
Pictorial Representation of Parallel Programs

Susan Stepney

GEC-Marconi Research Centre, West Hanningfield Road,
Great Baddow, Chelmsford, Essex, CM2 8HN.

ABSTRACT

The structure of a parallel program is considerably more difficult to visualize
and understand than that of a sequential one. Pictorial methods can help make
the structure more visible.

In this paper I describe a pictorial representation of occam programs. This
representation has been developed as part of the Alvey ParSiFal project, for
use by one of its tools, GRAIL.

1 Introduction
Parallel programs have considerably more complicated structures than do sequential
programs. A parallel program has many threads to the computation, and each thread can
have all the complexity of structure of a sequential program. In addition, there can be a
complicated communication structure between these threads. Pictorial methods can help
make the parallel structure more visible.

In this paper I describe a pictorial representation of occam programs. This representation
has been developed as part of the Alvey ParSiFal project, for use by one of its tools,
GRAIL [1].

The structure of the program is shown pictorially, by use of nested boxes, and by arrows.
This pictorial representation continues down to the level of an individual statement.
Statements themselves are shown textually - little is gained, and much is lost, trying to
contrive a pictorial representation for these.

2 occam Overview
Before I describe the representation, I give a brief overview of occam for those unfamiliar
with it. A full description of the language is given in [2].

The parallel programming language occam is derived from the formal language CSP [3].
occam has parallelism designed in from the start. It is based on the ideas of concurrency and
communication. An occam program consists of a set of concurrent processes that
communicate via channels at well defined points in their execution. There is built in
synchronization - whichever process is ready to communicate first waits for the other to be
ready.

The building blocks of occam processes are three primitive processes; assignment, input
and output. They are combined by conventional loop (WHILE and replicated SEQ) and IF
constructors, and can be abstracted away as procedures.

If processes are to be run sequentially, this has to be stated explicitly by use of the SEQ
keyword. Similarly, the PAR keyword says the processes are to be run in parallel.

There is one more construct, ALT. This means "alternative choice", and allows a process
to wait for input from a number of channels, and proceed when any one is ready to
communicate. If more than one is ready, the choice of which one proceeds is made non-
deterministically.

Susan Stepney. “Pictorial Representation of Parallel Programs.” A. Kilgour and R. Earnshaw,
editors, Graphical Tools for Software Engineering, BCS conference proceedings, pages 46-59.
Cambridge University Press, 1989.

A collection of occam processes combined with one of the above constructors is also a
process. So processes can have internal parallelism and communication, but can also be
viewed as black boxes, just in terms of their external communications. This lends itself to a
hierarchical process design.

3 Two-Dimensional Display
The pictorial representation used in GRAIL is two dimensional. The vertical dimension
(down the page) is used in the conventional way to represent sequential execution, and
deterministic choice (IF). The horizontal dimension (across the page) is used to indicate
parallelism and non-deterministic choice (ALT). The various parallel threads of execution are
drawn side by side.

Consider the following hypothetical process structure:

This represents a process that starts off, splits into a few parallel threads, then finishes up.
The occam for such a structure would look like:

SEQ
 initialize()
 PAR
 processl()
 SEQ
 process2()
 PAR
 p3a()
 p3b()
 p3c()
 process4()
 terminate()

Notice how the clear distinction between parallel and sequential processes has been lost.
Also, the scope of the processes is not obvious, for example, is terminate in parallel with
process1, or sequentially after it?

The pictorial representation of the same structure is

 2

Now the parallel structure, and scope, is visible at a glance.

4 Processes
In this and the following two sections I discuss the GRAIL representation in some detail. I
then give a fairly realistic example, illustrating the use of many of the features described.

The GRAIL display uses the process as its fundamental unit. An occam process is drawn
in a rectangular box:

Each process can be hierarchically composed of other processes. Each occam construct (SEQ,
WHILE, IF, PAR, ALT) has a different pictorial representation, and is drawn background of a
different shade of grey. (I do not discuss CASE statements, functions, or variant protocols).
The darker the background grey, the more parallel, or less deterministic the construct.

In theory, the picture drawn this way is completely determined by the occam code. In
practice, however, the text inside a box can be split over more than one line, in order to
maximise the amount displayed.

4.1 Sequential Processes
A sequential process is drawn with the component process boxes stacked vertically. The
component boxes all have the same width, but may have different heights. So

SEQ
 chan ? x
 procedure()
 var := expr

becomes

A replicated SEQ is drawn with a replicator bar over the body process, all enclosed in a box
with a light grey background.

SEQ i = base FOR count
 process()

 3

becomes

and

SEQ i = base FOR count
 SEQ
 chan ? x
 procedure()
 var := expr

becomes

This type of bar, with a corner chopped off, is used to indicate all replicator and loop
constructs.

4.2 While Loops
The replicator bar shape is also used in the display of a WHILE loop, showing the link :tween
replicated SEQs (essentially loops) and WHILE loops.

The keyword WHILE, and the expression written inside the bar, are drawn above the body
process. This is drawn on a light to mid grey background. (The WHILE grey is darker an the
replicated SEQ grey, since the construct is less deterministic - the number of times round the
loop is not necessarily known in advance). So

WHILE expr
 process()

becomes

4.3 If Processes
An IF process is also drawn vertically, indicating that the first process down the list with a
TRUE choice is executed.

 4

Each expression is drawn in a box, with the corresponding process box to its right. The
expression/process pairs are drawn vertically, with gaps to separate them. They are joined by
a box on the left, containing the keyword IF. The whole thing is drawn on a mid grey
background. So

IF
 exprl
 processl()
 expr2
 process2()
 TRUE
 SKIP

becomes

A replicated IF has a replicator bar, drawn over expression/process pair or internal IF
process.

IF i = base FOR count
 boolean
 process()

becomes

The fairly common occam cliche

IF
 IF i = base FOR count
 expri
 proc (i)
 TRUE
 SKIP

becomes

 5

Note that all the process boxes are the same width, and the expression box widths are altered
to take into account the keyword boxes.

The display highlights the fact that the construct is essentially a single IF statement, not
two nested ones.

4.4 Parallel Processes
A parallel process is drawn horizontally. The component processes are drawn with gaps
between them, on a dark grey background.

PAR
 chanl ? varl
 var2 := expr
 chan2 ! expr2

becomes

A replicated PAR has a keyword and replicator bar over it.

PAR i = base FOR count
 process()

becomes

A PRI PAR is drawn similarly, except the box is a lighter grey, since the construct is more
deterministic (if both branches of the PRI PAR can execute, you know which one is
executing).

4.5 Alternative Processes
ALTs are drawn horizontally, to indicate the non-deterministic choice if more than one guard
is ready.

Each guard is drawn in a box, and is split over two lines if it includes a boolean
expression. The corresponding process box is drawn beneath the guard. The guard/process
pairs are drawn horizontally, with gaps to separate them. They are joined by a box above
them, containing the keywords ALT or PRI ALT. The whole thing is drawn on a mid to dark
grey background. So

ALT
 bool & chanl ? x
 processl()
 chan2 ? y
 process2 ()

 6

becomes

A replicated ALT has a replicator bar drawn above the guard/process pair. So

ALT i = base FOR count
 expr & chan[i] ? z
 proc(i)

becomes

For more complicated nested ALTs, all the process boxes are the same height, and the guard
box heights are altered to take into account the replicator bars.

5 Folds
One of the interesting features on the Inmos TDS editor is its folding ability. A process, or
group of processes, can be grouped together and “folded up”. The group can be displayed in
the normal way, or shown just as a comment summarizing their function.

For example,
SEQ
 process ()
 --{{{ fold
 proc.1()
 proc.2()
 --}}}
 another.process()

when folded, looks like

SEQ
 process =()
 ... fold
 another.process()

The folding allows the amount of information on display to be controlled. It also encourages
meaningful comments, since when the fold is closed the comment is the only indication of
what is inside.

 7

This folding is so useful, and so common among occam programmers, that GRAIL’s
pictorial representation supports it.

5.1 Closed Folds
When closed, a fold appears as a box containing the fold comment.

5.2 Open Folds
There are two options for open folds. They can either be indistinguishable from an unfolded
process

or have the fold comment displayed in a small font

6 Channels
Channels are drawn as arrows between the processes they connect. Drawing channels is not
so clear cut as the deterministic drawing of the process structure. A route between the
processes needs to be decided. The criterion used is to minimize the amount of picture
obscured by the drawn channel.

Since the vertical dimension represents time, and since channel communication
synchronizes the processes at either end, channels tend to be horizontal arrows.

A channel is drawn as an arrow to show the direction of the communication:

If the input and output processes are far apart in the picture, the channel can bend to avoid
other processes:

 8

Channels can originate, or end, in more than one place:

or may have only one end attached:

More than one channel may enter or leave a box if it is a procedure call or closed fold:

7 Channel Multiplexor
Consider a process that takes input from three other processes, and outputs them on a single
channel. The occam for this looks something like

 9

SEQ
 ... initialize
 WHILE running > 0
 ALT
 ... fromA
 --{{{ fromB
 fromB ? tag
 IF
 tag = stop
 running := running – 1
 tag = data
 SEQ
 fromB ? x
 out ! x
 --}}}
 ... fromC
 ... finish up

It is not possible to see from this text that there are channels entering and leaving the folds, or
that the same channel leaves all three folds. In other words, it is not possible to see “at a
glance” that this is a multiplexor.

The GRAIL display, with channels, is

Now the communications structure is visible. The fact that the program merges input from
three channels onto one is much more obvious.

8 GRAIL and Colour
The ParSiFal occam monitoring tool, GRAIL, uses the representation described above to
show the monitored program. The display (currently running on a Sun workstation) is
interactive; the user can select which procedure to look at, can manipulate folds, and can
display or hide channels, using the mouse.

The representation was developed as a way of displaying the monitoring data. The
activity in various parts of the program is overlayed on the relevant process box, or channel,

 10

 11

in colour. Blue indicates inactive processes, with a gradual change in colour to red for the
most active processes. The colour allows interesting areas of the program to be found.

As with the pictorial representation of the program, colour is used only where
appropriate, for high level information. Once an interesting area of the program has been
found, the actual monitoring data can be displayed in a textual form (as numbers).

9 Conclusions
The textual occam representation in particular the folding, directly supports hierarchical
process structure. However, the distinction between parallel and sequential processes is
obscured by the linear form of the text. Orthogonal to the process structure is the
communications. The textual representation does not support any structuring of this.

The representation used by the GRAIL, display also supports the hierarchical process
structure. In addition, it highlights the parallelism and scope of processes. The pictorial
form, by directly showing the communication paths, encourages simplicity (i.e. tidiness) and
discourages complexity (i.e. spaghetti). It becomes much easier to trace communication
routes through the program.

Not only does the GRAIL display help users while developing their own programs, it also
comes in very useful when puzzling out a program written by someone else. Also,
monitoring (or other) information can be overlayed in colour, allowing interesting parts of the
program to be discovered “at a glance”. It is important, however, that a textual form is used
at the lowest level for detailed information.

GRAIL has been developed for displaying monitoring data. Other uses of the
representation, for example, to display debugging data (values of variables) or as a graphical
occam editor, would require an extension to the display to include channel and variable
declarations.

References
[1] S. Stepney, “GRAIL - Graphical Representation of Activity, Interconnection and
Loading”, Proceedings of the occam User Group 7th Technical Meeting, Grenoble, 1987.
[2] Inmos Ltd, occam 2 Reference Manual, Prentice-Hall International, 1988.
[3] C. A. R. Hoare, Communicating Sequential Processes, Prentice-Hall International, 1985.

	Introduction
	occam Overview
	Two-Dimensional Display
	Processes
	Sequential Processes
	While Loops
	If Processes
	Parallel Processes
	Alternative Processes

	Folds
	Closed Folds
	Open Folds

	Channels
	Channel Multiplexor
	GRAIL and Colour
	Conclusions
	References

