
Fundamenta Informaticae 77 (2007) 1–41 1

IOS Press

Retrenching the Purse: The Balance Enquiry Quandary,
and Generalised and (1, 1) Forward Refinements

Richard Banach∗, Czeslaw Jeske

School of Computer Science, University of Manchester

Manchester M13 9PL, UK

banach@cs.man.ac.uk; cj@cs.man.ac.uk

Michael Poppleton

School of Electronics and Computer Science, University of Southampton

Southampton SO17 1BJ, UK

mrp@ecs.soton.ac.uk

Susan Stepney

Department of Computer Science, University of York

York YO10 5DD, UK

susan.stepney@cs.york.ac.uk

Abstract. Some of the success stories of model based refinement are recalled, as well as some of
the annoyances that arise when refinement is deployed in the engineering of large systems. The way
that retrenchment attempts to alleviate such inconveniences is briefly reviewed. The Mondex Elec-
tronic Purse formal development provides a highly credibletestbed for examining how real world
refinement difficulties can be treated via retrenchment. Thecontributions of retrenchment to inte-
grating the real implementation with the formal development are surveyed, and the extraction of
commonly occurring ‘retrenchment patterns’ is recalled. One of the Mondex difficulties, the ‘Bal-
ance Enquiry Quandary’ is treated in detail, and the way thatretrenchment is able to account for the
system behaviour is explained. The problem is reconsideredusing generalised forward refinement,
and the simplicity of the resolution of the quandary, both byretrenchment, and by generalised for-
ward refinement, inspires the creation of a genuine(1, 1) forward refinement for Mondex, something
long thought impossible. The forward treatment exhibits a similar balance enquiry quandary to the
backward refinement, as it must, given that both are refinements of an atomic action to a non-atomic
protocol, and the forward quandary is dealt with as easily byretrenchment as is the backward case.

∗Address for correspondence: School of Computer Science, University of Manchester, Manchester M13 9PL, UK

2 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

The simplicity of the retrenchment treatment foreshadows ageneral purpose retrenchmentAtomicity
Patternfor dealing with atomic-versus-finegrained situations.

Keywords: Retrenchment, Refinement, Verification, Mondex Purse, Atomicity

1. Introduction

Model based refinement is well known as the standard technique for progressing abstract system designs
towards implementations. The abstract designs are typically expressed in a modelling language permit-
ting the maximum of expressivity, abstraction, mathematical rigour, and succinctness, without concern
for executability. The lower level models lean increasingly towards the actual capabilities of real com-
puting devices, and the algorithms that they must utilise. There are a number ofspecific formulations
of model based refinement, which can differ as regards particular technical details, but they all share the
same overall strategy for establishing the correctness of an implementation: namely that for every run
of the concrete system, there must be a run of the abstract system which maintains the desired notion
of correct correspondence between them.1 Among the more well known techniques we can mention Z
[41, 51, 32], B [1, 40, 35], VDM [28, 33, 16], RAISE [36, 50] andASM [25, 19, 37, 38].

Besides being well established in the academic sphere, refinement has hadnotable successes on the
industrial front in recent years. We can cite the Mondex Purse [45, 46] and Multos Operating System
[44, 43] for Z, the ḾETÉOR project [12] and numerous other railway system projects in Franceand
elsewhere for B, and a number of language systems and other developments for ASM [42, 23, 21, 24,
14, 13, 20, 22, 49]. Earlier more limited success can be cited for VDM [30].

Despite these undoubted successes, refinement practitioners have known for some time that when
refinement is used as the sole means of progressing from an abstract model to a concrete one, then
certain difficulties can plague the development process due to the exacting nature of typical refinement
proof obligations. This is not a technical difficulty with refinement, rather it isa manifestation of human
inclination to view certain things as abstractions/concretisations of the same phenomenon, that some
given refinement formalism does not permit to be so viewed. Since the humannotion of abstraction is
inevitably imprecise, and the mathematical notion of abstraction pertaining to any specific refinement
formalism isde factoextremely precise, some dislocation between the two is bound to occur sometimes.

Usually, if the scale of the problem is small, this dislocation can be overcome easily enough. Fre-
quently it is sufficient to make some small adjustment to one or other of an abstract/concrete pair of
models to bring them into line. Often it is the abstract model that must be changed, so that it does not
make impossible demands of some aspect of the implementation (assuming the concrete model is in-
tended to not misrepresent what the hardware is doing at the code level).However, when the problem
size is large, such manipulations can become impractical.

Let us illustrate this on a simple and commonly occurring example: natural numberarithmetic.
Implementable whole numbers are invariably bounded. So arithmetic always generates within-bounds
and out-of-bounds cases. If there aren different quantities in the model, then for a typical operation there
will be one all-within-bounds case, and easily of the order of2n − 1 out-of-bounds cases2 of various
flavours. If one is fastidious about representing correctly what happens in all these different cases in

1Usually this is augmented with an applicability condition, to exclude trivial implementations.
2Or more, depending on the details of the required operation.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 3

the specification, their syntactic descriptions can easily swamp that of the single all-within-bounds case,
which is the one of most interest. This in turn makes it highly desirable to idealise the arithmetic and
use unbounded naturals at the abstract level. Unfortunately in the overwhelming majority of refinement
formalisms there is no refinement from unbounded naturals to bounded ones that handles a sensible
selection of the operations that are normally needed. One is therefore faced with a choice. One takes
on board the proliferation of cases at the abstract level with its concomitantsyntactic overload, or some
aspect of the refinement falls short of what refinement is supposed to be.

While the above illustrates some difficulties that are intrinsic to the way refinementtechniques are
tied to very specific details of the models involved, there are others. Applications that are large enough,
are seldom tackled on a whim or purely for the research literature. The costs involved mean that there
is usually a predetermined commercial goal to be satisfied. As a result, there will be many stakeholders
engaged in the enterprise other than refinement specialists, and these people are prone to seeing the
development, and the models that comprise it, in a very different light to that ofthe formalists. We point
up some tangible consequences of this as regards the feasibility of altering the specification in response
to some technical infelicity:

• The customermay not permita change in the specification (in order to make it refinable to the lower
level models). The specification document serves several different purposes, including certification
and validation, as well as being used as a starting point for refinement towards an implementation.
Often it would be more costly, overall, to change the specification, than to getthe formal specialists
to work around some perceived imperfection in the refinement.

• Textbook or research examples and methods typically start from a blank sheet of paper. Real
engineering applicationsneverdo so. There are invariably given fixed points in the development,
making a completely purist approach unrealistic.

• There might simply beno timeto change the specification. If some problem shows up during the
proof of the last lemma, whose resolution requires the reworking of aspects of the specification,
there may simply not be enough time to do the detailed reworking, within the schedules, deadlines
and budgets that obtain. In a pure research environment the job would simply be considered un-
finished and publication would be delayed: the researchers’ livelihoodswould most likely not be
immediately imperiled. In an engineering environment, the job must be completed somehow de-
spite the circumstances: in the face of noncompletion the engineers’ livelihoods could be imperiled
quite easily, and engineering compromises become necessary.

• Changes to specifications arising from ‘low level failures’ of refinementcan depend on the precise
design route chosen. If a single specification is targeted at multiple platforms,such low-level-
originating changes that impact the specification can easily beincompatible. (Think of natural
numbers targeted at hardware having different intrinsic integer bounds.) In such cases there may
be no single abstraction necessarily incorporating some low level featuresthat caters adequately
for all the platforms.

• Specifications not only serve to initiate refinements, but also serve as an important means ofcom-
municationbetween the various parties in a development. A refinement structure may notalways
organise the system’s requirements in a way that makes sense to domain experts; refinement is es-
sentially a process of conservative extension, and if this structure is at odds with domain experts’
approaches, then it will not communicate as effectively as it should.

4 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

For reasons such as the above, the stakeholders in the development other than refinement specialists
may simply not agreeto changes in the models as suggested by the formalists, regardless of the latters’
protestations. Thus the human aspects of the development milieu become paramount. This is nothing
more than a corollary of the fact that the construction of large systems is an engineering problem, and not
purely a problem in formal system construction. The key desiderata in the two domains are just different.
In its project management aspects, the Mondex development [46] —which isthe focus of this paper—
exhibited most of the phenomena mentioned above, quite aside from the more technical issues regarding
the refinement proof which we discuss below.

Retrenchment [4, 5, 6] was introduced in order to be able to address the difficulties caused when
what humans need the notion of ‘abstraction’ to do, is in conflict with what ‘abstraction’ as supplied by
some notion of model based refinement can supply.

Retrenchment proceeds by inverting the usual trajectory from broad principles to proof obligations
found in refinement. In refinement, the starting point is a notion of correct correspondence between
abstract and concrete models, from which proof obligations are derived. In retrenchment by contrast, the
proof obligations are manipulated so that they can encompass situations suchas those discussed above,
and whatever broad principles can be derived therefrom, are sought.Certainly the typical guarantees
offered by refinement are forfeit.

We illustrate this manipulation by taking a paradigmatic forward refinement correctness proof oblig-
ation (c.f. (6) below) and turning it into a retrenchment proof obligation. For the former we take:

R(u, v) ∧ RInOp(i, j) ∧ pre(Opa)(u, i) ∧ Opb(v, j, v′, p) ⇒

(∃u′, o • Opa(u, i, u′, o) ∧ R(u′, v′) ∧ ROutOp(o, p))

In the aboveu, v are (Abstract/Concrete) states (primed for after-states),i, j are (Abstract/Concrete) in-
puts,o, p are (Abstract/Concrete) outputs andOpa andOpb are (Abstract/Concrete) versions of the op-
erationOp. R is the retrieve relation, whileRInOp, ROutOp are input/output relations respectively. Es-
pecially when strengthened by suitable assumptions aboutR, RInOp, ROutOp, the above is equivalent to
typical operation POs in the literature. To turn it into a retrenchment PO (c.f. (8)), we modify it to:

R(u, v) ∧ WOp(i, j, u, v) ∧ Opb(v, j, v′, p) ⇒

(∃u′, o • Opa(u, i, u′, o) ∧ ((R(u′, v′) ∧ OOp(o, p; u′, v′, i, j, u, v)) ∨

COp(u
′, v′, o, p; i, j, u, v)))

Now, RInOp ∧ pre(Opa) has been generalised to the within relationWOp(i, j, u, v) which is an arbi-
trary relation in the before-values;ROutOp has been generalised to the retrenchment output relation
OOp(o, p; u′, v′, i, j, u, v) which now allows all the variables to occur; and, most importantly, there is a
concedes relationCOp(u′, v′, o, p; i, j, u, v) to describe what happens if the retrieve relation cannot be
re-established by a given pair of (Abstract/Concrete) steps.3 From such a starting point, one derives what
broad principles one is able to.

The flexibility introduced into formal development by retrenchment lends itselfto many uses. At one
extreme, it can be restricted to the kind of situation outlined above, namely handling irritating restrictions
forced onto the development by the finiteness or other limitations of implementable data types [4]. At

3The semicolons inOOp, COp are purely cosmetic, separating the variables of ‘most interest’ from others, which are permitted,
but less often needed.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 5

the other extreme, it can be used to capture very general evolution of system definitions, as new consid-
erations impact preliminary models on the route to the final system description [7]. How far along this
scale of possibilities one happens to be, depends on one’s perspectiveabout a particular change in system
description. The same change in the system might be viewed by one person as a system evolution, and
thus as residing firmly in the requirements engineering arena, while for another person, it could be very
much tied up with the road to an implementation, and thus be viewed as a developmentstep; much can
depend on whether the individual is focused on user needs, or technology capabilities.

It is important to see that, from a purely engineering vantage point, there is no hard and fast boundary
between these two activities: requirements evolution can blend smoothly into development and imple-
mentation. This is in contrast to the formal refinement vantage point in which theboundary is clear:
anything that cannot be captured by a refinement must be a requirements evolution step. Amongst other
things, retrenchment can build a dialogue between these two perspectives. In effect, this has been demon-
strated for Mondex in [9, 10, 8], in which a collection of horizontal retrenchment ‘rungs’ connects two
vertical refinement ‘columns’ of models, the two columns forming separate developments of ‘the same’
requirements, with each column incorporating differing and incompatible (from a refinement vantage
point) levels of real world detail. The entire aggregation is nominated theTower Pattern, and is a com-
monly occurring schema for the deployment of retrenchment, largely independent of the nature of the
issue being captured by retrenchment.

The above extended discussion has indicated that retrenchment can usefully address many issues that
arise in bridging the gap between the world of ideal refinements and real developments. However that
is not its only virtue. The flexibility that retrenchment brings to formal development can act as a spur
for progress outside this limited sphere. In the present paper, the main concern is the Balance Enquiry
Quandary in Mondex. Once the precise nature of the main problem has been appreciated, the solution via
retrenchment turns out to be remarkably simple. This very simplicity, a whiskeraway from a refinement,
acts as a stimulus to investigate alternative refinement theoretic approaches toMondex. Thus the latter
parts of the paper explore for Mondex, generalised forward refinements, and(1, 1) forward refinements
respectively (the original Mondex refinement was(1, 1) backward). While the first of these overcomes
the quandary in the manner one would expect, the(1, 1) forward refinement would most likely not have
been discovered had the ground not been prepared in a suitably tempting manner by the simplicity of the
retrenchment theoretic treatment. The combination of different refinement techniques, focused on the
same problem, illuminates their various pros and cons in a particularly useful manner.

The remainder of the paper is as follows. Section 2 briefly recalls the Mondex refinement, and
highlights the ‘retrenchment opportunities’ it offers, i.e. those places in thedevelopment where the
desire to establish a refinement meant that certain requirements issues wereomitted. Section 3 reviews
the technical details of refinements and retrenchments we need later. Section4 reviews the Mondex A
and B models in an appropriately simplified form, discusses the refinement between them, and gives
a precise explanation of the Balance Enquiry Quandary. Section 5 showshow retrenchment can deal
with the situation relatively simply. Section 6 addresses the same situation using generalised forward
refinement and shows how it overcomes the problem; the pros and cons ofthe generalised forward
refinement approach are discussed briefly. Inspired by the simplicity of the preceding treatment, Section
7 discusses the issue of resolution of nondeterminism with more care, outlininga way in which a forward
refinement might be accomplished. A(1, 1) forward refinement is then given, something long thought
impossible for Mondex. The forward approach also exhibits a Balance Enquiry Quandary similar to the
backward one, and this is resolved using retrenchment in an essentially identical manner to the original

6 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

version. Section 8 concludes, and looks forward to a general purpose retrenchmentAtomicity Patternfor
dealing with atomic-versus-finegrained situations.

In order to keep the size of this paper reasonable, proofs are presented in outline form. Enough
background is supplied that readers will be able to fill in the missing details without difficulty.

2. The Mondex Refinement and its Retrenchment Opportunities

The Mondex Electronic Purse [46] is, as its name suggests, an electronic implementation of a container
for money. A purse can pay out money to another purse, decreasing its own balance, and can accept pay-
ments from another purse, increasing its own balance. This transfer is implemented by the value transfer
protocol, a sequence of messages passed between the purses. The security implications are obvious.
If the mechanisms for purses’ financial transactions are in any way vulnerable, the financial institution
underwriting the purses’ funds could be seriously impacted. For this reason, the developers of Mondex
(formerly a part of NatWest Bank), employed state of the art methods to ensure the implementation was
as robust as possible. At the time of its creation (the mid 1990’s), the MondexPurse achieved an IT-
SEC [2] rating of 6, the highest ITSEC level ever reached up to that point, and equivalent, in terms of
contemporary standards, to a Common Criteria EAL7 rating [31].

ITSEC E6 requires a formal abstract model, a formal concrete model, andproof of correspondence
between them. In the Mondex case, this proof of correspondence was arefinement proof, discharged
by hand. The Mondex Purse remains an impressive achievement, and its development was a trailblazer
for showing that fully formal techniques could be applied within realistic time andcost limitations on
industrial scale applications.

Since Mondex, the JavaCard [11] has enjoyed an even more exacting development, in which the for-
mal refinement proof was checked by machine, rather than by mere humans. More recently, the authors
of [39] have succeeded in providing a machine-checked proof of the reduced version of Mondex as pub-
lished in [46]. They have further simplified the specification somewhat (which was possible since they
were not labouring under the E6 requirements of the original full development down to implementation
level), and found some minor omissions in the hand proof of [46] (similar in severity to those found when
mechanising another hand proof [48]). The whole job took around a monthaccording to [39], which is a
relatively modest cost.4 The ability to do such a proof now in a fully machine-checked manner, and rel-
atively economically, demonstrates the impressive improvement in proof technology in the decade since
the original Mondex proof was performed. It further increases confidence in the results, and reduces
the effort needed to produce such verified systems. However, it must be remembered that the majority
of the effort of the original Mondex development never went into performing the proof itself, but into
formulating the specification, the invariants, the security properties, and theproof obligations.

The Mondex development, as described in [46] consists of three models called model A, model B,
model C, and refinements from model A to model B, and from model B to model C. Model A is a highly
abstract expression of atomic value transfer between purses, allowing for an abstract (i.e. atomic) notion
of loss in transit. It is a model targeted purely at the principal security properties of the entire purse
system, which are ‘No value created’ (i.e. in the worst case, the total valuein the entire community of
purses can reduce but not increase), and ‘All value accounted’ (i.e. even if some value is lost in transit,

4However it should be noted that the authors of [39] brought to the task extensive prior experience of formalising formulations
of refinement, and of formalising significant case studies within such formalised refinement notions.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 7

it is known to be so). In particular, it is to be noted that model A does not capture all the many other
system requirements of the complete development. Thus one cannot strictly call it a specificationof the
whole system. Model B captures the key elements of the distributed value transfer protocol, and is thus
non-atomic. As well as containing the value transfer protocol operations,model B is strengthened by
a number of invariants. These invariants, while provable by induction on thelength of the execution
sequence (assuming at least that the cryptographically protected messages of the protocol remain un-
forgeable), need nevertheless to beassumed, because the refinement from model A to model B in [46] is
a backward refinement. The backward refinement reconciles theearly resolution of the nondeterminism
between successful value transfer and loss in transit in model A, with itslate resolution in model B. The
job of establishing the invariants by induction is relegated to the (forward) refinement from model B to
model C. It is thus shown that model C is a refinement of model A.

While admiring the success of the model A to model C refinement, it is important to realise that
the choice of which aspects of the development went into any of the A, B, C models and which were
left out, was influenced not only by needs/requirements considerations,but also by whether or not a
refinement could indeed be established between adjacent models if one chose to treat a particular topic
in a particular way. The overriding desire for a refinement meant that a number of aspects of the system,
in principle deserving to be included within the formal development, were nevertheless omitted from it.
This is acceptable under the ITSEC E6 requirements, which do not requirefully formal development all
the way to code, and these formal omissions were properly handled in the later semi-formal steps.

One of the main motivations for retrenchment is the desire to be able to connectsuch issues more
closely, i.e. formally, with the fully formal development. As a consequence, the tension that arises about
whether some feature should be included or not in the refinement-based development, is eased, since
versions with and without the feature may be formally related via a retrenchment and the development
paths with and without the feature may be thereby drawn together.

In the case of Mondex, the semi-formal compromises mentioned above give rise to a number of
‘retrenchment opportunities’, allowing a more complete treatment of the topic in question to be given.
Here is a brief summary of them.

1. Sequence Number: The integrity of the protocol depends partly on the sequence number of the
transaction in progress. Sequence numbers occur in the Mondex B and Cconcrete models where
they are naturals; in reality they are bounded, but large.

2. Log Full: Transfers completing abnormally are aborted and logged locallyby purses. The relation-
ship between local purse logs and the ‘All value accounted’ security property is rather complicated,
as will become abundantly clear below. Suffice it to say here that purses’log contents are essential
for this property. Logs occur in the B, C models where they are unbounded; in reality they are
finite, and small.

3. Hash Function: The permanent record of the ‘lost value’ componentof the abstract model is, in
the concrete B and C models, an off-card archive into which purses’ logcontents are saved. A
purse needs to be assured that the data is safely in the archive before itcan clear it from its own,
highly constrained, log memory. Safe archival is signalled to the purse using a ‘clear’ code. The
purse log contents are assumed to be in total injective correspondence withthe clear codes, as that
property is required in the proof of correctness. In reality of course acryptographic hash function
is used, which is not injective, but is informally argued to be ‘sufficiently injective’.

8 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

4. Balance Enquiry: Each purse has a balance enquiry operation. If this is invoked at a particular
point in the middle of a concrete model value transfer, a temporary discrepancy can occur between
the reported abstract and concrete balances due to differences in where nondeterminism is resolved
in the two models. This is handled formally by a modelling trick, using finalisation instead of the
enquiry operation to observe the state, and to confirm that nothing is in factamiss.

Let us sketch what retrenchment can contribute regarding these various topics.
1. As regards the finiteness of sequence numbers, this is like many simple retrenchment examples in

the research literature. It is not hard to write down a model which is like the Mondex concrete model ex-
cept that the sequence numbers are bounded, and then to draw up a provable retrenchment between them.
The greater interest lies in integrating this development step with the rest of theMondex development.
It turns out that the detail introduced in the new model can be lifted to the levelof abstraction of the
higher models of the development, and moreover, if one is particularly careful about how the new model
has been constructed, it can turn out to be a refinement of the abstract one, though this is by no means a
robust property.5 See [9]. A byproduct of the retrenchment formulation is that it allows validation of the
adopted sequence number limit to focus on an ingredient of the formal models(the relevant concession),
which would not be possible in a purely refinement based treatment.

2. As regards the finiteness of the purse logs, this has many aspects that resemble the previous case
(although sequence numbers always increase monotonically, whereas purse logs can be cleared when
they get full). Again it is easy enough to construct a model that has a finite log, and to pursue a strategy
that lifts the detail to the higher level models of the Mondex development. See [10]. The differences
from the previous case centre on validation aspects. For sequence numbers, the aim is to analyse the
concession in order to choose a limit that will never be encountered in a purse’s lifetime. For the log,
since the actual log size is fixed at around 5, the preceding aim is unrealistic, and validation focuses on
confirming that once the log is full, no new transactions are initiated, since the security invariants depend
on failing transactions being appropriately logged. This amounts to a different treatment of the models,
and of the incompatibility between them captured in the concessions that connect them.

Note that both of the above cases feature a ‘finite limit’ phenomenon. A completelower level model
will contain both phenomena (as well as other things) and the description of each operation will therefore
break up into (at least) four cases depending on whether the sequencenumber and/or purse log are still
within bounds. This is already an example of the2n − 1 case proliferation noted above. It becomes
clear that relegating the concerns regarding these details to a lower level model, as permitted by the
retrenchment approach, leaving earlier models to concentrate on core functionality, is very worthwhile.

3. As regards the non-injectivity of the hash function, it is evident that one can write a model in
which the abstract total injective function from purses’ log contents to the clear codes is replaced by
a hash function which is less than injective. The concession of the retrenchment between these models
refers to the loss of the ‘All value accounted’ global security property.The property states that even in the
face of failing transactions, sufficient records are maintained across the system that all the original funds
in the system can be properly accounted for. The validation of this scenario focuses on the statistical
likelihood that the concession might be made valid, i.e. that a purse receivesin error a clear-log message
with just the right properties to make it believable. See [8].

5The latter hinges on the fact that in Mondex, incrementing the sequence number happens as the first step of a transaction.
Since transactions are allowed to fail in both abstract and concrete models, failure to increment can be amalgamated with other
kinds of failure in a carefully constructed model.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 9

The preceding retrenchment opportunities are all ‘localised’ in that eachof the discrepancies dis-
cussed could be viewed as being rooted in a single operation at a time.6 This is the characteristic feature
of situations in which theTower Pattern[9] is applicable. On one side of the tower we have a refinement
development which is free of the messy details and thus more perspicuous (but which is, strictly speak-
ing, unimplementable). On the other side, we have a refinement development weighed down by a proper
account of these details, and considerably less transparent as a result (but which is more implementable).
In between, and connecting them, there is the requisite collection of retrenchment rungs, describing how
corresponding levels of the two refinements are related.

4. The fourth retrenchment opportunity and the focus of this paper, the Balance Enquiry Quandary, is
more complicated, necessitating the consideration of sequences of operations. The lead-in is as follows.

The purses’ environment is assumed hostile. Specifically, each purse is ineffect on its own and makes
no assumptions about the environment’s inclination to act in any particular manner. Therefore each
purse operation must alone preserve the system’s security invariants: ‘No value created’ and ‘All value
accounted’. The most straightforward way of achieving this is to have each concrete purse operation
refine some abstract one. Since the abstract level transfer is atomic whereas the concrete level one is
not, various concrete operations must be refinements of what are in effect null abstract operations. This
would appear to offer the chance of matching the nondeterminism resolution points in models A and B,
but the consequence of this would be to cause a mismatch in the nondeterminismintroductionpoints,
caused by the non-atomicity of the concrete protocol. In fact, in [46], the nondeterminism of the value
transfer protocol is resolved early in model A, and late in model B. Now, inserting a balance enquiry
into the middle of a transfer7 can reveal the temporary difference between abstract and concrete balances
caused by the differing resolution points at the two levels. This is the BalanceEnquiry Quandary. Of
course it is entirely innocuous. One of the main aims of this paper is to show howthis can be smoothly
handled via retrenchment.

3. Refinements and Retrenchments, Forwards and Backwards

In this section we briefly review the notions of refinement and retrenchmentthat we use. Since the
Mondex formal development was done entirely in Z, we remain with that notationfor the rest of the
paper. For refinement, we mostly follow the formulation in [27], a liberalisation of the rules in [41],
as this was what was used in the Mondex development. This formulation of Z refinement uses the
‘contract’ or ‘non-blocking’ interpretation of applicability, in contrast to the ‘blocking’ or ‘behavioural’
interpretation; see eg. [29] for a comparison. The system nomenclature inour definitions will be in line
with that needed for the various models in our discussion of Mondex below.

We cast all our notions in terms of the A and B models, since they are the only ones that occur
here. We assume an abstract model given by the ADT(A, AInit, {AOp, AIOp, AOOp | AOp∈ Ops}) and
a concrete model given by the ADT(B, BInit, {BOp, BIOp, BOOp | BOp ∈ Ops}). So schemasA, B

6For example, even though sequence numbers are incremented within several purse operations, each such operation could be
individually retrenched, without needing to refer to the others.
7Ordinarily it makes no sense to do this, but purses cannot afford to relyon common sense. See also the second physical
arrangement described in Section 4.2.

Note that the balance enquiry operation itself is not present in the publicly available account [46] of the Mondex development.
This is because the modelling ‘trick’ used to discover the balance (throughfinalisation) renders the operation specification itself
confusingly trivial. Section 4.3 explains how this state of affairs came about.

10 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

give the abstract and concrete state spaces, and the corresponding per-operation I/O spaces are given
by schemasAIOp, AOOp andBIOp, BOOp. We assume a retrieve relationRab : [A; B] between the two
state spaces, and for each operationOp, input and output mapping relationsRIab,Op : [AIOp; BIOp] and
ROab,Op : [AOOp; BOOp].

As noted above, the A to B refinement is a backward refinement. For us, backward refinement is
given by three proof obligations (POs),initialization (1), applicability (2), andcorrectness(3):

∀B′; A′ • R′
ab∧ BInit ⇒ AInit (1)

∀B; BIOp • (∀A; AIOp • Rab∧ RInab,Op ⇒ preAOp)

⇒ preBOp (2)

∀B; BIOp; B′; BOOp; A′; AOOp •

(∀A; AIOp • Rab∧ RInab,Op ⇒ preAOp) ∧ BOp∧ R′
ab∧ ROutab,Op

⇒ (∃A; AIOp • AOp∧ Rab∧ RInab,Op) (3)

Backward refinement is given thus for easy comparison with retrenchment. Compared with [27], our
presentation does not explicitly list input initialisation and state and output finalisation as formal proof
obligations here. The issues that this raises are defered to Sections 4.3 and 4.4 below. Nevertheless it
should be noted that the finalisation PO is essential in backwards refinementto provide a base case for
induction that precludes the trivial retrieve relationR = false.

We recall now the forward refinement POs too. For us there will also be three of them,initialization
(4), applicability (5), andcorrectness(6), built from the same data as above. Again we omit input
initialisation and the finalisations:

∀B′ • BInit ⇒ (∃A′ • AInit ∧ R′
ab) (4)

∀A; AIOp; B; BIOp • Rab∧ RInab,Op∧ preAOp⇒ preBOp (5)

∀A; AIOp; B; BIOp; B′; BOOp • Rab∧ RInab,Op∧ preAOp∧ BOp

⇒ (∃A′; AOOp • AOp∧ R′
ab∧ ROutab,Op) (6)

We will need retrenchments, both forward and backward between the A and B models. Firstly, the more
familiar forward retrenchment. We assume a retrieve relation between the statespaces as above. Further-
more, on a per-operation basis, we have the within, output and concedesrelations. Thewithin relation
is between the input-state spacesWab,Op : [AIOp; A; BIOp; B]. Theoutputandconcedesrelations are de-
fined over both full input-state-output frames with typesOab,Op; Cab,Op : [AIOp; A; A′; AOOp; BIOp; B;
B′; BOOp], though in practice, we often omit such parts of these signatures as are not needed. Now we
can formulate the POs of forward retrenchment,initialisation (7), andcorrectness(8):

∀B′ • BInit ⇒ (∃A′ • AInit ∧ R′
ab) (7)

∀A; AIOp; B; BIOp; B′; BOOp • Rab∧ Wab,Op∧ BOp

⇒ (∃A′; AOOp • AOp∧ ((R′
ab∧ Oab,Op) ∨ CAB,Op)) (8)

Secondly, backward retrenchment. We assume the same retrieve relation asbefore. We also have on a
per-operation basis, the within, output and concedes relations. However the signatures of the latter are

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 11

different from those in the forward case, viz.Wab,Op : [AIOp; A; A′; AOOp; BIOp; B; B′; BOOp] and
Oab,Op; Cab,Op : [AIOp; A; BIOp; B]. These differences appear natural when we examine the two POs
of backward retrenchment,initialisation identical to (7), andcorrectness(9):

∀B; BIOp; B′; BOOp; A′; AOOp • ((R′
ab∧ OAB,Op) ∨ Cab,Op) ∧ BOp

⇒ (∃A; AIOp • AOp∧ Rab∧ Wab,Op) (9)

4. The Balance Enquiry Quandary

In this section we outline the value transfer protocol at abstract and concrete levels, and we show how the
Balance Enquiry Quandary arises, looking forward to its handling by retrenchment in the next section.
In Section 4.1 we outline the straightforward abstract model, while in Section 4.2, we give a version of
the concrete model. Section 4.3 outlines the backward refinement of abstract to concrete, and shows how
the Balance Enquiry Quandary arises, which turns out to be quite a subtle matter due to the backward
nature of the refinement. Section 4.4 reconsiders forwards and backward refinements in general.

Regarding the concrete model, we do not have the space to reproduce allthe details that appear in
[46], so our account will be significantly paraphrased and simplified regarding aspects that can be taken
for granted compared with [46]. We mention the main points here to avoid confusion with what we
do include in our concrete model later. Mostly such aspects concern ‘packaging’. In [46] the various
models genuinely reflect a community of purses undergoing transactions: at the abstract level thefrom
and to purse names are parameters to atomic transfer operations, while at the concrete level the lower
level individual purse operations are integrated into a global model usingthe familiar technique of Z
promotion [51, 29, 47]. None of this is material to the issues dealt with in this paper, so for expository
simplicity, we simplify drastically, flattening out the packaging, and hardwiring the individual purse
names into the needed state components of our models, which will be restricted tojust the twoto and
frompurses. This saves considerable space.

Another area of unpackaging concerns I/O. In [46] all the differentmessage types that arise are
properly tagged and embedded in aMESSAGEtype, and messages are then unpacked to access their
contents. Here we short circuit this to a degree to avoid verbosity.

Other aspects of [46] dispensed with are: the ether of messages, which inputs are taken from, and
into which outputs are placed; and the central archive of failed transactions into which the contents of
purses’ individual exeption logs may be decanted. In this paper, operations interface directly to the
external environment (about which suitable assumptions are made, reflecting the properties formalised
in the ether of [46]), and all error records stay in purses’ local logs.

For clarity, all abstract variables are calledAfromvar or Atovar and abstract schemas are called
AbSchema. Concrete counterparts areBfromvaror Btovaror justBvar, andBSchema; only the A and B
models are of interest in this work.

4.1. The Abstract Model

At the abstract level, we simplify the state of the system to two purses,AfromPurseandAtoPurse. Each
of these has a ‘balance’ and a ‘lost’ component, so the abstract state is just:

12 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

AbWorld
Afrombalance, Atobalance: N

Afromlost, Atolost: N

We take for granted an initialisationAbInit of Afrombalanceto N (pounds, say), and of the other compo-
nents to0.

At the abstract level, the principal operation isAbIgnorewhich skips. (It also discards any input,
which we ignore; c.f. message packaging above.)

AbIgnore
ΞAbWorld

Not only isAbIgnorea top level operation in its own right, it is also a nondeterministic option in all other
abstract operations (except, in this paper,AbtoBalanceEnquiry). This has two consequences: it makes
all operations total, avoiding any issues regarding availability (since all operations are always available);
and it allows a purse to do nothing at any time.

The other operations of interest areAbToBalanceEnquiry, AbFromBalanceEnquiry8 andAbTransfer.
The balance enquiry operations are modelled as follows, the state remaining unchanged:

AbToBalanceEnquiry
AbIgnore
Abal! : N

Abal! = Atobalance

AbFromBalanceEnquiry
AbIgnore
Abal! : N

Abal! = Afrombalance

TheAbTransferoperation decomposes as follows:

AbTransfer
AbIgnore∨ AbTransferOkay∨ AbTransferLost

AbTransferOkaydescribes a successful transfer of amountAvaluefrom AfromPurseto AtoPurse, and
AbTransferLostdescribes a transfer in whichAvaluemoves betweenAfromPurse’s Afrombalanceand
Afromlostattributes.

AbTransferOkay
∆AbWorld
Avalue? : N

Avalue? ≤ Afrombalance
Afrombalance′ = Afrombalance− Avalue?
Atobalance′ = Atobalance+ Avalue?
Afromlost′ = Afromlost
Atolost′ = Atolost

AbTransferLost
∆AbWorld
Avalue? : N

Avalue? ≤ Afrombalance
Afrombalance′ = Afrombalance− Avalue?
Atobalance′ = Atobalance
Afromlost′ = Afromlost+ Avalue?
Atolost′ = Atolost

8For the majority of the paper we only need theto balance enquiry, since thefromone is completely unproblematic till Section 7
(see also Section 6). Also both the abstract and concrete balance enquiry operations here are more ‘realistic’ than the ones in
the original formal development from which [46] was derived, for reasons that are explained at the end of Section 4.3.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 13

It is clear from the above that value transfer is atomic; a balance enquiry cannot occur ‘part way through’
an abstract transfer. It is also clear that the ‘No Value Created’ security property holds since

Afrombalance+ Atobalance

is nonincreasing through any operation. Likewise the ‘All Value Accounted’ property holds since

Afrombalance+ Atobalance+ Afromlost+ Atolost

is invariant through any operation. (Note thatAtolostactually never changes; however in the real system,
involving a large community of purses, anyto purse might in a later transaction become afrom purse,
and itslost component may thus become relevant.)

4.2. The Concrete Model and Protocol

Before we embark on the details of (our simplified presentation of) the concrete protocol, it will be
helpful to give some background, specifically on what is, and what is not, within the remit of the purse’s
security concerns. This will help to make the workings of the protocol more understandable.

Consider a£20 note. In essence, its only concern is not to be forged — a concern carefully attended
to during its manufacture, before the note takes its chances in the world at large. If you own the note,
you may destroy it, but (ideally) you will not be able to duplicate it. Moreover,if you use the note in a
transaction to pay for goods or services, it is not the note’s responsibilityto ensure you receive what you
anticipate. Neither is it the note’s responsibility to check that the person you are dealing with is who you
think they are, nor that their intentions are as you anticipate.

The Mondex value transfer protocol reflects these properties of purecash in an electronic way. Thus
the only concern is non-forgeability — services to assist in the identification of purses and their owners
may well be provided by the smartcards physically containing the value in order to enhance mutual trust,
but this is not a concern of the protocol.

The protocol itself proceeds by message passing, and this lends itself to atleast two physical arrange-
ments. In the first, theto and from purses are inserted into a device (called a ‘wallet’) which acts as a
communication medium. The purse owners type in their instructions, the protocolruns, and the transfer is
completed more or less instantaneously. In the second, the two purses are far apart, and are inserted into
two devices, connected eg. via the internet. Mutual identification issues notwithstanding, the protocol
runs as before, except that this time a transaction can have a substantial duration due to communication
latency.

Now we turn to the protocol itself. Again we start with an informal sketch to aid intuition. See Fig. 1,
which indicates the principal states, operations and messages which comprise it.

At the start of the protocol,BfromPurseandBtoPurseare both in theBeaFrom(‘expecting any from’)
state, the basic idle state of the system.BfromPurseperforms aBStartFromoperation, passing to the
Bepr (‘expecting payment request’) state.BtoPurseperforms aBStartTooperation, sending areq(uest)
message toBfromPurseasking for the funds, and passes to theBepv(‘expecting payment value’) state.
Upon receipt of thereq message,BfromPurseperforms aBfromReqPurseoperation, decrements its bal-
ance, sending aval(ue) message containing the actual funds to be transfered toBtoPurse, and passes
to theBepa(‘expecting payment ack’) state. Upon the arrival of theval message,BtoPurseperforms a
BtoValPurseoperation, increments its balance, sending anack(nowledgement) message toBfromPurse,

14 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

From purse To purse

StartFrom StartTo

Req

Val

Ack

BeaFrom

Bepr

BeaFrom

Bepv
req

val

ack

Bepv

BeaTo

Bepa

BeaFrom

Bepr

Bepa

Figure 1. The Mondex Concrete Protocol.

and passes to theBeaTostate (another idle state of the system9). Upon the arrival of theack message,
BfromPurseperforms aBfromAckPurseoperation, returning to theBeaFromstate.

While the above gives a good intuitive idea, it neglects many issues that needto be understood in
order to have a mathematically robust protocol. To get a grip on these we turnto the more detailed formal
version, simplified (compared with [46]) so as to discard as much complexity asis reasonable. In fact
we simplify to the extent that the transfer protocol remains secure in the faceof permitted failures only
providedall transactions involve different and nonzero amounts. This allows us to dispense with the
complication of an ether and with sequence numbers, as the information in the ‘paydetails’ part of the
concrete state is sufficient for secure operation in this case.

Each ofBfromPurseandBtoPursehas a ‘status’, a ‘balance’, a ‘paydetails’ record, and an ‘excep-
tion log’. This constitutes the core concrete state. To this are added a coupleof derived variables,
BdefinitelylostandBmaybelost, which refer to monetary value which is (from the protocol’s point of
view) not safely lodged in one or other of the balances. These variablesalso abbreviate some of the
reasoning later, and are used in the A to B retrieve relationRab.

BSTATUS== {BeaFrom, BeaTo, Bepr, Bepv, Bepa}

9In fact, there is no logical need for aBeaTostate separate from theBeaFromstate. However the concrete model was built to
reflect an existing (and unalterable) implementation, so the evident simplification of the specification was not an option.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 15

BetweenWorld
Bfromstatus, Btostatus: BSTATUS
Bfrombalance, Btobalance: N

Bfrompaydetails, Btopaydetails: N

Bfromexlog, Btoexlog: P N

Bdefinitelylost: P N

Bmaybelost: P N

Bdefinitelylost=
Btoexlog∩
(Bfromexlog∪ (if Bfromstatus= Bepathen {Bfrompaydetails} else ∅))

Bmaybelost=
(if Btostatus= Bepvthen {Btopaydetails} else ∅) ∩
(Bfromexlog∪ (if Bfromstatus= Bepathen {Bfrompaydetails} else ∅))

We take for granted an initialisation ofBfrombalanceto N (pounds, say, as previously), and of the other
components to0 or ∅ as appropriate.

Regarding the operations, we haveBIgnoreas in the abstract case:

BIgnore
ΞBetweenWorld

and we also haveBfromAbortandBtoAbort, used to clean up uncompleted or uncompletable transfers
when the environment decides to initiate a fresh transaction. These operations also ignore their inputs
if any, which we disregard. Also, henceforth the phrase ‘RestSame......’ indicates that state variables
whoseafter values are not mentioned in the predicate part of the schema (i.e. they are not ‘visibly as-
signed to’) remain unchanged,10 aside that is, from the dependent variablesBdefinitelylost, Bmaybelost,
which are required to change in line with the others, according to their definitions:

BfromAbort
∆BetweenWorld

Bfromstatus′ = BeaFrom
Bfromexlog′ =

Bfromexlog∪ (if Bfromstatus= Bepa
then {Bfrompaydetails}
else ∅)

RestSame......

BtoAbort
∆BetweenWorld

Btostatus′ = BeaFrom
Btoexlog′ =

Btoexlog∪ (if Btostatus= Bepv
then {Btopaydetails}
else ∅)

RestSame......

The balance enquiry operations are straightforward. As for the abstract model, theBtoPurseenquiry is
the one of most interest until Section 7:

10As if they were in a suitableΞ schema.

16 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

BtoBalanceEnquiry
BIgnore
Bbal! : N

Bbal! = Btobalance

BfromBalanceEnquiry
BIgnore
Bbal! : N

Bbal! = Bfrombalance

Regarding value transfers, we supplement our preceding intuitive account with the following additional
details.

According to one or other of the physical arrangements discussed above, the device holding a given
purse receives its instructions from the environment. Upon receipt of theinstructions, the device calls the
BStartFromoperation inBfromPurse(and/or theBStartTooperation inBtoPurseif appropriate). Both
of these operations are intended to initiate a new transaction, starting from a completely arbitrary state
of affairs. Thus theBStart.. operation might need to: (i)BIgnore, since that is always an option; (ii)
B..Abort (since a preceding transaction might still be running) and thenBIgnore; (iii) B..Abort, and then
actually start the transaction.

TheBIgnoreoption skips. TheB..Abortoption logs the details of any uncompleted transfer if it needs
to. (Incomplete transfers are detected by examiningB..status, which should be in either theBeaFrom
state or theBeaTostate, the idle states of the system.)
The third option aborts as just described, and having intialised the purse (tothe BeaFromstate) in the
B..Abort operation, performs aBStartFromPurseEafromOkayor BStartToPurseEafromOkayoperation
as appropriate. The inputs to operationsBStartFromPurseEafromOkayandBStartToPurseEafromOkay
contain the value to be exchanged. This is recorded locally in theBfrompaydetailsandBtopaydetails
variables. BfromPursemoves into theBepr state, andBtoPursemoves into theBepvstate;BtoPurse
sends areqmessage toBfromPurseciting the details of the desired payment.

BStartFrom
BIgnore∨ BfromAbort∨ (BfromAborto

9
BStartFromPurseEafromOkay)

BStartTo
BIgnore∨ BtoAbort∨ (BtoAborto

9
BStartToPurseEafromOkay)

BStartFromPurseEafromOkay
∆BetweenWorld
inval? : N

0 ≤ inval? ≤ Bfrombalance
Bfromstatus= BeaFrom
Bfromstatus′ = Bepr
Bfrompaydetails′ = inval?
RestSame......

BStartToPurseEafromOkay
∆BetweenWorld
inval?, req! : N

Btostatus= BeaFrom
Btostatus′ = Bepv
Btopaydetails′ = inval?
RestSame......
req! = inval?

Next, in operationBfromReqPurse(assuming it chooses not toBIgnore), once thereqmessage arrives at
BfromPurse, BfromPursedecrements its balance, and sends aval message toBtoPurse, moving to state

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 17

Bepa. Note that the summed purse balances are at this point less than the money deposited at the bank.
This satisfies the ‘No Value Created’ property should all trace of this transaction suddenly disappear.

BfromReqPurse
BIgnore∨ BfromReqPurseOkay

BfromReqPurseOkay
∆BetweenWorld
req? : N

val! : N

req? = Bfrompaydetails
Bfromstatus= Bepr
Bfromstatus′ = Bepa
Bfrombalance′ = Bfrombalance− Bfrompaydetails
RestSame......
val! = req?

Next, in operationBtoValPurse(assuming it chooses not toBIgnore), once theval message arrives at
BtoPurse, BtoPurseadds the value to its balance, and sends anack, moving to theBeaTostate. At this
juncture, the summed balances are once more what they ought to be.

BtoValPurse
BIgnore∨ BtoValPurseOkay

BtoValPurseOkay
∆BetweenWorld
val? : N

ack! : N

val? = Btopaydetails
Btostatus= Bepv
Btostatus′ = BeaTo
Btobalance′ = Btobalance+ Btopaydetails
RestSame......
ack! = val?

Finally, in operationBfromAckPurse(assuming it chooses not toBIgnore), once theack arrives at
BfromPurse, BfromPursereturns to theBeaFromstate.

BfromAckPurse
BIgnore∨ BfromAckPurseOkay

18 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

BfromAckPurseOkay
∆BetweenWorld
ack? : N

ack? = Bfrompaydetails
Bfromstatus= Bepa
Bfromstatus′ = BeaFrom
RestSame......

This completes the protocol description for a straightforward successful run. Aside from the nondeter-
minism in the twoBStart... operations, the protocol is sequential. Since it consists of several steps, it is
clearly possible to interlace aBtoBalanceEnquirystep into the middle of it, if the environment perversely
wishes to do that.11

To the above we must add our assumptions about allowed failures. The failures we permit are
BfromAborts andBtoAborts at any time, and the loss of messages. A further assumption we rely on
however, is thatreq, val, ack messages areunforgeable (this in reality being implemented by some
unspecified cryptological function). This means for example that if aBfromReqPurseOkayoperation
is performed, then itsreq? input (which equalsBfrompaydetails) came from a unique invokation of a
BStartToPurseEafomOkayoperation, which output areq! (which equaledBtopaydetails′ at the time) and
that req? = req!. Similarly for the other two messages. We refer to such arguments as ‘unforgeability
reasoning’ for short, in the proofs below.

Since the concrete model is a refinement of the abstract one, the ‘No ValueCreated’ and ‘All Value
Accounted’ security properties, which are functional properties of themodel state, will hold for it.12

However to gain better intutition, it is instructive to see independently how they hold in the concrete
model.

Firstly, every prefix of any run of the protocol preserves the ‘No Value Created’ security property.
Furthermore, despite being no longer a nonincreasing quantity as in the abstract case,

Bfrombalance+ Btobalance

never exceeds the total at the beginning of the transfer. This would not be so if, rather than following the
order of steps given,BtoPursefirst incremented its balance, andBfromPurselater decremented its one.

Secondly, let us overview how the additional state in the models ensures thatthe ‘All Value Ac-
counted’ security property is maintained in the face of protocol failures. The protocol failures we con-
sider are that an unexpected abort is called from the environment, or oneof the req, val, ack messages
disappears.

It is clear from Fig. 1, that the critical period is between the dashed horizontal lines, i.e. during the
time when theval message is in transit, since that is the only period during which not all of the value is
to be found in one or other of the balances (assuming a successful transaction).

11The second physical arrangement makes it entirely plausible that an impatient recipient would make a balance enquiry in the
middle of a long lived transfer, to determine whether his funds had arrived yet.
12At least they will do so provided failures other than the permitted ones do not occur. If one were able to forgeBStartTocalls
and appropriateval messages, one could persuadeBtoPurseto increase its balance by arbitrary amounts, without corresponding
BfromPursedecrements. The messages are cryptographically protected to stop this from happening.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 19

Unfortunately,Btostatus= Bepvdoes not reveal whether thefrom purse has crossed the first dashed
line; likewise forBfromstatus= Bepaand theto purse crossing the second dashed line. In both cases,
and either side of the dashed line, an abort (which is the mechanism by whicheither protagonist gets
detached from the protocol), causes the same thing to happen (i.e. a dump of‘paydetails’ into ‘exlog’).
We must distinguish the cases when the paydetails dumps are significant for ‘All Value Accounted’, and
when they are not. We claim that the concrete ‘All Value Accounted’ invariant is:

Bfrombalance+ Btobalance+ Σ Bdefinitelylost+ Σ Bmaybelost

We must argue that if, for a specific transaction,Bfromstatus= Bepa∧ Btostatus= Bepvholds, or an
abort has happened between the two dashed lines, thenΣ Bdefinitelylost+ Σ Bmaybelostcontributesval
to the value of the invariant, and if it doesn’t hold, or an abort hasn’t happened, it doesn’t contribute.
Restricting to the scenario of a single isolated transaction for simplicity, there are thus three cases:

1. If failure occurs beforeBfromPursegoes into stateBepa(that is, before it sends the value), then any
abort ofBfromPurseadds nothing toBfromexlog, (regardless of whether theto purse has aborted
yet or not). Consequently the second intersectants of bothBdefinitelylostand Bmaybelostare
empty, and soΣ Bdefinitelylost+ Σ Bmaybelostcontributes nothing to the value of the invariant.

2. If failure occurs afterBtoPursegoes into stateBeaTo, then any abort ofBtoPurseadds nothing
to Btoexlog, (regardless of whether thefrom purse has aborted yet or not). Consequently neither
Σ BdefinitelylostnorΣ Bmaybelostcontributes anything to the value of the invariant, since both of
their first intersectants are empty.

3. If failure occurs between the preceding two events, thenBfromstatus= Bepa∧ Btostatus= Bepv
holds (at the moment of message loss or just prior to an abort). EitherBfromPursehas aborted
or not; either way the second intersectants of bothBdefinitelylostandBmaybelostcontribute the
value required to the invariant, compensating for the reduced value of the summed balances. Either
BtoPursehas aborted or not. In the former case, the first intersectant ofBdefinitelylostcontributes
the value required to the invariant (andBmaybelostcontributes nothing), and the intersection takes
care of the double counting. In the latter case, the first intersectant ofBmaybelostcontributes the
value required to the invariant (andBdefinitelylostcontributes nothing), and the intersection takes
care of the double counting. In all cases, the reduced value of the balances is suitably compensated.

To the preceding must be added an awareness of what happens when there is more than just a single
transaction. Since theto purse finishes a transaction earlier than thefrom purse, and thefrom purse
can start a transaction later than theto purse, the two purses may simultaneously be in theEpa/Epv
states fordifferenttransactions. What distinguishes such a case from the preceding one, according to our
assumptions, is that thefrom andto paydetails records will be different at such a moment, and that the
to transaction, being later than thefrom one, cannot possibly have been aborted byBfromPurseyet, i.e.
Btopaydetailsis not inBfromexlog.

The double counting evident in case 3 explains why our protocol is safe only for a system history con-
taining transactions for distinct amounts. Suppose a transaction for£10 starts, and thereqmessage is lost.
A BtoPurseabort puts a£10 entry intoBtoexlog; BfromPurseis not unhappy. A second transaction for
£10 starts, and theackmessage is lost. ABfromPurseabort puts a£10 entry intoBfromexlog; BtoPurse

20 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

is not unhappy. Now there is a spurious£10 contribution to the invariant arising fromBdefinitelylost.
Of course in the real protocol of [46], sequence numbers and pursenames occur in paydetails records to
disambiguate such situations. For brevity, we will continue with our simpler, butmore artificial, picture.

4.3. The Abstract-Concrete Refinement

In this section we examine the refinement from the abstract to the concrete model in order to show exactly
how the Balance Enquiry Quandary arises. Although this refinement in effect covers ground thoroughly
discussed in [46], our presentation is consistent with the significant repackaging and simplification of
the previous section, and thus makes the present paper conveniently selfcontained. Besides, due to the
backward orientation of the refinement proof, the way the quandary arises is quite subtle. Everything
goes quite smoothly almost to the very end. All the expected refinement proofobligations discharge
unproblematically, and it is only the global consistency of the outputs that fails. A detailed treatment is
needed to bring this out clearly.

The Balance Enquiry Quandary can be illustrated thus. Consider ato purse with a balancebal,
which sends areq for £v, and, before it receives theval, responds to a balance enquiry demand from the
environment. What value should it display? In the abstract case, the protocol has already completed,
either succesfully (in which case theto balance is£(bal + v)), or unsuccessfully (in which case theto
balance is£bal, and thefrom purse has registered the loss). But in the concrete case, we do not yet
know whether the protocol will succeed or fail, so do not yet know whether to displaybal or bal + v.
Choosingbal seems more sensible as it indicates that the value has not yet arrived, butruns up against
subtle technical problems; choosingbal + v presumes the arrival of theval, which may never happen.

Turning to the technical details, we note that our discussion of the maintenance of the ‘All Value
Accounted’ invariant necessitated the proper handling of the double counting in Bdefinitelylostand
Bmaybelostin the concrete model. This suggests that the relationship between models is likelyto be
nondeterministic. This is borne out by the retrieve relationRab:

Rab =̂ ∃ chosenlost: P N • RabCl

where

RabCl

AbWorld
BetweenWorld
chosenlost: P N

chosenlost⊆ Bmaybelost
Abfromlost= Σ Bdefinitelylost+ Σ chosenlost
Abtolost= 0
Abfrombalance= Bfrombalance
Abtobalance= Btobalance+ Σ Bmaybelost− Σ chosenlost

The relationships inRabCl between abstract and concrete entities reinforce our intuition about the names
BdefinitelylostandBmaybelost. It is clear thatBdefinitelylostrefers to transactions that have proceeded

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 21

far enough for it to be known that they have failed, whileBmaybelostrefers to those whose fate is not yet
sealed for sure.13 The various possible values forchosenlostcorrespond to different possible outcomes
of a protocol run which is not yet fully played out.

We now indicate how the various operations arise as refinements of abstract ones. The main compli-
cation arises from the∃ chosenlost... in Rab. SinceR′

ab occurs in the antecedent of the correctness PO (3)
of the (backward) refinement from model A to model B, we need to show that the consequent, requiring
a suitable choice ofchosenlost, can be derived for all possible values ofchosenlost′.

There is also a simplification, which arises from the totality of all the operations,and which follows
directly from the disjunctive presence of theIgnoreoperations in all non-skip operations; this allows us
to ignore the applicability PO (2). A further simplification comes from the very marginal role played by
I/O in the abstract model (in particular). ThusRInab,Op andROutab,Op in the correctness PO (3) will be
ignored except when something nontrivial is at stake.

Initialisation: Since the initialBmaybelost= ∅, chosenlost= ∅ is the only possibility. Therefore (1)
holds.

BIgnore, BfromAbort, BtoAbort all refineAbIgnore: SinceBIgnoreandAbIgnoreboth skip, theBIgnore
case is trivial.

For BfromAbort, if Bfromstatus6= Bepa, then aside fromBfromstatus′ = BeaFrom, BfromAbort
skips, and so discharging (3) is trivial. So supposeBfromstatus= Bepa. SupposeBtostatus= Btostatus′

6= Bepv. ThenBmaybelost= Bmaybelost′ = ∅, sochosenlost= chosenlost′ = ∅ is forced. The rest of
the discharging of (3) is now similar to that for the skipping case.

SupposeBtostatus= Btostatus′ = Bepv. Then eitherBfrompaydetails′ = Btopaydetails′ or not.
In the former case,Bfrompaydetails= Bfrompaydetails′ = Btopaydetails= Btopaydetails′; and this
amount is in neither ofBfromexlog, Btoexlog, by unforgeability reasoning. So we forceBmaybelost=
{Bfrompaydetails} andBmaybelost′ = ∅. The latter implieschosenlost′ = ∅, and we have a choice of
either∅ or {Bfrompaydetails} for chosenlost. If we choosechosenlost= {Bfrompaydetails}, the move-
ment ofBfrompaydetailsout of chosenlostmatches the change inBmaybelost, and leads to a discharge
of (3) similar to that for the skipping case. In the latter case (i.e.Btopaydetails′ 6= Bfrompaydetails′),
Btopaydetails′ 6∈ Bfromexlog′, as argued earlier. SoBmaybelost= Bmaybelost′ = ∅ is forced, a case
already covered.

For BtoAbort, if Btostatus6= Bepv, then aside fromBtostatus′ = BeaFrom, BtoAbortskips, and so
discharging (3) is trivial. So supposeBtostatus= Bepv. If Bfromstatus= Bfromstatus′ 6= Bepathen
eitherBtopaydetailsis in Bfromexlogor not. This means that eitherBmaybelost= {Bfrompaydetails}
(in the former case), orBmaybelost= ∅ (in the latter case). In any event,Bmaybelost′ = ∅ holds. Both
cases correspond to ones already discussed.

Suppose finally thatBfromstatus= Bfromstatus′ = Bepa. This is as in the corresponding case for
BfromAbort.

BStartFrom andBStartTo both refineAbIgnore: To start with, we argue that the suboperationsBStart-
FromPurseEafromOkay andBStartToPurseEafromOkay both refineAbIgnore. ForBStartFromPurse-
EafromOkay, since neither ofBfromstatus, Bfromstatus′ is Bepa, and aside from theseBStartFromPurse-

13Oh, how the first author wishes that the variable had instead been calledBmayyetsucceed.

22 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

EafromOkayskips,Bmaybelost= Bmaybelost′ and any value acceptable forchosenlost′ is therefore also
acceptable forchosenlost, discharging (3).

For BStartToPurseEafromOkay, the argument is a little different sinceBtostatus′ = Bepv. We show
thatBmaybelost′ = ∅ holds. This follows because firstly, ifBfrompurseandBtopurseare in the same
transaction thenBfromstatus′ 6= Bepa, since thefrompurse only goes into theBepastate upon receipt of
the req message which theBStartToPurseEafromOkayoperation is only just sending out; and secondly,
if the two purses are in different transactions, then, as argued earlier,theto purse is in a later one than the
from purse, so thefrom purse cannot have aborted theto purse’s transaction yet. SoBmaybelost′ = ∅

and clearlyBmaybelost= ∅ too, so this case is essentially as for a skip.
On the basis of the above, sinceAbIgnoreo

9
AbIgnore= AbIgnore, and since there are no non-trivial

applicability issues, it is easy enough to conclude thatBStartFromandBStartToboth refineAbIgnore.

BfromReqPurseOkay refinesAbTransfer: On the basis of unforgeability reasoning as refered to earlier,
our BfromReqPurseOkayoperation entails the receipt of a suitablereq message, emitted from an earlier
BtoStartwhose payment details matched those ofBfromStart. This left BtoPursein statusBepvuntil it
either receives theval emitted from ourBfromReqPurseOkay, or BtoAborts.

SupposeBtostatus= Btostatus′ 6= Bepv. ThenBtoAbortmust have happened, putting the payment
details intoBtoexlog. Also Bmaybelost= Bmaybelost′ = ∅, and thereforechosenlost= chosenlost′ =
∅ are all forced. The decrease inBfrombalancenow matches the increase inBdefinitelylostand leads to
the discharge of (3) for the refinement ofAbTransferLostin this case.

SupposeBtostatus= Btostatus′ = Bepv. SinceBfromstatus′ = Bepa, we concludeBmaybelost′ =
{Bfrompaydetails′}. SinceBfromstatus6= Bepa, Bmaybelost= ∅.14 Now there are two possibilities for
chosenlost′: namely∅, and{Bfrompaydetails′}; and a single possibility forchosenlost: namely∅.

Thechosenlost′ = chosenlost= ∅ option is consistent with the decrease inBfrombalancematching
the increase inAbtobalance(the latter implied by the increase inBmaybelost), and leads to the discharge
of (3) for the refinement ofAbTransferOkayin this case.

Thechosenlost′ = {Bfrompaydetails′} andchosenlost= ∅ option is consistent with the decrease in
Bfrombalancematching the increase inAbfromlost(the latter implied by the increase inchosenlost), and
leads to the discharge of (3) for the refinement ofAbTransferLostin this case.

On the basis of the above we quickly conclude thatBfromReqPurserefinesAbTransfer. In all three
cases we also derive thatAvalue? = req?, the expected relation between inputs.

BtoValPurseOkay refinesAbIgnore: Via unforgeability reasoning, ourBtoValPurseOkayoperation en-
tails the receipt of a suitableval message, emitted from an earlierBfromReqPurseOkaywhose payment
details matched those ofBtoPurse. This left BfromPursein statusBepauntil it either receives theack
emitted from ourBtoValPurseOkay, or BfromAborts.

SupposeBfromstatus= Bfromstatus′ 6= Bepa. ThenBfromAbortmust have happened, putting the
payment details intoBfromexlog. Also Bmaybelost′ = ∅ is forced (because ofBtostatus′), implying
chosenlost′ = ∅. SinceBtostatus= Bepv, Bmaybelost= {Btopaydetails}, sochosenlostis either∅ or
{Btopaydetails}. The choicechosenlost= ∅ is consistent with the increase inBtobalancematching the
decrease inBmaybelost, and leads to the discharge of (3).

14Since we assumed that all payments are for different amounts, the value in Bfrompaydetailscannot also be inBfromexlog,
ruling out the only other way thatBmaybelostmight be nonempty.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 23

SupposeBfromstatus= Bfromstatus′ = Bepa. SinceBtostatus= Bepv, we concludeBmaybelost=
{Btopaydetails}, leading tochosenlost= ∅ or chosenlost= {Btopaydetails}. SinceBtostatus′ 6= Bepv,
Bmaybelost′ = ∅, fixing chosenlost′ = ∅. The choicechosenlost= ∅ enables the argument for the
preceding case to be reused to discharge (3).

On the basis of the above, we swiftly conclude thatBtoValPurserefinesAbIgnore.

BfromAckPurseOkay refinesAbIgnore: Via unforgeability reasoning, ourBfromAckPurseOkayopera-
tion entails the receipt of a suitableackmessage, emitted from an earlierBtoValPurseOkaywhose pay-
ment details matched those ofBfromPurse. This leftBtoPursein statusBeaTountil the nextBtoAbort.

Now if Btostatus= Bepv, thenBtoPursehas embarked on a future transaction, which could not be
in Bfromexlogas noted earlier. In this case, and also ifBtostatus6= Bepv, Bmaybelost= Bmaybelost′ =
∅ is forced, implyingchosenlost= chosenlost′ = ∅. Since, aside from the change inBfromstatus,
BfromAckPurseOkaand AbIgnoreboth skip, the invariance ofchosenlostis consistent with a trivial
discharge of (3).

On the basis of the above, we swiftly conclude thatBfromAckPurserefinesAbIgnore.

The above covers the A to B backwards refinement of [46] in our simplifiedform. We have one additional
detail to address (this being the point of the whole paper), namely that despite the innocuity of both
operations essentially being skips,BtoBalanceEnquiryinappropriately refinesAbToBalanceEnquiry. As
becomes clear in the details below, the backward PO (3) adroitly sidesteps theissue, since the dependency
between before- and after- states in the PO is opposite to causal. Only in the global reconciliation of
outputs do we hit on the problem.

BtoBalanceEnquiry inappropriatelyrefinesAbToBalanceEnquiry: Firstly we point out that during a
BtoBalanceEnquiry, if Btostatus= Btostatus′ = BepvandBfromstatus= Bfromstatus′ = Bepaare not
both true, then there is no problem. This follows since in such a caseBmaybelost= Bmaybelost′ =
∅. This in turn follows from eitherBtostatus= Btostatus′ 6= Bepv, or from the fact thatBtoPurse’s
current transaction cannot be inBfromexlog. SinceBmaybelost= Bmaybelost′ = ∅, chosenlost=
chosenlost′ = ∅ too, and the skip-like nature of both operations makes (3) easy to discharge.

Suppose then thatBtostatus= Btostatus′ = BepvandBfromstatus= Bfromstatus′ = Bepaand
Bfrompaydetails= Bfrompaydetails′ = Btopaydetails= Btopaydetails′ (the critical case, a situation
that obtains while theval message is in flight during a successful transaction15). ThenBmaybelost=
Bmaybelost′ = {Btopaydetails}. So there are two independent choices (∅ and{Btopaydetails}) for
each ofchosenlostandchosenlost′. We examine the twochosenlost′ options in turn: the correctness
PO stipulates that we must find a suitablechosenlostfor eachchosenlost′ that makes the PO antecedent
valid. What happens next depends on how we treat outputs.16

Supposechosenlost′ = {Btopaydetails}. ThenAbtobalance′ = Btobalance′, and noting the skip-like
nature of both operations, the choicechosenlost= {Btopaydetails} leads toAbtobalance= Btobalance
too; moreoverAbal! = Bbal!. Now the normal appropriate relationship between outputs is expressed
asROutab,ToBalanceEnquiry= (Abal! = Bbal!). So this is true here, the PO antecedent is true, and hence
(3) discharges OK. An alternative policy on outputs is to ignore them (as done in [46]), expressed via
ROutab,ToBalanceEnquiry= true. This weakens the PO antecedent, so since the case under consideration
validated the stronger antecedent, it will validate the weaker one, and (3) discharges OK here too.

15The case with unequal paydetails leads as usual to an emptyBmaybelost
16Note that this is the first time that we have had cause to mention outputs at all.

24 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

Supposechosenlost′ = ∅. Then Abtobalance′ = Btobalance′ + Btopaydetailsand noting the
skip-like nature of both operations, the choicechosenlost= ∅ is forced, forcingAbtobalance=
Btobalance+ Btopaydetailsalso. MoreoverAbal! = Abtobalance′ andBbal! = Btobalance′ by def-
inition, which in turn forcesAbal! = Bbal! + Btopaydetails. Now the output policy makes a difference.
If ROutab,ToBalanceEnquiry= (Abal! = Bbal!), then because it’s a backward refinement, the PO antecedent
is false, so there is nothing to prove and (3) discharges OK. IfROutab,ToBalanceEnquiry= true, then the PO
antecedent is true and (3) discharges OK because of the skip-like behaviour on the states.

For thechosenlost′ = ∅ option, both output policies have inappropriate aspects. Making the choice
ROutab,ToBalanceEnquiry= true clearly violates the domain level requirements of a balance enquiry op-
eration but allows the PO to be discharged with an antecedent valid in the caseof interest. Choosing
ROutab,ToBalanceEnquiry= (Abal! = Bbal!) reflects the requirements appropriately, but causes the PO to
discharge spuriously, i.e. via a false antecedent.17

Although the operation satisfies the PO (3) in the last case, despite(Abal! = Bbal!) being false,
the inappropriateness shows up globally, as any runs of the abstract/concrete systems featuring this case
would have output streams that did not match up pointwise. In backward refinement, output matching is
policed by the output finalisation PO, omitted from Section 3, but which in our terminology reads:

∀BOOp • ∃AOOp • ROutab,Op (10)

Used under the assumption that the predicate(s) in its body must be made valid by all abstract/concrete
output pairs that occur in a simulation (in the same manner as eg. the initialisation POs (4) and (1)),
it demands thatROutab,Op holds for all corresponding pairs of outputs. In theROutab,ToBalanceEnquiry=
(Abal! = Bbal!) case, this obviously fails in the critical case for successful transfers.

The output finalisation PO acts in concert with the state finalisation PO, also omittedfrom Section 3,
and which reads:

∀B • BFin ⇒ (∃A • AFin∧ Rab) (11)

This is also used under the assumption that the predicates in its body must be made valid by all ab-
stract/concrete possible final state pairs (which in fact means all abstract/concrete reachable state pairs),
so that all possible reachable state pairs satisfy the retrieve relation.18 Together, these additional state-
ments ensure the antecedents of the correctness PO (3) are validated each time it is used in the backwards
induction from final to initial configuration, so that the PO is not dischargedvacuously.

In our case, the validation of (10) by the relevant abstract/concrete output pair cannot be discharged
for the critical case, thus preventing the refinement from being proved.This fact motivated the choice
of vacuous output relations in the Mondex development, and the resulting trivialisation of the balance
enquiry operations’ specifications.19 Ultimately, it made no sense to retain such unintuitive balance
enquiry operations in [46] and they were removed.

17A forward refinement PO, eg. (6) would demandROutab,ToBalanceEnquiryin the consequent, which would consequently fail. See
Section 7.
18Note how (11) precludesRab = false by havingRab only in the consequent; c.f. (4).
19The workaround for the vacuous output relations in Mondex was to use state observations via the state finalisation PO (11)
applied to the abstract/concrete state pair that the balance enquiries have reached. Since the abstract/concrete state pair is one
reachable without balance enquiries, the state observation confirms thatthe balance enquiries do not after all produce outputs
that could not be justified.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 25

Before moving on, we make a final comment. Why not sweep away the whole problem of balance
enquiries by preceding each concrete balance enquiry with an abort, to bring the abstract and concrete
states into correspondence, as is done when initiating new value transfers? The answer lies in the second
physical arrangement discussed above. When transactions are long lived due to communication latency,
an impatient recipient who makes an abort-preceded balance enquiry before the value has arrived, as-
suredly aborts it, increasing his frustration. It was a high level requirement of Mondex that this was not
to happen, with the consequences that we have seen.

4.4. Forward and Backward Refinements

At this point it is appropriate to contrast forward and backward refinement. In the case that applicability
issues are trivial as in Mondex, regarding logic alone, the two refinementsare exact duals of one an-
other.20 Forward refinement establishes retrieving initial states (4), and proceeds by induction to the final
states, generating outputs. Input initialisation, which insists on eg. pointwise satisfaction of the input
relation, interpreted as above:

∀BIOp • ∃AIOp • RInab,Op (12)

guarantees that the antecedent of each implication in the induction is valid. Consequently all the states
and outputs generated by the induction satisfy the retrieve and output relations. Backward refinement
works the opposite way round. Starting with retrieving final states (11), it proceeds by induction to the
initial states, generating inputs. Output finalisation (10), which insists on eg.pointwise satisfaction of the
output relation, guarantees that the antecedent of each implication in the induction is valid. Consequently
all the states and inputs generated by the induction satisfy the retrieve and input relations.

Regarding causality however, the two approaches can be distinguished.Operations work by being
offered inputs in before-states and they produce after-states and outputs. The reverse, producing outputs
for after-states, and subsequently being offered inputs for before-states is not an option. Thus, in forward
refinement, it is reasonable to assume that abstract/concrete operations willbe compared only when
their before-states and inputs match up suitably (since this is under the control of the environment),
which sanctions the relegation of input initialisation to a validation issue. (With before-states and inputs
matched, the PO (6) ensures that outputs and final states will satisfy the required properties too.) In
backward refinement it is much less reasonable to regard the final state and outputs as being under the
control of the environment. Thus it is considerably harder to relegate stateand output finalisations to
a validation concern. The issue gets exacerbated if we allow system executions to become infinite.21

Then pure induction from initial states is insufficient, since unlike the (backward) finalisation PO, the
backward initialisation PO has the retrieve relation in the antecedent, making everything that is derived,
contingent on the hypothesised but nonexistent final states. In this scenario one must use stronger tools,
such as finite branching assumptions and König’s Lemma [34], to establish the refinement globally.

Despite all of this, our formulation will categorise issues regarding input initialisation and (state
and output) finalisations as validation issues, even though in the context of refinement, the ‘validation’
in question is nothing more than the discharge of the POs as described above. This is to preserve the

20If applicability issues are not trivial this is no longer true, and the asymmetry between forwards and backwards directions
comes from the asymmetry of the totalisation procedure used to derive thePOs for partial operations (see [27]). This is shown
up most forcefully in the visible difference between the applicability POs (5)and (2).
21We only consider ‘infinite into the future’ since ‘infinite into the past’ cannot even be embarked upon.

26 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

structural analogy with retrenchment. In retrenchment, there isno possibility of using induction based
on a preserved retrieve relation as a generic tool. Soall questions of the appropriateness of the data
appearing in the correctness PO (whether forward or backward) need to be thoroughly validated at the
domain level. The analogy with retrenchment is necessary, since any interworking between retrenchment
and refinement is only able to treat formally, those aspects of the models that both retrenchment and
refinement are able to regard as formal.

5. Retrenching the Balance Enquiry Quandary

In this section we show how retrenchment can handle the issues raised by the Balance Enquiry Quandary.
We present the backward retrenchment account, and then, more briefly, how forward retrenchment would
view the situation, looking ahead to Section 7.

We construct a backward retrenchment. Since all operations other thanToBalanceEnquiryare un-
problematically refinements, the within, output, and concedes relations for them (in the retrenchment)
will default to (schemas of appropriate signatures with predicate parts given by)true, true, false respec-
tively. This makes the backward retrenchment correctness PO (9) reduce to the backward refinement one
(3). In the absence of any nontrivial applicability issues, there is no departure from refinement for these
other operations. For theToBalanceEnquirys, it is sufficient to have only the output relation be anything
other than the defaults just mentioned:22

Oab,ToBalanceEnquiry

AbWorld′

BetweenWorld′

Abal! : N

Bbal! : N

(∃Bfromstatus′, Bfrompaydetails′ •
(¬(Btostatus′ = Bepv∧ Bfromstatus′ = Bepa ∧ Bfrompaydetails′ = Btopaydetails′)
∧ Abal! = Bbal!) ∨

((Btostatus′ = Bepv∧ Bfromstatus′ = Bepa ∧ Bfrompaydetails′ = Btopaydetails′)
∧ Abal! − Bbal! = Atobalance′ − Btobalance′ = Btopaydetails′))

It is clear that this enables us to easily discharge (9). It says that either the critical case (Bepv/Bepa
global state plusBfrompaydetails′ = Btopaydetails′) holds or not. If it does not, then all is well. If it
does, then it states that the dissonance in the outputs produced by the abstract and concrete versions is not
arbitrary, but is tightly related to the temporary dissonance at that point, between the abstract and concrete
to purse balances. Moreover it is already implicit that the said dissonance is entirely justifiable in the
Bepv/Bepaglobal state, since precisely the same situation arises at that point in the refinement of the
protocol (that refinement being entirely unproblematic in itself), in the absence of anyBalanceEnquiry
operations at all. This constitutes a justification of what the two balance enquiry operations do at the
given point in the protocol, and thus, validates the retrenchment used to account for the facts.

22The quantification over thefrom variables inOab,ToBalanceEnquirycorresponds to the fact that thefrom variables are inaccessible
to theto purse. This reflects a tacit assumption that the frame of any retrenchment data pertaining to an operation should not
exceed the variables accessible to the agent performing it. However this assumption is not mathematically indispensable.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 27

Going further, a little reflection shows that the policy on outputs that is expressed by the relation
Oab,ToBalanceEnquiry, when extended pointwise across all pairs of occurrences ofAtoBalanceEnquiryand
BtoBalanceEnquiryoutputs in a run, is appropriate as an output finalisation policy, although since it
involves the states, conventional restrictions on the variables that can occur in an output finalisation,
prevent it being adopted as such in the framework of [27]. (The preceding recognises that no other
abstract operation produces any output in our models, thus precluding any non-trivialROutab,Op for the
otherOps in them.) Thus it is the restrictions of the formalism of [27] itself which are partlyresponsible
for the awkwardness of the Balance Enquiry Quandary. We return to thispoint in the next section.

Let us comment briefly on the forward direction. Since from the state point of view, the operations
AtoBalanceEnquiryandBtoBalanceEnquiryare skips, for every possible way of satisfying the backward
PO (9), there will be a corresponding way of satisfying the forward PO (8), given by interchanging
primed and unprimed state components. Therefore, given a suitable augmentation of the signature of
Oab,ToBalanceEnquiry, the same predicate part for the schema will do duty in (8), as sufficed forthe backward
PO (9). We return to this in Section 7.

6. A Generalised Forward Refinement Account of the Balance Enquiry
Quandary

Generalised forward refinement was first introduced in the context of the ASM system development
technique; see [17, 18, 25, 19, 37, 38]. Of course the underlying ideas of such a refinement technique are
not tied to the specific details of the ASM syntax, and can be readily applied to any model based formal
development technique utilising states and operations. In this section we applyit to our Mondex models,
to see what insights it can contribute to the Balance Enquiry Quandary.

Generalised forward refinement works by relating a sequence of zeroor more steps of an abstract model
of a systemen bloc, to a sequence of zero or more steps of a concrete modelen bloc, provided, obviously,
that there is at least one step in total. The objective is that a retrieve relation on the states is preserved
between the ends of the two sequences, even if it is not necessarily preserved at points internal to the two
sequences. For obvious reasons, such pairs of sequences are called (m, n) pairs.

To build up the usual kind of inductive argument over traces,(m, n) pairs are required to witness
the generalisation of the forward correctness PO (6), to the case wheretheBOpandAOpappearing in
(6) refer to several transitions (or none) instead of just one. To achieve a successful generalised forward
refinement, one must therefore identify enough(m, n) pairs to enable any concrete run to be simulated.
Specifically, one must be able to cut up an arbitrary concrete run into suitable pieces, and for each
concrete piece one must find a corresponding(m, n) pair. The pair must be such that the concrete piece
forms the concrete component of the pair, and moreover, the abstract component of the pair must have an
(abstract) initial state that matches the final (abstract) state of the induction over traces established thus
far, so that the new(m, n) pair abuts successfully to the simulation so far. In this manner, one constructs
an abstract run that simulates the concrete run by re-establishing the retrieve relation periodically. The
fact that the retrieve relation only needs to be re-established periodically,and not at every step (and that
the numbers of abstract and concrete steps need not match) can lead to a simpler overall relationship
between abstract and concrete models. This is all brought out in our detailed calculations below.

28 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

Here is the retrieve relation we work with in this section:

RGFR,ab

AbWorld
BetweenWorld

Abfromlost= ΣBdefinitelylost+
(if Btostatus= Bepv∧ Bfromstatus= Bepa∧ Bfrompaydetails= Btopaydetails
then Bfrompaydetailselse 0)

Abtolost= 0
Abfrombalance= Bfrombalance
Abtobalance= Btobalance

We note that this is simpler thanRab due to the greater flexibility that generalised forward refinement
affords us. Essentially, in the criticalBtostatus= Bepv∧ Bfromstatus= Bepa∧ Bfrompaydetails=
Btopaydetailsstate, we can assert that the payment (which is in flight, and may or may not eventually
arrive) has definitively been lost. This is because if the payment eventually arrives, this intermediate
critical state becomes internal to the relevant(m, n) sequences, and the retrieve relationRGFR,ab is no
longer obliged to make an accurate pronouncement about that state of affairs. Note how this contrasts
with the backward refinement, in which the retrieve relationRab has to make an accurate statement about
all intermediate points of the protocol, within a(1, 1) refinement structure. The price to be paid for the
simplicity gained, is a careful analysis of what are the needed(m, n) pairs, so that every possible concrete
run is catered for.

To get a handle on the(m, n) pairs, we will firstly disregard allBIgnores since they merely skip. Next,
we argue as follows. ABfromAckPurseOkayoperation has to have been preceded by aBtoValPurseOkay
operation by nonforgeability arguments. Similarly aBtoValPurseOkayoperation has to have been pre-
ceded by aBfromReqPurseOkayoperation, and aBfromReqPurseOkayoperation has to have been pre-
ceded by aBStartFromPurseEafromOkayand aBStartToPurseEafromOkayin either order. This gives
two total orders for a run through to acknowledgement for the protocol. Thus any trial of the protocol
contains some maximal prefix of one or other order as a subsequence. Wecall the relevant prefix the
core prefix.

TheBStartFromPurseEafromOkayandBStartToPurseEafromOkaythemselves have to be preceded
by aBfromAbortand aBtoAbortrespectively. For technical convenience we will regard theBfromAbort
andBtoAbortas terminating theprecedingprotocol trial, rather than initiating the current one. If we do
this we must make special arrangements for the first and last trials in the system run.

For the first trial, by initialisation, the initiatingBfromAbortandBtoAbortare equivalent to skips and
may be ignored. For the last trial, one or other ofBfromAbortor BtoAbortmay simply not be present
after the core prefix; we deal with this later.

The picture so far of a concrete system run is causally equivalent to a sequence of core prefixes for
protocol trials terminated by two aborts, followed by a last core prefix not necessarily terminated by any
aborts. (N.B. The caveat rejoining causal equivalence is nontrivial, since an indolentBfromPursemay
still be waiting for anack for one transaction, while an impatientBtoPursemay have already started
on the next. TheBfrompaydetails= Btopaydetailssimplified restriction inRGFR,ab (and the sequence
number check in the real protocol) enables overlapping transactions to beaccommodated if desired.)

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 29

In between two successive core prefixes, we can have any finite number of aborts; sinceBfromAbort
andBtoAbortare both idempotent operations, several aborts can be reduced to just one of each. Into this
structure, we can interleaveBtoBalanceEnquirys at will.

We can now list the concrete execution fragments we need to consider to ensure every concrete
run is covered. They are just the core prefixes, either abort-terminatedor not, with arbitrary numbers
of occurrences ofBtoBalanceEnquiryinterleaved into them. For each we give the abstract execution
fragments that simulate them in making up the(m, n) pairs needed for a successful generalised forward
refinement.

(0) Empty core prefix: This is a generalised forward refinement of as manyAbToBalanceEnquirys, as
BtoBalanceEnquirys in the concrete sequence.

(1) BStartFromPurseEafromOkay; or BStartToPurseEafromOkay; or bothStartoperations (in each case
terminated by zero, one or two aborts): All these sequences are generalised forward refinements of
a number ofAbToBalanceEnquirys, equal to the number ofBtoBalanceEnquirys interleaved into the
concrete sequence.

(2) BothStartoperations followed byBfromReqPurseOkay(terminated by zero, one or two aborts): This
is a generalised forward refinement of as manyAbToBalanceEnquirys interleaved aroundAbTransferLost,
as there wereBtoBalanceEnquirys interleaved into the concrete sequence.

(3) Both Start operations followed byBfromReqPurseOkayfollowed by BtoValPurseOkay(terminated
by zero, one or two aborts): This is a generalised forward refinement of k AbToBalanceEnquirys followed
by AbTransferOkayfollowed byh AbToBalanceEnquirys, wherek BtoBalanceEnquirys were interleaved
beforeBtoValPurseOkay, andh BtoBalanceEnquirys were interleaved after it, in the concrete sequence.

(4) Both Start operations followed byBfromReqPurseOkayfollowed byBtoValPurseOkayfollowed by
BfromAckPurseOkay(terminated by zero, one or two aborts): This is a generalised forward refinement
of k AbToBalanceEnquirys followed byAbTransferOkayfollowed byh AbToBalanceEnquirys, wherek
BtoBalanceEnquirys were interleaved beforeBtoValPurseOkay, andh BtoBalanceEnquirys were inter-
leaved after it, in the concrete sequence.

Reflection upon the above makes two things clear. Firstly, that if we were alsoobserving thefrombalance
as well as theto balance, we would have to partitionfrombalance enquiries in cases (2)-(4) according to
which enquiries preceded or followedBfromReqPurseOkay, just as we needed to partition cases (3)-(4)
according toBtoValPurseOkay. Secondly, theif clause inRGFR,ab is only needed to cater for a last core
prefix not terminated by suitable aborts; it is not used for abort-terminated ones.

These points highlight the fact that when the concrete runs of the system are under the control of an
environment which is able to drastically curtail the number of concrete fragments to take into account for
constructing(m, n) pairs, generalised forward refinement can yield a real bonus in simplifying the work
needed to show refinement. However in a case like ours, in which the environment must be assumed
uncooperative, nay hostile, a combinatorial explosion of possibilities can easily arise, when the applica-
tion can execute in a genuinely concurrent manner. The explosion can arise not only due to the many
causally equivalent interleavings of the activity of the system of interest, but also due to the interleavings
of this activity with the activity of parts of the system that are independent ofit but running concurrently.

30 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

All this requires careful analysis to keep the refinement sound, but is completely avoided within a(1, 1)
refinement perspective.23

A related issue arises from engineering considerations. As noted near the beginning of this paper,
refinements can leave out certain aspects of the real system, and system designs themselves can evolve.
In the light of this, the(1, 1) and(m, n) approaches can exhibit different risks regarding the robustness
of the refinement in the face of changes in the system model, whether conceptual and arising from
implementation, or more consciously via a design change. On the one hand, a(1, 1) approach can be
more robust in the face of a system change that generates more runs involving the considered operations,
since the refinement of each operation is a self contained problem. On the other hand, an(m, n) approach
can be more robust in the face of a system change that complicates the system state, since its invariant
is likely to be simpler, and is likely to involve less of the state, thus being more likely to be decoupled
from any subsequent state enrichment; compareRGFR,ab (in the ideal case, without theif clause) with
Rab. The whole question of the relative merits of the two approaches in the face of evolving engineering
risk deserves further consideration.

7. Nondeterminism Resolution, and(1, 1) Forward Refinement

In Section 4.3 we outlined the Mondex backward refinement, and in Section 6 we gave an alternative
treatment of the protocol in terms of generalised forward refinement. Wouldit not be possible to get the
best of both worlds, getting thereby a(1, 1) forward refinement, by moving the point of resolution of
abstract nondeterminism in the refinement so that it coincided with the corresponding point of resolu-
tion of concrete nondeterminism? The simplicity of the retrenchment resolution ofthe balance enquiry
quandary encourages us to suppose this can be done, but to achieve itnecessitates appreciating a number
of issues.

Firstly, it is not just the point of resolution of nondeterminism that is of interest; the point of in-
troduction of nondeterminism is just as important. Here we see a crucial distinction between abstract
and concrete. In the abstract world, nondeterminism is introduced and resolved within the same event,24

theAbTransferoperation, which has two incompatible outcomes. However concrete nondeterminism is
more concerned with which operation is elected to happen next, and in fact concrete operations them-
selves are almost completely deterministic. (Thus we observe that wheneverthere are overlapping guards
in any operation, only one of them does anything nontrivial; and whenever there is a disjunction in the
body of a bottom level schema, the guards are disjoint, reducing the disjunction to mere packaging rather
than an expression of uncertainty in principle.25)

The determinism is driven by the desire in Mondex to have ‘All value accounted’, which is under-
pinned by a largely unstated invariant permeating both abstract and concrete models: namely that ‘money
can be neither created nor destroyed’ within our models.26 So if all money is conserved, then if one main-

23In our case, we did not actually see such an explosion, owing to the essentially sequential nature of the protocol, and to the
restriction to only two purses.
24In this section, an event is an occurrence of an operation within a run. Where the operation is nondeterministic, this amounts
to a choice of one of its possible outcomes.
25This view is supported by the fact that in [46], the reasoning that establishes the refinement is done using (the counterpart of)
RabCl, exposingchosenlost, rather thanRab itself.
26The behaviour of central banks lies outside our discourse.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 31

tains enough state in the models to support a provably correct protocol, thewhereabouts of all the money
can be tracked. The Mondex concrete model does indeed maintain enoughstate to do this.

In a sense, concrete nondeterminism is introduced in the twoStartevents, since if the next event is
BtoAbort, then the transaction is already doomed, even though, as if in some Wagnerian tragedy, several
further acts have to ensue27 before everyone is lying dead on the stage.

Concrete nondeterminism (as regards the transaction as a whole) is resolved either quite early (as
just described), or late (when the transaction succeeds), or at an intermediate point of failure. Beyond
this fundamental nondeterminism, there is nondeterminism regarding how many unproductive events
occur for a transaction that has already failed in principle, and the nondeterminism of interleaving of
independent operations.

The reduction of concrete nondeterminism to the choice of next event, each one of which is essen-
tially deterministic, has a salutary effect on the prospects for forward refinement. This is because the
remit of the correctness PO, (6), is just a single operation. Thus one canmatch the choice of next oper-
ation to perform during a run, with the choice of operation PO for refining the resulting execution step,
and can hope that this will be enough to account for all the nondeterminism inthe models.

Encouraged by the above considerations regarding forward refinement, deciding how to treat suc-
cessful transactions is easy: we just have to makeAbTransferOkayrefine toBtoValPurseOkay, as that is
the moment that the value successfully arrives. What to do about failing ones is a little trickier, as the
care over double counting in thefrom and to purse logs in Section 4.2 demonstrated. Thus any abort
event (and it has to be aloggingabort event) is either the start of the abortion process, or its completion.
Since two such aborts are required to properly confound a transaction,we use the ‘Last man out switch
off the lights!’ principle, and make the second abort event a refinement of AbTransferLost. Unfortunately
neither agent in the transaction knows which part of the abortion processany particular abort event that
it performs is, or indeed whether it is an isolated, and therefore harmless abort. What distinguishes these
cases is state information in theother agent. Accordingly, is is sufficient to decompose abort opera-
tions into..Benign, ..Start, and..Completesuboperations, on the basis of this further state information
(since it is in principle available to an all-knowing global refinement relationship), even though all that
any individual agent knows, is that he is executing one or other of the cases, without knowing which it
is. As ever, disjunction does the job of providing the more subtle packaging required here.28 We thus
decomposeBfromAbortandBtoAbortas follows.

BfromAbort
BfromAbortBenign∨
BfromAbortStart∨
BfromAbortComplete

BfromAbortBenign
∆BetweenWorld

Bfromstatus6= Bepa
Bfromstatus′ = BeaFrom
RestSame......

27At worst: thereqmessage arrives; aBfromReqOkayevent sends aval message; it arrives; it is discarded by ato purseBIgnore;
eventually thefrompurseBfromAborts.
28Note that as far as any agent is concerned, it is nonconstructive, classical, disjunction.

32 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

BfromAbortStart
∆BetweenWorld

Bfromstatus= Bepa
Bfromstatus′ = BeaFrom
Bfrompaydetails6∈ Btoexlog
Bfromexlog′ = Bfromexlog∪

{Bfrompaydetails}
RestSame......

BfromAbortComplete
∆BetweenWorld

Bfromstatus= Bepa
Bfromstatus′ = BeaFrom
Bfrompaydetails∈ Btoexlog
Bfromexlog′ = Bfromexlog∪

{Bfrompaydetails}
RestSame......

and

BtoAbort
BtoAbortBenign∨
BtoAbortStart∨
BtoAbortComplete

BtoAbortBenign
∆BetweenWorld

Btostatus6= Bepv
Btostatus′ = BeaFrom
RestSame......

BtoAbortStart
∆BetweenWorld

Btostatus= Bepv
Btostatus′ = BeaFrom
Btopaydetails6∈ Bfromexlog
Btoexlog′ = Btoexlog∪ {Btopaydetails}
RestSame......

BtoAbortComplete
∆BetweenWorld

Btostatus= Bepv
Btostatus′ = BeaFrom
Btopaydetails∈ Bfromexlog
Btoexlog′ = Btoexlog∪ {Btopaydetails}
RestSame......

Note that as this is no more than a partitioning into disjointly guarded suboperations, no fresh non-
determinism is introduced.29 Note also that, although the preconditions in the separate suboperations
B..AbortStart and B..AbortCompleterefer to conditions across two different purses, the actual state
changes are identical, and so can be implemented locally in individual purseswithout any need for
(unavailable) global information.

The preceding permits us to achieve a(1, 1) forward refinement by carefully matching the points
of resolution of nondeterminism in the two models. The price to be paid, is that theretrieve relation
RNR,ab becomes more complicated, though not significantly more so than in the backward case if one
were to unpack theBdefinitelylostandBmaybelostvariables in the latter.RNR,ab itself is a simple default
RNR,ab,def, which is overridden by four special cases (RNR,ab,(a,v), RNR,ab,(a,v), RNR,ab,(a=v), RNR,ab,(a 6=v))
that cover particular points in the protocol when the value is in flight.

ThusRNR,ab,(a,v) covers the case where thefrom purse is still waiting for itsack, while theto purse
has finished, and is not in any transaction.RNR,ab,(a,v) covers the case where thefrom purse is not in
any transaction, while theto purse has started a new transaction and is waiting for theval to arrive.
RNR,ab,(a=v) covers the case where the two purses are in the middle of a given transaction, and the value

29It is in fact just a continuation of the process started in Section 4, since in [46], the equivalent operation would correspond to
BAbort= BfromAbort∨ BtoAbort.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 33

is actually in flight.RNR,ab,(a6=v) covers the case where the two purses are in their critical states, but the
value has arrived and is safely in theto purse’s balance; thefrom purse is still waiting for theack to
arrive, while theto purse has started a new transaction and is waiting for the newval to arrive; this case
is distinguished from the preceding one by the different paydetails of the two transactions.

The good news is that despite the protocol having many more possible states,only these four need to
be singled out in the retrieve relation. To clarify the interpretation of the overriding, the concrete state is
to be regarded as the domain ofRNR,ab and the abstract state as the codomain in the following:

RNR,ab =̂ RNR,ab,def ⊕ (RNR,ab,(a,v) ∨ RNR,ab,(a,v) ∨ RNR,ab,(a=v) ∨ RNR,ab,(a6=v))

where

RNR,ab,core

AbWorld
BetweenWorld

Abfromlost= Σ(Bfromexlog∩ Btoexlog)
Abtolost= 0
Abtobalance= Btobalance

and

RNR,ab,def

RNR,ab,core

Abfrombalance= Bfrombalance

RNR,ab,(a,v)

RNR,ab,core

Bfromstatus= Bepa
Btostatus6= Bepv
Bfrompaydetails∈ Btoexlog
Abfrombalance= Bfrombalance+

Bfrompaydetails

RNR,ab,(a,v)

RNR,ab,core

Bfromstatus6= Bepa
Btostatus= Bepv
Btopaydetails∈ Bfromexlog
Abfrombalance= Bfrombalance+

Btopaydetails

RNR,ab,(a=v)

RNR,ab,core

Bfromstatus= Bepa
Btostatus= Bepv
Bfrompaydetails= Btopaydetails
Abfrombalance= Bfrombalance+

Bfrompaydetails

RNR,ab,(a6=v)

RNR,ab,core

Bfromstatus= Bepa
Btostatus= Bepv
Bfrompaydetails6= Btopaydetails
Bfrompaydetails∈ Btoexlog
Abfrombalance= Bfrombalance+

Bfrompaydetails

34 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

Note thatRNR,ab is a completely deterministic relation, indeed a function from concrete to abstract,
unlike Rab in the backward refinement. We can now briefly discuss the refinements of the various
(sub)operations.

Initialisation: Trivial as before.RNR,ab,def is established.

BIgnore, BfromAbortBenign, BtoAbortBenign all refineAbIgnore: BIgnoreskips, as doesAbIgnore.
ForBfromAbortBenign, onlyRNR,ab,def, orRNR,ab,(a,v) can hold in the before state. NowBfromAbortBenign
modifiesBfromstatusin a way that does not affect the truth of either of these. ForBtoAbortBenign, only
RNR,ab,def, or RNR,ab,(a,v) can hold in the before state. NowBtoAbortBenignmodifiesBtostatusin a way
that does not affect the truth of either of these.

BStartFromPurseEafromOkay andBStartToPurseEafromOkay both refineAbIgnore: For operation
BStartFromPurseEafromOkay, only RNR,ab,def, or RNR,ab,(a,v) can hold in the before state. Noting that the
variables changed byBStartFromPurseEafromOkayareBfromstatusandBfrompaydetails, for RNR,ab,(a,v),
the change inBfromstatusleaves clauseBfromstatus6= Bepainvariant, andBfrompaydetailsis not even
mentioned, soRNR,ab,(a,v) is invariant under the operation. IfRNR,ab,def holds in the before state (and is not
overridden byRNR,ab,(a,v)), then since the variables changed are not mentioned inRNR,ab,def, it remains
invariant under the operation, and is also not overridden, by the invariance ofRNR,ab,(a,v).

For BStartToPurseEafromOkay, only RNR,ab,def, or RNR,ab,(a,v) can hold in the before state. Con-
sider theRNR,ab,(a,v) case. Noting that the variables changed byBStartToPurseEafromOkayareBtostatus
andBtopaydetails, for RNR,ab,(a,v), the change inBtostatuscauses one ofRNR,ab,(a=v) or RNR,ab,(a6=v) to
become true. In factRNR,ab,(a=v) is excluded becauseBtopaydetails′ refers to a new transaction, and
Bfromstatus= Bepashows that thefrom purse must still be engaged in an earlier transaction, since the
from purse only goes into theBepastate for the same transaction as theto purse upon receipt of the
req message, which is only just being dispatched, and so cannot yet have arrived at thefrom purse. This
forcesBfrompaydetails′ 6= Btopaydetails′. Alternatively, supposeRNR,ab,def holds in the before state (and
is not overridden byRNR,ab,(a,v)). Then since the variables changed are not mentioned inRNR,ab,def, it re-
mains invariant under the operation, but we must check that it is not overridden by either ofRNR,ab,(a=v)

or RNR,ab,(a6=v) in the after state. NowR′
NR,ab,(a=v) is excluded since forBfromstatus′ = Bepaand

Bfrompaydetails′ = Btopaydetails′ to be true, thefrom purse must have already received and processed
thereqmessage that theto purse is only just sending out in the current operation.R′

NR,ab,(a6=v) is excluded
since it would imply thatRNR,ab,(a,v) held in the before state, overridingRNR,ab,def, which we assumed
not to be the case.

BfromReqPurseOkay refinesAbIgnore: By unforgeability reasoning, we know that areq message con-
taining the value inBfrompaydetailswill have been received byBfromPurse. Ostensibly,RNR,ab,(a,v)

might hold in the before state. However, this would requireBtopaydetails∈ Bfromexlog. This in
turn would requireBfromPurseto have abortedBtoPurse’s current transaction, which is the same as
or later thanBfromPurse’s current transaction (since thereq message identifies a single transaction in
both purses, andBtoPursesent the message earlier thanBfromPursereceived it). ButBfromPursecan
only have aborted some earlier transaction, so this state of affairs is impossible. So onlyRNR,ab,def may
hold in the before state. The change inBfromstatusand inBfrombalancecaused by the operation then
makesRNR,ab,(a6=v) true (orRNR,ab,(a=v) true), depending on whether since the start ofBfromPurse’s cur-
rent transaction,BtoPursehas (or has not, respectively) aborted and started a fresh transaction.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 35

BtoValPurseOkay refinesAbTransferOkay: By unforgeability reasoning, aval message containing the
value inBtopaydetailswill have been received byBtoPurse. In the before state, eitherRNR,ab,(a,v) or
RNR,ab,(a=v) can hold, depending on whether since sending theval message,BfromPursehas (or has
not, respectively) aborted and started a fresh transaction. In either case the changes inBtostatusand in
Btobalancematch the changes inAbtobalanceto establishRNR,ab,def. (In theRNR,ab,(a=v) case, since the
to purse is not aborting,RNR,ab,(a,v) cannot be established in the after state.)

BfromAckPurseOkay refinesAbIgnore: By unforgeability reasoning, anack message containing the
value inBfrompaydetailswill have been received byBfromPurse. Ostensibly,RNR,ab,(a6=v) or RNR,ab,(a,v)

might hold in the before state. However, either of these would requireBtoPurseto have both aborted-
and-loggedBfromPurse’s current transaction, and also sent theack message, which is a contradiction.
Therefore onlyRNR,ab,def can hold in the before state, is preserved by the operation, and cannot be
overridden in the after state, since only a benign change inBfromstatustook place.

BfromAbortStart and BtoAbortStart refine AbIgnore: For BfromAbortStart, only eitherRNR,ab,def or
RNR,ab,(a=v) can hold in the before state. (The preconditionBfrompaydetails 6∈ Btoexlogprecludes
RNR,ab,(a,v) andRNR,ab,(a6=v) in the before state.RNR,ab,(a,v) is obviously precluded.) NowRNR,ab,(a=v)

is transformed intoRNR,ab,(a,v) by the operation. SupposeRNR,ab,def holds in the before state and is not
overridden. Then it is invariant, but we much check that it is not overridden byRNR,ab,(a,v) in the af-
ter state. However the latter would imply that ifBfrompaydetails= Btopaydetailsheld in the before
state, thenRNR,ab,(a=v) would also have to hold in the before state, which we assumed false. And if
Bfrompaydetails6= Btopaydetailsin the before state, the only candidates are excluded by the precondi-
tion mentioned above.

For BtoAbortStart, only RNR,ab,def, or RNR,ab,(a=v), or RNR,ab,(a6=v) can hold in the before state. (The
preconditionBtopaydetails6∈ BfromexlogprecludesRNR,ab,(a,v) in the before state.RNR,ab,(a,v) is obvi-
ously precluded.) NowRNR,ab,(a=v) andRNR,ab,(a6=v) are both transformed intoRNR,ab,(a,v) by the opera-
tion. SupposeRNR,ab,def holds in the before state and is not overridden. Then it is invariant, but asever,
we much check that it is not overridden byRNR,ab,(a,v) (the only candidate) in the after state. Suppose it
was. Then we would haveBfrompaydetails∈ Btoexlog′, and soBfrompaydetails∈ Btoexlogwould hold
for the before state. SinceBtostatus= Bepvin the before state, eitherRNR,ab,(a6=v) would have held in the
before state (ifBfrompaydetails6= Btopaydetails), contradicting our assumption, orRNR,ab,(a=v) would
have held in the before state (ifBfrompaydetails= Btopaydetails), also contradicting our assumption.

BfromAbortComplete andBtoAbortComplete refineAbTransferLost: For BfromAbortComplete, only
RNR,ab,(a,v) or RNR,ab,(a6=v) can hold in the before state. (RNR,ab,(a=v) is precluded, since the precondi-
tion Bfrompaydetails∈ Btoexlogmeans that theto purse has aborted thefrom purse’s current trans-
action, and theto purse’sBepvstate must refer to a newer transaction.) The operation transforms
RNR,ab,(a,v) into RNR,ab,def (given the effect ofAbTransferLost), which is easily seen to not be overridden
becauseBfromstatus′ 6= BepaandBtostatus′ 6= Bepv. The operation also transformsRNR,ab,(a 6=v) into
RNR,ab,def (given the effect ofAbTransferLost). This is also not overridden becauseBfrompaydetails6=
Btopaydetails, and the fact thatBtopaydetailsrefers to a newer transaction as we argued above, means
that Btopaydetailscannot be inBfromexlog′, ruling outRNR,ab,(a,v), the only conceivable possibility, in
the after state.

ForBtoAbortComplete, onlyRNR,ab,(a,v) can hold in the before state. (RNR,ab,(a=v) andRNR,ab,(a6=v) are
precluded, since the preconditionBtopaydetails∈ Bfromexlogmeans that thefrompurse has aborted the

36 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

to purse’s current transaction, exiting theBepastate for theto purse’s current transaction, and cannot have
reached theBepastate for a new transaction without areqmessage from theto purse, which evidently has
not been sent.) The operation transformsRNR,ab,(a,v) into RNR,ab,def (given the effect ofAbTransferLost),
which is easily seen to not be overridden becauseBfromstatus′ 6= BepaandBtostatus′ 6= Bepv.

We see that all the concrete suboperations of the protocol are refinements of abstract operations. It is
now easy to package them up into the original concrete operations of the protocol, and thus to arrive at a
(1, 1) forward refinement of the abstract system, via disjunctions of the above suboperation refinements.
The technical details are uninteresting so we omit them.

Beyond this, one can ask how a balance enquiry fares in the above scenario. Evidently, abstract
and concrete balance enquiries for theto purse will always give answers in agreement, since the two
to balances agree in all components ofRNR,ab, some case of which always holds. This is a win for the
forward refinement formulation, but of course, it comes at a price. Since we still fundamentally have an
atomic operation refined to a non-atomic one, there will always be a discrepancy in balances while the
value is in flight. This time the discrepancy shows up in thefrom purse’s abstract and concrete balances
any timeRNR,ab,def fails to hold, as the details of the non-RNR,ab,def cases of the retrieve relation make
plain. Thus the corresponding enquiry operations for thefrom purse will disagree if they are invoked at
the relevant moments. Furthermore, the breakdown of the refinement that this signals is in a way more
acute than in the backward case, since it is the operation PO (6) itself that fails, via a the failure of a
nontrivialROutab,Op in the consequent, rather than the mere failure of an environmental assumption such
as output finalisation.

Nevertheless, it is clear from all that has gone before that a retrenchment output relation very similar
to Oab,ToBalanceEnquiry(but this time constructed for a forward retrenchment, as indicated in Section5),
will be able to handle the situation, with exactly the same benefits as in the backward case case:

ONR,ab,FromBalanceEnquiry

∆AbWorld
∆BetweenWorld
Abal! : N

Bbal! : N

(∃Btostatus′, Btopaydetails′ •
(¬(Btostatus′ = Bepv∧ Bfromstatus′ = Bepa ∧ Bfrompaydetails′ = Btopaydetails′)
∧ Abal! = Bbal!) ∨

((Btostatus′ = Bepv∧ Bfromstatus′ = Bepa ∧ Bfrompaydetails′ = Btopaydetails′)
∧ Abal! − Bbal! = Afrombalance′ − Bfrombalance′ = Bfrompaydetails′))

We close this section with a brief comparison of the forward and backward(1, 1) refinements. The
backward refinement had the undoubted virtue of conceptual simplicity. A single concrete operation
accounted for all the nondeterminism latent in the abstract model. On the otherhand, the fact that the
relevant concrete operation was itself deterministic, led to some subtlety and nondeterminism in the
retrieve relation, to account for the differing possible eventual outcomes. The forward refinement did
not exhibit the latter aspects, but in contrast, the different abstract outcomes were distributed around
different concrete operations and suboperations in quite a subtle way. Then again, the retrieve relation
was pleasingly functional.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 37

8. Conclusions

In the preceding sections, we started by surveying some of the systems engineering motivations for
the introduction of retrenchment. We pointed out how systems engineering in the real world is often
constrained by considerations that a pure research based environment can choose to neglect, and that this
can drive a wedge between technical approaches that work in the research environment and what can be
achieved in real engineering situations.

We then moved on to consider the Mondex development in detail. We surveyedthe ‘retrenchment
opportunities’ that Mondex offers as a result of having taken pragmatic decisions on how certain aspects
of the development were to be handled, given the demands of refinement. We outlined how theTower
Pattern of retrenchment could address many of these. We then turned our attentionto the ‘Balance
Enquiry Quandary’, a retrenchment opportunity that requires the consideration of the model B protocol
in its entirety, and thus falls outside the scope of theTower Patternas applied in the other cases. We went
into fair detail to describe how the refinement in [46] fared as regards theBalance Enquiry operation,
and the rather subtle way that it failed, the subtlety being mainly attributable to the backward nature of
the refinement of [46].

The Balance Enquiry Quandary could in fact be solved simply by pre-aborting during balance enquiry
operations. This would require any running transaction to be terminated before the enquiry takes place,
thus resolving the non-determinism in a known way (tolost). This is an example of how changing the
specification could remove the need for retrenchment. But, in the Mondex project, this particular change
request from the formal methods team was rejected by the customer, on separate commercial grounds,
the reasons for which were outlined at the end of Section 4.3. This is therefore also an example of how
changing the specification to remove the need for retrenchment is not always an available option in real
developments, as noted in the Introduction.

We went on to show how a formal account of the quandary could nevertheless be given via retrench-
ment. This retrenchment is just like the corresponding refinement, except for the one rogue balance
enquiry operation, which can be smoothly handled via a suitable retrenchment output relation.

We then reconsidered the whole situation using generalised forward refinement, which yielded a rel-
atively straightforward solution by hiding the awkward details inside the existential quantifications of
suitable(m, n) pairs. The simplicity of both the retrenchment and generalised forward refinement ap-
proaches was the spur to the development of a genuine(1, 1) forward refinement for Mondex, something
long thought impossible.

We remark that in [39], the authors perform their mechanised proof usinga single refinement step,
mimicking the broad strategy of [46] in an ASM framework, and using some (0,1) diagrams to remove
the need for skips. The rapid completion of the mechanisation, performed from scratch in a month or
so, strongly suggests that the proofs of the novel refinements and retrenchments for Mondex outlined
in this paper could be mechanised in an even shorter time by a team with the accumulated expertise of
[39]. Perhaps the only less than straightforward part of such an undertaking might concern what we
refered to as ‘unforgeability reasoning’, where, in order to save space and reduce the complexity of the
main arguments, we made use of properties of the protocol whose truth we argued in what was really an
extremely informal manner.

The fact that a balance enquiry quandary shows up with both forward and backward(1, 1) refine-
ments, highlights the fact that it is a fundamental consequence of the refinement of an atomic action to
a non-atomic protocol. Such a scenario is always going to contain moments in which the relationship

38 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

between abstract and concrete states is temporarily adrift of the ideal, regardless of the variant of re-
finement used. The question becomes, to what extent is this state of affairsvisible, and to what extent
is it viewed as being problematic. Obviously if the portfolio of operations contains ones that can make
visible the non-coherence of the states at such times, the expected refinement relationship will break
down. At such moments the greater flexibility of retrenchment comes into its own as a means of provid-
ing a straightforward formal justification for the observations via suitable retrenchment output relations.
The fact that concessions are not needed in such retrenchments is a clear signal that the refinement fold
has not in fact been departed from, and we can anticipate a host of similar applications of concession-
free retrenchments for treating atomic-versus-finegrained situations. This foreshadows a retrenchment
Atomicity Patternthat provides a common framework for dealing with them. See [3].

Generalised forward refinement can also address these more generalatomicity situations, and po-
tentially more conveniently, since it can arrange for any inconvenient phenomena to remain concealed
within the interior of appropriate(m, n) sequences. However the price to be paid is, that one needs the
assurance that all relevant(m, n) sequences have been taken into account, something that can become
a demanding obstacle if operation scheduling is under the control of the environment rather than the
system. The engineering pros and cons of these various approaches deserve further consideration.

The plethora of refinements considered in this paper, for the same abstract transaction model and
concrete protocol, lead one to suspect that in any such situation, the precise way in which a refinement
between abstract and concrete can be set up, can be chosen more or less at will — if one is ingenious
enough.30 This wider question also merits further consideration.

Despite this paper’s title, we see that retrenchment played a relatively small part in its contents. In
many ways, this is as it should be since refinement very often does ‘almost all’ that one would like.
Retrenchment possesses a weaker theory than refinement, so it is preferable to use refinement when it
can properly address the job at hand. Retrenchment’s value comes in plugging the gaps that refinement
leaves, in relating different refinement strands, and in formulating model evolution descriptions that
can act as a spur for further refinement work — in other words, in actingas the mortar between solid
refinement bricks. In this paper retrenchment smoothly overcame the infelicities of the(1, 1) refinement
treatments, and acted as an enabler for the construction of a(1, 1) forward refinement long believed not
to exist; these constitute a fine testament to its value when appropriately used.

References

[1] Abrial, J.-R.:The B-Book: Assigning Programs to Meanings, Cambridge University Press, 1996.

[2] Department of Trade and Industry: Information Technology Security Evaluation Criteria, 1991,
Http://www.cesg.gov.uk/site/iacs/itsec/media/formal-docs/Itsec.pdf.

[3] Banach, R., Jeske, C., Hall, A., Stepney, S.: Retrenchment and the Atomicity Pattern, Submitted.

[4] Banach, R., Poppleton, M.: Retrenchment: An Engineering Variation on Refinement,2nd International B
Conference(D. Bert, Ed.), 1393, Springer, Montpellier, France, April1998.

[5] Banach, R., Poppleton, M.: Sharp Retrenchment, Modulated Refinement and Simulation,Formal Aspects of
Computing, 11, 1999, 498–540.

30The ingenuity primarily involves the invention of suitable retrieve relations between abstract and concrete states — in this
paper we have exhibited a varied selection of retrieve relations for the various refinements discussed.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 39

[6] Banach, R., Poppleton, M.: Engineering and TheoreticalUnderpinnings of Retrenchment, 2002, Submitted,
http://www.cs.man.ac.uk/~banach/some.pubs/Retrench.Underpin.pdf.

[7] Banach, R., Poppleton, M.: Retrenching Partial Requirements into System Definitions: A Simple Feature
Interaction Case Study,Requirements Engineering Journal, 8(2), 2003, 266–288.

[8] Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Hashing Injective CLEAR Codes,
and Security Properties, Submitted.

[9] Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Finite Sequence Numbers and the
Tower Pattern,Formal Methods 2005(J. Fitzgerald, I. Hayes, T. A., Eds.), LNCS 3582, Springer,Newcastle,
UK, 2005.

[10] Banach, R., Poppleton, M., Jeske, C., Stepney, S.: Retrenching the Purse: Finite Exception Logs, and Val-
idating the Small,Software Engineering Workshop 30(M. Hinchey, Ed.), IEEE, Layola College Graduate
Center, Columbia, MD, 2006, To appear.

[11] Barthe, G., Courtieu, P., Dufay, P., de Sousa S., M.: Tool-assisted Specification and Verification of the
JavaCard Platform,AMAST 2002(H. Kirchner, C. Ringeissen, Eds.), 2422, Springer, 2002.

[12] Behm, P., Desforges, P., J-M., M.: ḾETÉOR: An Industrial Success in Formal Development, in: Bowen
et al. [26], 374–393.

[13] Beierle, C., B̈orger, E.: Refinement of a typed WAM extension by polymorphicorder-sorted types,Formal
Aspects of Computing, 8(5), 1996, 539–564.

[14] Beierle, C., B̈orger, E.: Specification and correctness proof of a WAM extension with abstract type con-
straints,Formal Aspects of Computing, 8(4), 1996, 428–462.

[15] Bert, D., Bowen, J., King, S., Waldén, M., Eds.:Proc. ZB2003: Formal Specification and Development in Z
and B, vol. 2651 ofLNCS, Springer, Turku, Finland, June 2000.

[16] Bicarregui, J., Ritchie, B.: Invariants, Frames and Postconditions: a Comparison of the VDM and B Nota-
tions, 670, Springer, 1993, ISBN 3-540-56662-7.

[17] Börger, E.: A Logical Operational Semantics for Full Prolog.Part I: Selection Core and Control,CSL’89.
3rd Workshop on Computer Science Logic(E. Börger, H. Kleine B̈uning, M. M. Richter, W. Scḧonfeld, Eds.),
440, Springer-Verlag, 1990.

[18] Börger, E.: A Logical Operational Semantics of Full Prolog. Part II: Built-in Predicates for Database Manip-
ulation, in: Mathematical Foundations of Computer Science(B. Rovan, Ed.), vol. 452 ofLecture Notes in
Computer Science, Springer-Verlag, 1990, 1–14.

[19] Börger, E.: The ASM Refinement Method,Formal Aspects of Computing, 15, 2003, 237–275.

[20] Börger, E., Del Castillo, G.: A formal method for provably correct composition of a real-life processor out
of basic components (The APE100 Reverse Engineering Study), Proc. 1st IEEE Int. Conf. on Engineering of
Complex Computer Systems (ICECCS’95)(B. Werner, Ed.), November 1995.

[21] Börger, E., Durdanović, I.: Correctness of compiling Occam to Transputer code,Computer Journal, 39(1),
1996, 52–92.

[22] Börger, E., Mazzanti, S.: A Practical Method for Rigorously Controllable Hardware Design, in:ZUM’97:
The Z Formal Specification Notation(J. P. Bowen, M. B. Hinchey, D. Till, Eds.), vol. 1212 ofLecture Notes
in Computer Science, Springer-Verlag, 1997, 151–187.

[23] Börger, E., Rosenzweig, D.: The WAM – Definition and Compiler Correctness, in:Logic Programming:
Formal Methods and Practical Applications(C. Beierle, L. Pl̈umer, Eds.), North-Holland, 1994, 20–90.

40 R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary

[24] Börger, E., Salamone, R.: CLAM Specification for Provably Correct Compilation of CLP(R) Programs, in:
Specification and Validation Methods(E. Börger, Ed.), Oxford University Press, 1995, 97–130.

[25] Börger, E., Sẗark, R.: Abstract State Machines. A Method for High Level System Design and Analysis,
Springer, 2003.

[26] Bowen, J., Dunne, S., Galloway, A., King, S., Eds.:Proc. ZB2000: Formal Specification and Development
in Z and B, vol. 1878 ofLNCS, Springer, York, UK, August 2000.

[27] Cooper, D., Stepney, S., Woodcock, J.:Derivation of Z Refinement Proof Rules, Technical Report YCS-
2002-347, University of York, 2002.

[28] Dawes, J.:The VDM-SL Reference Guide, UCL Press/ Pitman Publishing, London, 1991.

[29] Derrick, J., Boiten, E.:Refinement in Z and Object-Z, FACIT, Springer, 2001.

[30] Hall, A.: Using Formal Methods to Develop an ATC Information System,IEEE Software, 13, 1996, 66–76.

[31] ISO 15408, v. 3.0 rev. 2:Common Criteria for Information Security Evaluation, 2005.

[32] ISO/IEC 13568:Information Technology – Z Formal Specification Notation – Syntax, Type System and Se-
mantics: International Standard, 2002,
http://www.iso.org/iso/en/ittf/PubliclyAvailableStandards/c021573 ISO IEC 13568 2002(E).zip.

[33] Jones, C.:Systematic Software Development using VDM, Second edition, Prentice-Hall, 1990.

[34] Kleene, S.:Mathematical Logic, Wiley, 1967,alsoDover 2002.

[35] Lano, K., Haughton, H.:Specification in B: An Introduction Using the B-Toolkit, Imperial College Press,
1996.

[36] RAISE Method Group:The RAISE Method Manual, Prentice Hall, 1995.

[37] Schellhorn, G.: Verification of ASM Refinements Using Generalized Forward Simulation,JUCS, 7, 2001,
952–979.

[38] Schellhorn, G.: ASM Refinement and Generalisations of Forward Simulation in Data Refinement: A Com-
parison,Theoretical Computer Science, 336, 2005, 403–435.

[39] Schellhorn, G., Grandy, H., Haneberg, D., Reif, W.:The Mondex Challenge: Machine Checked Proofs for an
Electronic Purse, Technical Report 2006-02, Institut fur Informatik Universitat Augsburg, February 2006.

[40] Schneider, S.:The B-Method, Palgrave Press, 2001.

[41] Spivey, J.:The Z Notation: A Reference Manual, Second edition, Prentice-Hall, 1992.

[42] Sẗark, R., Schmidt, J., B̈orger, E.:Java and the Java Virtual Machine: Definition, Verification,Validation,
Springer, 2000.

[43] Stepney, S.: New Horizons in Formal Methods,The Computer Bulletin, 2001, 24–26.

[44] Stepney, S., Cooper, D.: Formal Methods for IndustrialProducts, in: Bowen et al. [26], 374–393.

[45] Stepney, S., Cooper, D., Woodcock, J.: More Powerful Z Data Refinement: Pushing the State of the Art
in Industrial Refinement,11th International Conference of Z Users(J. Bowen, A. Fett, M. Hinchey, Eds.),
1493, Springer, Berlin, Germany, September 1998.

[46] Stepney, S., Cooper, D., Woodcock, J.:An Electronic Purse: Specification, Refinement and Proof, Technical
Report PRG-126, Oxford University Computing Laboratory, 2000.

[47] Stepney, S., Polack, F., Toyn, I.: Patterns to Guide Practical Refactoring: examples targetting promotion in
Z, in: Bert et al. [15], 20–39.

R. Banach et al. / Retrenching the Purse: The Balance Enquiry Quandary 41

[48] Stringer-Calvert, D. W. J., Stepney, S., Wand, I.: Using PVS to Prove a Z Refinement: a case study,FME
’97: Formal Methods: Their Industrial Application and Strengthened Foundations, Graz, Austria, September
1997(C. Jones, J. Fitzgerald, Eds.), 1313, Springer, 1997.

[49] Teich, J., Kutter, P., Weper, R.: Description and Simulation of Microprocessor Instruction Sets Using ASMs,
Abstract State Machines: Theory and Applications(Y. Gurevich, P. Kutter, M. Odersky, L. Thiele, Eds.),
1912, Springer-Verlag, 2000.

[50] Van, H., George, C., Janowski, T., Moore, R.:Specification Case Studies in RAISE, FACIT, Springer, 2002.

[51] Woodcock, J., Davies, J.:Using Z: Specification, Refinement and Proof, Prentice-Hall, 1996.

