Electronic Notes in Theoretical Computer Science 70 No. 3 (2002)
URL: http://www.elsevier.nl/locate/entcs/volume70.html 20 pages

Refactoring in Maintenance and Development
of 7Z Specifications and Proots

Susan Stepney 1.2
Logica UK Ltd,
Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK.

Fiona PolackS Tan Toyn4

Department of Computer Science,
University of York,
Heslington, York, YO10 5DD, UK.

Abstract

Once you have proved your refinement correct, that is not the end. Real products,
and their accompanying specifications, develop over time, with new improved ver-
sions having added functionality. There are new maintenance issues that arise when
altering and upgrading pre-existing large specifications and their respective proofs.

We show how concepts from refactoring can be used to structure this pro-
cess, and provide a means for well-defined, disciplined modifications. Additionally,
we discuss how the analogy between proof and refactoring, as meaning preserving
transforms, can be used to suggest the development of a refactoring toolset, and
thence a refinement toolset.

Keywords: Z, refinement, refactoring, patterns

1 Introduction

Logica’s Formal Methods Team (LFM) has been involved in several industrial-
scale Z specifications and proofs: of a compiler [9]; of an electronic Purse [12];
of a Smart Card Operating System [11]. [10] reports on some issues to do with
performing these industrial-scale 7 proofs, and sketches some requirements for
proof tool support to help in this task.

! Email: susan.stepney@cs.york.ac.uk

2 current address: Department of Computer Science, University of York, Heslington, York,
YO10 5DD, UK.

3 Email: fiona@cs.york.ac.uk

4 Email: ian@cs.york.ac.uk

(©2002 Published by Elsevier Science B. V.

STEPNEY, POLACK, AND TOYN

As a system undergoes maintenance and further development, its accom-
panying specification and proof have to keep track. Here we discuss issues
that have arisen from the subsequent maintenance of these large-scale speci-
fications and proofs. We then discuss how the concepts of refactoring can be
used to illuminate the requirements for tool support, and discuss how a proof
tool can be viewed as the first step towards a refactoring tool.

The examples presented here are given in Z, since they have been derived
from Z specifications. However, the concepts are largely language independent.

2 Maintenance

Even when starting a specification and proof task from scratch, a commercial
development rarely starts from a clean sheet of paper. Often implementation
details constrain what can be done, and how the specification can be struc-
tured. When enhancing an existing specification, say upgrading functionality,
these constraints are even more important.

2.1 Impact analysis

Often the customer decides on the upgrade required, and requires this to be
added to the specification. In simple cases this may merely require the adding
of an operation (assuming a state and operations style specification) to capture
the new functionality. In more complex cases it may also require the adding
of more state to capture how the new function works. Even more complex
cases may require radical alterations to the specification, because the change
may subvert a modelling assumption of the original.

Part of the maintenance process is impact analysis: determining the cost
and consequences of a proposed change before making that change. The ef-
fect on the formal specification and proof should be included in this impact
analysis, so that the customer can realise the actual effect of what looks to
them to be a simple implementation change.

For example, in one of LFM’s projects, we experienced a problem when
a customer added an operation with a different execution style. This new
operation used a push model (the system waiting for a command, then re-
sponding to whatever command it got), whilst all the other operations used a
pull model (the system actively looping until it finished processing a sequence
of commands). The change of model had little impact on the implementation,
requiring only a simple flag local to that one operation. The impact on the
specification was somewhat larger. We had to modify the specification to in-
clude a flag as a global state component, that got explicitly switched off in
every operation except the new one, thereby affecting every operation. We
also had to provide some subtle argumentation as to how this global specifi-
cation variable corresponded to the implementation’s local variable. Earlier
consultation with the formal methods team might have resulted in a different

2

STEPNEY, POLACK, AND TOYN
design.

2.2 Maintaining conventions

It is essential during maintenance also to keep the non-formal parts of the
specification up to date. The indexing, commenting, and layout conventions
all need to be maintained. This can be difficult if the conventions have not
been documented. In LFM’s projects, there was a degree of continuity of the
staff involved, but the conventions in use did have to be explained to new
staff. Consequently, we have started to describe some simple Patterns for
these conventions [13], to aid both the original specification process, and to
help with maintenance.

3 Refactoring

When upgrades involve addition of operations and state components, the spec-
ification gets steadily more complex. It is essential to make structural im-
provements to a specification that is undergoing such continual development,
else even the most elegant one soon degenerates into incomprehensible symbol
soup.

Refactoring [4] is a technique for improving the structure of code in a
disciplined, controlled, and manageable way. It is a technique to improve
design without changing behaviour. In particular, refactorings can be used to
ensure that evolving code makes use of the required Patterns [6].

Each individual refactoring change is very small, such as renaming a com-
ponent, or moving a feature, or splitting a method. Thus each change can be
understood and tested in isolation. Large improvements to the structure of
the code are made by applying a sequence of such small controlled changes
towards some goal.

Refactoring is particularly emphasised as part of the XP discipline [2],
which relies heavily on an incremental approach to design and coding. The
Cleanroom development process [3], which allows a component to be changed
provided the input to output function is unchanged, can be viewed as an early
example of meaning-preserving refactoring.

3.1 Refactoring a specification and proof

These concepts of refactoring are readily applicable to formal specification
and proof developments, as we show below. Mathematicians in particular are
fond of rewriting proofs to make them clearer, or more general, or shorter. In
this paper we are discussing a more specific discipline: a particular process
(refactoring in small controlled steps) to achieve a goal (better structure to
help with maintenance and upgrades).

A formal refactoring should not itself change the meaning of the specifica-
tion. (We refrain from defining what the meaning of a specification is. It may

3

STEPNEY, POLACK, AND TOYN

be the set of models as given by something such as the International Standard
for Z [7]. It may be a weaker concept such as “essential meaning” [5], being the
specification restricted to those names of interests. It may be some weaker
meaning still, relevant to the particular specification context.) Refactoring
may, however, be a desirable step before or during upgrading the specification
and proof (which upgrading will then change the meaning).

A refactoring may be applied to the specification to improve its structure,
in which case the changes need to be propagated through any affected proofs.
A refactoring may be applied to the specification in order to improve the
structure of a subsequent proof. A refactoring may be applied to a proof
alone, to improve its structure, leaving the specification unaffected.

3.2 Small steps

The first rule for formal refactoring, as for code, is to make the changes in
small, controlled steps. Each refactoring step should be the smallest logically
complete change that can be made, and pushed all the way through the spec-
ification and proof. (A small change to the specification can have a large
knock-on effect on the proof. This is another reason refactoring steps should
be as small as possible.) Do not succumb to the temptation to make several
large sweeping changes in one go: it is very easy to get lost in the morass of
changes, and forget or miss a needed change to a proof. Errors are easier to
locate if the change is small. Small steps are also easier to document, and to
record in the change lists.

For example, one of LEM’s specifications has a system state comprising
about 30 components, with about 15 predicates constraining them. Early on
in the original specification development, we partitioned the state into four
fairly independent sub-states (independent because few of the predicates in-
volve components in different substates, and most of the operations change
components in a single sub-state). During one subsequent upgrade cycle, it
became clear to us that one of the state components, and its associated pred-
icates, would fit better in a different sub-state, because there it would result
in significantly fewer of the predicates and operations referencing multiple
substates. We moved the declaration and the predicates in a single refactor-
ing step, pushing the required changes through the operation definitions and
proofs. This was the smallest logically complete step we could make: taking
two steps (declarations, then predicates, say) would have left the intermediate
specification type-incorrect and unprovable.

It is possible to introduce errors during an attempted refactoring step (es-
pecially at the present, where tool support is not yet fully developed). Also,
some refactoring steps can result in larger than anticipated changes to the
specification, and particularly the proof. If the benefit from the refactoring is
small, it might be better to revert rather than continue with the big restruc-
turing. So make sure it is possible to roll back each change (using the version

4

STEPNEY, POLACK, AND TOYN

control system) so that it is possible to recover from mistaken attempts to
refactor.

3.8 Identifying refactorings

Refactoring opportunities become more apparent as the specifier gains experi-
ence. Additionally, in formal refactoring, the process of performing the proof
gives additional insight into the structure of the system. Lessons learned in
this way can suggest refactorings to improve structure.

Lessons learned while doing the proofs can be used to suggest refactorings
to the specification. For example, in the Purse project (see earlier), we noticed
that certain combinations of state components appeared in the refinement
proofs, and that these combinations mapped to meaningful concepts in the
application domain. So we introduced these into the specification as derived
state components. This refactoring improved the clarity and structure of both
the specification and the proofs.

Lessons learned while doing the proof can be used to refactor the proof
itself. For example, in the Purse project, we became aware that we were
proving a similar property several times. We parameterised this property,
extracted it as a proved lemma, then used it several times in the main proof.
This shortened and simplified the main proofs. The lemma made sense as a
property in the application domain, so this refactoring also made the proof
structure easier to understand.

3.4 Change control lists

Refactoring can inflate change control lists, and make the changes look bigger
than they really are, which might dismay any third party expecting to evaluate
only a small upgrade. In LFM’s projects, we took care to separate out the
list of changes that were refactorings from those that were real functionality
changes, to help structure the evaluation task.

4 Proving Refactorings

The code refactoring process that [4] describes has to be modified for refac-
toring non-executable specifications.

With code refactoring, there is heavy emphasis on the testing. One must
execute the regression test suite after every small refactoring step to ensure
the code has not been broken, and that the meaning has not been changed.
Since each step is small, any bug introduced by the change should be rapidly
detectable and fixable.

With specification refactoring the analogue of running the regression test
suite is doing type checking, theorem proving, and validation.

5

STEPNEY, POLACK, AND TOYN

4.1 Type checking

Type checking catches the small, silly mistakes. This is easily performed by a
formal notation support tool.

4.2 Theorem proving

Next the refactoring is propagated through the proofs: this involves first mak-
ing the changes and then ensuring that all the reasoning steps are still valid
after these changes. This can sometimes require quite significant changes to
the proofs. Refactoring steps should be kept as small as possible partly to
ensure these proof changes are not too dramatic.

This step serves to expose any changes to the meaning of the specification
that affect those theorems being proved.

4.3 Validation

There is still the possibility that a change may affect the meaning of the speci-
fication, but not the validity of any of its theorems. The question arises, is this
a problem? If the specification and proof are capturing a refinement relation,
a change to meaning that does not invalidate the refinement is probably not
a problem. More care needs to be taken if properties other than refinement
are of interest, for example, a security or safety property. The change should
be revalidated against the informal requirements.

For example, one of LFM’s specifications originally had several predicates
constraining the abstract state that were capturing the actual functioning of
the concrete system. In “benefactoring” steps (see later), we removed these
from the abstract specification, thereby simplifying it, leaving them only in the
concrete specification. Since nothing required the constraints in the abstract
model, removing these constraints did not affect the proofs. We justified
this change by (informal) validation: these constraints were not a necessary
property of the system being specified, merely a property of the more concrete
design.

4.4 More theorems

Refactoring should be considered as an opportunity to capture further desir-
able but implicit properties of the specification. These desirable properties can
be expressed as theorems, requiring reproof after refactorings. These theorems
act as a ‘regression proof suite’ to ensure further refactorings are correct.

4.5 Incremental refactoring process

Although a refactoring is the smallest possible incremental change, some single
refactorings can additionally be broken down into smaller, partially checkable
steps. Even though the entire specification and proof is inconsistent part way

6

STEPNEY, POLACK, AND TOYN

through the steps, portions of it can be checked. So, for example, in the
context of a refinement proof

e modify and check the abstract specification

e modify and check proofs about the abstract specification

* modify and check the concrete specification

e modify and check proofs about the concrete specification

* modify and check the retrieve relation specification

* modify and check the refinement proof

At any step an error might be discovered (for example, that a global property
does not hold). This might require earlier steps to be modified.

5 Useful Refactorings

In this section we describe some of the refactorings that the Logica Formal
Methods team has found useful in its various Z projects. Some of these are
done simply to improve and clarify structure. Others are done also to conform
to various Z conventions, as expressed in [1], and currently being captured as
Z Patterns in [13].

The proofs in these projects were all performed by hand, with minimal
tool support (type checking only). These specifications and proofs were in-
dependently evaluated; some of the structural improvements are designed to
make evaluation of such proofs easier. Different refactorings might be more
appropriate for tool-supported proofs. (See also the discussion on tool support
for the refactoring process later.)

Many refactorings can be applied in either direction (since they are mean-
ing preserving). The choice of which direction to take in a particular case
depends on the specific context. The purpose is to improve the structure,
readability, and modifiability of the specification and proof.

The statement of each refactoring has the following structure (some parts
may be omitted for brevity)

* name

 short statement of the problem

* short statement of the refactoring change

¢ discussion

e process steps to be followed to achieve the refactoring

* example

5.1 Rename a Component

You have a specification component with a name that does not indicate its
purpose, or otherwise breaks the naming convention. Change the name.

7

STEPNEY, POLACK, AND TOYN

This refactoring is most useful in the early stages of specification. Initial
names choices can become inappropriate as the specification develops and
the purpose of a component becomes clarified. The initial name might be
overly suggestive (containing more “semantics” than does its definition), or
otherwise misleading. The naming convention is often evolving at this point,
too. Keeping the names meaningful and uniform makes the specification more
readable.

* choose the new name
e update the naming convention documentation if necessary
e rename the definition

e propagate the name change throughout the specification and proofs. The
typechecker can be used to help find all the places the name needs to be
changed.

5.2 Extract Commonality

You have a term used in several places in the specification or proof. Introduce
a new definition to provide a name for the term, and use that name in place
of the term.

Make sure the newly named term is a meaningful concept in its own right,
not just derived from a textual coincidence. Let the name capture this meaning
(and follow any naming convention Pattern in use). The use of the name makes
the specification more readable, and more concise.

The “term” might be an expression, a predicate, a part of a schema, or
even a chunk of proof. The new name can be introduced as a global definition
(possibly a new toolkit definition), a schema, a derived state component, a lo-
cal definition (existentially quantified), or a lemma (in which case the “name”
occurs in the informal commentary rather than the formal text).

e create the new definition
e typecheck, to ensure there are no name clashes
« for each use of the term in the scope of the definition
- replace the use of the term with the name
- typecheck, to ensure the name has been used properly in this case
- propagate the replacement through the proofs (this may require the addi-

tion of an expansion step, replacing the name with its definition, at each
point in the proof when the definition is used)

5.8 Inline a Name

You have a name with a relatively simple definition, used only once or a few
times. Remove the name, and replace its use(s) with its definition.

This is essentially the Extract Commonality refactoring in reverse. Getting
the right size of chunking is an art. Too few names and the reader has to

8

STEPNEY, POLACK, AND TOYN

puzzle out large swathes of mathematics. Too many names, and the reader
has to remember their meaning when puzzling out their uses.

o for each use of the name
- replace the name with its definition
- typecheck, to ensure the name has been used properly

¢ delete the definition of the name

e typecheck, to ensure no uses have been missed

5.4 Change a Cartesian Product to a Schema Product

You have a cartesian product type being used as a record, with lots of com-
ponent references. Introduce a schema product type, and use it instead.

The components of a cartesian product are labelled by their positions,
a not-very meaningful number. The components of a schema product are
labelled by their names, and these can be chosen to be much more meaningful.

e create the new definition, with a new name (if the name of the new and
old definitions are to be the same, first do a refactoring to rename the old
definition)

e typecheck, to ensure there are no name clashes

e change each occurrence of the old name to the new one, and each occurrence
of component reference from number to name (this will require more than
just mechanical changes, see the example).

* typecheck, to ensure the name has been used properly
* propagate the replacement through the proofs
* delete the old definition

e typecheck, to ensure no uses have been missed

Example before: a syntactic structure is defined as a cartesian product; its
semantics by meaning functions applied to the numbered components.

binOp == EXPR x OP x EXPR

Vb:binOpe M, b=M, b2 (M, b.1, M, b.3)

Example after: the syntactic structure is defined as a schema product; its
semantics by meaning functions applied to the named components.

BinOp == [lhs, rhs : EXPR; op : OP |

vV BinOp e M, 6 BinOp = M, op (M, lhs, M, rhs)
9

STEPNEY, POLACK, AND TOYN

5.5 Split a State Component

You have a state component that is a product type, where each component is
being referenced independently of the others. Replace the single component
with a separate component for each part of the product.

The parts of the product type are acting independently, and so do not need
to be bundled together. Structure before:

==[c:AxB;...|P(cl); Qc.2); ...]
Structure after:

S==[ca:A4; cb:B;...|P(ca); Qcb); ...]

5.6 Merge State Components

You have two or more state components that are constantly being referenced
together. Replace the separate components with a single product type com-
ponent (cartesian or schema product).

The separate components are acting as parts of a greater whole, and so
can be combined into that whole. Structure before:

==ca:A; cb:B;...|Plca,ch); Q(ca,cb,...); ... |
Structure after (cartesian product):

==[c:AxB; ...|P(c); Qc,...); ...]
Structure after (schema product):

C==[ca:A; cb:B]
==[c:C;...|P(c); Qle,...); ... |

If some of the predicate part can also be bundled, alternative structure after
(cartesian product):

C=={ca:A; cb:B|P(ca,ch)}
==[c:C;...|Qe,...); ...]

Alternative structure after (schema product):

==J[ca:A; cb:B;...|P(ca,ch)]
==[c:C;...|Qc,...); ... |

5.7 Split a State into Substates

You have a large number of state components. Structure the state into sub-
states.

10

STEPNEY, POLACK, AND TOYN

Smaller chunks of state may be easier to understand, and may simplify

operation definitions. Components that constrain each other, and components
that change together, are candidates for being in the same substate. Most state
predicates are on substates, with few on the global state. Also most operations
affect only a single substate, and the unchanging nature of the other substates
can be captured with a few = schemas, rather than a long list of unchanging
state components.

define substate schemas; typecheck
modify the state schema to use these; typecheck

modify each operation schema to use these, including the use of A and =
substate schemas; typecheck

define substate initialisation operations; typecheck

use schema calculus to define the state initialisation operation using the
substate initialisations; typecheck

modify the initialisation operation to use these; typecheck

propagate through the proofs.

This refactoring may be followed by Expand schemas slowly, to take advantage
of the opportunity to expand only the relevant substates during schema expan-
sion steps (this may result in some extra steps being added, as the substates
are expanded one by one).

Example before

S==[z,y:Z; a,b:PZ|x€a; ygb; a#b]
Op==[AS; z2?:Z |2 ' =27 d’=aUz? ¢y =vy; ' =10
InitS == [5" |2'=0; y=1; o ={a'}; V' =2]

Example after

St==[z:Z; a:PZL|z€al]
Sy==1[y:2Z, b:PZ|y&b|]
==[81; Syla#b]
Op ==[ASz; ZSy; 2?7 :Z | 2" =27 d/ =aUz?]
InitSe == [Sz’ | 2/ =0; o/ = {z'} |
InitSy ==[Sy' |y =1, b = 2]

InitS == InitSx N\ InitSy

5.8 Mowe a State Component between Substates

You have a substate component frequently being used along with components
in another substate. Move the component into the other substate.

* Move the component and any predicates, as necessary.

11

STEPNEY, POLACK, AND TOYN

5.9 Split an Operation into Disjuncts

You have an operation with a top level disjunct amongst its predicates. Split
the operation into two parts, one for each disjunct.

Example before
Op==[AS|P; QVR; S|
Example after

OpQ ==[AS|P; Q; S|
OpR==[AS|P; R; S
Op == OpQ Vv OpR

5.10 Split an Operation into a Composition

You have an operation with some existentially quantified state components
that are acting as “intermediate” variables. Split the operation into two on
these components, and compose the parts.
This is effectively expanding out the definition of schema composition® .
Example before

Op==[AS|3S,eP05,65)AQ0S¢0S5")]
Example after

Opl==[AS|PH S5,6S5")]
Op2==[AS|Q(0 S,0S5")]
Op == Oplg Op2

5.11 Genericise Common Definitions

You have several similar definitions acting on different types. Define a generic
construct that captures all the behaviours.
This is a special case of Extract Commonality.

5.12 Curry a Function

You have a function argument that is a product type, but want to apply the
function to only part of that product. Replace the product type with a curried
form.

Example before:

5 This suggests there should be a similar refactoring for schema piping. However, since we
have yet to come across a realistic case of piping in a large specification, we leave out the
description.

12

STEPNEY, POLACK, AND TOYN

add :NxN—-N
mcrement : N — N

Vm,n:Neadd(m,n)=m+n
Vn : N e increment n = add(1,n)

Example after:

mcrement : N — N

‘ add : N+ N — N

Vm,n:Neadd m n=m+n
mcrement = add 1

5.13 Reorder Product Arguments

You have two functions, one with a product range, one with a product domain,
that you want to compose, but the products have their items in different
orders. Reorder one of the products to match the other.

Example before:

f: X+ YxZ
g:ZxY W
h: X+~ W

‘ Ve:Xedy:Y; z2:Z|(y,2)=fxehz=g(zvy)

Example after:

f: X+ YxZ
g:YxZ -+ W
h: X+~ W

| h=fsg

5.14 Reorder Curried Arguments

You have a function that you want to partially apply, but the argument order
does not support that. Reorder the arguments so that it can be partially
applied.

Example before:

f:X+»Y w7
g: X +7Z

‘ dy:YeVx:Xefry=gz

Example after:
13

STEPNEY, POLACK, AND TOYN

f: Y+ X7
g: X +7Z

\ Jy:Yefy=yg

5.15 Thin Early, Thin Often

The hypothesis of the goal being proved is large and clumsy. Thin the hy-
pothesis as early and as often as is possible.

Thinning declarations and predicates from the hypothesis has two advan-
tages: it keeps the hypothesis small and manageable; and it indicates more
clearly what remaining properties are still required to discharge the remaining
goal.

5.16 Move a Common Proof Step Before a Branch Point

You have a proof that has branched into several “cases” (for example, when
splitting up a disjunct in the hypothesis), and a similar step is used in each
branch (for example, cutting in a particular value). Move the step before the
case split, and do it only once.

If the step is only “similar” in each branch, it is first necessary to apply
some other refactorings to make the step the same in each branch (for exam-
ple, by parameterising the proof on the case branch parameter) before this
refactoring can be performed.

5.17 Turn a Common Proof Step into a Lemma

This is a special case of Extract Commonality.
Make sure the lemma is meaningful in isolation, and is not just a “textual
macro”.

5.18 Ezpand schemas slowly

You have a large or deeply nested schema that is being expanded, or flattened,
in a single step, resulting in the sudden appearance of a lot of (as yet) unnec-
essary terms. FExpand the schema incrementally, exposing only those terms
needed at any given stage.

This may require the prior use of the Split a state into substates or the Split
an operation into disjuncts refactoring.

If the schema is used as a predicate in the goal’s hypothesis, consider
duplicating the required term outside the schema, rather than expanding the
schema. Use the term as required, then thin it.

14

STEPNEY, POLACK, AND TOYN

6 Meaning changing “Benefactorings”

Refactoring changes structure without changing meaning. Other steps that
look superficially like refactoring steps, but that do change the meaning of
the specification, can still be used, to fix bugs, to tidy up infelicities, and
to upgrade specifications in a manageable way. The same discipline as used
in refactoring, of taking only small, provable, controlled steps, is used when
applying these “benefactorings”.

For example, see the case of removing unnecessary abstract constraints
(earlier).

Separating out refactorings (changing structure without changing mean-
ing) from benefactorings (changing meaning without changing structure) can
help provide a disciplined framework to the maintenance and upgrade process.

Some benefactorings that we have applied to LFM’s projects are noted
below.

6.1 Change a Type

A functionality change may require a component’s type to be changed. For
example, a simple type might need to be extended to a product type. Before
adding any new functionality, make the minimal change to the type that can
be done (so, add the new component throughout, but don’t use it yet).

e modify the type in the abstract model; typecheck
* modify any global property proofs about the abstract model
e modify the type in the concrete model; typecheck
e modify any global property proofs about the concrete model

e modify the retrieve relation that links the modified types if appropriate;
typecheck

e modify the refinement proof as necessary

6.2 Add a State Component

The type change argument above applies in a slightly larger context to adding
a state component to a A/Z spec, in order to add more functionality.

add the component to the abstract model; typecheck

* add abstract constraints; typecheck

e modify any global property proofs about the abstract model
e add the component to the concrete model; typecheck

e add concrete constraints; typecheck

* modify any global property proofs about the concrete model

* modify the retrieve relation to link the new abstract and concrete compo-
nents; typecheck

15

STEPNEY, POLACK, AND TOYN

e modify the refinement proof as necessary

6.3 Add an Operation

In the usual A/= style model, adding an operation has little effect on the
specification. If the model has theorems about global properties, it is necessary
to modify their proofs to ensure the properties still hold.

* add the operation to the abstract model; typecheck
* modify any global property proofs about the abstract model
* add the operation to the concrete model; typecheck
* modify any global property proofs about the concrete model

e add a new branch to the refinement proof to cover the new operation

6.4 Add a Function Argument

Similarly, for adding a further argument to a function. First add the argument,
then add the constraints separately.

7 Refactoring as a proof technique

The concept of refactoring can be used when performing a (hand) proof. A
proof can be considered to be the documentation of a sequence of meaning
preserving transformations of a goal that improves its structure in a particular
way, to the predicate true.

Many proof steps can be applied in either a forward or backward manner,
and hence are meaning preserving. Examples include one-pointing or applying
Leibniz (replacing equals by equals), schema expansions, and various elimi-
nations. Such steps can be treated as refactorings. The presentation of the
proof can be constructed by repeating the following steps:

» copy and paste the most recent form of the goal
e perform the desired refactoring by suitably editing the copy
e typecheck

For brevity of presentation, several refactorings (such as several one-pointings)
may be performed on a single copy of the goal. However, to make such a pre-
sentation step comprehensible to reviewers, no single part of the goal changed
by a refactoring should be further changed by a subsequent refactoring in the
same step (that is, restrict multiple refactorings to distinct parts of the goal).

The names of the refactorings performed form part of the documentation
of the proof step.

16

STEPNEY, POLACK, AND TOYN

8 Tool Support

A code refactoring can affect an entire program. For example, changing the
name of a method involves a change at every place that method is called.
However, although widespread, such a change is shallow. Deeper code refac-
torings tend to be contained to small regions of code. It is by having small
changes (either small in depth, or small in breadth) that code refactoring is
manageable.

Formal specification and proof refactorings tend to have more widespread
effects, because of the impact of a specification change on the proofs. For
example, adding a component or predicate to the state may involve adding it
to the proof of every operation. Again, the changes tend to be shallow: the
addition will probably have little or no effect on most operations. However,
every proof needs to be checked, and this can be tedious without suitable tool
support.

Tools are currently being built to support code refactorings. For exam-
ple, the latest version of JBuilder includes a refactoring wizard. Similar tool
support (within a proof tool) for formal refactoring would be a benefit.

Such a tool could support common refactoring patterns such as

e partition a state into substates

e move a component between substates

 split a complex operation into disjuncts

 split a complex operation into a sequential composition
e extract a common sub-proof as a lemma

Also important is support for pushing a relatively small change through the
proof. This requires facilities for parameterising tactics for machine-generated
proofs.

9 Unifying refactoring and proof

We have seen that refactoring is a meaning preserving transformation on a
specification, moving it closer to a well-structured pattern, while proof is a
meaning preserving transformation on a goal, moving it closer to true. In this
section we use this analogy to explore how concepts from proofs and proof
tools could be extended to build refactoring tools and refactoring pattern
languages.

9.1 Tactics for refactoring

Proof tools tend to rely on a small core set of elementary inference steps, with
the desired soundness and coverage properties, combined together to produce
usable inferences using some tactic language.

The analogy suggests that a refactoring tool should rely on a small set

17

STEPNEY, POLACK, AND TOYN

of suitable refactorings (somewhat like the ones presented above), and then
combine them to produce large scale refactorings (several small refactorings
resulting in the desired pattern) using some kind of refactoring combination
language, incorporating composition, choice, iteration, and powerful pattern
matching.

9.2 Refactoring entire documents

A proof tool transforms a single goal; a refactoring transforms an entire spec-
ification and proof. However, the specification and proof document can be
considered to be a single entity, comprised of three parts: the definitions
(what is usually called the specification), the theorem (we can assume there is
only one, without loss of generality, simply by conjoining any separate ones)
and the tactic, the specification of how to apply elementary inference rules
to the theorem in the context of the declarations, in order to generate true.
(The third part of this document is usually presented to a human reader as
the outline proof generated by the tactic, rather than the tactic itself.)

Hence a refactoring tool should be able to transform declarations, theo-
rems, and tactics. Transforming a tactic might be done to improve the struc-
ture of a proof. It might also be done to genericise a proof, so that the tactic
can still prove the theorem in the context of a refactored specification. This
implies that as well as patterns and refactorings for specifications, we want
patterns and refactorings for tactics.

9.3 Refactoring for refinements

The small meaning preserving steps, combined into the higher level trans-
formational steps, bridge the gap between the two common styles of proof.
Meaning preserving transforms (for example, refinement calculi such as [8])
have the advantage of being small easily proved steps, but the disadvantage
of being hard to guide towards the desired end point. Posit and prove, the
conventional technique used for Z refinements, has the advantage of being able
to find the desired end point (it is simply posited), but hard to prove, because
the step is so large.

Refinement can be considered to be a ‘vertical’ refactoring (moving be-
tween an abstract and a concrete representation of the ‘same’ specification,
possibly changing representation language), since it preserves the meaning
of the abstract specification in some sense. Refinement tends to be cast as
a ‘posit and prove’ style: the concrete specification is posited, then a large
proof needs to be performed. The concepts of refactoring, with a suitable re-
finement refactoring pattern language, should be exploited to build a method
that combines the advantage of small, provable steps, with the advantage of
reaching a desired end point.

18

STEPNEY, POLACK, AND TOYN

9.4 Proof, refactoring, refinement unified

In summary:

e An inference step transforms a goal into another goal with the same mean-
ing. A tactic language combines these small steps to produce large reasoning
steps intended to move the goal closer to true.

* A refactoring transforms a specification (declaration, theorem and tactic)
into another specification with the same meaning. A refactoring language
combines these small steps to produce large transformational steps intended
to move the specification closer to realising a pattern.

» A refinement transforms an abstract specification into a concrete specifi-
cation with the same meaning. A refinement refactoring language could
combine small refinement steps to produce large refinements intended to
move the abstract specification closer to an implementation.

That is, all three areas can be viewed as special cases of meaning preserving
transforms. Hence techniques currently used in one area may well be appli-
cable in the other two. We intend to investigate how proof tools in particular
could provide the basis for refinement tools and refactoring tools.

10 Conclusions

The code changing discipline of refactoring has been applied equally fruitfully
to specification and proof maintenance in a number of large commercial formal
specification and refinement projects.

The same refactoring discipline can be applied to specification upgrades.
Systematically combining refactorings and benefactorings provides a structure
for the specification maintenance and upgrade process.

Refactoring can be used as part of the proof process itself. The analogy
between proof and refactoring can be extended, to suggest a route to building
a refactoring toolset, and a refinement toolset.

References

[1] Barden, R., S. Stepney and D. Cooper, “Z in Practice,” BCS Practitioners
Series, Prentice Hall, 1994.

[2] Beck, K., “Extreme Programming Explained,” Addison-Wesley, 2000.

[3] Dyer, M., “The Cleanroom Approach to Quality Software Development,” Wiley,
1992.

[4] Fowler, M., “Refactoring: improving the design of existing code,” Addison-
Wesley, 1999.

[5] France, R. B. (2002), (private communication).
19

STEPNEY, POLACK, AND TOYN

[6] Gamma, E., R. Helm, R. Johnson and J. Vlissides, “Design Patterns,” Addison-
Wesley, 1995.

[7] ISO/IEC 13568, “Information Technology—Z7 Formal Specification Notation—
Syntax, Type System and Semantics: International Standard,” (2002).

[8] Morgan, C. C., “Programming from Specifications,” Prentice Hall, 1990.

[9] Stepney, S., Incremental development of a high integrity compiler: experience
from an industrial development, in: Third IEEE High-Assurance Systems
Engineering Symposium (HASE’98), Washington DC, 1998.

[10] Stepney, S., A tale of two proofs, in: BCS-FACS Third Northern Formal Methods
Workshop, Ilkley (1998).

[11] Stepney, S. and D. Cooper, Formal methods for industrial products, in: J. P.
Bowen, S. Dunne, A. Galloway and S. King, editors, ZB2000: First International
Conference of B and Z Users, York, August 2000, Lecture Notes in Computer
Science 1878 (2000).

[12] Stepney, S., D. Cooper and J. Woodcock, An electronic purse: Specification,
refinement, and proof, Technical Monograph PRG-126, Programming Research
Group, Oxford University Computing Laboratory (2000).

[13] Stepney, S. and F. Polack, A pattern language for Z, (in preparation).

20

