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Abstract

Component systems comprise components linked in various ways. We illustrate an ap-
proach to expressing and selecting appropriate semantics for components, using as a starting
point UML class diagrams. Like most diagrammatic notations, UML does not have a fixed
interpretation. We present a meta-modular framework for the combined use of UML and
Z, based on two levels. At the meta-level, we express modular semantic interpretation of
UML diagrams by using templates and generics. At the instantiation-level, UML models
are translated into Z specifications by instantiating the corresponding meta-level seman-
tic interpretations. This allows the definition of semantic interpretations that are precise
and unambiguous in a modular fashion, allowing tailoring of semantic interpretations by
plugging-in or plugging-out modules representing some semantic aspect, and enhancing the
readability, conciseness and abstraction of the resulting Z specification.
Keywords: Z, UML, modular semantics, translation, formal interpretation.

1 Introduction

Component systems comprise components linked in various ways. Important issues in the con-
struction of components and component-based systems include the expression of the abstract
purpose of the components and of the links among components. To explore component and
linkage semantics, we choose to base our research on a well-known graphical notation for mod-
elling components (here object-oriented (OO) classes) and links, namely UML. We illustrate an
approach to expressing appropriate semantics for components by expressing different semantic
interpretations of the OO components in Z, and constructing a formal model of the system by
selecting the required semantic interpretation of each component and linkage.
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The Unified Modelling Language (UML) [1, 2] is a set of notations for describing a system from
various views. These notations are recognised as being intuitive and the result of modelling
experience. However, UML, and other component description languages such as those used
for architecture description (ADLs), suffers from the usual problems of diagrammatic-based
notations.

• Diagrammatic notations have weak semantics. There is substantial disagreement on the
semantics of some key concepts (for example, associations, aggregation and specialisation
in UML [3]).

• Diagrammatic models are not amenable to formal reasoning techniques, as the notations
do not have a formal semantics.

• Diagrammatic models do not have a fixed interpretation. Developers tailor the interpreta-
tion of diagrams to the problem at hand informally, tacitly and sometimes unconsciously.
This constitutes a source of confusion. It is very likely that different developers interpret
the same model in different ways.

There have been many attempts to overcome these limitations. One approach consists of giving
a formal semantics to diagrammatic notations, where the aim is the sole use of diagrams with a
sound semantics. Another approach consists of combining diagrammatic notations with formal
specification languages (FSLs), where the aim is to use both notations, and to explore the formal
reasoning capabilities of the FSL. This is the approach explored here.

Combinations are achieved by representing the modelling concepts of the diagrams in the for-
mal model, thus providing a semantics for the diagram concepts. The graphical and textual
representations can then be seen as alternative representations of the same thing.

There have been combinations of UML with B [4], Z [5, 6, 7], and Object-Z [8, 7]. These
approaches give a unique semantics to the UML diagrams. However, we wish to accommodate
semantic variability and tailoring semantics to different problem domains.

In this paper, we present a meta-modular framework for the combined use of UML and the FSL
Z [9]. This framework is based on two levels: the meta-level and the instantiation-level. At the
meta-level, we express semantic interpretations of UML diagrams. At the instantiation-level,
UML models are translated into Z specifications by instantiating the corresponding meta-level
semantic interpretations. Our approach is modular because at both levels we represent concepts
as a collection of pieces, where each piece represents a particular semantic aspect. At the meta-
level these pieces are Z generics and our templates. At the instantiation level these pieces are
mostly Z schemas, but they may include other Z constructs. Semantic interpretations can be
tailored at the meta-level by plugging-in and plugging-out pieces representing some semantic
aspect.

Modularity is a key characteristic of our approach. It enhances the readability and abstraction
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of the resulting Z specifications, and makes the whole framework very flexible, allowing easy
tailoring of semantic definitions to accommodate different interpretations.

Templates and Z generics are parametric language constructs, that allow us to factor out com-
monly used structures, containing variations.

Z generics are provided by the language itself. They allow parameters to be associated with
certain Z constructs, namely abbreviation definitions, axiomatic definitions and schemas. A
parameter represents a set and set only.

We introduce templates to give us more flexibility than pure Z generic definitions allow. We
use templates to parameterise all kinds of Z constructs with names, declarations, types and
predicates. We also use templates to capture optionality. When supplied with parameter values,
a template results in a well-formed Z construct.

There are advantages and disadvantages in the choice of Z to represent UML models (these
are considered in more detail in [10]). In its favour, Z allows free expression of most set and
predicate concepts; it has relatively mature tool support for writing and verifying descriptions;
proof and refinement are well researched; Z is capable of describing most OO (Object-Oriented)
concepts. The disadvantage of using Z to express OO models is that Z must explicitly cap-
ture the OO semantics as well as the modelled concepts (compared for example, to Object-Z).
However, no current OO formalism provides the range and variety of tool support; verification
and development approaches are not yet mature; and, the OO formalisms impose a particular
semantics on the UML models, which may be appropriate for many situations, but does not give
enough flexibility for expressing other interpretations.

Our OO Z structuring is based on that of Hall [11, 12]. We have introduced new features, such as
the use of generics, our modular approach of organising the specification, and our encapsulation
of the OO semantics.

Our approach makes use of, or elaborates, several Z patterns [13, 14]. Name predicates is the
inspiration for separation of association rules into separate predicates, a source of much flexibility
in the templates; name consistently is elaborated to define the naming conventions of our approach
(see Appendix A). We believe that the modular structuring mechanisms presented here can be
applied to other, perhaps non-OO, approaches to modelling of components and component
architectures.

We have developed a core semantic interpretation of most concepts of UML class models [15]. In
[15] we cover most concepts of the UML class diagram, including binary associations, association
classes, and specialisation, and a UML toolkit. (Note that application-specific toolkit is one of
the patterns identified in [14].) Here we focus on classes, composition relationships, and the
expression of a system made up of subsystems.

In UML, as in other component models, there are various ways to relate components. Compo-
sition (and its weaker form, aggregation) model a relationship that had a semantic dependency,
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brand : CARBRAND

year : YEAR


Car


model : WHMODEL


Wheel

attachedto


1


wheels


3,4,6


Tyre

wheel


1


tyre


1


Figure 1: Cars are composites, where the components are a number of Wheels (three, four or
six). Each Wheel in turn has one component Tyre.

often referred of as a “part of” relationship. The classes, or components, are distinct, but are
dependent (in the context of the model). In our illustration, figure 1, the composition relation-
ships model the situation where instances of Tyre are inherently part of an instance of Wheel ,
and instances of Wheel are inherently part of a Car (the semantics are discussed further below).
This example has been chosen to show our approach to multiple composition and how we explore
the formal reasoning capabilities of Z.

In the following sections, we present our template notation, and illustrate aspects of our approach
with the simple model of the car.

2 Template Notation

Our template notation comprises elements to be substituted, various forms of optionality, and
various forms of list. These elements must be clear in the templates.

The following notational conventions are used.

• substitutable parameters are placed between the bracket symbols <and >

• optional elements are placed between [ and ]

• the symbol 8 is used within brackets to denote optionality: (a 8 b) means “either a or b”

Where a list of elements is used, we introduce a general subscripted component within optional
brackets with the following decorations:

• [ elementi ]∗ indicates a list of element1 to elementn , where the list may be empty

• [ elementi ]+ indicates a list of element1 to elementn , where the list must have at least
one element
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3 Classes

In the OO paradigm objects have identity. This needs to be represented in Z [10].

A class has two related but distinct meanings. Class intension defines the properties shared
by the objects of that class (for example, class Car of figure 1 has properties brand and year).
Class extension defines the class in terms of currently existing objects (for example, Car is
{MyPorsche,HisFerrari ,HerMini}). In our OO Z structuring, these two concepts are repre-
sented separately.

3.1 Object Identity

Our model of object identity is as follows. Each class has an identity set ; each object has an
identity, which is a member of its class identity set. Identity sets form a hierarchy. The root of
the hierarchy is the set IDOBJECT (defined in the Z specification as given set). Actual class
identity sets are either defined as a subset of IDOBJECT , or as a subset of a specific class
identity, if the class being defined is a specialisation.

Here we present the template for defining class identity sets. Actual object identities are defined
in the class extension.

Template and Illustration. The class identity set template (left) and the illustration of its
instantiation (right) are given below. When we instantiate a template in order to translate a
UML diagram we use systematic naming conventions; this can be observed in all illustrations.

[ ID<CLi> ]+ : P ID<CLSup>

[ disjoint〈 [ ID<CLi> ]+ 〉 ]

[IDOBJECT ]

IDCAR, IDWHEEL, IDTYRE : P IDOBJECT

disjoint〈 IDCAR, IDWHEEL, IDTYRE 〉

3.2 Class Intension

Class intension is represented in a Z schema. It defines attributes, association roles, and intension
class invariant.

In the interpretation of associations presented here, we view associations as roles played by
classes; an alternative model would be to consider an association as being a mathematical
relation between classes [10]. This representation of associations involves role definition, and
the definition of the properties of the association as a whole (next section).
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3.2.1 Attributes

Attribute definition comprises the definition of its type (if not directly supported in Z) and the
actual definition of the attribute.

[15] provides templates for defining attribute types as given sets and enumerations; here only
given sets and Z’s natural numbers are used. The template for attribute types as given sets, and
an illustration of its instantiation, are:

[ [ <ATTRTYPEi> ]+] [CARBRAND ,YEAR,WHMODEL]

Attribute definitions link the attribute name with the appropriate attribute type construction.
The type construction instantiates one of the attribute generics1. The template is:

<attrName> : <attrGeneric>[<ATTRTYPE>][ ( <n>) 8 (<n1> . . <n2>) ) ]

In the illustration (below), brand , year , and model are single-valued attributes, and are declared
using the Attrib1 generic. Generics for multi-valued attributes are also provided; they have the
same form as multi-valued roles (see below).

3.2.2 Roles

Association roles describe the participation of classes in associations. In an OO context, role
definitions state the class of objects at the opposite end of the association, and the number of
allowed object references that each class object may hold (multiplicity). They are essentially
class attributes whose possible values are object references. Like class attributes, they are defined
by instantiating appropriate generics from our toolkit.

The role definition template is:

<roleName> : <roleGeneric>[ID<CLEND>][ ( (<n>) 8 (<n1> . . <n2>) ) ]

The instantiation is as for attributes. In the illustration (below), the roles of composition
Car → Wheel are defined in the class intension schemas: wheels instantiates the Role©C[ ].. generic
with the proper multiplicity value; tyre instantiates Role©C1as multiplicity is one; attachedTo
instantiates Role}1 generic. In our naming conventions, ©C stands for component role and } for
composite role.

1[15] includes a toolkit containing attribute and role generics; a small subset of this toolkit is given in appendix
B.
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3.2.3 Intension Schema

In our naming convention, class intension schemas are preceded by A.

Template. The class intension schema template is:

A<Cl>
[ attribute definition i ]∗
[ role definition i ]∗

[ intension invariant i ]∗

Illustration. The intension schema instantiation for classes Car and Wheel is:
ACar
brand : Attrib1[CARBRAND ]
year : Attrib1[YEAR]
wheels : Role©C[ ]..[IDWHEEL]({3, 4, 6})

AWheel
model : Attrib1[WHMODEL]
attachedto : Role}1[IDCAR]
tyre : Role©C1[IDTYRE ]

where the attributes and role generics used are defined in appendix B.

3.3 Class Extension

The class extension expresses the set of class objects in terms of object identities. Class ex-
tensions are defined generically. Names of class extension schemas are preceded by S, following
[12].

Generic and Template. The class extension generic and the template that describes its
instantiation are:

SClass [IDCL,ATTRSCL]
objIds : P IDCL
objAttrs : IDCL 7→ ATTRSCL

dom objAttrs = objIds

S<Cl>
SClass[ID<CL>,A<Cl>]

[<cl>Ids/objIds,<cl>Attrs/objAttrs]

[ extension invariant i ]∗

The generic defines a mapping from class identity set to class intension (expressed as partial
function), linking objects to their state. The template instantiates the generic for a specific class,
and renames the components of the generic based on the name of the class. This renaming is
done to avoid name clashing, when all the extensions are put together in system schemas.
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Illustration. The instantiation of the template for the class Car is:

SCar == SClass[IDCAR,ACar ][carIds/objIds, carAttrs/objAttrs]

4 Composition

In the OO paradigm, part-of relationships are used when one class is part of or subordinate to
another. There are many possible interpretations (or flavours) of this abstract OO concept; two
named forms are aggregation and composition.

Composition defines a strong form of ownership, requiring that components (or parts) be asso-
ciated to a composite (or whole) throughout their existence. Compositions have the following
properties:

• the part must be included in at most one composite at a time (unshared containment);

• if a composite is destroyed the parts must also be destroyed (deletion propagation).

As for ordinary UML associations, representing compositions in Z involves the definition of class
roles in intension schemas of participant classes and the definition of properties of the association
in a properties schema. In addition, deletion propagation needs to be stated separately, as it
involves the dynamic behaviour of objects.

Composition roles have been discussed in the previous section. Here we focus our attention on
the properties schema and deletion propagation property.

4.1 Properties schema

Our Z representation of any kind of association uses a properties schema to enforce constraints
of associations. This includes consistency of links and other association constraints (possibly
stated in OCL). In our interpretation of associations, consistency of links includes link coherence
(links do actually exist) and mutual reference (references to objects in the context of associations
are mutual)2. In addition to these, compositions require the unshared containment constraint.

Each constraint is expressed in a separate Z schema, following the Name Predicates pattern [13].
The whole properties schema is built-up from these schemas.

2An interpretation without mutual reference is also possible.
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LinkCoherence Template. This checks that object references held by objects are defined
in the class extension schemas. Note the optionality between Z terms, which depends on role
multiplicity.

LinkCoherence<Cl1><Cl2>
S<Cl1>; S<Cl2>

∀ <o1> : < cl1 > Ids; < o2 > : < cl2 > Ids •
(< cl1 >Attrs < o1 >).< role1 > ( ⊆ 8 ∈ ) < cl2 > Ids
∧ (< cl2 > Attrs < o2 > ).< role2 > ( ⊆ 8 ∈ ) < cl1 > Ids

MutualReference Template. This checks that object references are mutual, i. e., if obja
holds a reference to objb , then the inverse must also hold. The optionality is as above.

MutualReference<Cl1><Cl2>
S<Cl1>; S<Cl2>

∀<o1> : <cl1>Ids; <o2> : <cl2>Ids •
( ( ∀<o2i> : 8 let<o2i> == ) (<cl1>Attrs <o1>).<role1> •

<o1> ( ∈ 8 = ) (<cl2>Attrs <o2i>).<role2>)
∧ ( ( ∀<o1i> : 8 let<o1i> == ) (<cl2>Attrs <o2>).<role1> •

<o2> ( ∈ 8 = ) (<cl1>Attrs <o1i>).<role1>)

LinkCoherence and MutualReference Illustration. The illustration for the Car → Wheel
composition is:

LinkCoherenceCarWheel
SCar ; SWheel

∀ c : carIds; w : wheelIds •
(carAttrs c).wheels ⊆ wheelIds ∧ (wheelAttrs w).attachedto ∈ carIds

MutualReferenceCarWheel
SCar ; SWheel

∀ c : carIds; w : wheelIds •
(∀wi : (carAttrs c).wheels • c = (wheelAttrs wi).attachedto)
∧ (let ci == (wheelAttrs w).attachedto • w ∈ (carAttrs ci).wheels)

Other Constraints Template. This states other constraints of an association. (Since there
are none in our example, it is not illustrated here.)

OtherConstraints<Cl1><Cl2>
S<Cl1>; S<Cl2>

[ constraint predicate i ]+
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Unshared Containment Template. This states that the parts of any two distinct composite
objects must be disjoint.

UnsharedContainment<ClWhole><ClPart>
S<ClWhole>

∀<w1>,<w2> : <clWhole>Ids | <w1> 6= <w2> •
disjoint〈(<clWhole>Attrs <w1>).<parts>, (<clWhole>Attrs <w2>).<parts>〉

Composition Properties Template. This groups all the composition properties in the pred-
icate.

Comp<ClWhole><ClPart>
S<ClWhole>; S<ClPart>

UnsharedContainment<ClWhole><ClPart>
LinkCoherence<ClWhole><ClPart>
MutualReference<ClWhole><ClPart>
[ OtherConstraints<ClWhole><ClPart> ]

Illustration. The illustration of the unshared containment predicate and the properties schema
for the Car → Wheel composition is,

UnsharedContainmentCarWheel
SCar

∀ c1, c2 : carIds | c1 6= c2 •
disjoint〈(carAttrs c1).wheels,

(carAttrs c2).wheels〉

CompCarWheel
SCar ; SWheel

UnsharedContainmentCarWheel
LinkCoherenceCarWheel
MutualReferenceCarWheel

4.2 Deletion Propagation

Deletion propagation is stated in terms of deletion operations and assertion of the property
through a conjecture.

4.2.1 Delete Operations

The Delete operation on composite objects, involves several operation schemas. Delete0 is
applicable to any class, and Delete is only applicable to composite classes.

Report No. 284, UNU/IIST, P.O. Box 3058, Macau



Modular UML Semantics: Interpretations in Z 91

Delete0 Template. The Delete0 operation removes a set of objects from a class extension.
It states that in the after-state of the operation the given objects are deleted from the class
extension; it does not itself include deletion of the parts. The optional 0 is used if the class is a
composite.

Delete<Cl>[ 0 ]
∆S<Cl>; <cl>Ids? : P ID<CL>

<cl>Ids? ⊆ <cl>Ids
<cl>Ids ′ = <cl>Ids \<cl>Ids?
<cl>Attrs ′ = <cl>Ids?−C <cl>Attrs

Delete0 Illustration. Delete0 is applied to the classes Car and Tyre.

DeleteCar0
∆SCar ; carIds? : P IDCAR

carIds? ⊆ carIds
carIds ′ = carIds \ carIds?
carAttrs ′ = carIds?−C carAttrs

DeleteTyre
∆STyre; tyreIds? : P IDTYRE

tyreIds? ⊆ tyreIds
tyreIds ′ = tyreIds \ tyreIds?
tyreAttrs ′ = tyreIds?−C tyreAttrs

PartsToDelete Template. If a class is a composite, its parts must also be deleted. The
PartsToDelete operation obtains the parts of the composite objects that are to be deleted.

<ClWhole>PartsToDelete
ΞS<ClWhole>; <clWhole>Ids? : P ID<CLWHOLE>
[ <clParti>Ids? : P ID<CLPARTi> ]+

[ <clParti>Ids? = [
⋃

] {<w> : <clWhole>Ids? • (<clWhole>Attrs w).<partsi>} ]+

PartsToDelete Illustration. The instantiation for Car and Wheel is:

CarPartsToDelete
ΞSCar ; carIds? : P IDCAR
wheelIds? : P IDWHEEL

wheelIds? =
⋃{c : carIds? •

(carAttrs c).wheels}

WheelPartsToDelete
ΞSWheel ; wheelIds? : P IDWHEEL
tyreIds? : P IDTYRE

tyreIds? = {w : wheelIds? •
(wheelAttrs w).tyre}

Delete Template. The template of Delete for composites is given below. In the declaration
(before •), the extensions of the part classes and the inputs of the delete operations on parts are
hidden (as in promotion [13]). In the predicate (after •), we have a conjunction of operations:
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the part objects to delete are obtained (PartsToDelete), part objects are deleted (Delete on
parts), and composite objects are deleted (Delete on composite). Delete on parts can be either
an instantiation of Delete0 or Delete (if the part is also a composite) operation templates.

Delete<ClWhole> == ∃ [ ∆<SClParti>; <clParti>Ids? : P ID<CLPARTi> ]+ •
<ClWhole>PartsToDelete ∧ [ Delete<ClParti>[ 0 ] ]+
∧ Delete<ClWhole>0

Delete Illustration. The instantiation of Delete is illustrated for Wheel and Car .

DeleteWheel == ∃∆STyre; tyreIds? : P IDTYRE •
WheelPartsToDelete ∧ DeleteTyre ∧ DeleteWheel0

DeleteCar == ∃∆SWheel ; wheelIds? : P IDWHEEL •
CarPartsToDelete ∧ DeleteWheel ∧ DeleteCar0

4.2.2 Delete Propagation Conjecture

As in the specification pattern express implicit properties [14], we use a conjecture to test the
assertion that deletion propagates through compositions.

Conjecture Template. The required condition of the after state of any delete operation, that
the input objects are deleted, is expressed in a separate schema, CondPostDelete.

CondPostDelete<Cl>
S<Cl>′
<cl>Ids? : P ID<CL>

<cl>Ids? ∩<cl>Ids ′ = ∅
<cl>Ids? ∩ dom<cl>Attrs ′ = ∅

In the full conjecture, CondPostDelete is instantiated for each class of the composition hierarchy.
The conjecture asserts that composite objects must be deleted, along with its part objects, and
that deletion propagates down the hierarchy (if parts are composites, its parts must also be
deleted).

The antecedent of the conjecture introduces the state and after state of the system (objects are
deleted from the collection of system objects), and the delete operation on a composite.

∆System; Delete<ClWhole>
`
CondPostDelete<ClWhole>
∧ (∃<ClWhole>PartsToDelete • [ CondPostDelete<ClParti> ]+)

[The deletion of sub-components]
[ ∧ (∃<ClParti>PartsToDelete • [ CondPostDelete<ClSubParti> ]+) ]∗
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Conjecture Illustration. The conjectures for the two compositions of figure 1 are:

∆System; DeleteWheel
` CondPostDeleteWheel ∧ (∃WheelPartsToDelete • CondPostDeleteTyre)
∆System; DeleteCar
` CondPostDeleteCar ∧ (∃CarPartsToDelete • CondPostDeleteWheel)

∧ (∃WheelPartsToDelete • CondPostDeleteTyre)

We are looking at proving the conjecture for the example system in a form suitable for gen-
eralisation to the template form. Given a template proof, two things follow. Firstly, if the
translation templates are correctly instantiated, the instantiated template proof automatically
generates the specific proof. (If OtherConstraints are present, they may have to be discharged
explicitly.) Secondly, if there is doubt about the instantiation of the templates, reproving the
conjecture increases confidence in the translation, at least for this part of the system.

5 System and Subsystems

In representing large class models it is often convenient to group classes and relationships into
subsystems. The whole system is built up from all the subsystems. In our approach, we use Z
schemas to represent subsystems and systems.

Templates The subsystem schema includes the extensions of subsystem classes, and relation-
ships between those classes. The system schema template just includes the subsystem schemas.

Subsystem<Subsys>
[ S<Cli> ]+

[ Assoc<Clk1><Clk2> ]∗

[ Generalisation<ClSuperj> ]∗

[ AssocCl<AssocCll><Clk3><Clk4> ]∗

[ Comp<ClWholew><ClPartp> ]∗

System
[ <SubSysi> ]+

Illustration. We illustrate our modular approach by grouping the model of figure 1 in two
subsystems (for this small example one would suffice): the classes of the Car → Wheel composi-
tion are grouped in SubsystemCar , and the remaining ones in SubsystemWheel . System includes
both subsystems.

SubsystemCar
SCar ; SWheel

CompCarWheel

SubsystemWheel
SWheel ; STyre

CompWheelTyre
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System
SubsystemCar ; SubsystemWheel

6 Discussion

Some earlier formalisations have addressed composition characteristics through operations [5],
and in terms of conjectures [7]. What is new here is the full expression of the additional
constraints that are inherent to composition, the complete, extensible composition operations,
and the conjecture on deletion for the whole composition hierarchy.

The authors are not aware of any other discussion of composition that incorporates hierarchies
with more than one level. Here we illustrate it for the Car → Wheel → Tyre composition.

The composition conjecture is a good example of the exploration of the formal reasoning mech-
anisms of a FSL in a context of combined use with diagrammatic notations.

We would like to emphasise the modularity and abstraction of our approach. Modularity can be
observed at both the meta and instantiation levels. At the instantiation level, we can observe
it in our approach to build subsystems and systems. At the meta-level, we can observe the
plug and play semantics in our approach to composition, for example, if the MutualReference
interpretation is not desired one can create a properties schema template that excludes it; if an
extra property is desired one can create a template that includes it.

Abstraction can be observed in our approach to build the composition properties schema. Each
property of composition is expressed in a separate schema, which encapsulates the actual details
of how the property is stated. Property schemas are then included in the whole composition
properties schema, and refered to by meaningful names, abstracting away from the details in-
volved in the statement of the property.

7 Related Work

Our approach is related to meta-modelling: the specification of the concepts used to build
models. However, unlike most uses of meta-modelling (for example, the current UML definition
[1]), the meta-modelling concepts are precisely and unambiguously defined3.

D’Souza and Wills also propose an approach to define the intended meaning of UML modelling
constructs through what they termed package semantics [16]. However, in their work, the
meaning is always defined informally by resorting to notations without a formal semantics.

3Most uses of meta-modelling define notations by resorting to another graphical notations (class diagrams,
entity-relationship diagrams, etc.) whose precise meaning is never explicitly defined.
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Other work related to ours is on the development of meta-modelling frameworks, which is being
done in the context of the UML 2.0 effort. These frameworks allow the definition of graphical
modelling notations, following a meta-modelling approach, and improving on previous uses of
meta-modelling by defining precisely the meta-modelling concepts using meta-languages with a
formal semantics. This includes the development of BOOM [17] and MMF [18, 19]. This line of
work differs from ours as follows.

• It aims at the sole use of graphical notations with precise semantics; we aim at a combined
use of graphical notations and FSLs.

• It resorts to newly defined formalisms for defining modelling concepts; we use a well-
established FSL, with a proof system and a refinement calculus, opening to us years of
research in formal methods.

8 Future Work

We are looking at annotating UML models with properties currently expressed only in Z, such as
invariants and conjectures. In our framework we elect Z as the language for expressing detailed
properties; the use of OCL [20] would require a further translation to Z, besides OCL does not
have a formal semantics and has many problems [21].

We also intend to explore the refinement calculus in this framework. We aim at obtaining
a refined Z specification through calculation, and from this refined Z specification obtain a
UML representation. This is possible provided the overall OO structuring is maintained in
the refinement, and by exploring our annotation facility to represent extra information not
expressible in UML.

Future work will also involve statecharts. If we explore a concurrent interpretation of statecharts
(as most are) we may use Circus [22], as Z is limited at expressing concurrent properties.

The translation of UML models into Z (that is the instantiation of the templates) is currently
done manually. This could be automated, which would require formalising (in some sense)
the template concepts. Our aim is to build a tool that allows specifiers to make translations
of diagrams based on a selected semantic interpretation. Such a tool would keep an associa-
tion between problem domain and semantic interpretations, and would allow the addition of
new problem domains and associated semantic interpretations. Each semantic interpretation is
represented by a set of templates and generics.
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9 Conclusions

We have presented key examples of a set of templates that can be instantiated to produce a
formal (Z) specification of a component system modelled in a UML class diagram. This set of
templates incorporates a particular semantic interpretation.

We have also shown the modular structure of our framework. At the instantiation level concepts
are factored out in schemas, and schemas are combined to make the whole. At the meta-level
these instantiation pieces are factored out as templates and generics.

We believe that the principles outlined here can be used to give formal interpretations to other
kinds of diagrams, including component models in other paradigms, such as ADLs.

Our approach is akin to component-based development in its emphasis on compositionality,
reuse, and adaptability :

• concepts are represented as pieces (or modules) that are composed with other pieces to
build a whole;

• desired properties of a composition of pieces are stated as conjectures, whose satisfaction
can be verified through proof;

• our templates are powerful and flexible units of reuse allowing us to factor out commonly
used structures;

• new semantic interpretations are built by assembling and adapting a variety of exiting
pieces;

• domain-specific interpretations are also units of reuse, encapsulating valuable modelling
experience that can be reused in other problems within the same domain, or that can be
adapted to meet the needs of different problem domains.

Our approach, using generics and templates,

• enhances the readability and abstraction of the Z specifications resulting from the UML
translation;

• enhances the modularity and compositionality of our approach, making very clear the
distinct components of the UML model,facilitating the combination of different diagrams,
and allowing reuse;

• enhances the traceability of the Z specification, owing to the modularity and the naming
conventions of our approach.
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The modularity and abstraction mechanisms of our approach are substantial improvements over
previous formalisations of UML (see [10]). Our Z meta-structuring, based on templates and
generics, and our treatment of multiple level composition using template conjectures, are new.
We intend to develop further our meta-structuring to handle proof and refinement.
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A Naming Convention Pattern

The Z pattern Name Consistently encourages the declaration and use of an explicit naming
convention. The convention that we use has three elements, each presented here as a separate
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pattern elaboration.

Name Consistently (elaboration): Distinguish Class Elements

Intent: The UML class concept is formalised as an intension (or type) and an extension (or set
of objects). These need to be clear in the templates, and in the resultant Z.

Solution: Following Hall [11, 12], class extension schemas are preceeded by S. We introduce the
A to preceeded class intension schemas.

2

Name Consistently (elaboration): Distinguish Generic Schemas

Intent: distinguish specific elements of the Z language for readability

Problem: This paper defines generic and template schemas, as well as giving actual Z descrip-
tions. The templates and the Z descriptions instantiate generics. The templates, in particular,
are not easy to read. It is desirable to be able to distinguish the generic schema definitions and
their instantiations.

Solution: Use a different font for the name of generic schemas, in definition and instantiation.
Here, we use plain Roman font for generics, and default italic face for all other Z.

2

B Toolkit

Bounded Containers. Here we present some of the bounded containers generics of [15]. These
are called bounded because a limit is imposed on the size of the container.

There are several kinds of bounded containers. Bounded powersets are presented below — one
defines a container whose size is within a set of possible values, the other defines a container
whose size is a specific value. [15] also defines containers of kind sequences, injective sequences
and bags.

bset..[X ] == (λ r : FN • {xs : FX | #xs ∈ r})
bsetn[X ] == (λn : N • bset..[X ](n . . n))
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UML Multiplicity. Multiplicity constraints restrict the number of values (or references) held
by roles and attributes. The constant many represents the UML ‘*’; UMLCard (cardinality)
defines the set of multiplicity values; UMLCard2 is just a subset of UMLCard .

many : N1 UMLCard == {x : N | x ≤ many}
UMLCard2 == UMLCard \{0, 1}

Role and Attribute Generics. [15] define several kinds of roles and attribute generics. Here
we define the ones used in this paper. Attribute and role generics have very similar forms.

Attrib1[X ] == X Role©C1[X ] == X
Role©C[ ]..[X ] == bset..[X ] ∩ (FUMLCard×P(FX ))
Role}1[X ] == X
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