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Abstract. Computer simulation approaches are starting to be
used more extensively throughout scientific investigations. Some
scientists, however, are skeptical about the benefits of simula-
tion. We present computer simulation as a scientific instrument
in order to explore issues of their construction and use, which we
believe might increase their acceptance within science. We high-
light the need to understand the model which the simulation
implements, and examine the importance of calibrating simula-
tions and presenting them in an open way to provide scientific
reproducibility.

1 Introduction

The use of predictive simulation based approaches to facilitate research
in a wide range of scientific disciplines is becoming ever more preva-
lent in the literature. The acceptance of this trend towards the use of
simulation methods, however, is by no means universal with some sci-
entists skeptical regarding the benefits of computer simulation to scien-
tific understanding [6]. We believe it is the responsibility of the people
engaged in constructing simulations to provide evidence demonstrating
why simulation results can be used to provide real insight into scientific
investigations.

In this paper we examine the analogy between computer simulators
and a view of scientific instruments expressed by [4] to show how we can
make simulation a tool more accessible to science. Computer simulations
should be subject to the same rigour that goes into constructing other
kinds of scientific instrument. They need to be calibrated to understand
how the outputs relate to the system under study, and they should be
presented in such a way that their findings can be reproduced.

2 Computer Simulation and Science

In general, Frigg and Reiss [2] state that the term simulation “refers to
the entire process of constructing, using, and justifying a model that
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involves analytically intractable mathematics”. Models do not, however,
always involve analytically intractable mathematics. For example, sim-
ulation is often used where other approaches are intractable owing to
ethical reasons (social experiments), cost, time, danger, or impossibility
(galaxy formation or climate models). Often, computer simulation is the
only way to greater insight into a system [4].

Simulators are built based on an underlying model that is used to
represent the system or domain under investigation. Simulation runs
(executing the simulator) then allow us to animate that model, exploring
its temporal behaviour, hence a “simulation imitates a (usually real)
process by another process” [1]. Models are used throughout science
as surrogates to learn about the world, revealling features of the system
the model represents. Learning takes place during both construction and
manipulation of the model that underlies the simulation. In the simplest
scenario, model construction results in computer code (the simulator),
and model manipulation takes the form of in silico experimentation.
During the former we learn about the system and gain an idea of the
questions we wish to ask of it; during the latter we explore these questions
and enhance our understanding of the model upon which the simulator
is based.

Broadly speaking computational methods serve two purposes for sci-
entists: brute-force/informatics approaches deal with large amounts of
data or numerical calculations, for example genome sequencing; and
predictive simulation aims to to explain observed natural phenomena
by capturing the underlying behavioural processes. This paper is con-
cerned with the latter, whereby simulation aims to explain real-world
phenomena rather than describe it, and the model underlying the simu-
lation provides a theory for how the components of the system interact
to produce a particular outcome [8]. The results of computer simulation
can be used for many complementary purposes, for example: to inform
real-world experimentation on the system being investigated; to validate
such experimentation; or simply to explore both concrete and abstract
hypotheses.

One of the main advantages of computer simulation approaches is
the complete control of the elements and parameters that make up the
simulation. This allows us to explore various aspects that relate to a
real-world system under study, which are otherwise difficult or even im-
possible to achieve. The flexibility of computational approaches, how-
ever, can have negative consequences. For instance, the increased access
to computational power and reliance on computer simulations may lead
to reduced levels of more expensive (but more informative) laboratory
or field experiments [4], or overly complex and heavily parameterised
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models containing poorly understood assumptions [1]. Humphreys [4]
also warns of the problems inherent in exploratory agent-based models
that aim to show how simple rules can account for complex behaviour.
It is possible to use simple models to produce patterns that have little
connection to the actual underlying mechanism. In such cases, care must
be taken not to blindly accept the explanation given by the computer
simulation.

The outputs of simulations will depend on the way in which they have
been constructed. This makes understanding the construction process
key to interpreting and presenting what the simulation shows. We need
to understand the details of the model that the simulation implements,
and show how that model then relates to the simulation outputs in order
that the outputs can be properly interpreted. This issue is true of most
computational approaches in science; for example, Nyce [7] describes how
to some radiographers, traditional x-ray images are not representations
of the underlying biological structures, but are “very much the same
kind of ‘thing’ ” that do not need to be interpreted. This contrasts with
their relationship with digital techniques, where a level of mistrust exists
because the resultant images are produced via unknown machine oper-
ations. This produces a perceived distance between the digital images
and the thing they represent.

To increase trust and confidence in computer simulations further,
their outputs need to be reproducible. Reproducibility is a key axiom of
science, and Timmer [11] reports that the increased reliance on compu-
tational methods in most areas of science has lead to an inadvertent loss
of scientific reproducibility. The examples given by Timmer [11] for the
apparent loss of reproducibility focus on the more data intensive aspects
of using computers to analyse large quantities of data. However, many
of the issues raised are equally applicable to the simulation techniques
used in the Alife community. These issues include: a complex mix of
data from both public and internally generated; data that is often quick
to become out of date; a complex pipeline of software programs used
for analysis, etc; multiple sets of parameters for each piece of software;
different software versions; and software bugs.

3 Simulation as a Scientific Instrument

We can consider computer simulation in the same terms as other tools
or instruments used by scientists in their scientific endeavours. Given
this, such simulations should be subject to the same rigour that goes
into constructing other kinds of scientific instrument. They need to be
calibrated to understand how the outputs relate to the system under
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study, and they should be presented in such a way that their findings
can be reproduced. We present here a discussion that aims to show that
computer simulations fall within a spectrum of instruments used every
day by the scientific community.

3.1 Scientific Instruments

The description presented throughout this section has been drawn from
the analysis of Humphreys [4], who examines the role of computational
models (including simulation) in science.

The role of scientific instruments is to enhance the range of our natu-
ral human abilities, such as our perceptual and mathematical capacities.
In the case of mathematics, computational devices can be used to move
beyond what is accessible naturally to the human brain, such as the
number of calculations performed, which is many orders of magnitude
greater on a computer.

Instruments of all types have been used for hundreds of years through-
out science. These range from everyday instruments such as bench micro-
scopes and optical telescopes to specialised medical imaging equipment.
Many modern day instruments incorporate explicit computational ap-
proaches in addition to physical detection to provide enhancements. For
example, magnetic resonance imaging (MRI) and computerised axial to-
mography (CAT) scanners contain various physical devices to measure
nuclear spin and radiation respectively and then use computer algorithms
to transform these readings into two- and three-dimensional images.

One thing in common with all instruments is that they are calibrated
to produce outputs that are directly accessible to the human observer.
The process of calibration relies on correctly observing and reproducing
the structure of known features measured by the instrument. This affords
confidence in using the instrument, establishing the scope of its usage
along with its accuracy, precision and resolution.

We can often take for granted familiar instruments such as micro-
scopes and telescopes, which are the product of many years of testing,
refinement and adjustment. Because of this, the user of such instruments
does not need to know the precise details of the theory behind how it
works as it has been deliberately designed to be used without need for
that knowledge. However, when dealing with contemporary research-
level instruments, the user needs to understand the instrument in much
greater detail owing to their complexity and the lack of many years of
refinement. This type of instrument may routinely malfunction and pro-
duce spurious data or need close attention to work in the desired way.
Knowing how the instrument works should help reduce the occurrence of
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unwanted artefacts increasing the instrument’s stability and highlight-
ing situations in which malfunctions take place. Another related issue
is knowing how to interpret the outputs of the instrument. It is these
issues that we tackle when calibrating an instrument. The main bene-
fit of knowing how instruments work is when they provide unexpected
outputs, whether this be because something has gone wrong or not.
Instrumental knowledge should tell us when we have gone outside the
domain of application of the instrument, and how this can be corrected.

3.2 A Spectrum of Instruments

Based on the previous description of scientific instruments, we consider
computer simulation as a technique that allows us to develop bespoke
scientific instruments. Once engineered, scientific instruments are applied
to some object/system of study, which we call the domain. Here we
explore how computer simulations relate to their domain of study in the
context of other types of scientific instrument. The purpose is to show
how the inputs and outputs of a simulation instrument might be applied
to understand its intended domain. Conceptually, an instrument takes
some form of observation as input from a domain and transforms it based
on a model of understanding that has been encoded into the instrument
during its construction. The output of the instrument is then presented
to a human observer, with the aim of extending the understanding of
the domain. Consider three different examples of scientific instruments
within the setting just described:

Optical telescope: light is passively received as a direct physical input
from the domain (the object that the telescope is directed towards).
Lenses are used to refract the light, which is emitted as the output
so that the domain appears magnified to the human observer.

MRI scanner: a physical input from the domain is achieved through
manipulation. A magnetic field is used to line up proton spins of
hydrogen atoms of the intended domain and a radio signal used to
disrupt this and measurements are made of the distortion. Computer
algorithms are then used to transform the measurements to create
an image of the domain that is displayed to the human observer.

Predictive computer simulation: no physical input is received di-
rectly from the domain, but a set of derived starting conditions for
computational agents is represented within the simulation. These
starting conditions then drive the dynamics of the computational
model encoded within the simulation, and may be subject to further
inputs. A representation of the model is output to a human observer
over a period of time.
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Whilst each of the three instruments just described attempts to help
us understand the domain of study, the relationship with that domain
differs. Even though all three instruments are based on models of domain
understanding, the way in which these models are encoded differs. For
example, it might be within the physical components of the instrument
and/or within a computational model. Computer simulations are at the
far end of this spectrum, based purely on a computational model with no
direct domain understanding specifically encoded within their hardware.

The way in which inputs are received from the domain also differs
with scientific instruments. As we move from instruments such as the
optical telescope to an MRI scanner, the domain input changes from
a passive observation to requiring a direct perturbation of the domain
in order to measure its effects. When we move to computer simulation,
this domain input becomes far more indirect with regard to space and
time in the sense that no direct physical input is present. In this case,
we rely more on logical connections to the domain rather than direct
physical inputs. This results in an added layer of interpretation required
to understand how the inputs of computer simulations map to the entities
of the domain under investigation.

In summary, even though different instruments are fulfilling the same
role of investigating a domain of study, the way in which instruments
interact with that domain can differ immensely. Understanding the re-
lationship between an instrument and the domain it measures is vital
to interpreting its output. This is especially true of computer simulation
instruments that fall at the far end of a spectrum of instruments, with
a reliance on computational models and an indirect relationship to their
domain of study.

4 Calibration

We have discussed in the previous section that computer simulations can
be viewed as scientific instruments. It follows that simulations should be
subject to the same rigorous process of construction as other scientific
instruments, generating an understand of how the model upon which the
simulation instrument is based relates its inputs to its outputs. In order
to help achieve this, the simulation needs to be calibrated.

Construction of a computer simulation, and any other kind of sci-
entific instrument, relies on both processes of science and engineering.
Science is employed in the development of the model upon which the
instrument will be based. Engineering is then used to implement this
model resulting in the construction of an instrument suitable for the
purpose of scientific investigation. Before the instrument can be used,
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however, it should be subjected to the process of calibration. As pre-
viously mentioned, calibration involves establishing the relationship be-
tween the output of an instrument (across a range of operating condi-
tions) and the system under observation; it lets us interpret what the
simulation is showing us.

For instruments such as microscopes and telescopes, Humphreys [4]
tells us that the calibration process relies first on correctly observing
and reproducing the structure of features that are already known. For
computational devices, calibration standards often include reproducing
analytically derived reference points. One problem is that due to the
complexity of calculations, access to results independent of the simula-
tion is often impossible, thus comparison with existing (instrumental)
techniques is required [4].

It is often the case with predictive computer simulation that we do
not have access to the types of data typically used to calibrate (for ex-
ample a set of reference standards). In this case calibration can only be
achieved by comparing simulation observations with predictions from a
pre-existing and explicitly stated model that formed the basis for sim-
ulation construction. One example would be in the case of emergent
properties such as flocking. Our model might predict that flocking is the
result of a combination of certain agent behaviours. These behaviours
would be encoded within the simulation, and then calibration would as-
certain whether or not the flocking behaviours are perceived in the actual
simulation. This emphasises that need to understand and identify what
the underlying model of a simulation is actually a model of.

A further problem with calibration and computer simulation is that
all simulators are essentially different specialised instruments that have
been constructed to answer a specific question or set of questions. The
purpose of these instruments is more often than not different, therefore
calibration is going to be different for each individual simulator. When
changes are made to the simulator (no matter how small), it may have
to be re-calibrated depending on how the change affects the encoded
behaviours.

5 Openness

Previously we highlighted the need for the results generated by com-
puter simulations to be reproducible. Whilst proper calibration would
be a first step towards this, we need to be open about further aspects
of the simulation. Timmer [11] describes the beginning of a movement
towards researchers adopting approaches to ensure that computational
tools are in line with existing scientific methods. However, whilst there
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may be a recognition that nearly everyone doing science uses some form
of computation, there are few who know what is needed to make sure
that documentation of approaches is sufficient for reproducibility.

It is probably intractable to expect complete reproducibility of a piece
of science performed using computer simulation without access to the
exact piece of computer code and all the initialising variables (parameter
settings, initial states of data). This gives support to the argument for
complete openness of code, an emotive issue amongst many who develop
computational tools. This can only be tackled by a sea-change within
research communities to require this level of openness.

There is, however, a more subtle and no less important source of
knowledge that should also be open. We have previously mentioned that
all simulations encode a model. This model is often only explicitly ex-
pressed as the computer code and is the process of much work. It contains
many different assumptions which are vital to understanding what the
model represents. This is an issue of validation (see [10]): how do you
know that you have built the right system to answer the questions you
are exploring? This is hard to express as a yes/no answer and it typically
expressed as a level of confidence. In some circumstances, for example
where outputs of a simulation instrument have a high level of critical-
ity, that a structured argument is required to express confidence in a
computer simulation (see [9] for a more in depth discussion).

6 Conclusion

There are many reasons why scientific instruments based on computer
simulation might not be accepted for use in scientific investigations. In
this paper we have suggested that if we can show how simulations relate
to more traditional scientific instruments, and highlight some important
issues regarding how they might be constructed and presented, that we
may stand a greater chance of simulation approaches becoming a useful
instrument for science. It is also important to emphasise that simulation
does not replace direct experimentation; simulation is a tool to assist
more traditional approaches. Simulation should be part of the scientists
toolkit and used where it is appropriate.

Humphreys [4] argues that when we use new instruments we need to
understand how they are built. Over time they can become more gener-
ally accepted: in the case of simulation the ‘acceptance’ is going to be the
acceptance of a class of predictive software artefacts and development
strategies rather than of an instance of one. This general acceptance is
only going to come from an increased number of instance acceptances.
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In summary, we can consider general purpose computers as physical
instruments that can be used to construct a wide variety of logical instru-
ments in the form of simulations. However, as previously discussed, the
benefit of computational approaches conceals its drawback, with many
unknowns liable to populate the simulation. In the aftermath of ‘Cli-
mategate’ [3], there should be greater scrutiny on the way in which sci-
entists use computational devices as part of their scientific process [5].
There have been calls for open-source code to enable repeatability. In
our view, this is not enough: we need to perform calibration and present
the results of this calibration to provide us with the knowledge to decode
the output of simulation and interpret in the context of the real domain
being modelled and simulated. We need to show how the simulation has
been engineered and why it is a good instrument to enhance our domain
knowledge.
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