
Chapter 5

UML+Z: Augmenting UML with Z

Nuno AMÁLIO , Fiona POLACK, and Susan STEPNEY

5.1 Overview ofUML + Z

UML + Z is a framework for building, analysing and refining models ofsoftware
systems based on the UML and the formal specification language Z. It is, in fact, an
instance of an approach to build rigorous engineering frameworks for model-driven
development based on templates, which we callCiTRUS[AMA 06]. UML + Z is
targeted at developers who have minimal knowledge of Z, but are familiar with UML-
based modeling.UML + Z models comprise class, state and object UML diagrams,
which are represented in a common Z model (the semantic domain) in Figure 5.1; the
Z model gives the precise meaning of the diagrams. The framework tries to minimise
exposure to the Z model, with UML diagrams acting like a graphical interface for the
formality (Z) that lies underneath, but this is not always possible and one Z expert
is required in the development to describe system properties that are not expressible
diagrammatically (mainly operations and constraints).

Figure 5.1: Models in theUML + Z framework



82 Software Specification Methods

A crucial component ofUML + Z is a catalogue oftemplatesandmeta-theorems.
Templates are generic representations of sentences of someformal language, which,
when instantiated, yield actual language sentences. To express templates, we have
developed the formal template language (FTL), which enables an approach to proof
with template representations of Z (meta-proof). This enables the representation of
structural Z patterns as templates (e.g. the structure of a Zoperation), but also rea-
soning with these template representation to establishmeta-theorems(e.g. calculate a
precondition). Every sentence of the Z model inUML+Z is generated by instantiating
one of the templates, and meta-theorems can be used to simplify, and in some cases
fully discharge, proofs associated with the Z model.

The modeling and analysis process withUML + Z begins with the drawing of
UML class and state diagrams. These diagrams are then used toinstantiate templates
from the catalogue to generate the Z model. The developer then adds operations and
system constraints that are not expressed diagrammatically to the Z model. The Z
specification is then checked for consistency using the meta-theorems of theUML+Z
catalogue and a Z theorem prover. Finally, there is a processof model analysis, where
the developer draws snapshots to validate the model; these snapshots are represented
in Z and the analysis is assisted by the Z/Eves theorem prover. Usually, the analysis
phase of the process results in changes to the diagrams or theportion of the Z model
not expressed diagrammatically.

Currently, the process of instantiating templates is manual. The templates from
the catalogue are manually selected and instantiated with names from the diagrams.
The reasoning with templates is also based on manual instantiation, but it is assisted
by Z proof tools such as Z/Eves [SAA 97].

5.2 Analysis and specification of case 1

We start by modeling the static and behavioral aspects of thesystem with UML class
and state diagrams. Then we discuss the Z model that is generated from the diagrams
by instantiating templates. Finally, theUML + Z model is consistency-checked and
analysed.

The following terminology is used to refer to the Z generatedfrom templates:

• fully generated– the Z is fully generated by instantiating templates with infor-
mation of diagrams. If we had a tool, the Z would be automatically generated;

• partially generated– the instantiation depends on information that does not
come from UML diagrams, but needs to be explicitly added by the developer
(usually constraints not expressible diagrammatically).

5.2.1 UML class model

A UML class diagram describesclassesand their relationships. At the abstract level,
a class diagram captures the main entities (or concepts) of asystem and the structural



UML+Z: Augmenting UML with Z 83

relationship that exists between them. A class denotes a setof objects (individuals)
that share certainattributesandoperations.

Question 1: What data does the system manage? What are the main entities of the
system and what are the relationships among them?

Answer: The case study states that the system is about invoicing orders that are
placed for products. We modelorder and product as two UML classes and
relate them with an association.

Question 2: Are there limits on the number of products that an order can reference?
How many orders can reference the same product?

Answer: The case study makes clear that each order references precisely one product,
but a product can be referenced by many orders. We assume thatthere are
products that are not referenced by orders. We represent this information in the
multiplicity of the association betweenOrder andProduct: Order references
oneproduct, but a product may be referenced bymanyorders.

Question 3: What information should the system hold for products and orders?

Answer: The case study states that orders can be for different quantities of the same
reference; we represent the orderedquantityas an attribute of the classOrder.
The case study also refers to quantities of products available in stock. We model
thestockquantity as an attribute of classProduct.

Question 4: Do we know what type of information these quantities hold? Are prod-
ucts whole things (eg. books or parts) or continuous amounts(eg. water or
cloth)? Can there be negative stock?

Answer: The case study does not fully answer these questions. We assume that the
attributes are of the same type, since the things being ordered are from the stock
of a product. We know that a mathematical ordering on the typeis required
(since stock may be less than or equal to the ordered quantity). So, based on our
intuitive notion of quantity, we assume that the attributesquantityandstockare
natural numbers (we do not allow negative stock).

These features are modeled in a UML class diagram in Figure 5.2. This says that
there are two classes,OrderandProduct, each representing a set of objects (the orders
and products of the system). EachOrderobject has aquantityattribute, referring to the
ordered quantity of a product, and eachProductobject has astockattribute, recording
how much of the product is available in stock.Order andProductare related through
an association, which says that each order refers to exactlyone product, and that each
product may be referred by many orders.

5.2.2 UML state models

UML state diagrams describe the permitted state transitions of the objects of a class.
Here we draw the UML state diagram of classOrder.



84 Software Specification Methods
 

Order 

quantity : NAT 

Product 

stock : NAT 

references 

0..* 1

Figure 5.2: Initial version of the high-level UML class diagram

Question 5: What happens when a product is ordered? What happens to an order?

Answer: The case study says that an order can beinvoiced, and that this changes
the state of an order frompendingto invoiced. Invoicing only occurs if the or-
dered quantity is either less than or equal to the quantity that is in stock. We
assume that all new orders have the state,pending. When invoiced, the order
changes from the statependinginto the stateinvoiced. This is captured in the
state diagram of Figure 5.3. Note that the constraintorders are invoiced only
if there is enough stock to fulfill the order(orderedquantity≤ stockquantity)
is not expressed here as a guard of the state transition. Thisbecause that con-
straint involves the state of aProductobject and here we are restricted to state
constraints expressible in terms of the state ofOrder.

pending invoiced
invoice()

Figure 5.3: The state diagram ofOrder

5.2.3 The Z model

The Z model resulting from the UML class and state diagrams above is fully gener-
ated. It enables formal consistency-checking and validation ofthe wholeUML + Z
model. The Z model follows a structuring to specify object-oriented (OO) systems
in Z, which usesviewsto separate the description of the different aspects of a system
(see [AMA 05] for full details); there are five views, namely,structural, intensional,
extensional, relational and global. In the following, the fully generated Z model is
presented for each view.

The Z model follows certain naming conventions. The names ofoperations that
perform a change of state include the symbol∆. The names of extensional view
definitions are prefixed byS, and the ones of the relational view byA.

5.2.3.1 Structural view

Thestructuralview defines the set of all classes of a model as atoms, and assigns to
each class a set of objects: the set of all possible objects ofthe class.



UML+Z: Augmenting UML with Z 85

The Z toolkit ofUML + Z defines the set of all objects (OBJ) and asserts that this
set is non-empty:

[OBJ] OBJ 6= ∅

The setCLASSdefines the set of all classes of a model and the functionO gives
all the possible objects of a class. As we do not havesubclassing(inheritance) in our
model the sets of objects of each class are mutually disjoint:

CLASS::= OrderCl | ProductCl O : CLASS→ P
1

OBJ

disjointCLASSC O

5.2.3.2 Intensional view

The intensional view describes the intensional meaning of aclass, that is: the proper-
ties shared by all its objects. This amounts to defining: (a) the state space of objects,
which includes the definition of class attributes; (b) the initialisation of state; and (c)
the operations of the objects of the class.

The classOrder requires a type representing the set of all states of the state dia-
gram:

ORDERST::= pending| invoiced

The state space comprisesstate, which records the current state of anOrder as
defined in the state diagram, andquantity, which is defined in the class diagram:

Order
state: ORDERST
quantity: N OrderInit

Order′

quantity? : N
state′ = pending

quantity′ = quantity?

The invoice operation captures the state transition frompendingto invoiced, as
described in the state diagram:

Order∆Invoice
∆Order

state= pending∧ state′ = invoiced∧ quantity′ = quantity

The intension ofProductis defined as described in the class diagram in Figure 5.2:

Product
stock: N ProductInit

Product′

stock′ = 0



86 Software Specification Methods

5.2.3.3 Extensional view

The extensional view describes the extensional meaning of classes, that is, the set
of all existing objects of a class. Like intensions, class extensions comprise a state
space, an initialisation and operations. A class extensionis defined by using Zpromo-
tion [WOO 96, STE 03], a structuring technique for constructing aggregate (or whole-
part) structures. Promotion is used whenever there is a component that comprises in-
dependent parts, with their own state. In this case, the state of a class extension is
defined as an aggregate structure comprising all its existing objects (each an instance
of a class intension): the class extensionpromotesits intension.

The state space of all class extensions is defined by instantiating theSClass generic
schema of the framework’s Z toolkit. This generic introduces the parametersOSET
andOSTATE, which are to be substituted by the set of all objects of the specific class
and the intensional state space of the class (as defined above). The schema component
objsrepresents the set of existing objects of the class and,objStis a function that gives
the current state of one object:

SClass [OSET, OSTATE]
objs : POSET
objSt: OSET 7→ OSTATE

domobjSt= objs

The extension ofOrder instantiates the class generic. The components of the
generic are renamed to avoid name clashes when all the extensional schemas are put
together to make the system schema (see below). The initialisation sets the schema
components to the empty set: in the initial state there no orders:

SOrder == SClass[OOrderCl, Order][orders/objs, orderSt/objSt]

SOrderInit == [ SOrder ′ | orders′ = ∅ ∧ orderSt′ = ∅ ]

Operations defined using promotion require an auxiliary schema that specify the
frameof the operation: the aggregate components that are to change as a result of
the operation and those that should remain unaltered. Thereare different kinds of
promotion frames (see [AMA 05, WOO 96, STE 03] for details). To create a new
Order object, we need a frame specifying the addition of a new object to the class
extension (names of promotion frames are preceeded byΦ):

ΦSOrderNew
∆SOrder ; Order ′

oOrder! : OOrderCl

oOrder! ∈ OOrderCl\ orders

orders′ = orders∪ {oOrder!}

orderSt′ = orderSt∪ {oOrder! 7→ θOrder′}



UML+Z: Augmenting UML with Z 87

The Z operatorθ captures a schema binding: an assignment of values to the schema’s
variables. The frame says that the newly created object (oOrder!) will be mapped to
some state, which is defined in the initialisation being promoted. The actual operation
to create a newOrder object uses the framing schema:

S∆OrderNew== ∃ Order ′ • ΦSOrderNew∧ OrderInit

The binding (θOrder′) of the frame is specified inOrderInit.
The update frame specifies a state transition of a singleOrder object:

ΦSOrderUpdate
∆SOrder ; ∆Order
oOrder? : OOrderCl

oOrder? ∈ orders

θOrder = orderSt oOrder?

orders′ = orders

orderSt′ = orderSt⊕ {oOrder? 7→ θOrder′}

The extension operation to invoice anOrder uses the update frame:

S∆OrderInvoice== ∃∆Order • ΦSOrderUpdate∧ Order∆Invoice

The extension ofProductis similarly defined.

5.2.3.4 Relational view

The relational view defines the associations between classes. Associations are repre-
sented as a relation in Z, and denote a set of object tuples (the objects being related).

The state of the associationReferencesis defined as a mathematical relation be-
tween the set of all objects of the classORderand that ofProduct. The initialisation
sets all tuples to empty: in the initial state there are no objects and no links between
them:

AReferences== [ references: OOrderCl↔ OProductCl]

AReferencesInit== [ AReferences′ | references′ = ∅ ]

5.2.3.5 Global view

This view looks at the system from a global viewpoint. It represents the system struc-
ture as a composition of local structures (classes and associations), and constraints
that can only be expressed in the context of the system as a whole.

The multiplicity of associations is a constraint that cannot be expressed in the
relational view. These constraints affect the existing objects of the associated classes,



88 Software Specification Methods

defined in the class extension. The schemaLinkAReferencesexpresses the multiplicity
constraint of the associationReferencesusing the genericRel∗,1 from the Z toolkit of
UML + Z; this says thatreferences(a relation) is constrained to be a total function,
from the set of existing orders to the set of existing products:

Rel∗,1[X, Y] == X → Y LinkAReferences
SOrder;SProduct;AReferences

references∈ Rel∗,1[orders, products]

The system schema includes all component schemas and the association con-
straint:

System
SOrder;SProduct;AReferences

LinkAReferences

The initialisation of the system is the initialisation of the system’s components:

SysInit== System′ ∧ SOrderInit ∧ SProductInit∧ AReferencesInit

5.2.4 Checking model consistency

Question 6: Is the model internally consistent?

Answer: The Z model is type-correct (checked with Z-Eves). But a model can be
type-correct and still be inconsistent. The consistency ofZ models is demon-
strated by proving certain conjectures. Z conjectures havethe form`? P, where
P is a well-formed Z predicate, which is said to be proved underthe statements
of the specification; whenP is true, the conjecture establishes a theorem of the
specification.

To demonstrate the consistency of state space descriptions, one is required to prove
initialisation conjectures, to show that there is at least one valid instance of the state
space description satisfying its initialisation (an existence proof). For example, the
initialisation conjecture forOrder (intensional view, above) is:̀? ∃OrderInit • true.

We prove initialisation conjectures for the various systemcomponents and the
whole system:

• the initialisation conjectures of class intensions are simplified by appeal toUML+
Z meta-theorems, and they are then automatically proved in Z/Eves;

• the initialisation conjectures of class extensions, associations and system are
true by construction, by appeal to meta-theorems ofUML + Z.



UML+Z: Augmenting UML with Z 89

5.2.5 Validating the model

Question 7: How can we be confident that the model expresses the intent of our cus-
tomer?

Answer: We need to check the model against the requirements of the system. A
model may be consistent and still not meet the system requirements. We have
developed a technique, based on Catalysis snapshots [D’S 99] and formal proof,
to validate the models of our framework [AMA 04]; this validation is assisted
by Z/Eves.

Catalysis snapshots are UML object diagrams. These diagramare instances of
class diagrams, describing the objects of a system and the way they are linked among
each other at a point in time. The use of diagrams helps to involve the customer
of the system in model validation, by drawing diagrams that illustrate the system’s
requirements.

Question 8: Obviously, we can’t validate everything, but how would we know that an
order really can only reference one product? Does the systemaccept a situation
where two products are linked to one order?

Answer: The snapshot in Figure 5.4 is used to validate this requirement. It shows a
state that should not be accepted by the model of the system: an order that refers
to two products.

O1 : Order

P1 : Product

P2 : Product

Figure 5.4: A snapshot showing an Order associated with two products

The Z representation of this snapshot is fully generated by template instantiation:

StSnap1
System

orders= {oO1} ∧ orderSt= {oO1 7→ O1}

products= {oPX, oPY} ∧ productSt= {oPX 7→ PX, oPY 7→ PY}

references= {oO1 7→ oPX, oO1 7→ oPY}

(Some definitions are omitted, such as names and states of objects.)
The state described by the snapshot should not be accepted bythe system, thus we

prove the conjecture (the negation of the positive case):

`? ¬ (∃ StSnap1 • true)



90 Software Specification Methods

This conjecture is provable in Z/Eves, which means that the state described by the
snapshot is not valid in the model of the system.

5.3 Analysis and specification of case 2

The second case study does not change the state space, but it adds external behavior,
and modifies internal behavior. Case 2 requires that the system provide the following
operations:

• entries of new orders;
• cancellation of orders;
• entries of quantities in the stock.

For each of these operations in turn, we discuss its specification, then review its
verification and validation. The existing generated Z modelis unchanged.

5.3.1 Entries of new orders

Question 9: What must the system do when an order is received? What are the
changes to the system?

Answer: ¿From the case study we deduce that the system creates the order and asso-
ciates it to the ordered product. Then, if there is enough stock, the order is set to
invoiced, otherwise it is set topending. This involves the following component
operations:

1. create anOrder object (state is set topending);
2. create the tuple linking the new order with the ordered product;
3. set the state of theOrder to invoicedif there is enough stock.

First, we specify component operations individually, and then their composition.
The first and third operations have already been specified forOrder (S∆OrderNewand
S∆OrderInvoice, above). The second operation is defined in the relational view (fully
generated):

A∆ReferencesAdd
∆ AReferences
oOrder? : OOrderCl
oProduct? : OProductCl

references′ = references∪ {oOrder? 7→ oProduct?}

The system operation is defined as the composition of the component operations.
This ispartially generated. To simplify matters, the operation specification is divided
in two parts: (a) create the object and tuple in the association references; (b) set the
order to invoiced if there is sufficient stock. The two parts are then combined using



UML+Z: Augmenting UML with Z 91

the schema composition operator (o

9) [WOO 96], which means that part (a) is followed
by part (b).

In part (a), we start by defining the frame of the operation, which makes explicit
what is to change and what is to remain unchanged. The name of system opera-
tion frames are prefixed byΨ (by analogy toΦ promotion frames), and are formed
by conjoining∆ Systemwith the Ξ (nothing changes) of every system component
whose state is to remain unchanged. In the system operation to create new orders, the
SProductcomponent should remain unchanged (there are no changes to products):

ΨNewOrdera == ∆System∧ ΞSProduct

The system operation is specified as the conjunction of the frame and the component
operations; the renaming is needed so that elements of the schemas correctly commu-
nicate across the composition:

SysNewOrdera == ΨNewOrdera
∧ S∆OrderNew∧ A∆ReferencesAdd[oOrder!/oOrder?]

In part (b), we need a schema stating the condition on the state transitionpending
to invoiced, which says that an order may change toinvoicedonly if the ordered quan-
tity is less than or equal to the stock for the ordered product:

CondStockIsAvailable
SProduct
oProduct? : OProductCl
quantity? : N
oProduct? ∈ products∧ quantity? ≤ (productSt oProduct?).stock

The frame of part (b) says that only theOrder component may change. The ac-
tual operation says that if there is enough stock to fulfill the order then it should be
invoiced, otherwise there is no change in the system:

ΨNewOrderb == ∆System∧ ΞSProduct∧ ΞAReferences

SysNewOrderb == ΨNewOrderb
∧ CondStockIsAvailable∧ S∆OrderInvoice[oOrder!/oOrder?]
∨ ¬ CondStockIsAvailable∧ ΞSystem

Finally, the two parts are put together to make the system operation:

SysNewOrder== SysNewOrdera
o

9 SysNewOrderb



92 Software Specification Methods

Question 10: Is the operation consistent? What is its precondition?

Answer: The precondition of a Z operation describes the sets of states for which
the outcome of the operation is properly defined. An operation is consistent (or
satisfiable) if its precondition is notfalse. The precondition of the new operation
is:

OOrderCl\ orders 6= ∅ ∧ oProduct? ∈ products

This precondition is notfalse. It states that the system has capacity for another
Orderobject and that the ordered product is an existing product. This is exactly
what we expect the precondition to be.

Question 11: Can we examine the model with a snapshot for the case that there is
enough stock to fulfill an order?

Answer: We can write snapshots that describe state transitions. These snapshots are
divided in two parts: the system state before an operation, and the state of the
system after the operation.

Figure 5.5 shows a before state at the top (there is one product PX); the values of
all the attributes are shown in the object boxes. The required after state of the first
running of the operation is in the middle – there is now one order forPX. OrderO1 is
for a quantityless than productPX’s quantity ofstock, so thestateof O1 is invoiced.
This is also the before state for another running of the operation, which addsO2,
another order whosequantityis less than productPX’s quantity ofstock, so itsstateis
alsoinvoiced.

PX : Product

stock = 3

O2 : Order

quantity = 2
state = invoiced

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 3

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 3

Figure 5.5: SysNewOrdersnapshot: request for a product with enough stock



UML+Z: Augmenting UML with Z 93

To check the validity of the operation snapshot, we represent the states in Z and
we prove conjectures that perform three types of checks. Thefirst checks that (a)
the before-state is a valid system state and (b) it satisfies the operation precondition,
an existence proof. The second checks that the after-state is a valid system state.
The third checks that the operation satisfies the constraints described by the snapshot.
These conjecture are captured by templates (see [AMA 06, AMA04] for full details).

The conjectures for the snapshot in Figure 5.5 are all provable by Z/Eves.

Question 12: But how can we keep placing orders against productPX? Why is the
stock not running out?

Answer: Here, the visualisation highlights a problem with the model. The case study
does not say anything about what happens tostockwhen an order is performed.
We assume that the stock is subtracted the orderedquantityeach time.

Question 13: What do we need to do to the models?

Answer: First, we change the snapshot to describe what we want the system to do.
Figure 5.6 shows the snapshot for the corrected second running of the operation:
now the ordered amount is subtracted from the stock.

O2 : Order

quantity = 2
state = pending

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 1

O1 : Order

quantity = 2
state = invoiced

PX : Product

stock = 1

Figure 5.6: RevisedSysNewOrdersnapshot with deletion of quantity from stock

As expected, this snapshot fails to validate. The first two checks (above) are still
true, since the before and after states are valid states of the system, and the before
state is a valid precondition state for the operation. The third conjecture, which looks
at whether the operation actually changes the before state into the after state, is false
(its negation istrue) – the operation does not perform the required transition. The Z
operation specification needs to be corrected so that stock subtraction is performed.

We specify an operation in the intension ofProductto subtract an input quantity
(quantity?) from the productstock:



94 Software Specification Methods

Product∆StockSubtract
∆Product
quantity? : N
stock′ = stock− quantity?

As before, the operation is promoted in the extensional view(fully generated):

S∆ProductStockSubtract== ∃ ∆Product•
ΦSProductUpdate∧ Product∆StockSubtract

The originalSysNewOrderhas two components: the creation, then the invoicing.
The stock change only applies to orders that can be invoiced.The calculated precon-
dition of the new operation now captures the precondition previously expressed in the
schemaCondStockIsAvailable, so this is no longer required. The new version is:

ΨNewOrderb == ∆System∧ ΞAReferences

SysNewOrderb == ΨNewOrderb
∧ S∆OrderInvoice[oOrder!/oOrder?] ∧ S∆ProductStockSubtract
∨ ¬ pre S∆ProductStockSubtract∧ ΞSystem

SysNewOrder== SysNewOrdera
o

9 SysNewOrderb

Question 14: Is the new version of the operation consistent? What is its precondi-
tion? And is the operation snapshot valid now?

Answer: The precondition of the operation remains the same, which iswhat we want.
The validation has to be repeated to ensure that the snapshots are still valid. In
fact all the necessary proofs are now true; the system behaves as the customer
wishes.

5.3.2 Cancellation of orders

Question 15: What happens when an order is cancelled? Is the data relatingto the
cancelled order retained in the system?

Answer: The case study just says that orders may be cancelled. We assume that can-
celled orders are deleted from the system. (The alternative, recording cancelled
orders, would require the addition of acancelledstate to the state diagram of
Order.)

Question 16: Can an invoiced order be cancelled?

Answer: The case study is not clear on restrictions on cancellation.Here, we assume
that onlypendingorders can be cancelled. (The cancelling ofinvoicedorders
would require that the ordered quantity be placed back into the stock.)



UML+Z: Augmenting UML with Z 95

pending invoiced
invoice()

Figure 5.7: The updated state diagram ofOrder

To express cancellation we need to change the state diagram of Order, by adding
an arrow from the statependingto the terminal state (Figure 5.7). This means that the
object is deleted only when in thependingstate.

This new arrow requires that more Z isfully generatedfrom templates. In the
intension ofOrder, finalisation captures the fact thatOrder objects may be deleted
only if in thependingstate:

OrderFin == [ Order | state= pending]

The finalisation is then promoted in the extensional view. The delete promotion
frame forOrder removes an object from the class extension:

ΦSOrderDelete
∆SOrder
Order
oOrder? : OOrderCl

oOrder? ∈ orders

θOrder = orderSt oOrder?

orders′ = orders\ {oOrder?}

orderSt′ = {oOrder?} −C orderSt

The operation that deletesOrderobjects uses the frame to promote the finalisation:

S∆OrderDelete== ∃Order • ΦSOrderDelete∧ OrderDelCond

Question 17: What must the system do when an order is received? What are the
changes to the system?

Answer: ¿From the case study and our assumptions, we deduce that the system must
delete theOrderobject and its tuple in the associationReferences. This involves
two component operations: deletion of the order object (above) and deletion of
tuple; both arefully generated.

The association operation deletes the tuple from the association, given anOrder
object as input:



96 Software Specification Methods

A∆ReferencesDelOrder
∆ AReferences
oOrder? : OOrderCl

references′ = {oOrder?} −C references

The system operation to cancel orders conjoins its frame with the component op-
erations:

ΨCancelOrder== ∆System∧ ΞSProduct

SysCancelOrder== ΨCancelOrder∧ S∆OrderDelete∧

A∆ReferencesDelOrder

Question 18: Is the operation consistent? What is its precondition?

Answer: The precondition predicate (calculated with Z/Eves) is:

oOrder? ∈ orders∧ (orderSt oOrder?).state= pending

The operation is satisfiable, its precondition requires that the order to be can-
celled is an existing order and that itsstateis pending, as expected.

Question 19: Does the order cancellation operation do what we expect?

Answer: Yes. The operation has been validated. We do not show the validation
snapshots here, but we tested the case where the order to delete ispending(con-
jectures were all true) and the case where the order to deleteis invoiced(one
conjecture was false, as expected).

5.3.3 Entries of quantities into stock

Question 20: What is an “entry of quantities in the stock”? Does the required oper-
ation have to (a) just add stock, as in stock delivery or return; (b) also subtract
stock, as in stock decay or wastage; or (c) accommodate arbitrary re-setting of
the stock, as in stock-taking?

Answer: The case study does not elaborate on the meaning of stock entry. We assume
that it adds an input quantity to thestockattribute.

The modeler needs to specify an operation to add stock, on theintension ofProduct.
The operation receives a quantity of stock as input and adds this quantity to the exist-
ing stock:

Product∆StockAdd
∆Product
nStock? : N
stock′ = stock+ nStock?



UML+Z: Augmenting UML with Z 97

This operation is promoted in the extension ofProduct(fully generated):

S∆ProductStockAdd== ∃ ∆Product•
ΦSProductUpdate∧ Product∆StockAdd

The system operation simply puts the promoted operation into the context of the
system:

ΨAddStock== ∆System∧ ΞSOrder ∧ ΞAReferences

SysAddStock== ΨAddStock∧ S∆ProductStockAdd

Question 21: Is the operation consistent? What is its precondition?

Answer: The precondition (calculated in Z/Eves) is:

oProduct? ∈ products

The operation is consistent, its precondition requires that the product to which
stock is to be added is an existing product.

Question 22: Can we validate this operation with a snapshot?

Answer: We draw a snapshot illustrating the addition of stock to a product (Fig-
ure 5.8). A quantity of eight is added to thestockof PY, but there is an order
pendingwith a quantityof three. This snapshot is valid in our model (conjec-
tures proved in Z/Eves), but this poses a question.

PY : Product

stock = 2

O1 : Order

quantity = 3
state = pending

PY : Product

stock = 10

O1 : Order

quantity = 3
state = pending

newStock? = 8

Figure 5.8: Snapshot forAdd Stock: Order remainspending

Question 23: What happens when stock is added to products with pending orders?
For example, in the snapshot, after the addition, there is enough stock to ful-
fill the orderO1? ShouldO1 be changed toinvoicedand stock subtracted the
ordered amount?



98 Software Specification Methods

Answer: The case study does not say what happens here. We assume that the pending
order should be set to invoiced in this case. The snapshot should be corrected
to reflect this: the after state ofO1 would beinvoiced, andstockvalue would be
adjusted by8 − 3. This snapshot is valid in our model (proved in Z/Eves).

Question 24: But what if there were more than one orderpendingonPY?

Answer: Again, the case study is omissive. We assume that any order ororders are
invoiced, until there is insufficient stock. We also decide not to impose any
ordering to fulfill orders that are pending. This is is illustrated in Figures 5.9
and 5.10 – either of these diagrams can represent the effect of adding eight
elements to the stock ofPY. We model the fulfillment of orders after the addition
of stock non-deterministically, which allows the developer to refine the model
to enforce any ordering later in the development.

PY : Product

stock = 2

O2 : Order

quantity = 8
state = pending

O1 : Order

quantity = 3
state = pending

newStock? = 8

PY : Product

stock = 7

O2 : Order

quantity = 8
state = pending

O1 : Order

quantity = 3
state = invoiced

Figure 5.9: Snapshot forAdd Stock: stock is increased and only one of the pending
orders is invoiced (option 1)

Currently, the operationSysAddStockspecified above does not change the state of
Order objects, it just adds to the stock. We need to follow the same pattern used for
theNew Orderoperation: the specification is divided in two parts that areput together
using sequential composition. These two parts are: (a) add the new quantity to the
product’s stock and (b) update the orders that are pending onthe product until there
is insufficient stock remaining for any more, and reduce the stock by the sum of the
quantities of all orders that have been invoiced.

Above, we have specified part (a), so we just need to add part (b). First, we
specify the component operation that updates a set of ordersin the extension ofOrder.
This needs to invoice a set ofOrder objects, which is defined usingmulti-promotion
[STE 03]1. Order∆Invoiceis promoted to be executed on a set ofOrderobjects (fully
generated):

1Multi-promotion promotes operations on a set of objects, rather than a single object.



UML+Z: Augmenting UML with Z 99

PY : Product

stock = 2

O2 : Order

quantity = 8
state = pending

O1 : Order

quantity = 3
state = pending

newStock? = 8

PY : Product

stock = 2

O2 : Order

quantity = 8
state = invoiced

O1 : Order

quantity = 3
state = pending

Figure 5.10: Snapshot forAdd Stock: stock is increased and only one of the pending
orders is invoiced (option 2)

S∆OrderInvoiceSet
∆SOrder
osOrder? : P(OOrderCl)

osOrder? ⊆ orders

orders= orders′

osOrder? −C orderSt= osOrder? −C orderSt′

∀o : osOrder? • ∃∆Order •
orderSt o= θOrder∧ orderSt′ o = θOrder′ ∧ Order∆Invoice

The part (b) system operation is defined by composing component operations.
First, we need a schema expressing the precondition for the operation; invoicing starts
if there is at least one pending order on the product that can be fulfilled:

PreCondAddOrders
SOrder;SProduct;AReferences
oProduct? : OProductCl

∃o : references∼(| {oProduct?} |) •
(orderSt o).state= pending
∧ (orderSt o).quantity≤ (productSt oProduct?).stock

We have chosen to specify this operation non-deterministically, so we express the
desired postcondition of the operation: after the operation is executed, there are no
pending orders on the product that could be fulfilled:



100 Software Specification Methods

PostCondAddOrders
SOrder′;SProduct′;AReferences′

oProduct? : OProductCl

∀o : references′ ∼(| {oProduct?} |) | (orderSt′ o).state= pending•
(orderSt′ o).quantity> (productSt′ oProduct?).stock

Next, we define a connector for use in the composition. This says that the set of
Orders to invoice (osOrder?) is a subset of all the orders that are pending on the up-
dated product and that can be fulfilled (it is non-deterministic), and that thequantity?
to subtract from stock is the sum of the quantities of all orders that are to be invoiced:

Connector
SOrder; AReferences; SProduct
oProduct? : OProductCl
quantity? : N
osOrder? : P(OOrderCl)

osOrder? ⊆ { o : references∼(| {oProduct?} |) |
(orderSt o).state= pending
∧ (orderSt o).quantity≤ (productSt oProduct?).stock}

quantity? = Σ { o : osOrder? • (o 7→ (orderSt o).quantity) }

This uses the generic operatorΣ from the Z toolkit ofUML + Z:

[L]
Σ : (L 7→ Z) → Z
Σ ∅ = 0

∀ l : L; n : Z; S : L 7→ Z | l 6∈ domS• Σ ({l 7→ n} ∪ S) = n + Σ S

The part (b) operationSysAddStockb is the composition of all these definitions:
the operation says that if the precondition schema (PreCondAddOrders) is true, then
orders are invoiced, otherwise nothing changes. The systemoperation,SysAddStock,
composes the part (a) and part (b) specifications using sequential composition:

ΨAddStockb == ∆System∧ ΞAReferences

SysAddStockb == (ΨAddStockb ∧
PreCondAddOrders∧ S∆OrderInvoiceSet

∧ Connector∧ S∆ProductStockSubtract∧ PostCondAddOrders
∨ ¬ PreCondAddOrders∧ ΞSystem) \ (osOrder?, quantity?)

SysAddStock== SysAddStocka
o

9 SysAddStockb

Question 25: Is the new version of the operation consistent? What is its precondi-
tion? Are the snapshots valid in this new version?



UML+Z: Augmenting UML with Z 101

Answer: The precondition remains the same, as expected. The validation proofs for
the snapshots are provable in Z/Eves.

5.4 Natural language description of the specification

5.4.1 Case 1

An order references one product and a product may be referenced by zero or more
orders. Orders may be in one of two states,pendingor invoiced, depending on whether
they are waiting to be fulfilled or if they have been fulfilled and invoiced; orders have
a quantity, which is a positive whole number. AnOrder has the operationinvoice,
which changes the state of theOrder from pendinginto invoiced. In the initial state of
the system there are no orders and no products.

5.4.2 Case 2

Case 2 extends case 1 with three system operations to enter anorder, to cancel an
order, and to add stock.

The order entry operation stores the order as a new object, links it to the ordered
product, and checks whether the order can be invoiced (in thesame way as for case
1). If an order can be invoiced, then the orderquantityis subtracted from the product
stock, and the orderstateis set toinvoiced. If not, then the product is unchanged, and
the orderstateis set topending.

Order cancellation applies only to orders in thependingstate. The operation re-
moves the order and the link between the cancelled order and the ordered product.

Entries of stock are explicitly additions to the productstock. When stock is re-
ceived for a known product, it is added to the existing stock.The pendingorders
linked to that product are checked, and they are invoiced until no more orders can be
met. There is no imposed ordering on this process, and no requirement to invoice as
many orders as possible, but the non-deterministic ordering would allow such condi-
tions to be added by refinement if required.

5.5 Conclusion

Our approach has produced a combined object-oriented and formal model of the sys-
tem. Some aspects of the case studies were clarified simply byexpressing the re-
quirements in UML diagrams; the underlying Z representation of the UML diagrams
forced us to be clear and precise in drawing UML diagrams. Many requirements were
clarified through snapshot-based validation.

The Z model gives the precise meaning of the UML diagrams and enables formal
verification and validation of UML-based models. We would like make the Z hidden
to the user as much as possible, but this could not be fully achieved. At least one expert
is required to write Z operation specifications and invariants that are not expressible



102 Software Specification Methods

diagrammatically. Nevertheless, theUML+Z framework offers the benefits of formal
development, whilst allowing people who are not Z experts toengage in the modeling
and analysis effort, by drawing class, state and object diagram.

An important feature of our approach is templates. The templates of theUML + Z
catalogue are expressed in FTL [AMA 06]. All Z in this chapteris generated by in-
stantiating templates from the catalogue. In most cases, the instantiation was fully
generated from the diagrams; a few times, the developer needed to add extra infor-
mation. The meta-theorems of the catalogue reduce the proofeffort associated with
checking the consistency of theUML + Z model; sometimes no proof at all was re-
quired (consistency conjectures weretrue by construction); at other times the meta-
theorems simplified the proof to a point where it could be easily discharged in Z/Eves.

Our illustration ofUML + Z validation has shown that errors in models can be
found: (a) because the model does not capture what the developer intended; (b) be-
cause the model is inconsistent; (c) because the developer’s intention is consistently
expressed in the model but is not what the client wanted. The use of both diagram-
matic and formalised snapshots is shown to be necessary to extract the various failings
of the models.

Acknowledgements

Nuno Amálio is funded by the Portuguese Foundation for Science and Technology
under grant 6904/2001.

Bibliography

[AMA 04] A MÁLIO N., STEPNEY S., POLACK F., “Formal Proof From UML Mod-
els”, in DAVIES J.et al., Eds.,ICFEM 2004, vol. 3308 ofLNCS, Springer, p. 418–
433, 2004.

[AMA 05] A MÁLIO N., POLACK F., STEPNEY S., “An Object-Oriented Structuring
for Z based on Views”, in TREHARNE H. et al., Eds.,ZB 2005: International
Conference of B and Z Users, vol. 3455 ofLNCS, Springer, p. 262–278, 2005.

[AMA 06] A MÁLIO N., Frameworks based on templates for rigorous model-driven
development, PhD thesis, Department of Computer Science, University of York,
2006.

[D’S 99] D’SOUZA D. F., WILLS A. C., Objects, Components and Frameworks in
UML: The Catalysis Approach, Addison-Wesley, 1999.

[SAA 97] SAALTINK M., “The Z/EVES system”, inZUM’97, Reading, UK,
vol. 1212 ofLNCS, Springer, 1997.

[STE 03] STEPNEY S., POLACK F., TOYN I., “Patterns to Guide Practical Refactor-
ing: Examples Targeting Promotion in Z”, in BERT D. et al., Eds.,ZB 2003, Turku,
Finland, vol. 2651 ofLNCS, Springer, p. 20–39, 2003.

[WOO 96] WOODCOCK J., DAVIES J., Using Z: Specification, Refinement, and
Proof, Prentice-Hall, 1996.


