’s liked roll-back akin to the lost nought. The kitchen is
skewed.

• Last night the pipes leaked again, soaking the kitchen.
• Last night the pips looked terrible, and now the kitchen is skewed.
• The pipes looked very bad last night, and now the kitchen is soaked.

Phrase: Have you seen the line-up for the game on Saturday? There’s some
crazy team planning going on there.
Compressed as: Hve U sn the lne-up 4 the gme on Sat.? Thrs sme crzy tm
plnnng gng on thre.
Compression rate: 25%

• Have you seen the line-up for Saturday’s game? It’s madness!
• It’s a sin, all the grime on the lanes. The Crazy Planning gang are

going to win.
• The line-up for the game on Saturday is a sin. The team set-up is

bonkers.
• Saturday’s team set-up is grim. The management gang are mad.

Phrase: Keep your friends close, but your enemies closer.
Compressed as: Kp yr frnds clse, bt yr enms clsr.
Compression rate: 30%

• Keep your friends clues, but your enemas closer.
• Keep your friends close, but your enemies closer.
• Kip your fronds clues, but your enemas clearer.
• Keep your friends close, but your enemies clearer.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 59

Phrase: Just seen Crouching Tiger: it’s great, watch it! The fight scenes are
incredible, and the story is a real epic.
Compressed as: Jst sn Crchng Tgr: its grt, wtch it! The fght scns R incrdble,
& the stry is a rl epc.
Compression rate: 23%

• Watch Crouching Tiger: it has great fight scenes and an epic story.
• I’ve just seen Crouching Tiger: the fights scan incredibly.
• Watch Crouching Tiger, the story is a rolling epic.

Phrase: Remind me, is it safe to acidify potassium cyanide? Reply quickly,
I’m about to try it.
Compressed as: Rmnd me, is it sfe 2 acdfy ptssm cynde? Rply qckly, Im
abt 2 try it.
Compression rate: 22%

• Can I acidify potassium cyanide?
• Remind me how to make possum candy.
• I’m about to acidify potassium cyanide. Is this safe?
• How do you apply potassium candy?

Phrase: Greg Bueller has just been rushed to hospital! I think his appendix
has exploded. Come to the City General right away!
Compressed as: Grg Bllr hs jst bn rshd 2 hsptl! I thnk hs appndx hs expldd.
Cme 2 the Cty Gnrl rght awy!
Compression rate: 25%

• Greg Bueller has been taken to the hostel, where his appendix was
expelled. Come to the City General right away.

• Greg Bueller’s appendix has exploded. Come to the City General
hospital right away.

• Greg Bueller has rushed to the hostel. He was apparently expelled.
Come to the City General before it all goes awry.

• Greg Bueller has been rushed to the City General. Come before it all
goes awry.

Phrase: Not sure I can get there at seven. I can see you by the bridge at
eight, though.
Compressed as: Nt sre I cn gt thre @ 7. I cn C U by the brdge @ 8, thgh.
Compression rate: 29%

• Not sure I can get three by 7 pm. I can meet for bridge at 8.
• Can’t get there for 7, but I can meet you by the bridge at 8.
• Can’t get three by 7, but I can meet you by the bridge at 8.
• Can’t get there for 7, but I can meet you for bridge at 8.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 60

Phrase: You are a Scorpio, right? Your horoscope is predicting some BAD
stuff this week, I’m afraid.
Compressed as: U R a Scrpo, rght? Yr hrscpe is prdctng sme BAD stff ths
wk, Im afrd.
Compression rate: 26%

• As I recall, you are a Scorpio. Your horoscope this week is very bad.
• Your recipe pricing has some stiff competition this week, and I can’t

afford it.
• As I recall, you are a Scorpio. Your horoscope says that pricing this

week is bad, I’m afraid.
• As I recall, you are a Scorpio. You will be up against stiff

competition this week.

Phrase: If you ever feel neglected, if you think that all is lost, I’ll be
counting up my demons, hoping everything’s not lost.
Compressed as: If U evr fl nglctd, if U thnk tht all is lst, Ill B cntng up my
dmns, hpng evrythngs nt lst.
Compression rate: 24%

• If you ever feel neglected, if you think that all is lost, I’ll be counting
up my demons, hoping everything’s not lost.

• If you ever feel neglected, and give thanks that all is lost, I’ll be
counting up my damns, happening on everything that’s not last.

• If you ever feel neglected, if you think that nothing’s left, I’ll be
counting up my demons, hoping everything’s not lost.

• If you ever feel neglected, then give thanks that all isn’t lost, I’ll be
counting up my demons, and seeing how long they last.

Phrase: The path of the righteous man is beset on all sides by the inequities
of the selfish and the tyranny of evil men.
Compressed as: The pth of the rghts mn is bst on all sds by the inqts of the
slfsh & the tyrrny of evl mn.

• The pith of the rights men is best on all shows by the inquiries of the
selfish and the tyranny of every man.

• The path of the righteous man is beset on all sides by the inequities
of the selfish and the tyranny of evil men.

• The paths of the righteous man are best on all sides by the inquiries
of the selfish and the tyranny of every man.

• The path of the righteous man is beset on all sides by the inquiries of
the selfish and the tyranny of evil men.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 61

Phrase: I have given no small attention to that not unvexed subject, the skin
of the whale.
Compressed as: I hve gvn no smll attntn 2 tht nt unvxd sbjct, the skn of the
whle.

• I have given no small attention to that nutty Unix subject, the skein
of the while.

• I have given no smell at all to that nutty unvexed subject, the skein of
the while.

• I have given no smell at all to that not unvexed subject, the skein of
the whale.

• I have given no small attention to that not unvexed subject, the skin
of the whale.

Note: This one is interesting because all but one of the ‘answers’ would
compress to the message shown.
Phrase: Welcome to the mix and match world of composites.
Compressed as: Wlcme 2 the mx & mtch wrld of cmpsts.

• Welcome to the mix and match world of composts.
• Welcome to the mix and match world of campsites.
• Welcome to the mix and match world of composites.
• Welcome to the mix and match wielder of composites.

Phrase: The rules of poker are surprisingly simple – it’s winning that can be
hard.
Compressed as: The rls of pkr R srprsngly smple – its wnnng tht cn B hrd.

• The roles of pikers are surprisingly simple – it’s whining that can be
hard.

• The rules of poker are surprisingly simple – it’s winning that can be
hard.

• The roles of pikers are surprisingly simple – it’s winning that can be
hard.

• The roles in poker are surprisingly simple – it’s winning that can be
hard.

Measuring Comprehension of a Text
Compression Algorithm for SMS

 Page 62

Phrase: George Romero started it all off in 1968 with his seminal horror
classic, Night of The Living Dead.
Compressed as: Grge Rmro strtd it all off in 1968 wth hs smnl hrrr clssc,
Nght of The Lvng Dd.

• Garage Romeo started it all off in 1968 with his small-hours classic,
Night of The Living Dead.

• George Romero started it all off in 1968 with his small-hours classic,
Night of The Living Dead.

• Garage Romeo started it all off in 1968 with his seminal horror
classic, Night of The Living Dead.

• George Romero started it all off in 1968 with his seminal horror
classic, Night of The Living Dead.

Phrase: It would be easy to think that Stevenson’s Rocket was the only rail-
going steam engine of its time, but this is of course untrue.
Compressed as: It wld B esy 2 thnk tht Stvnsns Rckt ws the only rl-gng stm
engne of its tme, bt ths is of crse untre.

• It would be easy to think that Stevenson’s Rocket was the only rail-
going steam engine of its time, but this is of course untrue.

• It would be easy to think that Stevenson’s Racket was the only rule-
gaining stem engine of its team, but this is of course untrue.

• It would be easy to think that Stevenson’s Rocket was the only rule-
abiding steam engine of its team, but this is of course untrue.

• It would be easy to think that Stevenson’s Rocket was the only rail-
going steam engine of its time, but this is of course untried.

	Alexander Shenton
	14 March 2001
	This is the report on a project submitted for the degree of Computer Systems and Software Engineering in the Department of Computer Science at the University of York�Abstract
	Contents
	Preamble
	Initial Thoughts
	Reading
	Existing Algorithms
	Email2SMS
	Microsoft Intellishrink
	AmikaNow! Highlights

	How Humans Read
	The effect of leading and trailing vowels
	
	
	All vowels removed

	The Algorithm
	Choices
	Phoneme based compression
	Examples of Phoneme Compression
	Word
	Compression using a phoneme system

	Phoneme based compression – advantages and disadv
	Advantages
	Disadvantages

	Vowel removal
	Common abbreviations versus vowel removal
	Vowel removal – advantages and disadvantages
	
	Advantages
	Disadvantages

	Hybrid method
	Hybrid System – Advantages and Disadvantages
	Advantages
	Disadvantages
	
	
	See (C

	Implementation Issues
	The questionnaire
	Question Design

	Results
	Statistics for the Control Group
	Age group
	Number of subjects
	Question number
	Question number

	Statistics for the Test Group
	Age group
	Number of subjects
	Question number
	Question number
	Question number

	Accuracy
	All subjects
	SMS Users

	Time
	All subjects
	SMS Users

	Problems
	Conclusion
	Further work
	Acknowledgements
	References
	
	Web Links:
	Email2SMS homepage
	Microsoft Intellishrink
	AmikaNow! Highlights press release

	Reading and Comprehension Processes:
	Experiment Design:
	Statistics:

	Appendices
	Appendix 1: Compression Algorithm code
	Appendix 2 : Experiment code
	Appendix 2 : Questions used in the experiment

