Retrenching the Purse: Finite Exception Logs, and Validating the Small

Richard Banach,
Czeslaw Jeske
School of Computer Science
University of Manchester
Manchester M13 9PL, UK
{banach,cj} @cs.man.ac.uk

Abstract

The Mondex Electronic Purse is an outstanding exam-
ple of industrial scale formal refinement, and was the first
verification to achieve ITSEC level E6 certification. A for-
mal abstract model and a formal concrete model were de-
veloped, and a formal refinement was hand-proved between
them. Nevertheless, certain requirements issues were set
beyond the scope of the formal development, or handled in
an unnatural manner. The retrenchment Tower Pattern is
used to address one such issue in detail: the finiteness of the
purse log (which records unsuccessful transactions). A re-
trenchment is constructed from the lowest level model of the
purse system to a model in which logs are finite, and is then
lifted to create two refinement developments of the purse,
working at different levels of detail, and connected via re-
trenchments, forming the tower. The tower development is
appropriately validated, vindicating the design used.

1 Introduction

The Mondex Electronic Purse [18], produced by the
NatWest Development Team in the mid 1990s, is a system
of Smartcard-based electronic purses, carrying currency for
use in every normal kind of transaction — the trial in Swin-
don UK in the late 1990s enabled the purses to be used in
everyday shopping as well as conventional e-commerce ap-
plications. Clearly, any electronic purse is a security-critical
application. For this reason, the developers of Mondex (for-
merly a part of NatWest Bank), employed state of the art
methods to ensure the implementation was as robust as pos-
sible in the face of the most inviting of attacks — ones at-
tempting to forge nonexistent money on the purses.

When it was created, the Mondex Purse achieved an IT-
SEC [16] rating of E6 (nowadays equivalent to a Common
Criteria EAL7 rating). ITSEC E6 requires a formal ab-
stract model, a formal concrete model and a proof of cor-

Michael Poppleton
School of Electronics
and Computer Science

University of Southampton
Southampton SO17 1BJ, UK
mrp @ecs.soton.ac.uk

Susan Stepney
Dept. of Computer Science
University of York
York YO10 5DD, UK
susan.stepney @cs.york.ac.uk

respondence between them. In the case of Mondex this
proof of correspondence was a refinement, formally proved
to be correct by hand. (Since Mondex, the JavaCard [9] has
enjoyed an even more exacting development, in which the
the formal refinement proof was checked by machine.) The
Mondex Purse remains an impressive achievement, and its
development was a trailblazer for showing that fully formal
techniques could be applied within realistic time and cost
limitations on industrial scale applications.

The abstract model of the Mondex Purse system de-
scribes a world of purses which exchange monetary value
through atomic transactions, and specifies the security prop-
erties demanded of this world: firstly, and above all, the
impossibility of creating nonexistent value; and secondly,
the traceable accounting of all value in the system, whether
correctly transacted or lost in transit.

The concrete design model describes a system of purses
which is distributed, transferring value via an insecure and
potentially lossy medium using a three-step protocol. Se-
curity features are implemented locally on each purse. In
the field the purses must be self-sufficient, defending the in-
tegrity of their monetary contents in the face of the most
pessimistic assumptions regarding their environment that
can still lead to the maintenance of the security properties.
Transactions that appear not to be proceeding as required
(from an individual purse’s point of view) are aborted, and
their details logged locally (the precise formal modelling
of the logs is a central issue of this paper). Central rec-
onciliation of purses’ local logs can lead to the retrieval of
money genuinely lost in transit, while still defending against
fraudulent attempts to create nonexistent value, provided
the most fundamental security assumptions (those assert-
ing the non-forgeability of the critical protocol messages)
remain unblemished.

Since the purses regard their environment as hostile, ev-
ery atomic operation that they can perform, must in and
of itself, preserve the security invariants — a purse cannot
make any assumptions about its environment’s intentions,

or the environment’s inclination (or otherwise) to conform
to the way that the purse operations are intended to be used
in the normal playout of the protocol. Given these facts,
and the intention to use refinement as the means of achiev-
ing correctness, the most straightforward way of assuring
the robustness required, is to have each concrete atomic op-
eration be the refinement of some abstract atomic opera-
tion. If this is true, then since the security properties men-
tioned above are functional properties of the individual ab-
stract steps,! and each concrete step maps to an abstract step
via the refinement’s retrieve relation (see below), it is clear
that the concrete steps inherit the security properties of the
abstract steps that they map to, and that the environment’s
intentions truly become irrelevant.

The separation between the abstract and concrete levels
in Mondex is significant, in a logical as well as a functional
sense, and it is this separation that contributes in large part
to the validation obtainable from the formal proof. Nev-
ertheless, the necessity of having a refinement, taking into
account that refinement’s proof obligations can be quite de-
manding in how abstract and concrete models are permitted
to be related, meant that a number of requirements issues,
legitimately the concern of the formal development, had to
be passed over in silence —i.e. set beyond the scope of the
formal development, or handled in an unnatural manner—
since they would strictly speaking have broken the validity
of the refinement had they been incorporated in the models
that were used. One can say that curtailing the scope of a re-
finement always happens to some extent, since for example,
it is never practical to prove refinement all the way down to
the physical hardware, with the latter’s conformance to its
specification assured only within manufacturing limitations
rather than absolutely.

Retrenchment [3, 4] was introduced as a framework that
weakens and generalizes refinement, essentially in allow-
ing the main refinement operation proof obligation (PO) to
be weakened in the postcondition by a concession. (Nor-
mally this PO just asserts that the retrieve relation, classi-
cally an invariant, is re-established.) By interfering in this
way with the structure of the PO, which is conventionally
derived from stipulated correctness principles, the connec-
tion with those principles is severed, but the applicability
of the resulting PO is widened. Things that come within
the scope of retrenchment as a result, include the impossi-
bility of refining infinite to finite types, or the continuous
variables of real-world physical models (so commonly oc-
curring in the safety-critical applications for which rigorous
software techniques are utilised) to discrete ones. As well
as such originally envisaged applications [17], retrenchment

It is (easily) determined that for each individual abstract step, the pair
of before and after states preserves the security properties. So the Boolean
function ‘before state satisfies security property => after state satisfies se-
curity property’ always evaluates to true, and expresses the safety invari-
ants as functional properties of the abstract system.

has also proved useful as a vehicle for the flexible layering
in of contrasting requirements, even conflicting ones, in a
formal development [5].

If refinement offers strong guarantees of correctness, but
is limited as regards the ideal remit of its applicability, and
retrenchment forfeits correctness guarantees but is much
more widely applicable, then the most profitable strategy
would be to employ a judicious combination of the two.
One way of doing this is via the Tower Pattern, a system-
atic arrangement of refinements and retrenchments, which
allows refinement developments incorporating different but
incompatible levels of real-world detail, to be related via
suitable retrenchments. In this paper we focus on one of
the issues imperfectly covered by refinement in the Mondex
development —the finiteness of the local purse exception
log— and illustrate how the Tower Pattern allows for a less
unnatural treatment.

The rest of the paper is structured as follows. In section
2 we give an overview of the Mondex refinement develop-
ment, and identify the requirements issues that motivate the
application of retrenchment. In view of the fact that the re-
finement treatment of these issues leaves something to be
desired, we regard these issues as ‘retrenchment opportu-
nities’, i.e. opportunities for the relatively novel retrench-
ment technique to make a worthwhile contribution to their
formal treatment via refinement. Section 3 introduces the
Tower Pattern and the theoretical results on the algebraic
interaction of retrenchments and refinements that assist in
its application [14]. The structural components of the tower
(the constituent notions of refinement and retrenchment) are
also made precise. Section 4 focuses on the finiteness of the
Mondex purse’s log, and defines a retrenchment between
the original Mondex concrete purse (in which logs are un-
bounded) and a new purse model, identical to the former in
all but the purse log’s boundedness. This retrenchment is
then extended to the world of purses by a suitable adapta-
tion of the Z promotion used in [18]. Given these ingredi-
ents, Section 5 overviews how the buiding blocks assembled
thus far can be lifted using the previously mentioned alge-
braic results, and thus constitute the buiding blocks of the
tower as a whole. Section 6 gives a validation of the lifted
retrenchment, and contrasts the retrenchment approach to
dealing with this scenario, with other ways of dealing with
the issue of infinite ideal domain vs. finite actual domain in
a refinement context. Section 7 concludes.

2 The Mondex Purse: Refinements, Re-
trenchment Opportunities

As mentioned above, the Mondex Electronic Purse was de-
veloped by the NatWest Development Team, and achieved
its ITSEC E6 classification via a hand proved formal refine-
ment from abstract to concrete. The hand proved refinement

demanded a readable and independently verifiable suite of
documentation, and from this commercially sensitive ver-
sion, a public version was generated [18]. This retains
the essential elements, while removing some of the detail
which was either confidential or simply not very interest-
ing. The refinement consists of three models: A(abstract),
B(between), and C(concrete). The A model is a highly ab-
stract expression of atomic value transfer between purses,
allowing for an atomic notion of loss in transit. The atom-
icity makes the security invariants, ‘No value created” and
‘All value accounted’ trivial to prove. It is important to note
that the A model is targetted purely at these security prop-
erties and no others. So it does not address all the many
other system requirements. Model B captures the elements
of the value transfer protocol, and is thus nonatomic. It is
also enhanced with extra structure and constraints needed to
achieve a backward refinement from model A; a backward
refinement was the strategy used in the Mondex develop-
ment to get from model A to model B, though recent work
has shown that, strictly speaking, it is not necessary to do
this [7]. Model C is model B without the extra structure and
constraints. These can be established by an induction on
the length of the execution, leading to a forward refinement
between models B and C. It is thus shown that model C is a
refinement of model A.

Accepting that the development described in [18] is a
development of the security properties alone of the Mon-
dex Purse, it is no surprise that many important aspects of
the Mondex system do not get a proper treatment within
[18]. Perhaps more surprising is the fact that even taking
this into account, some requirements aspects, in principle
deserving to be included within the formal development,
since they potentially impact on the security properties if
mishandled, were nevertheless omitted or handled unnatu-
rally in the modelling, in order to establish the refinement.
One of the aims of our work on Mondex, is to show how
such rather brittle aspects of formal development via refine-
ment, can be mollified by making use of retrenchment. Not
only does this improve the overall quality of the formal de-
velopment, but it also provides excellent vindication for the
retrenchment technique itself, especially when it is used ap-
propriately in tandem with refinement. Here is a brief sum-
mary of the Mondex ‘retrenchment opportunities’; in this
paper we focus in detail on the full log issue. The other
retrenchment opportunities are treated elsewhere:

® Sequence Number: The integrity of the protocol de-
pends partly on the sequence number of the transaction
in progress. Sequence numbers occur in the B, C models
where they are naturals; in reality they are bounded num-
bers, but potentially large.

® [og Full: Transfers completing abnormally are aborted
and logged locally by purses. The relationship between lo-
cal purse logs and the °‘All value accounted’ security prop-

erty is rather complicated, and is outlined in footnote 8. Suf-
fice it to say here that purses’ log contents are vital. Logs
occur in the B, C models where they are unbounded; in re-
ality they are finite, and decidedly small.

® Hash Function: The concrete models implement the ab-
stract ‘lost value’ component in terms of an off-card archive
into which purses’ log contents are saved (see footnote 8
again). A purse needs to be assured that the data is safely in
the archive before it can clear it from its own, highly con-
strained, log memory. Safe archival is signalled to the purse
using a ‘clear’ code. The purse log contents are assumed to
be in total injective correspondence with the clear codes, as
that property is required in the proof of the maintenance of
the security properties. In reality of course a cryptographic
hash function is used, which is neither total, nor injective,
but is informally argued to be ‘sufficiently injective’.

® Balance Enquiry: Each purse has a balance enquiry oper-
ation. If this is invoked in the middle of a B (or C) model
transaction, a discrepancy can occur between the model
A and model B balances since the model A transaction is
atomic and the model B one isn’t. This is handled formally
by a modelling trick, using finalisation instead of the en-
quiry operation to observe the state: the resulting treatment
of balance enquiries can appear so counterintuitive that the
operation was removed from [18].

3 The Tower Pattern, Refinements and Re-
trenchments

In this section we outline the technical strategy for our
work, and give the necessary technical definitions.

Model based refinement is a formal development tech-
nique which comes in a number of specific flavours; we will
focus on the version for the Z language since that was used
in [18]. Retrenchment is a different formal development
technique, possessing different properties to refinement, but
intended to be compatible with it. One way of making them
interact productively is in the Tower Pattern illustrated in
Fig. 1. This shows a collection of models connected by re-
finements in the vertical direction, and by retrenchments in
the horizontal one. The diagram commutes, so there are
many ways of navigating it. There are also many ways
of building it, relying on various ‘square completion’ con-
structions explored in depth in [14]. The technical details
of the latter are taxing, to say the least, so we do not go
into them here. Sufficient to say that one can start with any
path in Fig. 1 that goes from one corner to the diagonally
opposite one, and use the technical results to build the rest.
Moreover, the specific requirements issue (or issues) dealt
with via the retrenchment is (or are) largely decoupled from
the overall tower structure, underlining its generality and
wide utility. This flexibility and wide applicability makes
the tower richly deserve the ‘pattern’ epithet.

refinements
refinements

‘ideal’ ‘realistic’
development development

Figure 1. The Tower Pattern.

The tower is applied in a bottom up manner in the case of
Mondex. This is shown in Fig. 2, where we see the develop-
ment of [18] down the left hand side. Emerging from model
C, is a retrenchment taking us to model D. In this paper the
retrenchment deals with the move from unbounded logs to
bounded ones. Once model D is in place, we compose the
refinement from B to C with the retrenchment from C to D
to give a retrenchment from B to D. Using results of [14],
we can now factorise this retrenchment the other way, yield-
ing model E, which raises the level of abstraction of model
D to that of model B.

It turns out that there is a backward refinement from
model A to model E. This enables us to complete the tower
by making model F a copy of model A.

id
A-bstract ———— » F—iltered

ref l J ref

ret

B-etween E-levated

ref l ref;re;t‘»-" . ref
.

C-oncrete D—iscrete

ret

Figure 2. The Tower Pattern applied to Mondex.

We now briefly review the notions of refinement and re-
trenchment we need for the sequel. The nomenclature in
our definitions will be in line with that in the various models
in our tower structure for Mondex. We just give the forward
rules for both refinement and retrenchment, since these are
sufficient for the BCDE part of the tower, all that is needed.

Let model B be given by the ADT (B, Blnit, {BOp, Bl,
BOg, | Op € Ops}), and let model C be given by the
ADT (C, Clnit,{COp, Clp,,COq, | Op € Ops}). So
schemas B, C give the abstract and concrete state spaces for

the forward refinement from B to C, and the corresponding
per-operation I/O spaces are given by schemas Blo,, BOg,
and Clp,, COg, respectively. We assume a retrieve relation
Rpc : [B; C| between the two state spaces, and for each
operation Op, input and output mapping relations Rlgc o) :
[Blop; CIOI,] and ROpc,0p : [BOO,,; COOI,]. Forward re-
finement is given by three proof obligations (POs), initial-
ization, applicability and correctness:

YV C' o CInit = 3B e Bnit \ R (1)
V' B; Bloy; C; Clg, ® Rpc A Rlpc o, /\ pre BOp
= pre COp)
V B; Blg,; C; Clgp; (of COopp
Rpce N\ RIpe,0p N\ pre BOp /\ COp
= 3B’; BOg, ® BOp /\ Ry \ ROgc 0 3)

Note that (1)-(3) do not mention finalisation. We deal with
the issue of observation, and specifically of relating the out-
puts of the abstract and concrete models (normally handled
via finalisation) ‘on the fly’, in line with the tack taken in
retrenchment. Moreover, applicability turns out to be a triv-
ial matter in Mondex: all operations are wrapped with an
Ignore option (which, at the levels of abstraction of these
models, just skips). This means that all operations are al-
ways enabled, even if (when a purse is not in the intended
state) nothing of interest happens.

The C to D development is a forward retrenchment. For
this, the abstract model is the C ADT, and the concrete
model is given by ADT (D, Dinit,{DOp,DIy,,DO¢, |
Op € Ops}). Similar notational conventions apply as be-
fore. The retrenchment is given by firstly a retrieve re-
lation Rcp : [C; D] between the state spaces; and sec-
ondly by the within, output and concedes relations on a per-
operation basis. The within relation is between the input-
state spaces Wcp.op : [CIO,,; C; Dy, ; D]. The output
and concedes relations are formally defined over both of the
full input-state-output frames with types Ocp,op; Ccp,op :
[Clp,; C; C"; COp,; Dlp,; D; D'; DOg, |, though we
often omit such parts of these signatures as are not needed.
We call these three relations the retrenchment data.

Two POs define a retrenchment between two models:
initialisation as for refinement (1), and correctness which
is analogous to refinement correctness (3); note that appli-
cability issues are understood to be subsumed in (5) via the
within relation:

V' D' e DInit = 3C’ o Clnit \ Ry, 4)
Y C; Cloy; D; Dlgy; D'; DOg, ® Rep N\ Wep,op /\ DOp

= 3 C,; COOp ° COp /\ ((R/CD /\ OCD,Op) \/ CCD,Op)
)

4 The Finite Log Retrenchment

The place where the properties of the purse log come to the
fore is the operation for aborting a transaction. It turns out
that the business of aborting a transaction is by far the most
subtle aspect of the Mondex purse from a theoretical point
of view; see footnote 8 and [7]. Fortunately none of this
impacts on the way the finite size of the log is handled via
retrenchment, so our task is tractable in a paper of this size.

We start our treatment by focusing on the simplest oper-
ation of [18] that is nontrivially affected, namely the abort
operation for a single purse in the C model, given in the
schema CAbortPurseOkay. This does the following.? If the
purse’s state is either of Cepv, Cepa (i.e. expecting value
or expecting ack), then the purse is in a critical part of the
protocol (either as receiver or as sender), and must log the
transaction it is aborting. So the authenticated payment de-
tails CpdAuth get added to the exception log, CexLog. The
sequence number CnextSegNo is incremented, the purse sta-
tus, Cstatus, is reset, and the purse’s state components aside
from these, gathered in the schema CConPurseAbort re-
main unchanged, i.e. ZCConPurseAbort.

CConPurseAbort ==
CConPurse \ (CexLog, Cstatus, CnextSeqNo)

—_ CAbortPurseOkay
ACConPurse
Cm?,Cm! : CMESSAGE

Z=CConPurseAbort
CLoglfNecessary
CnextSegNo' > CnextSeqNo
Cstatus’ = CeaFrom
Cm!=1

— CLoglfNecessary
ACConPurse

CexLog' = CexLog U (if Cstatus € {Cepv, Cepa}
then {CpdAuth} else @)

In the above the log is a set, so can grow in cardinality with-
out restriction. Also, the sequence number CnextSegNo is a
natural, thus unbounded. For expository clarity, we will fo-
cus on the log’s cardinality and condone the unboundedness

2In Z, declarations and relevant properties are parceled into schemas.
Modularity is encouraged by including schemas in other schemas.

We employ the common convention of pre-capitalizing only the names
of types (schema and other). We augment this convention by prefixing
a single character A, B, ... to a name as required, to denote the Mondex
model in question. Thus CThing is a schema or other type in the C model,
whereas Dthing is a variable, usually a schema component, in the D model.
To save space we employ a further lexical schema convention by saying
DSchema ‘is as’ CSchema, which indicates that the text of DSchema can
be generated from that of CSchema by replacing all Cthings by Dthings.

of the sequence number, recognising that a proper treatment
would need to take both into account.

In the D model, we make the purse log a set of maxi-
mum size LOGMAX. If the log still has plenty of room,
things go as before. However if the current abort fills it,
we must prevent further transactions, since if they were
to go wrong, there would be no place to log their details.
We therefore take a purse into a new status DexLogFull as
the last empty slot of the log gets filled. We then have to
guard every other purse operation which does not stipulate
a specific before-state in its precondition, with a clause that
ensures that the purse is not in DexLogFull in the before-
state. In fact however, aside from the abort operation it-
self, and some harmless skip-like operations (like the Ignore
wrappers mentioned earlier), there are no such operations.
The only operation that will be enabled (nontrivially) in the
DexLogFull state is the operation to clear the log, which is
itself the seat of a separate ‘retrenchment opportunity’.

In the following, DConPurse ‘is as’ CConPurse, with
the exception of DexLog which is a finite set instead of
an unbounded set, (and apart from the extra possible sta-
tus value just introduced). Also DConPurseAbort ‘is as’
CConPurseAbort. L is a general purpose message used
in Mondex which is of-no-concern. Note that the follow-
ing design for DAbortPurseOkay is conservative, in that the
operation is always enabled (i.e. it is enabled even in the
DexLogFull state, though under normal operation it should
never be called there). This is in keeping with the Mondex
philosophy of placing the minimum of assumptions on the
expected behaviour of the environment.

—DAbortPurseOkay
ADConPurse
Dm?, Dm! : DMESSAGE

EDConPurseAbort
DnextSeqNo' > DnextSeqNo
(# DexLog < LOGMAX = DLoglfNecessary)
(# DexLog > LOGMAX = DexLog' = DexLog)
(# DexLog < LOGMAX — 1 =
Dstatus’ = DeaFrom N\ Dm! = 1)
(# DexLog > LOGMAX — 1 A
Dstatus € {Depv, Depa} =
Dstatus’ = DexLogFull N
Dm! = “Purse blocked. Go to bank.”)

where DLoglfNecessary ‘is as’ CLoglfNecessary.

3There are alternative designs of course. For instance we could check
the capacity of the log at the beginning of each transaction, proceeding
only if there is room for an exception record, should it be needed. Some
such feedback is obviously given to users anyway, but our design takes
the code for that out of the security-critical part of the application. In any
event, it is probably better to alert the user to the full log before he/she
needs another transaction.

The C and D models are related by a retrenchment,
so we now discuss the retrenchment data for DAbort-
PurseOkay. In the following schemas, CDConPurseAbort-
Equality stands for for equalities between the C and
D variables in CConPurseAbort and DConPurseAbort.
Under the vacuous within constraint, the CAbortPurse-
Okay, DAbortPurseOkay pair establishes either R, A
OCD,AbortPurseOkay (retrieve and OWPW), or CCD,AbortPurseOkay
(the concession). The concession makes explicit the lack of
correspondence between C and D purse states and outputs.

— Rep
CConPurse; DConPurse

CDConPurseAbortEquality

(Cstatus = Dstatus \/ Dstatus = DexLogFull)
CnextSeqNo = DnextSeqNo
CexLog = DexLog

— WCDAbortPurseOkay
CConPurse; DConPurse

Cm? : CMESSAGE
Dm? : DMESSAGE

— OCD,AhortPurseOkay
Cm! : CMESSAGE
Dm! : DMESSAGE

Cm! = Dm!

— CCD,AbortPurseOkay
CConPurse'; DConPurse’

CDConPurseAbortEquality’
Cm! : CMESSAGE
Dm! : DMESSAGE

CexLog’' O DexLog’

Cstatus' = CeaFrom

Dstatus’ = DexLogFull
CnextSeqNo' = DnextSeqNo'

Cm! = L

Dm! = “Purse blocked. Go to bank.”

4.1 The Retrenchment in the World of
Purses

Purses are of course not intended to exist in isolation, but to
coexist and interact with other purses (even though each in-
dividual purse takes a very defensive attitude to its environ-
ment as is evident from the security properties). This means
that the total system consists of a community of identically
specified components (and some central facilities). The Z
promotion methodology, which we briefly review, has been
designed to cope smoothly with such situations.

In promotion [21, 13, 19, 20], a collection of identically
defined local state (LS) instances are typically aggregated
via an indexing function, forming the world state:

World
Tf :Ind - LS

Operations on the world which are extensions of local op-
erations (eg. LSOp extended to WorldOp), are treated sys-
tematically via the framing schema ®LocOp. This: (a) sin-
gles out which component of the world will perform LSOp,
using the value of an input index i7; (b) stipulates that all
other components skip; (c) allows the selected component
to perform a completely unrestricted state change, ready for
further restriction in a moment. (It achieves (c) by identi-
fying the change in a separate copy of the local state (from
OLS to OLS") with the change from f(i?) to f/(i?)).

— ®LocOp
AWorld; ALS; i? : Ind

i?7 € domf
OLS = f(i?)
f=rae{i?t— 0LS'}

Now, constraining the change in ALS using the local defini-
tion of LSOp, makes the world component i? do only what
LSOp permits.

WorldOp == 3 ALS e ®LocOp N\ LSOp

What we just discussed was the basic index-function-based
form of promotion. In Mondex, we need a slightly more
elaborate formulation, which has in fact inspired the defini-
tion of a number of promotion patterns as generalisations
[19, 20].

Just as in the C world, individual D model purses are pro-
moted to a D world of purses, via the schemas that follow.
We make use of our shorthand conventions. So DConWorld
‘is as” CConWorld; both of these contain, beyond the purse-
NAME-indexed map of local purse states, the Dether of all
messages ever sent between purses (and not yet lost), and
the central Darchive of all transaction exception logs up-
loaded from purses. There are two additional DConWorld
constraints: each internal purse name is equal to its corre-
sponding index, and each archive entry identifies its origi-
nating purse.

__DConWorld
DconAuthPurse : NAME - DConPurse
Dether : P DMESSAGE
Darchive : P DLogbook

¥V n : dom DconAuthPurse e
(DconAuthPurse n).Dname = n
¥V nld : Darchive e first nld € dom DconAuthPurse

Promotion of the D model ‘is as’ that of the C model
of [18]: the framing schema ®DOp ‘is as’ PCOp, where
Dm?,Dm! are the input and output messages to and from
DAbortPurseOkay.

—PDOp
ADConWorld; ADConPurse
Dm?, Dm! : DMESSAGE
Dname? : NAME

Dm? € Dether

Dname? € dom DconAuthPurse

0DConPurse = DconAuthPurse Dname?

DconAuthPurse’ = DconAuthPurse ®
{Dname? — 0DConPurse'}

Darchive’ = Darchive

Dether’ C Dether U {Dm!}

DAbort, the promoted and wrapped operation, ‘is as’
CAbort. N.B. DIgnore ‘is as’ Clgnore, and just skips at
world level.

DAbort == DIgnore \V/
(3 ADConPurse « ®DOp /\ DAbortPurseOkay)

Having defined the D world and the promotion of the purse
level abort operation to world level, it is time to consider
the promotion of the retrenchment of individual purse op-
erations such as CAbortPurseOkay into the CConWorld to
DConWorld level. This is the retrenchment from CAbort to
DAbort, (where DAbort ‘is as’ CAbort, as just noted). Any
theory of promotion of retrenchments should start from the
promotion of refinements, especially when (as here) we are
expecting refinement and retrenchment to complement one
another. A clear treatment of the promotion of refinements
is given in [13], especially as regards the construction of a
simple world-level retrieve relation from the distribution of
the local retrieve relation through the indexing. We base
our approach on this form as it is close to the form of pro-
motion used in Mondex. Thus, given a retrieve relation R
between local states Abs and Conc, the promoted retrieve
relation R” between AbsWorld and ConcWorld (with index
functions Absf, Conf respectively) simply says that R has to
hold for each indexed component:

__RF
AbsWorld; ConcWorld
dom Concf = dom Absf

Vn :dom Concf @ IR e
0Abs = Absf(n) N\ OConc = Concf (n)

At this point we hit a technical snag entailed by the fact
that retrenchment is not the same as refinement. The essen-
tial point is this. Let us imagine that the concrete system

has been running for some time and that some or many el-
ements have already engaged in operations. With reference
to an abstract system that we can imagine has been keep-
ing up with the concrete one (insofar as it has been trying
to simulate it as well as it can), we can expect that some
elements will be in the local component retrieve relation R,
while others may have already conceded (and so may no
longer be in R). Assuming all elements are in R (as for
refinement) would thus give an unduly restricted syntactic
picture of the correspondence between the dynamics of the
abstract and concrete worlds. Specifically, as soon as a sin-
gle component has taken a step that makes the relevant con-
cession valid, R has most likely ceased to hold.*

The snag just outlined offers a number of possible ap-
proaches to the promotion of retrenchments, depending on
what one wishes to emphasise. In [6] we explore this in
some detail, but space limitations here do not permit us to
show the full variety of possibilities in the current context.
Instead, we give a brief overview of the approaches, and
develop one in detail.

Retaining the retrieve relation RY for the retrenchment
promotion leads to so-called strong promotion of retrench-
ments, since it sets the most demanding conditions. A
strong promotion (between a concrete system and an ab-
stract system trying to stay in simulation with it) remains
applicable just so long as all the components of the con-
crete system continue to stay simulable by suitable abstract
components. As soon as any concrete component makes
a transition that invalidates its local retrieve relation, the
world level retrieve relation R’ stops being valid, and the
predicates of the strongly promoted retrenchment cease to
be able to say anything about the subsequent state of affairs.

An alternative to strong promotion is weak promotion of
retrenchments. This arises simply by replacing the univer-
sal quantification in R” by an existential quantification. The
resulting world level retrenchment is capable of making a
valid pronouncement about the relationship between a con-
crete system and an abstract system trying to stay in simu-
lation with it, provided now that at least one of the compo-
nents is still in the local retrieve relation. With the existen-
tial quantification, it is clear that doubt can arise regarding
which of the components is still in simulation, but given
the capacity for expressing useful things regarding the re-
lationship between abstract and concrete systems afforded
by retrenchment, there is enough room in the retrenchment
data to accommodate the technical details needed to handle
this.

In between strong and weak promotions lies precise pro-
motion of retrenchments. Rather than putting up with the
imprecision latent in the existential quantification, as just
alluded to, precise promotion introduces a new world level

#We merely say ‘most likely’, since the ‘or” in (5) is not ‘exclusive’, so
the retrieve relation might yet be valid too.

variable (let us call it ‘good’), whose task is to keep track
of the identities of those components which still remain in
the local retrieve relation (and which do not). In order to be
able to do this, a separation axiom has to hold regarding the
individual component level retrenchments.> Fortunately the
majority of cases arising in practice do satisfy the necessary
axiom. The presence of the ‘good’ world level variable,
by its presence, not only modifies the concrete world def-
inition, but also entails minor modifications to the various
operations, so that ‘good’ can be accurately updated as in-
dividual components do or do not stay simulable. However
all that is required is read-only access to the body of any
operation, so this is completely benign.

Having illustrated strong and precise promotion in other
papers, in this one, we choose to exemplify weak promo-
tion for our treatment of the CAbort and DAbort operations.
Note that this choice is independent of any details of CAbort
and DAbort themselves.

The weak promotion of the DAbortPurseOkay retrench-
ment is given by the retrenchment data below. Note how
the uncertainty concerning which component is claimed to
be retrieving in the retrieve relation RE)) is reconciled with
the identification of the named component of interest in the
promotion via the within relation W}, .. Essentially the
same information, RBody?)y, is repeated in both; quanti-
fied in RE), and free in ng’} abor- Also, we have used
some shorthand to avoid verbosity. So “ CDnamedCon-
PurseAbortEquality name ”°, as before, stands for equali-
ties of named purses’ of-no-concern data. Similarly ¢ CD-
namedConPurseAbortRetrieve name > stands for the syntax
needed to transplant the body of the single purse retrieve
relation from its original context, and make it refer to the
named purse of the promotion; ¢ CDnamedConPurse Abort-
Concession name > does the same for the concession. Note
that because the world contains data other than just repli-
cated local data (i.e. the archive and ether), this must be
dealt with explicitly in Cgjj 4,

The retrenchment below employs a focused pattern of
weak promotion, in that the within, output, concedes re-
lations only refer to the named local component Dname?.
Since the promoted operation acts on only one element, im-
plicitly all other elements maintain their state, whether re-
trieving or not. An inclusive variant is also available which
covers all these other components, explicitly claiming Ry,
in the output relation and concession provided it holds in
the before state. Since archive entries are tagged with the
originating purse’s name, we can identify those C/D archive
subsets corresponding to Dname?, and we assume for sim-
plicity that all messages in the ether are tagged with origi-
nator’s and addressee’s names as the first two fields of the

5The axiom demands something stronger than just that the ‘or’ in (5)
be ‘exclusive’. See [8].

message.6

—_RBody?}¥

CConWorld; DConWorld

Dname? : dom CconAuthPurse N
dom DconAuthPurse

““ CDnamedConPurseAbortRetrieve Dname?

{Dname?} < Carchive = {Dname?} < Darchive

({Dname?} x {Dname?}) < Cether =
({Dname?} x {Dname?}) < Dether

RPW
—cp
CConWorld; DConWorld

dom CconAuthPurse = dom DconAuthPurse
dDname? : dom CconAuthPurse N
dom DconAuthPurse ® RBody?)y

— ng/,Abort
CConWorld; DConWorld
Cm? : CMESSAGE

Dm? : DMESSAGE

Cname? : dom CconAuthPurse
Dname? : dom CconAuthPurse

Cname? = Dname?
RBody?}l

OPW
— ~ CD,Abort
ADConWorld

Cm! : CMESSAGE
Dm! : DMESSAGE
Dname? : NAME

Cm! = Dm!

CPW
— —CD,Abort
CConWorld'; ADConWorld

Cm! : CMESSAGE
Dm! : DMESSAGE
Dname? : NAME

¢ CDnamedConPurse AbortEquality’ Dname? ”

““ CDnamedConPurseAbortConcession Dname?

{Dname?} <1 Carchive’ = {Dname?} < Darchive’

({Dname?} x {Dname?}) < Cether’ =
({Dname?} x {Dname?}) < Dether’

%Note that this is a considerable simplification compared to [18]. In
[18] it is the case that: (i) the models do not concern themeselves with
details of physical message transmission, (ii) the relevant data can never-
theless be inferred indirectly from the message body.

5 Building the Tower

Thus far we have described in moderate detail the way that
retrenchment allows the real world finiteness of the purse
log to be taken account of, in way that did not disturb the
preexisting development. Basically we retrenched the low-
est level C model of the earlier development to the D model
in which logs were bounded. This gives us the bottom of the
tower anticipated in Section 3. In this section we sketch how
the new D model can be related to the other models in the
Mondex development, completing the tower, and clarifying
the relationship between log boundedness and the concerns
of these higher level models. In a nutshell, we first lift the D
model to the level of abstraction of the B model (giving the
E model) and then it is observed that there is a refinement
from the A model to the E model, due to the nonintrusive-
ness of the D model. So we can make the F model just a
copy of the A model as indicated in Fig. 2.

The lifting of the D model uses a generic lifting construc-
tion for lifting the concrete model of a retrenchment to the
level of abstraction of the abstract system. The details for
the present work are in [14], building on earlier work in [1].
A system, typically called U, is constructed out of the ingre-
dients that specify the two original systems. The required
level of abstraction is defined indirectly via a collection of
properties specific to the construction, and U captures this
level by being refinable to any system that also enjoys these
properties, making U the most abstract such system. As re-
gards the construction, any system interrefinable with U is
just as good as U, so we have the option of replacing U with
a more convenient system if we wish.

In the Mondex case we start by composing the B to C re-
finement with the C to D retrenchment, yielding a retrench-
ment from B to D; details are given in [2, 14]. The generic
construction is then applied to this retrenchment.

For the sake of clarity, let us first apply this to the in-
dividual purse operation AbortPurseOkay. The generated
system U turns out to be:

__protoEAbortPurseOkay
BAbortPurseOkay; ADConPurse
Dm?,Dm! : DMESSAGE

/
(RBD /\ RBD /\ OBD,AbortPurseOkay) \/
(RBD /\ CBD,AbortPumeOkay)

In the preceding, BAbortPurseOkay ‘is as’ CAbortPurse-
Okay, and Rpp ‘is as’ Rcp. Similarly Opp aportPurseokay
‘is as’ OCD,AbortPurseOkayv and CBD,AbortPurseOkay ‘is as’
Ccp abortPurseokay- In protoEAbortPurse-Okay, note that
BAbortPurseOkay contributes the steps of the B model and
ADConPurse contributes all legal D changes of state con-
sistent with either preserving the retrieve and output rela-
tions, or establishing the concession.

Since we have a retrenchment from the B model to
the D model, the retrenchment operation PO is satisfied,
so that for every DAbortPurseOkay step there is a wit-
nessing B model step. It is not hard to see that in
protoEAbortPurseOkay, precisely the same witnessing B
step establishes the validity of the model E to model D re-
finement correctness PO.

We observe that the E model operation features a consid-
erable duplication of state and other information; the B and
D parts of the state say more or less the same thing via the
BDConPurseAbortEquality in Rgp and Rj); also the /0
is either irrelevant or can be inferred from the D element
alone. Above, we noted that it is sufficient to have a system
which is interrefinable with the generic U model. So we
examine protoEAbortPurseOkay to see if we can achieve
some simplification. In fact we can replace it with:

EAbortPurseOkay ‘is as’ BpAbortPurseOkay

The Bp model is a hybrid of the B model and the D
model. It has an unbounded log, as do the B and C
models, but the state space and I/O of the D model.
Aside from the naming conventions, an idea of what
BpAbortPurseOkay looks like can be obtained by replac-
ing the last clause of CAbortPurseOkay with the last two
clauses of DAbortPurseOkay.”

The preceding is of course just a precursor of the real ac-
tion, which concerns the world level operation DAbort and
its lifting to EAbort. Since the individual purse operation
sits neatly inside the world level operation, we should be
able to discern the purse level lifting inside the world level
one. Since the lifting is a generic construction, the B world
abort operation has the same shape as the D world one:

BAbort == Blgnore \V/
(d ABConPurse « ®BOp N\ BpAbortPurseOkay)

This is as expected, except that it conceals the fact that
inside BAbort, ®BOp, instead of having ABConWorld (as
we would expect) we actually have ABetweenWorld, where
BetweenWorld features additional structure and constraints
imposed on BConWorld in order to enable the A to B back-
ward refinement to discharge. Otherwise the constituents of
BAbort ‘are as’ their corresponding CAbort ones.

We do not have the space to go through the arguments to
convince the reader that the constraints in BetweenWorld do

7 As far as the various Abort operations of this paper are concerned, we
could have made do with the D model operation DAbortPurseOkay itself as
being interrefinable with protoEAbortPurseOkay. This remains the case if
we also take the operations to clear the purses’ logs into account. However,
prior to clearing its log, a purse sends the entries in its log, one at a time,
to a central archive. If we take the requisite operation into account, the
log contents become externally observable. Now the protoE model has an
unbounded log via the BAbortPurseOkay inside protoEAbortPurseOkay;
thus the observabilty of the log contents forces every model interrefinable
with protoE to have an unbounded log.

not materially affect our discussion. They express the con-
sistency between the cryptographically protected messages
in the ether and the purses’ states. The interested reader can
refer to [18]. We now retrace the earlier lifting construction
and obtain:

___protoEAbort
BAbort; ADConWorld
Dm?,Dm! : DMESSAGE

In fact as before, we can replace protoEAbort by EAbort
where:

EAbort ‘is as’ BpAbort

with BpAbort built the same way as BpAbortPurseOkay
earlier, and DetweenWorld (which now ‘is as’
BetweenWorld) replacing occurences of DConWorld
in DIgnore and ®DOp, inside BpAbort.

All that now remains is to construct model F. As it hap-
pens, the clean way that that the log full situation is dealt
with, namely that the purse is prevented from initiating any
more transactions until the log is cleared, means that the
log full scenario becomes invisible in the A world since
the A world needs no logs. This leads to the existence of
a backward refinement from the A model to the E model.
It is worth emphasising however that this is not a further
instance of the lifting construction just used to build the E
model, and is in fact a rather delicate (though very pleasing)

property.
6 Validation

In most situations where a finite limit is an inescapable but
undesirable feature of the implementation, the normal de-
sire is that the limit is large enough not to be encountered
in practice. This is certainly the case for one of the Mondex
‘retrenchment opportunities’, the one concerning the trans-
action sequence number, which was treated in [8]. The ap-
propriate validation in that work involved showing that with
a suitable choice of bound for the sequence numbers, the
stochastic process whose events were the increments of the
sequence number in successive transactions, had properties
such that the possibility of actually hitting the bound, for all
practical purposes lay far beyond the lifetime of the purse it-
self. That this was a realistic and achievable state of affairs
in the sequence number scenario, was due to the fact that
a one bit increase in the storage afforded to the sequence
number on the smartcard leads to a doubling in capacity,
because of the binary encoding of sequence numbers to bit-
strings. This of course rapidly leads to a situation in which
the sequence number bound is no threat.

(RZB/ A W;;KAIwrl) A ((R/BPDW A Ogg],Abort) \% ng/,Aburt)

However the scenario we face in this paper is significantly
different. Exception log entries matter for their contents,
not just for the total number of them. So we are faced with
an essentially unary rather than a binary encoding. Further-
more, actual Mondex log entries are data structures of sig-
nificant size (we did not need to go into details in this paper)
and smartcard storage is tight. So there is room for not very
many log entries at all in an actual Mondex purse; in reality
there is room for only about 5 of them.

Our construction of the retrenchment from an unbounded
log to a bounded one in earlier sections, was parameterised
by the bound (though the actual value of the bound re-
mained unstated till the previous sentence). The course
of action pursued when the system reached the bound,
i.e. when the retrenchment’s concession became valid, was
to just output a suitable message informing the user that
the purse was for the time being, unusable, and that he/she
ought to go to the bank to have the purse reset. This was a
metaphor for what the real implementation does, which is
to exhort the user to take the purse to the bank, so that the
log entries may be archived centrally, and as a result, any
funds genuinely lost in transit may eventually be restored to
their rightful owner, following the reconciliation of purses’
logs at a global level .

Our job in this section is validation. We therefore ask
the question whether the course of action taken when the
concession becomes valid can be justified under the circum-
stances. The answer is a resounding yes. In footnote 8 we
explained the connection between the contents of purses’
logs, and the global satisfaction of the ‘All value accounted’
security property. Consequently, it is vital, when a purse’s
log is full, that it be prevented from engaging in any further
transactions, since there is no guarantee that any such trans-
action is bound to succeed, and there is nowhere to record
the details if it does not. Since the latter could cause the
failure of the security invariant, it must be disallowed, and
the only permissible option is thus inaction, since that will
assuredly maintain any hitherto established invariant. We
conclude that the design of the system as regards the log’s
limited size is entirely appropriate, and the retrenchment is
thus validated.’

8 In a little more detail, what happens is the following. If a purse can-
not complete its current transaction, for whatever reason, it aborts it. Some
such aborts turn out to be harmless (eg. the sender aborting a transaction
before the money is sent), and some are critical (eg. a receiver aborting a
transaction while the money is still in flight). Unfortunately an individual
purse has no way of knowing for sure whether any abort it performs is
harmless or critical. However it is a property of the concrete purse proto-
col that a transaction has genuinely lost money iff both sender and receiver
purses have aborted and logged the transaction while in their specific crit-
ical states. This, roughly speaking, corresponds to the concrete manifesta-
tion of the ‘lost” outcome of the ‘All value accounted’ security property. It
therefore follows that a global reconciliation of all purses’ logs is needed
before all lost funds can be definitively traced.

9We noted earlier that the clean design of the behaviour upon reaching
the limit was responsible for the possibility of having a backward refine-

Looking back we see that even though the structure of the
retrenchments and refinements in this paper is very much
like that of their counterparts in [8], as indeed is their ar-
rangement into the appropriate Tower Pattern, the valida-
tion that justifies them is entirely different. This underlines
the fact that the formal models of a development alone give
only a limited picture. Reinforced also, is the role of re-
trenchment as a middleman between the formal modelling
aspects, and domain specific requirements issues.

We can contrast the preceding with how other ap-
proaches tackle the same situation (thus moving subtly from
validating the specific retrenchments constructed in this pa-
per, to validating the retrenchment approach as a whole).

There are essentially three ways that refinement ap-
proaches deal with finite limit situations. The first, the
100% honest way, is to dismiss completely the unbounded
model as a member of the development path. So both the
abstract model and the concrete model feature exactly the
same limit, and the refinement between them is completely
correct. Unfortunately this fails to address the human de-
sire to view the unbounded case as a valid precursor of the
bounded one, and also (and more importantly) fails to sep-
arate requirements concerns. In our case, it is far more im-
portant that the purse protocol can be proved robust than
that the full log problem be handled in some particular way.
Therefore there is the natural human desire to concentrate
on the protocol first, and then to retrofit the handling of
full logs later. If an incompatibility is found between these,
then there is a strong preference to change the handling of
full logs to fit the protocol, rather than the converse. Such
an approach however cannot be carried through in a neat
top-down manner in conventional refinement. One would
need an iterative re-engineering of the refinement develop-
ment which is expensive and does not scale. This can im-
pede truly large developments. The approach via retrench-
ment does not suffer this drawback; moreover (and most
importantly) the full rigour of the 100% honest refinement
approach can be recovered by applying the Tower Pattern
construction, and navigating the tower up the newly con-
structed side, as we saw clearly in earlier sections.

A second way in which refinement can deal with finite
limit situations is to in effect adopt some of the flexibility
espoused in retrenchment, by allowing the enabledness cri-
teria of operations to become strengthened in the bottom-
most refinement step. This resembles a use of the within
relation of retrenchment by another name, and this method
of dealing with implementation level restrictions, usually
refered to as conditional refinement, is eloquently demon-
strated in the account of chapter 17 of [12], amongst others.
We make a number of comments on this technique. Firstly,

ment from model A to model E, enabling model F to just be a copy of
model A. We now see that in the case of the current ‘retrenchment oppor-
tunity’, this was in fact forced by the security invariants.

interpreted within the framework of Section 3, it amounts to
a dereliction of the applicability condition captured in (2),
confirming that it falls short of being a refinement in our
sense. Secondly, it can only give conditions which restrict
the applicability of refinement, and cannot give a formal ac-
count of what happens when those conditions fail, which
may be of vital importance from the system engineering
point of view (as it is in our case). From a retrenchment
perspective, this latter point comes down to the tradeoffs
between using either the within relation or the concedes re-
lation to cater for some requirements issue. The duality be-
tween these is not precise, since a weaker within relation
gathers more pairs of concrete/abstract steps into the remit
of the retrenchment than does a stronger within relation and
a correspondingly modified concession (cf. equation (5)).
We claim it is preferable to use the within relation to ex-
press constraints that are genuinely impossible to violate
(whether for physical or logical reasons), such as the im-
possibility to ‘switch on’ a physical on/off switch when it is
already in the ‘on’ position. It is better to use the conces-
sion to deal with constraints whose policing one has to en-
gineer inside the developed system, and for which one can
envisage and define contingencies should the constraints be
breached.

Returning to finite limits, whereas a case can be made
for dealing with a genuinely unattainable limit (eg. for se-
quence numbers) via a within relation or by conditional re-
finement (since an analysis like the one in [8] can be tar-
geted at the within relation), the same cannot be said for
small limits, like the one we have in this paper. For these,
a conditional refinement can only discuss what happens in
a subset of the expected behaviours of the system, and so
is inadequate. The refinement riposte to this is to say that
violation of a small limit, leading to genuinely different sys-
tem behaviour, is a top level event, needing to be included
in the abstract model. This goes back to the 100% honest
approach we discussed above, with its lack of separation of
concerns. Of course the conditional refinement approach,
by insisting that a conditional refinement is still a refine-
ment, tends to deprive itself of the opportunity of building a
tower, with the latter’s advantage of being able to combine
the merits of a pragmatic separation of concerns with the
rigour of the 100% honest side of the tower.

A third way in which refinement can deal with finite limit
situations is to approach them ... via limits (in the metric
topology sense). The approach has its origins in the the-
sis of Neilson [15] which introduced the idea of ‘acceptably
inadequate refinements’. (Essentially an interchange of two
quantifiers takes us from the definition of the ideal model
with an infinite domain to one with a finite domain.) More
recently, this idea has been extended to an approach to re-
finement with approximations in [11], which uses metric
topology to quantify the deviation of a model with a finite

domain from an ideal one with an infinite domain. Provided
that the quantitative properties of the metric have been fully
validated against system engineering imperatives (and this
is an important proviso), it can yield a plausible approach
in eg. the sequence number scenario, in which the bound
on possible sequence numbers could be regarded as being
‘close enough to infinity’. But in eg. the purse log scenario,
it is hardly likely that 5 could be regarded as being ‘close
enough to infinity’ in any meaningful sense. The proba-
ble rejoinder to this might be that small limits such as this
need to be treated via the 100% honest approach already
discussed. Thus the metric approach is applicable in fewer
scenarios than retrenchment, and does not in itself save any
work at the system engineering level, because of the explicit
validation of the metric that is needed. The disciplined use
of retrenchment, eg. in a Tower Pattern framework, has the
potential to organise the validation that is required anyway,
without imposing the additional burden of necessarily hav-
ing to find a metric to base it on.

7 Conclusions

In the preceding sections, we have introduced the Mon-
dex development and its ‘retrenchment opportunities’, as
well as the Tower Pattern and supporting refinement and
retrenchment notions. We then selected one of the retrench-
ment opportunities, the finiteness of the purse log, and ex-
amined its treatment via the tower in detail. What we ob-
tained was in effect two refinement developments, dealing
with different levels of detail (and therefore implicitly fo-
cused on different spheres of concern), connected via a col-
lection of retrenchments.

Crucial to the utility of such a treatment is validation.
Retrenchment is itself an extremely permissive formal tech-
nique, not capable of offering the guarantees that refinement
can, so a validation from the domain perspective, is vital in
corroborating any formal development done with its help.
We were able to provide clear validation for our case study,
amply vindicating the approach used.

References

[1] R. Banach. Maximally abstract retrenchments. In Proc.
IEEE ICFEM2000, pages 133-142, York, August 2000.
IEEE Computer Society Press.

[2] R. Banach, C. Jeske, and M. Poppleton. Compo-
sition mechanisms for retrenchment. 2004. sub-
mitted, http://www.cs.man.ac.uk/~banach/some.pubs/ Re-
trench.Composition.pdf.

[3] R. Banach and M. Poppleton. Retrenchment: An engineer-
ing variation on refinement. In D. Bert, editor, 2nd Interna-
tional B Conference, volume 1393 of LNCS, pages 129-147,
Montpellier, France, April 1998. Springer.

[4] R. Banach and M. Poppleton. Sharp retrenchment, modu-
lated refinement and simulation. Formal Aspects of Com-
puting, 11:498-540, 1999.

[5] R. Banach and M. Poppleton. Retrenching partial require-
ments into system definitions: A simple feature interaction
case study. Requirements Engineering Journal, 8(2), 2003.
22pp.

[6] R. Banach, M. Poppleton, and C. Jeske. Retrenchment and
promotion in Z. submitted for publication, 2005.

[7] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Re-
trenching the purse: The balance enquiry quandary, and gen-
eralised and (1,1) forward refinements. Submitted.

[8] R. Banach, M. Poppleton, C. Jeske, and S. Stepney. Re-
trenching the purse: Finite sequence numbers and the tower
pattern. In J. Fitzgerald, 1. Hayes, and T. A., editors, For-
mal Methods 2005, volume 3582 of LNCS, pages 382-398,
Newcastle, UK, 2005. Springer.

[9] G. Barthe, P. Courtieu, P. Dufay, and M. de Sousa S. Tool-
assisted specification and verification of the javacard plat-
form. In H. Kirchner and C. Ringeissen, editors, AMAST
2002, volume 2422 of LNCS, pages 41-59. Springer, 2002.

[10] D. Bert, J. Bowen, S. King, and M. Waldén, editors. Proc.
ZB2003: Formal Specification and Development in Z and B,
volume 2651 of LNCS, Turku, Finland, June 2000. Springer.

[11] E. Boiten and J. Derrick. Formal program development with
approximations. In H. Treharne, S. King, M. Henson, and
S. Schneider, editors, Proc. ZB 2005: Formal Specification
and Development in B, volume 3455 of LNCS, pages 374—
392, Guildford, UK, 2005. Springer.

[12] M. Broy and K. Stglen. Specification and Development of
Interactive Systems, Focus on Streams, Interfaces, and Re-
finement. Springer, 2001.

[13] J. Derrick and E. Boiten. Refinement in Z and Object-Z.
FACIT. Springer, 2001.

[14] C.Jeske. Algebraic Integration of Retrenchment and Refine-
ment. PhD thesis, University of Manchester, 2005.

[15] D. Neilson. From Z to C: Illustration of a Rigorous Develop-
ment Method. PhD thesis, Oxford University Programming
Research Group, 1990. Technical Monograph PRG-101.

[16] D. of Trade and Industry. Information Tech-
nology Security Evaluation Criteria, 1991.
http://www.cesg.gov.uk/site/iacs/itsec/media/formal-
docs/Itsec.pdf.

[17] M. Poppleton and R. Banach. Controlling control sys-
tems: An application of evolving retrenchment. In D. Bert,
J. Bowen, M. Henson, and K. Robinson, editors, Second
International Conference of B and Z Users, volume 2272
of LNCS, pages 42-61, Grenoble, France, January 2002.
Springer.

[18] S. Stepney, D. Cooper, and J. Woodcock. An electronic
purse: Specification, refinement and proof. Technical Report
PRG-126, Oxford University Computing Laboratory, 2000.

[19] S. Stepney, F. Polack, and I. Toyn. An outline pattern lan-
guage for Z. In Bert et al. [10], pages 2—19.

[20] S. Stepney, F. Polack, and I. Toyn. Patterns to guide practical
refactoring. In Bert et al. [10], pages 20-39.

[21] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment and Proof. Prentice-Hall, 1996.

