Chapter 5

UML+Z: Augmenting UML with Z

Nuno AMALIO, Fiona PPLACK, and Susan 8EPNEY

5.1 Overview ofUML + Z

UML + Z is a framework for building, analysing and refining modelssoftware
systems based on the UML and the formal specification largyidagy is, in fact, an
instance of an approach to build rigorous engineering freonles for model-driven
development based on templates, which we CallRUS[AMA 06]. UML + Z is
targeted at developers who have minimal knowledge of Z, tautaamiliar with UML-
based modelingUML + Z models comprise class, state and object UML diagrams,
which are represented in a common Z model (the semantic amnarigure 5.1; the
Z model gives the precise meaning of the diagrams. The framietries to minimise
exposure to the Z model, with UML diagrams acting like a gieahinterface for the
formality (Z) that lies underneath, but this is not alwaysgible and one Z expert
is required in the development to describe system propgetii are not expressible
diagrammatically (mainly operations and constraints).

UML+Z Model

Class Diagram State Diagram Object Diagram / Snapshot

Glazst Ciazs2 [Stahﬂ = StateEj ‘ s Mt

R il ‘74 _______
? Z Semantic Domain

Figure 5.1 Models in theUML + Z framework

82 Software Specification Methods

A crucial component oUML + Z is a catalogue aemplatesandmeta-theorems
Templates are generic representations of sentences offsomal language, which,
when instantiated, yield actual language sentences. Teesspemplates, we have
developed the formal template language (FTL), which ersahfeapproach to proof
with template representations of féta-prooj. This enables the representation of
structural Z patterns as templates (e.g. the structure obpefation), but also rea-
soning with these template representation to estabiista-theoremge.g. calculate a
precondition). Every sentence of the Z moddlUiML +Z is generated by instantiating
one of the templates, and meta-theorems can be used tofgimapid in some cases
fully discharge, proofs associated with the Z model.

The modeling and analysis process WML + Z begins with the drawing of
UML class and state diagrams. These diagrams are then usedtantiate templates
from the catalogue to generate the Z model. The developaratids operations and
system constraints that are not expressed diagrammsttoathe Z model. The Z
specification is then checked for consistency using thetetarems of th&JML + Z
catalogue and a Z theorem prover. Finally, there is a prafas®del analysis, where
the developer draws snapshots to validate the model; tinegesisots are represented
in Z and the analysis is assisted by the Z/Eves theorem prolgrally, the analysis
phase of the process results in changes to the diagrams pottien of the Z model
not expressed diagrammatically.

Currently, the process of instantiating templates is mhnillae templates from
the catalogue are manually selected and instantiated \aittes from the diagrams.
The reasoning with templates is also based on manual iregiant but it is assisted
by Z proof tools such as Z/Eves [SAA 97].

5.2 Analysis and specification of case 1

We start by modeling the static and behavioral aspects afyteem with UML class
and state diagrams. Then we discuss the Z model that is gedéram the diagrams
by instantiating templates. Finally, théML + Z model is consistency-checked and
analysed.

The following terminology is used to refer to the Z generdted templates:

o fully generated- the Z is fully generated by instantiating templates witloin
mation of diagrams. If we had a tool, the Z would be autom#icgenerated;

e partially generated- the instantiation depends on information that does not
come from UML diagrams, but needs to be explicitly added kydbveloper
(usually constraints not expressible diagrammatically).

5.2.1 UML class model

A UML class diagram describedassesand their relationships. At the abstract level,
a class diagram captures the main entities (or concepts3ystam and the structural

UML+Z: Augmenting UML withZ 83

relationship that exists between them. A class denotes af sdtjects (individuals)
that share certaiattributesandoperations

Question 1: What data does the system manage? What are the main entittes o
system and what are the relationships among them?

Answer: The case study states that the system is about invoicingottat are
placed for products. We moderder and productas two UML classes and
relate them with an association.

Question 2: Are there limits on the number of products that an order céareace?
How many orders can reference the same product?

Answer: The case study makes clear that each order referencesghyexis product,
but a product can be referenced by many orders. We assuméhératare
products that are not referenced by orders. We represaribfbrmation in the
multiplicity of the association betweddrder and Product Order references
oneproduct, but a product may be referencedimgnyorders.

Question 3: What information should the system hold for products and:s@

Answer: The case study states that orders can be for different diesraif the same
reference; we represent the ordetgantityas an attribute of the clag3rder.
The case study also refers to quantities of products availalstock. We model
thestockquantity as an attribute of claBsoduct

Question 4: Do we know what type of information these quantities hold® prod-
ucts whole things (eg. books or parts) or continuous amofas water or
cloth)? Can there be negative stock?

Answer: The case study does not fully answer these questions. Wenagbat the
attributes are of the same type, since the things being eddae from the stock
of a product. We know that a mathematical ordering on the tgpequired
(since stock may be less than or equal to the ordered qupar8ity based on our
intuitive notion of quantity, we assume that the attribuigaantityandstockare
natural numbers (we do not allow negative stock).

These features are modeled in a UML class diagram in Fig@reThis says that
there are two classe®rderandProduct each representing a set of objects (the orders
and products of the system). Ea@rderobject has guantityattribute, referring to the
ordered quantity of a product, and edoductobject has &tockattribute, recording
how much of the product is available in stocBrder andProductare related through
an association, which says that each order refers to exam#iyproduct, and that each
product may be referred by many orders.

5.2.2 UML state models

UML state diagrams describe the permitted state transitidrthe objects of a class.
Here we draw the UML state diagram of cla3sler.

84 Software Specification Methods

references
Order Product

quantity : NAT 0.* 1 stock : NAT

Figure 5.2 Initial version of the high-level UML class diagram

Question 5: What happens when a product is ordered? What happens toar?ord

Answer: The case study says that an order carinveiced and that this changes
the state of an order fropendingto invoiced Invoicing only occurs if the or-
dered quantity is either less than or equal to the quantdy ithin stock. We
assume that all new orders have the stagnding When invoiced, the order
changes from the stafgendinginto the staténvoiced This is captured in the
state diagram of Figure 5.3. Note that the constraiders are invoiced only
if there is enough stock to fulfill the ordéorderedquantity < stockquantity)
is not expressed here as a guard of the state transition.b€bause that con-
straint involves the state ofRroductobject and here we are restricted to state
constraints expressible in terms of the stat®afer.

invoice()
pending invoiced

Figure 5.3 The state diagram @ddrder

5.2.3 The Z model

The Z model resulting from the UML class and state diagranovalisfully gener-
ated It enables formal consistency-checking and validatiothefwholeUML + Z
model. The Z model follows a structuring to specify objedented (OO) systems
in Z, which usewiiewsto separate the description of the different aspects of @sys
(see [AMA 05] for full details); there are five views, nametyructural, intensional,
extensional, relational and global. In the following, thélyf generated Z model is
presented for each view.

The Z model follows certain naming conventions. The namespefations that
perform a change of state include the symhiol The names of extensional view
definitions are prefixed b§, and the ones of the relational view By

5.2.3.1 Structural view

The structuralview defines the set of all classes of a model as atoms, arghagsi
each class a set of objects: the set of all possible objetteafiass.

UML+Z: Augmenting UML withZ 85

The Z toolkit of UML + Z defines the set of all object®©BJ) and asserts that this
set is non-empty:

[0BJ OBJ+# @

The setCLASSdefines the set of all classes of a model and the fundligives
all the possible objects of a class. As we do not haeclassindinheritance) in our
model the sets of objects of each class are mutually disjoint

CLASS:= OrderCl| ProductCI O : CLASS— P, OBJ
disjointCLASS< O

5.2.3.2 Intensional view

The intensional view describes the intensional meaningatdiss, that is: the proper-
ties shared by all its objects. This amounts to defining:{a)state space of objects,
which includes the definition of class attributes; (b) thidafisation of state; and (c)
the operations of the objects of the class.

The clasOrder requires a type representing the set of all states of the diat
gram:

ORDERST:= pending| invoiced

The state space comprisstte which records the current state of @mnder as
defined in the state diagram, aqdantity, which is defined in the class diagram:

Order _ Orderlnit
state: ORDERST Order
guantity: N quantity? : N

staté = pending
quantity = quantity?

The invoice operation captures the state transition fpandingto invoiced as
described in the state diagram:

___Orderalnvoice
AOQOrder

state= pendingA staté = invoicedA quantity = quantity

The intension oProductis defined as described in the class diagram in Figure 5.2:

Product _ Productlnit
listock: N Product

stock =0

86 Software Specification Methods

5.2.3.3 Extensional view

The extensional view describes the extensional meanindastes, that is, the set
of all existing objects of a class. Like intensions, clasteegions comprise a state
space, an initialisation and operations. A class exterisidafined by using fromo-
tion[WOO 96, STE 03], a structuring technique for constructiggragate (or whole-
part) structures. Promotion is used whenever there is a onerg that comprises in-
dependent parts, with their own state. In this case, the stiad class extension is
defined as an aggregate structure comprising all its egistifjects (each an instance
of a class intension): the class extengiwomotesdts intension.

The state space of all class extensions is defined by inatangttheSClass generic
schema of the framework’s Z toolkit. This generic introdsitiee parameteil@SET
andOSTATE which are to be substituted by the set of all objects of theiis class
and the intensional state space of the class (as defined)abdeschema component
objsrepresents the set of existing objects of the classajdtis a function that gives
the current state of one object:

_SClass [OSET, OSTATE
objs: POSET
0bjSt: OSET -+ OSTATE

domobjSt= objs

The extension ofOrder instantiates the class generic. The components of the

generic are renamed to avoid name clashes when all the sttahschemas are put
together to make the system schema (see below). The isdtimlih sets the schema
components to the empty set: in the initial state there nersrd

SOrder == SClass[QOrderCl, Order][orders/objs orderSyobjSt
SOrderlnit == [SOrder’ | orders = & A orderSt = & |

Operations defined using promotion require an auxiliaryesth that specify the
frame of the operation: the aggregate components that are to eham@ result of
the operation and those that should remain unaltered. Tdrereélifferent kinds of
promotion frames (see [AMA 05, WOO 96, STE 03] for detailspp dreate a new
Order object, we need a frame specifying the addition of a new d¢hgethe class
extension (hnames of promotion frames are preceedde) by

— ®SOrderNew
ASOrder ; Order’
oOrder! : OOrderCl
oOrdert € OOrderCI\ orders
orders = ordersU {oOrder}
orderSt = orderStU {oOrdet! — #Order'}

UML+Z: Augmenting UML with Z 87

The Z operatof captures a schema binding: an assignment of values to teensch
variables. The frame says that the newly created obggatder) will be mapped to
some state, which is defined in the initialisation being poted. The actual operation
to create a nevdrder object uses the framing schema:

SAOrderNew== 3 Order’ ¢ ®SOrderNewA Orderlnit

The binding ¢Order’) of the frame is specified i@rderInit.
The update frame specifies a state transition of a si@gler object:

__ ®SOrderUpdate
ASOrder; AOrder
oOrder? : OOrderCl

oOrder? € orders

0Order = orderSt oOrdet

orders = orders

orderSt = orderSt® {oOrder? — 6Order'}

The extension operation to invoice @nder uses the update frame:
SaOrderinvoice== 3 AOrder ¢ ®SOrderUpdate Ordera Invoice

The extension oProductis similarly defined.

5.2.3.4 Relational view

The relational view defines the associations between dagssociations are repre-
sented as a relation in Z, and denote a set of object tuple®fjects being related).

The state of the associatideferencess defined as a mathematical relation be-
tween the set of all objects of the cla@®derand that ofProduct The initialisation
sets all tuples to empty: in the initial state there are nectisjand no links between
them:

AReferences-= | references OOrderCl — OProductCl]
AReferencesini== | AReference§| references= & |

5.2.3.5 Global view

This view looks at the system from a global viewpoint. It regents the system struc-
ture as a composition of local structures (classes and iasi®ms), and constraints
that can only be expressed in the context of the system as k@ who

The multiplicity of associations is a constraint that canbe expressed in the
relational view. These constraints affect the existingeoty of the associated classes,

88 Software Specification Methods

defined in the class extension. The schéiin&AReferencesxpresses the multiplicity
constraint of the associatidteferencessing the generiel. ; from the Z toolkit of
UML + Z; this says thateferenceqa relation) is constrained to be a total function,
from the set of existing orders to the set of existing prosluct

Rel, 1[X, Y] ==X =Y _LinkAReferences
SOrder;SProductAReferences

references Rel. ; [orders product$

The system schema includes all component schemas and theatiss con-
straint:

__System
SOrder;SProductAReferences

LinkAReferences

The initialisation of the system is the initialisation otthystem’s components:

Syslnit== SysterhA SOrderlnit A SProductinit A AReferencesinit

5.2.4 Checking model consistency

Question 6: Is the model internally consistent?

Answer: The Z model is type-correct (checked with Z-Eves). But a nhade be
type-correct and still be inconsistent. The consistenc¥ afodels is demon-
strated by proving certain conjectures. Z conjectures trevéorm-? P, where
P is a well-formed Z predicate, which is said to be proved unkdeistatements
of the specification; wheR is true, the conjecture establishes a theorem of the
specification.

To demonstrate the consistency of state space descriptioass required to prove
initialisation conjectures, to show that there is at least walid instance of the state
space description satisfying its initialisation (an esigte proof). For example, the
initialisation conjecture foOrder (intensional view, above) i$:? 3 Orderlnit e true.

We prove initialisation conjectures for the various systemmponents and the
whole system:

o theinitialisation conjectures of class intensions areptified by appeal ttJML+
Z meta-theorems, and they are then automatically provedEnes;,

o the initialisation conjectures of class extensions, a@atoas and system are
true by constructionby appeal to meta-theoremsW@ML + Z.

UML+Z: Augmenting UML withZ 89

5.2.5 Validating the model

Question 7: How can we be confident that the model expresses the intentr afus-
tomer?

Answer: We need to check the model against the requirements of thensysA
model may be consistent and still not meet the system rageines. We have
developed a technique, based on Catalysis snapshots [Pe&&@%rmal proof,
to validate the models of our framework [AMA 04]; this valtta is assisted
by Z/Eves.

Catalysis snapshots are UML object diagrams. These diagrannstances of
class diagrams, describing the objects of a system and théheg are linked among
each other at a point in time. The use of diagrams helps tdvievtie customer
of the system in model validation, by drawing diagrams thastrate the system’s
requirements.

Question 8: Obviously, we can’t validate everything, but how would wetkrthat an
order really can only reference one product? Does the syateept a situation
where two products are linked to one order?

Answer: The snapshot in Figure 5.4 is used to validate this requinémeshows a
state that should not be accepted by the model of the systeordar that refers
to two products.

O1 : Order P2 : Product

P1 : Product

Figure 5.4 A snapshot showing an Order associated with two products

The Z representation of this snapshot is fully generate@ptate instantiation:

__StSnap
System
orders= {001} A orderSt= {00l — O1}
products= {oPX oPY} A productSt= {oPX+— PX,oPY — PY}
references= {001 — oPX 00l — oPY}

(Some definitions are omitted, such as names and statesauftehj
The state described by the snapshot should not be acceptid System, thus we
prove the conjecture (the negation of the positive case):

F? — (3 StSnap e true)

90 Software Specification Methods

This conjecture is provable in Z/Eves, which means that thte slescribed by the
snapshot is not valid in the model of the system.

5.3 Analysis and specification of case 2

The second case study does not change the state space,dug édernal behavior,
and modifies internal behavior. Case 2 requires that themsyptovide the following
operations:

e entries of new orders;
e cancellation of orders;
e entries of quantities in the stock.

For each of these operations in turn, we discuss its spdaificahen review its
verification and validation. The existing generated Z maésiahchanged.

5.3.1 Entries of new orders

Question 9: What must the system do when an order is received? What are the
changes to the system?

Answer: ¢From the case study we deduce that the system creates ¢éhenddasso-
ciates it to the ordered product. Then, if there is enougtkstbe order is set to
invoiced otherwise it is set tpending This involves the following component
operations:

1. create a©Order object (state is set tpending;
2. create the tuple linking the new order with the orderedipob;
3. set the state of th@rder to invoicedif there is enough stock.

First, we specify component operations individually, anelrt their composition.
The first and third operations have already been specifigdriiber (Sx OrderNewand
SaOrderinvoice above). The second operation is defined in the relatioea (ully
generatedt

__AaReferencesAdd
A AReferences
oOrder? : OOrderCl
oProduct : OProductCl

reference’s= referencesJ {oOrder? — oProduct}

The system operation is defined as the composition of the ooe operations.
This ispartially generated To simplify matters, the operation specification is divide
in two parts: (a) create the object and tuple in the associaéferences; (b) set the
order to invoiced if there is sufficient stock. The two pams then combined using

UML+Z: Augmenting UML withZ 91

the schema composition operatgrf[fWOO 96], which means that part (a) is followed
by part (b).

In part (a), we start by defining the frame of the operationictvimakes explicit
what is to change and what is to remain unchanged. The namgstens opera-
tion frames are prefixed b¥ (by analogy to® promotion frames), and are formed
by conjoiningA Systemwith the = (nothing changes) of every system component
whose state is to remain unchanged. In the system operatipate new orders, the
SProductcomponent should remain unchanged (there are no changesdagps):

WNewOrdeg == ASystern =ZSProduct

The system operation is specified as the conjunction of tradrand the component
operations; the renaming is needed so that elements of leenss correctly commu-
nicate across the composition:

SysNewOrdgr== ¥NewOrdeg
A SaOrderNewn AaReferencesAddOrder /oOrder?]

In part (b), we need a schema stating the condition on the statsitionpending
toinvoiced which says that an order may chang@tmicedonly if the ordered quan-
tity is less than or equal to the stock for the ordered praduct

___CondStocklsAvailable
SProduct
oProduct : OProductCl
quantity? : N

oProduct € productsA quantity? < (productSt oProdué).stock

The frame of part (b) says that only t¥der component may change. The ac-
tual operation says that if there is enough stock to fulfd drder then it should be
invoiced, otherwise there is no change in the system:

WNewOrdep == ASystern =SProductA ZAReferences

SysNewOrdgr== UNewOrdey,
A CondStockIsAvailable S OrderlnvoicéoOrder /oOrder?]
Vv = CondStocklsAvailable =System

Finally, the two parts are put together to make the systematipa:

SysNewOrder= SysNewOrders SysNewOrder

92 Software Specification Methods

Question 10: Is the operation consistent? What is its precondition?

Answer: The precondition of a Z operation describes the sets ofssfatewhich
the outcome of the operation is properly defined. An opendaticonsistent (or
satisfiable) if its precondition is nédlse The precondition of the new operation
is:

OOrderCl\ orders# @ A oProduct € products

This precondition is nofalse It states that the system has capacity for another
Order object and that the ordered product is an existing produs i§ exactly
what we expect the precondition to be.

Question 11: Can we examine the model with a snapshot for the case that iher
enough stock to fulfill an order?

Answer: We can write snapshots that describe state transitionsel$reapshots are
divided in two parts: the system state before an operatiod tiae state of the
system after the operation.

Figure 5.5 shows a before state at the top (there is one préX)cthe values of
all the attributes are shown in the object boxes. The reduafter state of the first
running of the operation is in the middle — there is now oneeofdr PX. OrderO1is
for a quantityless than produd®X's quantity ofstock so thestateof Ol is invoiced
This is also the before state for another running of the djmerawhich adds02,
another order whosguantityis less than produ&®X's quantity ofstock so itsstateis
alsoinvoiced

PX: Product

stock = 3

O1: Order

—_— PX : Product

tity = 2
quant y) stock = 3
state = invoiced

1 : Order .

O1 : Ordel PX : Product 02 : Order

tity = 2 =
quan |¥ . stock = 3 quanmy' 2.
state = invoiced state = invoiced

Figure 5.5 SysNewOrdesnapshot: request for a product with enough stock

UML+Z: Augmenting UML withZ 93

To check the validity of the operation snapshot, we repretbenstates in Z and
we prove conjectures that perform three types of checks. fifstechecks that (a)
the before-state is a valid system state and (b) it satidfe®peration precondition,
an existence proof. The second checks that the after-statevalid system state.
The third checks that the operation satisfies the conssreegcribed by the snapshot.
These conjecture are captured by templates (see [AMA 06, AKor full details).

The conjectures for the snapshot in Figure 5.5 are all pleuapZ/Eves.

Question 12: But how can we keep placing orders against prodRX? Why is the
stock not running out?

Answer: Here, the visualisation highlights a problem with the modéle case study
does not say anything about what happerstéckwhen an order is performed.
We assume that the stock is subtracted the ordguedtityeach time.

Question 13: What do we need to do to the models?

Answer: First, we change the snapshot to describe what we want thensye do.
Figure 5.6 shows the snapshot for the corrected secondrginfithe operation:
now the ordered amount is subtracted from the stock.

O1: Order
—_— PX : Product

tity = 2
quant y) stock = 1
state = invoiced

1: .

O1 : Order PX : Product 02 : Order

tity = 2 =
quan |¥ . stock = 1 quantity = 2 .
state = invoiced state = pending

Figure 5.6 RevisedSysNewOrdesnapshot with deletion of quantity from stock

As expected, this snapshot fails to validate. The first tweckk (above) are still
true, since the before and after states are valid stateseddytstem, and the before
state is a valid precondition state for the operation. Thvel tonjecture, which looks
at whether the operation actually changes the before statehie after state, is false
(its negation igrue) — the operation does not perform the required transitidre
operation specification needs to be corrected so that stditkastion is performed.

We specify an operation in the intensionRibductto subtract an input quantity
(quantity?) from the producstock

94 Software Specification Methods

___Producta StockSubtract
AProduct
quantity? : N

stock = stock— quantity?

As before, the operation is promoted in the extensional {fally generategt

SaProductStockSubtract= 3 AProducte
dSProductUpdaten Producta StockSubtract

The originalSysNewOrdehas two components: the creation, then the invoicing.
The stock change only applies to orders that can be invoitled.calculated precon-
dition of the new operation now captures the preconditi@viously expressed in the
schemaCondStocklsAvailableso this is no longer required. The new version is:

WNewOrdep == ASyster ZAReferences

SysNewOrdgr== UNewOrdey,
A SaOrderinvoicéoOrder /oOrder?] A SaProductStockSubtract
V = pre SaProductStockSubtract =System

SysNewOrder= SysNewOrders SysNewOrder

Question 14: Is the new version of the operation consistent? What is gsqmdi-
tion? And is the operation snapshot valid now?

Answer: The precondition of the operation remains the same, whiainat we want.
The validation has to be repeated to ensure that the snajpesteostill valid. In
fact all the necessary proofs are now true; the system beslas/the customer
wishes.

5.3.2 Cancellation of orders

Question 15: What happens when an order is cancelled? Is the data retatiting
cancelled order retained in the system?

Answer: The case study just says that orders may be cancelled. Wemagkat can-
celled orders are deleted from the system. (The alternageerding cancelled
orders, would require the addition ofcancelledstate to the state diagram of
Order.)

Question 16: Can an invoiced order be cancelled?

Answer: The case study is not clear on restrictions on cancellatiene, we assume
that onlypendingorders can be cancelled. (The cancellingrvbicedorders
would require that the ordered quantity be placed back méastock.)

UML+Z: Augmenting UML withZ 95

invoiced

invoice()

Figure 5.7: The updated state diagram@©fder

To express cancellation we need to change the state diagr@mier, by adding
an arrow from the stateendingto the terminal state (Figure 5.7). This means that the
object is deleted only when in theendingstate.

This new arrow requires that more Zfislly generatedfrom templates. In the
intension ofOrder, finalisation captures the fact th@rder objects may be deleted
only if in the pendingstate:

OrderFin == [Order | state= pending]

The finalisation is then promoted in the extensional viewe @klete promotion
frame forOrder removes an object from the class extension:

__®SOrderDelete
ASOrder

Order

oOrder? : OOrderCl

oOrder? € orders

0#Order = orderSt oOrder
orders = orders\ {oOrder?}
orderSt = {oOrder?} < orderSt

The operation that delet€xder objects uses the frame to promote the finalisation:
SAOrderDelete== 3 Order ¢ ®SOrderDeleteA OrderDelCond

Question 17: What must the system do when an order is received? What are the
changes to the system?

Answer: ¢From the case study and our assumptions, we deduce thgstBmsanust
delete theéDrderobject and its tuple in the associatiBeferencesThis involves
two component operations: deletion of the order objectapand deletion of
tuple; both ardully generated

The association operation deletes the tuple from the astsmtj given arOrder
object as input:

96 Software Specification Methods

__AReferencesDelOrder
A AReferences
oOrder? : OOrderCl

references= {oOrder?} < references

The system operation to cancel orders conjoins its framle thvé¢ component op-
erations:

WCancelOrder== ASystem =ZSProduct
SysCancelOrder= ¥CancelOrderA SaOrderDeleten
AReferencesDelOrder

Question 18: Is the operation consistent? What is its precondition?
Answer: The precondition predicate (calculated with Z/Eves) is:

oOrder? € ordersA (orderSt oOrdet).state= pending

The operation is satisfiable, its precondition requires tha order to be can-
celled is an existing order and that dtateis pending as expected.

Question 19: Does the order cancellation operation do what we expect?

Answer: Yes. The operation has been validated. We do not show thdataln
snapshots here, but we tested the case where the ordert®idpknding(con-
jectures were all true) and the case where the order to deléteoiced(one
conjecture was false, as expected).

5.3.3 Entries of quantities into stock

Question 20: What is an “entry of quantities in the stock™? Does the reggiioper-
ation have to (a) just add stock, as in stock delivery or ret(ly) also subtract
stock, as in stock decay or wastage; or (c) accommodateasbie-setting of
the stock, as in stock-taking?

Answer: The case study does not elaborate on the meaning of stogk @grassume
that it adds an input quantity to ttstockattribute.

The modeler needs to specify an operation to add stock, ant#resion ofProduct
The operation receives a quantity of stock as input and ddslgjtiantity to the exist-
ing stock:

___Producta StockAdd
AProduct
nStock : N

stockK = stock+ nStock

UML+Z: Augmenting UML withZ 97

This operation is promoted in the extensiorPebduct(fully generated):

SaProductStockAdd-= 3 AProducte
dSProductUpdaten Product StockAdd

The system operation simply puts the promoted operatiantivé context of the
system:

PWAddStock== ASysterm\ =SOrder A ZAReferences
SysAddStock= WAddStockn SaProductStockAdd

Question 21: Is the operation consistent? What is its precondition?
Answer: The precondition (calculated in Z/Eves) is:

oProduct’ € products

The operation is consistent, its precondition requirestti@product to which
stock is to be added is an existing product.

Question 22: Can we validate this operation with a snapshot?

Answer: We draw a snapshot illustrating the addition of stock to adpoo (Fig-
ure 5.8). A quantity of eight is added to tetockof PY, but there is an order
pendingwith a quantityof three. This snapshot is valid in our model (conjec-
tures proved in Z/Eves), but this poses a question.

O1 : Order
= R PY : Product
newStock? = 8
uantity = 3

q Y =9 stock = 2
state = pending
quantity = 3 _ stock = 10
state = pending

Figure 5.8 Snapshot foAdd Stock Order remainspending

Question 23: What happens when stock is added to products with pendingrs?d
For example, in the snapshot, after the addition, there ésigim stock to ful-
fill the orderO1? ShouldO1 be changed tinvoicedand stock subtracted the
ordered amount?

98 Software Specification Methods

Answer: The case study does not say what happens here. We assunhe thanting
order should be set to invoiced in this case. The snapshotdbe corrected
to reflect this: the after state &fl would beinvoiced andstockvalue would be
adjusted by8 — 3. This snapshot is valid in our model (proved in Z/Eves).

Question 24: But what if there were more than one orgendingon PY?

Answer: Again, the case study is omissive. We assume that any ordeders are
invoiced, until there is insufficient stock. We also decidg to impose any
ordering to fulfill orders that are pending. This is is illustrated ilg#res 5.9
and 5.10 — either of these diagrams can represent the effectding eight
elements to the stock &fY. We model the fulfillment of orders after the addition
of stock non-deterministically, which allows the develpperefine the model
to enforce any ordering later in the development.

. 02 : Order
_O1:Order PY : Product —
newStock? = 8
ity = uantity = 8
quantity = 3 . stock = 2 d vy)
state = pending state = pending
: 02 : Order
M PY : Product —_—
ity = uantity = 8
quantny_ 3. stock = 7 q _ty .
state = invoiced state = pending

Figure 5.9 Snapshot foAdd Stock stock is increased and only one of the pending
orders is invoiced (option 1)

Currently, the operatioBysAddStockpecified above does not change the state of
Order objects, it just adds to the stock. We need to follow the saateem used for
theNew Orderoperation: the specification is divided in two parts that@retogether
using sequential composition. These two parts are: (a) laglshéw quantity to the
product’s stock and (b) update the orders that are pendirtgeproduct until there
is insufficient stock remaining for any more, and reduce tbeksby the sum of the
quantities of all orders that have been invoiced.

Above, we have specified part (a), so we just need to add partKlst, we
specify the component operation that updates a set of oirdirs extension oDrder.
This needs to invoice a set @frder objects, which is defined usirmgulti-promotion
[STE 03}. Order, Invoiceis promoted to be executed on a seQuler objects (fully
generated):

IMulti-promotion promotes operations on a set of objecthemthan a single object.

UML+Z: Augmenting UML withZ 99

. 02 : Order
_O1: Order PY : Product —
ity = uantity = 8
quantity = 3 . stock = 2 q _y)
state = pending state = pending
O1 : Order PY : Product 02 : Order
quantity = 3 . stock = 2 quannty = 8.
state = pending state = invoiced

Figure 5.10 Snapshot foAdd Stock stock is increased and only one of the pending
orders is invoiced (option 2)

__SaOrderlnvoiceSet
ASOrder
osOrdef’ : P(OOrderCl)

osOrdef? C orders
orders= orders
osOrdef? < orderSt= osOrder? < orderSt

Vo: o0sOrdef?” ¢« 3 AOrder e
orderSt o= #Order A orderSt o = 0Order A OrderaInvoice

The part (b) system operation is defined by composing compangerations.
First, we need a schema expressing the precondition forgation; invoicing starts
if there is at least one pending order on the product that edulbilled:

__PreCondAddOrders
SOrder;SProductAReferences
oProduct : OProductCl

Jo: references({oProduct} |) e
(orderSt g.state= pending
A (orderSt g.quantity< (productSt oProdug).stock

We have chosen to specify this operation non-determiaitficso we express the
desired postcondition of the operation: after the openaioexecuted, there are no
pending orders on the product that could be fulfilled:

100 Software Specification Methods

___PostCondAddOrders
SOrder’ ;SProduct;AReferences
oProduct : OProductCl

Vo references™({oProduct} |) | (orderSt o).state= pendinge
(orderSt 0).quantity> (productStoProduct).stock

Next, we define a connector for use in the composition. This Hzat the set of
Orders to invoice ¢sOrdef?) is a subset of all the orders that are pending on the up-
dated product and that can be fulfilled (it is non-deternticisand that thejuantity?
to subtract from stock is the sum of the quantities of all esdkat are to be invoiced:

___Connector
SOrder; AReferencesSProduct
oProduct : OProductCl
quantity? : N
osOrdef’ : P(QOOrderCl)
osOrder? C { o: references({oProduct}) |

(orderSt g.state= pending
A (orderSt g.quantity< (productSt oProdu¢t).stock}

quantity? = ¥ { 0 : osOrderR e (0 — (orderSt g.quantity) }

This uses the generic operatofrom the Z toolkit ofUML + Z:
= (L]
Y:(L+2)—Z
Yo=0
Vi:Lin:Z;S:L+Z|lgdomSe X ({l»nfuS=n+3%S

The part (b) operatiolsysAddStogkis the composition of all these definitions:
the operation says that if the precondition scheRr@ CondAddOrdelss true, then
orders are invoiced, otherwise nothing changes. The sysparation SysAddStock
composes the part (a) and part (b) specifications using sigbeomposition:

WAddStock == ASystenn =AReferences

SysAddStogk== (YAddStock A
PreCondAddOrderg. SaOrderinvoiceSet
A ConnectorA SaProductStockSubtract PostCondAddOrders
V = PreCondAddOrders. =System\ (osOrdef’, quantity?)

SysAddStock= SysAddStogk SysAddStogk

Question 25: Is the new version of the operation consistent? What is gsqmdi-
tion? Are the snapshots valid in this new version?

UML+Z: Augmenting UML withZ 101

Answer: The precondition remains the same, as expected. The validatoofs for
the snapshots are provable in Z/Eves.

5.4 Natural language description of the specification

54.1 Casel

An order references one product and a product may be refeddnc zero or more
orders. Orders may be in one of two stafgndingor invoiced depending on whether
they are waiting to be fulfilled or if they have been fulfilleddainvoiced; orders have
a quantity, which is a positive whole number. Arder has the operatiomvoice
which changes the state of teder from pendinginto invoiced In the initial state of
the system there are no orders and no products.

5.4.2 Case?

Case 2 extends case 1 with three system operations to entedan to cancel an
order, and to add stock.

The order entry operation stores the order as a new objeks ii to the ordered
product, and checks whether the order can be invoiced (isdahe way as for case
1). If an order can be invoiced, then the ordeantityis subtracted from the product
stock and the ordestateis set toinvoiced If not, then the product is unchanged, and
the orderstateis set topending

Order cancellation applies only to orders in fendingstate. The operation re-
moves the order and the link between the cancelled ordetenortiered product.

Entries of stock are explicitly additions to the prodstick When stock is re-
ceived for a known product, it is added to the existing stoGke pendingorders
linked to that product are checked, and they are invoiceilnmimore orders can be
met. There is no imposed ordering on this process, and narezgent to invoice as
many orders as possible, but the non-deterministic ordeviould allow such condi-
tions to be added by refinement if required.

5.5 Conclusion

Our approach has produced a combined object-oriented amdfonodel of the sys-
tem. Some aspects of the case studies were clarified simpéxjessing the re-
quirements in UML diagrams; the underlying Z representatibthe UML diagrams
forced us to be clear and precise in drawing UML diagrams. yMaguirements were
clarified through snapshot-based validation.

The Z model gives the precise meaning of the UML diagrams aatiles formal
verification and validation of UML-based models. We woulelimake the Z hidden
to the user as much as possible, but this could not be fulligaet. At least one expert
is required to write Z operation specifications and invadgahat are not expressible

102 Software Specification Methods

diagrammatically. Nevertheless, tidIL + Z framework offers the benefits of formal
development, whilst allowing people who are not Z expertngage in the modeling
and analysis effort, by drawing class, state and objectdiag

An important feature of our approach is templates. The tateplof thdJML + Z
catalogue are expressed in FTL [AMA 06]. All Z in this chaptegenerated by in-
stantiating templates from the catalogue. In most casesingtantiation was fully
generated from the diagrams; a few times, the developeradetedadd extra infor-
mation. The meta-theorems of the catalogue reduce the pffunt associated with
checking the consistency of théML + Z model; sometimes no proof at all was re-
quired (consistency conjectures werae by constructio)) at other times the meta-
theorems simplified the proof to a point where it could belgakischarged in Z/Eves.

Our illustration ofUML + Z validation has shown that errors in models can be
found: (a) because the model does not capture what the ¢g@rdldended; (b) be-
cause the model is inconsistent; (c) because the deveddpeghtion is consistently
expressed in the model but is not what the client wanted. Beeofi both diagram-
matic and formalised snapshots is shown to be necessarirazethe various failings
of the models.

Acknowledgements

Nuno Amalio is funded by the Portuguese Foundation for i8@eand Technology
under grant 6904/2001.

Bibliography

[AMA 04] AMALIO N., STEPNEYS., PoLAcK F., “Formal Proof From UML Mod-
els”, in DavIES J.et al, Eds.|CFEM 2004 vol. 3308 ofLNCS Springer, p. 418—
433, 2004.

[AMA 05] A MALIO N., POLACK F., STEPNEY S., “An Object-Oriented Structuring
for Z based on Views”, in REHARNE H. et al, Eds.,ZB 2005: International
Conference of B and Z Usergol. 3455 ofLNCS Springer, p. 262—278, 2005.

[AMA 06] A MALIO N., Frameworks based on templates for rigorous model-drive
development, PhD thesis, Department of Computer Scienciweksity of York,
2006.

[D’S 99] D'Souza D. F., WiLLs A. C., Objects, Components and Frameworks in
UML: The Catalysis ApproachAddison-Wesley, 1999.

[SAA 97] SAALTINK M., “The Z/EVES system”, inZUM'97, Reading, UK
vol. 1212 ofLNCS Springer, 1997.

[STE 03] SrEPNEYS., PoLACK F., TOYN I., “Patterns to Guide Practical Refactor-
ing: Examples Targeting Promotion in Z”, ireRT D. et al., Eds.,ZB 2003, Turku,
Finland, vol. 2651 ofLNCS Springer, p. 20-39, 2003.

[WOO 96] Woobcock J., Davies J., Using Z: Specification, Refinement, and
Proof, Prentice-Hall, 1996.

