Characters + Mark-up = Z Lexis

Ian Toyn' and Susan Stepney?

! Department of Computer Science, University of York,
Heslington, York, YO10 5DD, UK.
ian@cs.york.ac.uk
2 Logica UK Ltd,

Betjeman House, 104 Hills Road, Cambridge, CB2 1LQ, UK.

stepneys@logica.com

Abstract. The mathematical symbols in Z have caused problems for
users and tool builders in the past—precisely what is allowed? ISO Stan-
dard Z answers this question. This paper considers the Z notation at
the level of the individual characters that make up a specification. For Z
authors: it reviews the internationalisation of Z, discusses what charac-
ters can be used in forming names, and summarises the changes made to
ETEX mark-up in ISO Standard Z. For Z tool builders: it explains the
sequence of processing that is prerequisite to the lexing of a Standard Z
specification, and considers in detail the processing of IXTEX mark-up.

1 Introduction

Consider a typical paragraph from a Z specification.

__®Update
ASystem
AFile
f?:1ID

f?7+ 0 File € fs
fs'=fs{f?— OFile '}

It exhibits several characteristic features: the outline around the mathematics,
the use of Greek letters (A and 6) as part of the core language, mathematical
symbols (@ and —) from the standard mathematical toolkit, and the use of a
further Greek letter (@) introduced by the specifier.

Such sophisticated orthography can be easily written using a pen, pencil or
chalk, but poses problems for ASCII-based keyboards. Software tools for Z have
resorted to using mark-up languages, in which sequences of ASCII characters are
used to encode phrases of a Z specification. Mark-up languages have been devised
for representing Z specifications embedded in BTEX [Spivey 1992a, King 1990],
troff [Toyn], e-mail [ISO-Z], SGML [Germén et al. 1994] and XML [Ciancarini
et al. 1998] documents, amongst many others. For example, the schema above
could be marked-up in BTEX as

\begin{schema}{{\Phi}Update}

\Delta System

\\ \Delta File

\\ £? : ID

\where

£? \mapsto \theta"File \in fs

\\ fs’ = fs \oplus \{ £? \mapsto \theta File™’ \}
\end{schema}

and in troff as

.ZS \ (xFUpdate

\ (*DSystem

\ (¥xDFile

£f? : ID

.ZM

f? mlet theta File mem fs

fs’ = fs fxov { £f? mlet theta File ’ }
.ZE

with accompanying macros defining the rendering of such mark-up.

Z’s syntax and semantics have recently been standardised [ISO-Z]. In stan-
dardising the syntax of Z, a formalisation of the lexical tokens (such as the
keywords, and names of definitions) used in the syntax was needed. Given the
complexity of Z’s orthography as noted above, and the requirements for interna-
tionalisation (the use of non-Latin character sets, such as those of Japanese and
Russian) the Z standards panel took the opportunity to go one step further and
define the characters from which the lexical tokens are formed. This allows the
7 standard to answer such questions as Can Z names contain superscripts and
subscripts? and Can Z names contain multiple symbols, and mixes of symbols
and letters?, in the affirmative.

The formalisation of Z’s characters has consequences for the mark-ups used
in tools. These were described above as using “sequences of ASCII characters
[to] encode phrases of a Z specification”. ffiow that Z’s characters have been
formalised, the “phrases” that are encoded are individual characters or sequences
of characters.

This paper is a report about the work on standardising these aspects of Z,
by two members of the Z standards panel. Sections 2 to 6 provide information
for Z authors; sections 7 to 10 provide additional information for Z tool builders.

2 Internationalisation and Character Classes

The Z standard formalises the syntax of the Z notation, including not just the
lexical tokens from which phrases are constructed but also the characters that
make up these tokens. The character set includes the letters, digits and other
symbols of ASCII [ISO-ASCII], and also the mathematical symbols used by Z,

and the letters of other alphabets. As few restrictions as possible are imposed
on the standard character set, and a mechanism to extend the set is provided.

Other standards bodies have been working specifically on the international-
isation issue. The Universal Multiple-Octet Coded Character Set (UCS) [ISO-
UCS, Unicode 2001] includes practically all known alphabets, along with many
mathematical and other symbols. The Z standards panel has worked with the
STIX project (who provide input on mathematical symbols for Unicode) to en-
sure that all of Z’s standard mathematical symbols are present in UCS. Hence
UCS can serve as the definitive representation of essentially any character that
might be used in a Z specification.

Each character in UCS has a code position and attributes such as name and
general property. The general property distinguishes letters, digits, and other
characters, along with further distinctions such as whether a digit is decimal. The
characters used in Z are partitioned into four classes: LETTER, DIGIT, SPECIAL
and SYMBOL. These are referred to collectively as Z characters.!

ZCHAR = LETTER | DIGIT | SPECIAL | SYMBOL ;
LETTER = A’ | "B’ | °C’> | ... | ?a> | °b> | 7¢’ |
|)A) |)E’) |)0} |
|)]PM |)N) |
DIGIT = 20’ | *1> | 2> | ... ;
SPECIAL = /7 | 220 | 2D | 200 | 2 | [| ...
SYMBOL = A’ | °V? | ' | 20 | 20 | L.

The characters of the SPECIAL class have certain special roles: some delimit
neighbouring tokens, some glue parts of words together, and some encode the
boxes around mathematical text. They cannot be used arbitrarily as characters
within Z names. Every other character of UCS can be considered to be present
in one of the LETTER, DIGIT or SYMBOL classes according to its UCS general prop-
erty, and can be used as a character within Z names. Some of these characters
are explicitly required by the 7 standard; any other UCS character can be used
in a Z specification in the appropriate class, though particular tools might not
support them all. A UCS character’s general property can be determined from
the Unicode character database [Unicode 2001].

In the unlikely case of a character being needed that is not in UCS, use
of that character is permitted, but its class (LETTER, DIGIT or SYMBOL) is not
predetermined, and there is less chance of portability between tools supporting
it.

Paragraph outlines are encoded as particular UCS characters that are in
the SPECIAL class. This allows their syntax to be formalised in the usual way,
independent of exactly how those outlines are rendered.

! The standard dialect of BNF [ISO-BNF] is used in enumerating them.

3 Tokenisation

Several requirements were considered by the Z panel in defining the internal
structure of Z tokens.

1. fliames should be able to contain multiple symbols (such as 7/ and ::), and
even combinations of letters and symbols (such as L,).

2. The user should not need to type white space between every pair of consec-
utive Z tokens. For example, x+y should be lexed as three tokens z, 4+, and
y, not as a single token.

3. Subscripts and superscripts should be permitted. Single digit subscripts, such
as in 7y or Ny that have conventionally been used as decorations, and more
sophisticated subscripts and superscripts should be permitted within names,
as in, for example, Ty, Ymin, Or even a®® should the specifier so desire.

Lexical tokens are formalised in terms of the classes into which Z characters
are partitioned. For example, a token that starts with a decimal digit character
is a numeral, and that numeral comprises as many decimal digits as appear
consecutively in the input.

NUMERAL = DECIMAL , { DECIMAL } ;

fiames in Z are formed from words with optional strokes, for example current,
next', subsequent”, input?, output!, z0 (a two character word with no stroke)
and zy (the one character word z with the single stroke 0).

NAME = WORD , { STROKE } ;

Words can be alphanumeric, as in the examples of names above. Alphanumeric
word parts are formed from characters of the LETTER and DIGIT classes. The first
word part cannot start with a DIGIT character, as that would start a numeral.

ALPHASTR = { LETTER | DIGIT } ;

Words can be symbolic, as in 7 /. Symbolic word parts are formed from charac-
ters of the SYMBOL class.

SYMBOLSTR = { SYMBOL } ;

In addition, words can be formed from several parts “glued” together, allowing
a controlled combination of letters and symbols. Each part of a word can be
either alphanumeric or symbolic. The glue can be an underscore, for example
one_word and x_+_y, or subscripting and superscripting motions, for example
7, ¥2, and zg. These motions are encoded as WORDGLUE characters within the
SPECIAL class. Making those motion characters visible, the examples can be

depicted as z \ b\, y 2, and z \ & \.

WORDGLUE = °_° |)/l) |)/} |)\) |)7\) ;
To support words that are purely superscripts, the parts being glued can be
empty. For example ™~ is a word formed from three characters: a superscripting

motion glue character, a SYMBOL, and a motion back down again glue character,
'~/ . Subscripts and superscripts can be nested, for example a®* is a S b N

¢y and z¥% is x 1y \, 2z N\ . For historical reasons, however, a subscripted
digit at the end of a name, for example p,, is lexed as a STROKE, not a subscript
part of the word.

WORDPART

WORDGLUE , (ALPHASTR | SYMBOLSTR) ;

WORD

WORDPART , { WORDPART }
| (LETTER | (DIGIT — DECIMAL)) , ALPHASTR ,
{ WORDPART }
| SYMBOL , SYMBOLSTR , { WORDPART }
An empty wordpart can be regarded as an ALPHASTR or a SYMBOLSTR: the ambi-
guity in the formalisation is irrelevant.

The Z character SPACE separates tokens that would otherwise be lexed as a
single token.

A reference to a definition whose name is decorated means something dif-
ferent from a decorated reference to a schema definition. Standard Z requires
that these two uses of strokes be rendered differently. A STROKE that is part of
a NAME is distinguished from a STROKE that decorates the components of a ref-
erenced schema by the absence of SPACE before the STROKE. (See section 3.2 in
[Toyn 1998] for more detailed motivation of this.) For example, S’ is the name
comprising the word S and the stroke ’, whereas S ' is the decoration expression
comprising the (schema) name S and the decorating stroke '. A less subtle dis-
tinction of decorating strokes is to render them with parentheses—as in (S)'—as
then the stroke cannot be considered to be part of the name.

This standard lexis for Z is a compromise between flexibility and simplic-
ity. Apart from subscripting and superscripting motions, there is no notation
concerned with rendering the characters: nothing is said about typeface, size,
orientation or colour, for example. The meaning of a specification is indepen-
dent of rendering choices. For example, ‘dom’, ‘dom’ and ‘dom’ are regarded as
representing the same Z token. For historical reasons, however, there are three
classes of exception to this rendering rule.

1. The ‘doublestruck’ letters, such as N and F, are regarded as distinct from
the upper case letters such as N and F respectively.

2. The schema operators \, | and § are regarded as distinct from the toolkit
operators \, [, and g.

3. The toolkit’s unary negation - is regarded as distinct from binary minus —.

4 Mark-ups

All of Z notation—its mathematical symbols, any other UCS character, and the
paragraph outlines—can be written using a pen, pencil or chalk. But the input
devices used to enter Z specifications for processing by tools are usually restricted
to ASCII characters. Even those tools that offer virtual keyboards—palettes of
symbols—also use ASCII encodings. So there is a need to encode phrases of

Z specifications by sequences of ASCII characters. These encodings are called
mark-ups. For any particular Z specification, there can be many different mark-
ups all of which convert to the same sequence of Z characters. For example, the
ETEX mark-ups \dom and dom both convert to the Z character sequence ‘dom’,
but may be rendered differently by KTEX.2

The Z standard defines two mark-ups:

1. the e-mail mark-up, suitable for use in ASCII-based plain text messages, and
for mnemonic input to Z tools like Formaliser [Stepney];

2. ITEX mark-up, which allows a Z specification to be embedded within a
document to be typeset by IWTEX [Lamport 1994], and used as the input
(in pre-standard versions of the mark-up) to Z tools like CADIZ [Toyn],
Z/EVES [Saaltink 1997], fuzz [Spivey 1992a], ProofPower [Arthan] and Zeta
[Grieskamp].

Use of a standard mark-up allows specifications to be portable between different
tools that conform to the standard in this way. The UCS representation could
become another basis for portability of raw Z specifications.

Other Z tools may define their own mark-ups (for example, CADIZ also has a
troff mark-up). Any particular mark-up is likely to provide the following features:

1. some means of delimiting formal Z paragraphs from informal explanatory
text;

2. names for non-ASCII characters;

3. directives for extending the mark-up language to cope with the names of
user-defined operators.

Precise details of conversion depend on the particular mark-up.

5 E-mail Mark-up

In the e-mail mark-up, each non-ASCII character is represented as a string
visually-suggestive of the symbol, enclosed in percent signs. There are also ways
of representing paragraph outlines.

This mark-up is designed primarily to be readable by people, rather than as
a purely machine-based interchange format. To this end, it permits the percent
signs to be left out where this will not cause confusion to the reader. However,
there are no guarantees that such abbreviated text is parsable. If machine pro-
cessing is required, either all the percent signs should be used, or a mark-up
designed for machines, such as the XTEX markup, should be used.

In full e-mail mark-up, the example at the beginning of this paper is

2 Prior to the Z standard, mark-ups were usually converted directly to lexical tokens,
and so these examples could be, and usually were, converted to different tokens. Now
that Z characters have been formalised, it is simpler to convert mark-up to sequences
of Z characters, but this means the examples will necessarily convert to the same Z
token.

+—--

%Phi%Update ---

%Delta’,System
#%DeltalFile
£f? : ID

£7 %1-->% %thetal, File %e¥% fs
fs? = fs % ()% { £72 %|1-->% Ytheta% File ’ }

In a more readable, abbreviated form, the predicate part might be written as

£? |--> %theta File %e fs
fs? = fs (+) { £? |--> Ytheta File ’ }

6

ETEX Mark-up

ITEX mark-ups were already in widespread use before 7 was standardised. The
Z standard IATEX mark-up is closely based on two of the most widely used ones
[Spivey 1992a, King 1990] for backwards compatibility. The Z standard requires
that the sequence of lexical tokens that is perceived by reading the rendering shall
be the same as the sequence of lexical tokens that it defines from the conversion.
As the rendering of IATEX mark-up was already defined, the conversion of BTEX
mark-up has had to be defined carefully. Including changes to Z, this has resulted
in the following changes to IWTEX mark-up.

1.

A conjecture paragraph is written within a zed environment, with the mark-
up of its F? keyword being \vdash?.

A section header is enclosed within a new environment, zsection, with the
mark-up of its keywords being \SECTION and \parents. (This capitalisation
follows the same pattern as is used with \IF, \THEN, \ELSE and \LET, where
the corresponding lower-case \LaTeXcommands have already been given dif-
ferent definitions in TEX.)

Mutually recursive free types [Toyn et al. 2000] are separated by the &
keyword with mark-up \&.

The set of all numbers A is marked-up as \arithmos.

The ‘%%Zchar’ mark-up directive defines the conversion of a \LaTeXcommand
to a Z character,

%%hZchar \LaTeXcommand U+nnnn or

%%Zchar \LaTeXcommand U-nnnnnnnn

where nnnn is four hexadecimal digits identifying the position of a character
in the Basic Multilingual Plane of UCS, and nnnnnnnn is eight hexadecimal
digits identifying a character anywhere in UCS, as in the following examples.
%%hZchar \nat U+2115

%%hZchar \arithmos U-0001D538

For such \LaTeXcommands that are used as operator words, mark-up di-
rectives ‘%%Zprechar’, ‘%%Zinchar’ and ‘%%Zpostchar’ additionally include

10.

7

SPACE before and/or after the character in the conversion of \LaTeXcommand,
as in the following examples

%hZinchar \sqsubseteq U+2291

%hZprechar \finset U-0001D53D

which define conversions from \sqsubseteq to ‘ C
‘F .

The ‘Zword’ directive defines the conversion of a \LaTeXcommand to a se-
quence of Z characters, themselves written in the IATEX mark-up,

%%hZword \LaTeXcommand Zstring

as in the following example.

Y%%hZword \natone \nat_1

For such \LaTeXcommands that are used as operator words, mark-up direc-
tives ‘Zpreword’, ‘Zinword’ and ‘Zpostword’ additionally include SPACE be-
fore and/or after the converted Z characters, as in the following example
%%hZinword \dcat \cat/

which defines the conversion from \dcat to ¢ 7/ .

The scope of a mark-up directive is the entire section in which it appears,
excepting earlier directives (so that there can be no recursive application of
the conversions), plus any sections of which its section is an ancestor.

The conversions of commands \theta, \lambda and \mu to Greek letters are
defined by %%Zprechar directives, so that the necessary SPACE in expressions
such as 6 e need not be marked-up explicitly. (This automates a resolution of
the backwards incompatibility reported in section 3.9 of [Toyn 1998] in the
case of WTEX mark-up.) The conversions for other Greek letters are defined
by %%Zchar directives. The inclusion of spaces around the conversion of
a \LaTeXcommand can be disabled by enclosing it in braces, allowing the
remaining conversion to be used as part of a larger word. For example,
{\theta}, {\lambda} and {\mu} are mark-ups for corresponding letters in
longer Greek names.

Subscripts and superscripts can be single I’XTEX tokens or be sequences of
IATEX tokens enclosed in braces, that is, _\LaTeXtoken, _{\LaTeXtokens},
“\LaTeXtoken and “{\LaTeXtokens}.

There is a new symbol © in the toolkit for set symmetric difference, marked-
up as \symdiff.

> and from \finset to

Converting BKTgX Mark-up to Z Characters

The Z standard provides an abstract specification of the conversion from ETEX
mark-up to a sequence of Z characters. Some pseudo-code showing how that
specification might be implemented is provided here.

7.1 The Mark-up Function

Much of the conversion of ETEX mark-up to a sequence of Z characters is man-
aged by the mark-up function, which maps individual \LaTeXcommands to se-
quences of Z characters. Mark-up directives provide the information to extend

hhZchar A\ U+000A WhZprechar \forall U+2200

%hZinchar \also U+000A hhZprechar \exists U+2203
%hZchar \znewpage U+000A WhZinchar \in U+2208
%hZchar \, U+0020 %%Zinchar \spot U+2981
hhZchar \; U+0020 %%Zinchar \hide U+29F9
hhZchar \: U+0020 WhZinchar \project U+2A21
hhZchar _ U+005F %%hZinchar \semi U+2A1F
%hZchar \{ U+007B %%Zinchar \pipe U+2A20
hhZchar \} U+007D WhZpreword \IF if
%%hZinchar \where U+007C %hZinword \THEN then
hhZchar \Delta U+0394 %%hZinword \ELSE else
WhZchar \Xi U+039E WhZpreword \LET let
%hZprechar \theta U+03B8 hhZpreword \SECTION section
%hZprechar \lambda U+03BB %%Zinword \parents parents
WhZprechar \mu U+03BC WhZpreword \pre pre
%hZchar \ldata U+300A hhZpreword \function function
WhZchar \rdata U+300B hhZpreword \generic generic
WhZchar \1lblot U+2989 WhZpreword \relation relation
hhZchar \rblot U+298A %%Zinword \leftassoc leftassoc
hhZchar \vdash U+22A2 %%Zinword \rightassoc rightassoc
%%Zinchar \land U+2227 WhZinword \listarg 4L}
%%4Zinchar \lor U+2228 hhZinword \varg _
%hZinchar \implies U+21D2 hhZprechar \power U+2119
%hZinchar \iff U+21D4 WhZinchar \cross U+00D7
%hZprechar \lnot U+00AC %hZchar \arithmos U-0001D538
hhZchar \nat U+2115

Fig. 1. Definition of the initial mark-up function

the mark-up function: the \LaTeXcommand, the sequence of Z characters to con-
vert it to, and whether spaces can be converted before and /or after that sequence.

The mark-up for the Z core language can be largely defined by mark-up
directives in the prelude section, as shown in Figure 1.3 A tool may need to have
the mapping from \SECTION to section built-in for the prelude’s section header
itself to be recognised. If a tool supports a character set larger than the minimal
set required by the Z standard, such as further Greek and ‘doublestrike’ letters,
these also can be introduced by directives in the tool’s prelude section.

The mark-up for additional Z notation, such as that of the toolkit, can all
be introduced by mark-up directives in the sections where that Z notation is
defined. The mark-up function to be used in a particular section is the union of
those of its parents extended according to its own mark-up directives.

3 Each directive is required to be on a line by itself in a specification; in Figure 1 two
columns are used to save space. The prelude section is an ancestor of every Z section,
whether explicitly listed as a parent or not, so the directives of Figure 1 are in scope
everywhere.

7.2 The Scanning Algorithm

Converting the INTEX mark-up of a Z specification to a sequence of Z characters
involves more work than merely mapping \LaTeXcommands to sequences of 7
characters.

The mark-up directive corresponding to a particular use of a \LaTeXcommand
may appear conveniently earlier in the same section, and it may alternatively
appear later in the same section or in a parent section. Moreover, the sections
may need to be permuted to establish the definition before use order that is
necessary prior to further processing. Some preparation needs to be done to
ensure that directives are recognised before their \LaTeXcommands are used. This
preparation can be done in a separate first pass. The first pass need recognise
only section headers and mark-up directives. A specification of it appears in
section 8 below.

The second pass is where the ITEX mark-up is converted to a sequence of
Z characters. The conversion takes place in several phases, due to dependencies
between them.

The first phase searches out the formal paragraphs, as delimited by \begin
and \end commands of particular WTEX environments (axdef, schema, gendef,
zed, and zsection), eliding the intervening informal text. (For some applications
it might be more appropriate to retain the informal text, but eliding it simplifies
the following description.)

The second phase tokenises the A TEX mark-up, consuming ASCII characters
and producing Z characters. It:

— elides soft space (spaces, tabs and newlines excepting newlines at the ends
of directives) and comments (but retains directives);

— converts @ to e and - to U+2212 and ~ to SPACE;

— inserts SPACE around math function characters (+, -, *, o, |) and after math
punctuation characters (;, ,) and around sequences of (having removed soft
space within) math relation characters (:, <, =, >) if those math charac-
ters are not superscripts or subscripts or enclosed in braces, and with any
following superscript or subscript appearing before the following SPACE;

— recognises \LaTeXcommands eliding soft space after them and converting
\begin{axdef} to AXCHAR, \begin{gendef} to AXCHAR GENCHAR,
\begin{schdef} to SCHCHAR, \begin{zed} to ZEDCHAR, \begin{zsection}
to ZED, \end{same} to ENDCHAR, \tdigit to SPACE, \space to SPACE, and
remembering the names of other \LaTeXcommands and whether they were
enclosed in braces;

— and retains every other ASCII character zy as UCS character U+00zxy.

The third phase converts \LaTeXcommands to their expansions, consuming Z
characters and producing Z characters. It:

— inserts SPACE before \LaTeXcommands that require it and were not in braces;
— applies the mark-up function to convert remaining \LaTeXcommands to Z
characters, inserting \ before each {, }, ~, _ and \ in the conversion, and

processes the result (rejecting any \LaTeXcommand that is not in the domain
of the mark-up function);

— inserts SPACE after \LaTeXcommands that require it and were not in braces,
postponing that SPACE to after any superscript or subscript;

— replaces “\LaTeXcommand by ~{str} and _\LaTeXcommand by _{str}, where
str is the conversion of \LaTeXcommand with \ inserted before each {, }, ~,
_and \ in the conversion, and processes the result;

— converts ~{str} to ' str and _{str} to N\, str N\ and "¢ to ' ¢ / and
_cto N e\

— inserts GENCHAR after SCHCHAR if appropriate, and SPACE after schema para-
graph’s NAME;

— elides braces that are not preceded by the \ escape;

— removes all remaining \ escapes (from {, }, ~, _ and \);

— and forwards all other Z characters unchanged.

The fourth phase manages the mark-up function, consuming Z characters and
producing Z characters. It:

— recognises section headers, initialising the section’s mark-up function using
the mark-up functions of its parents, and forwarding its Z characters un-
changed;

— recognises mark-up directives, revises the mark-up function of the current
section, and elides their Z characters (rejecting any badly-formed mark-up
directives and multiple mark-up directives for the same \LaTeXcommand in
this same scope);

— and forwards all other Z characters unchanged.

These four phases naturally communicate via queues of characters. fliote that
the third phase must not run too far ahead of the fourth phase, otherwise it
might attempt to convert a \LaTeXcommand before the corresponding directive
has caused revision of the mark-up function.

The pseudo-code for the four phases may be somewhat over-specified, that
is, some of the individual conversions might work just as well in different phases.
It may appear complicated, but—apart from careful placing of spaces around
operators—is a fairly direct translation of IATEX to Z characters, presented in
detail to cover all special cases. It is presented in a form that has been abstracted
from an implementation for which no mistakes are presently known.

8 Sections

ISO Standard Z specifies the syntax of Z as being a sequence of sections. It
specifies the semantics of just those sequences of sections that are written in
definition before use order. Sections may be presented to the user in a different
order, perhaps for readability reasons. If the sections are presented to a tool in
the same order as to the user, the tool needs to permute them into a definition
before use order so that their conformance to the standard can be checked. As

extensions to the mark-up language can be defined in parent sections and used
in subsequent sections, this permutation has to be done on the source mark-up,
before the mark-up is converted to a sequence of Z characters.

If there are cycles in the parents relation, it will not be possible to find a
definition before use order for the sections; such a specification does not conform
to standard Z, and so no further processing of it is necessary.

A further issue regarding sections is where they come from: do they reside in
files, and if so how are they arranged? The standard gives no guidance on this,
as it inevitably varies between implementations. flievertheless, there are likely
to be considerable similarities between implementations, and so we believe it is
useful to present a specification of one particular implementation.

8.1 Specification of Finding and Permuting Sections

This specification takes a filename as input, along with an environment in which
that filename is interpreted, retrieves the mark-up of a Z specification from files
determined by the filename and environment, and generates mark-up in which
the sections are in a declaration before use order. This specification is written
with the needs of the CADIZ toolset in mind, but aspects of it are relevant in
other contexts. The specification has been typechecked by CADIZ [Toyn].

Introduction A specification written in standard Z [ISO-Z] comprises a se-
quence of sections [Arthan 1995], each of which has a header giving both its
name and a list of the names of its parents. Its meaning includes the paragraphs
of its parent sections as well as its own paragraphs.

For backwards compatibility with traditional Z [Spivey 1992b], a bare se-
quence of paragraphs (an anonymous section) is accepted as a specification
comprising the sections of the prelude, the mathematical toolkit, and a sec-
tion containing that sequence of paragraphs. A named section needs to include
the toolkit explicitly as a parent if it makes use of those definitions.

The specification below assumes that sections are stored in files, possibly
several per file. Each file is viewed as containing a sequence of paragraphs: the
specification distinguishes formal paragraphs, informal paragraphs, and section
headers. It needs to interpret the content of section headers, but does not need
to interpret the mark-up within formal paragraphs.

Any references to parent sections that have not yet been read are presumed
to be in files of the same name, and so those files are read. In each file, any
formal paragraphs that are not preceded by a section header are treated as if
there had been a section header whose name is that of the file and which has
standard_toolkit as parent. This is similar to the treatment of anonymous sections
in the Z standard. A file’s name need not be the same as any of the sections it
contains, in which case that name is useless from the point of view of finding
parent sections, but it is useful as a starting point for a whole specification.

This specification makes use of the standard mathematical toolkit.

section sortSects parents standard_toolkit

Data types Strings are encoded as sequences of naturals. These naturals can be
viewed as UCS code positions. Here we use CADiZ’s non-standard string literal
expressions, such as ”ropey example”, to display such strings.

| String == seqN

fliames (of both files and sections) are represented by strings. The form of names
would be irrelevant to this specification but for literal names such as ” prelude”.

| Name == String

Only certain kinds of paragraphs need be distinguished. Informal text between
formal paragraphs is retained for possible display in the same order between
the formal paragraphs. Informal and formal paragraphs are each treated as un-
translated strings, but distinguished from each other to enable the detection of
anonymous sections. Section headers are treated like paragraphs in this specifi-
cation.

Paragraph ::= Informal{(String))
| Formal{String))
| SectionHeader {[name : Name; parentSet : F Name]))

The file system is modelled as a function from pathnames (formed of directory
and file names) to sequences of paragraphs. This avoids having to specify the
parsing of mark-up: this specification is independent of any particular mark-up,
though implementations of it will be for specific mark-ups. Section headers can
have been distinguished by the section keyword, if not distinguished by other
mark-up.

| Directory == Name

| FileSystem == Directory x Name -+ seq Paragraph

Sections are represented as sequences of paragraphs in which an explicit section
header begins each section.

Section ==
{ps : seq, Paragraph |
head ps € ran SectionHeader
A ran(tail ps) Nran SectionHeader = &}

Environment This specification operates in an environment comprising: the
file system fs; the current working directory name cwd; the name of the di-
rectory containing the toolkit sections toolkitDir; and an environment variable

SECTIONPATH giving the names of other directories from which sections may
be read. The environment is modelled as the global state of the specification. Its
value is not changed by the specification.

fs : FileSystem
cwd, toolkitDir : Directory
SECTIONPATH : seq Directory

Functions The function sectionToName is given a section and returns the name
of that section. The name returned is that in the section header that is the
section’s first paragraph.

sectionToName ==
A s : Section e ((SectionHeader™) (head s)).name

The function sectionsToParents is given a set of sections and returns the set
containing the names of the parents referenced by those sections.

sectionsToParents ==
Ass : F Section e
U{s : ss ® ((SectionHeader™) (head s)).parentSet}

The function filenameToParas is given a search path of directory names and
a file name and returns the sequence of paragraphs contained in the first file
found with that name in the path of directories to be searched. If no file with
that name is found, an empty sequence of paragraphs is returned (and an error
should be reported by an implementation).

filenameToParas : seq Directory x Name -+ seq Paragraph

Vn: Name o
filenameToParas({) ,n) = ()
Y d : Directory; path : seq Directory; n : Name o

filenameToParas({d) ™ path,n) =
if(d,n) € dom fs
then fs (d, n)
else filenameToParas (path, n)

The function filename ToParagraphs is given a filename and returns the sequence
of paragraphs contained in the first file found with that name in the path of di-
rectories to be searched. The directory of toolkits is always searched first (so that
its sections cannot be overridden), then whatever directories are explicitly listed
in the SECTIOffiPATH environment variable, and finally the current working
directory.

filenameToParagraphs ==
An: Name o
filenameToParas (

(toolkitDir) ™ SECTIONPATH " (cwd) ,n)

The function addHeader reads the named file. If the file starts with a section
header, but the name of that section differs from that of the file, an empty
section is introduced to prevent re-reading of the file. If the file starts with an
anonymous section, the sequence of paragraphs is prefixed with a section header.
If the anonymous section has any formal paragraphs, it is named after the file,
otherwise it is given a different name in case the first named section has that
name.

addHeader ==
An: Name o
let ps == filenameToParagraphs n e
(upref , suff : seq Paragraph | pref 7 suff = ps
A ran pref Nran SectionHeader = &
A (suff = @ V head suff € ran SectionHeader) o
if pref = @ then
if sectionToName suff = nthen()
else(SectionHeader
name == n,
parentSet == @)
elseif ran pref Nran Formal # & then
(SectionHeader (
name == n,
parentSet == {” standard_toolkit”} |))

else
(SectionHeader (
name == n " "informal”
parentSet == &)))
~ps

The function filenameToSections reads the named file and partitions its sequence
of paragraphs into the corresponding sequence of sections.

filenameToSections ==
An: Name e

(u ss : seq Section | / ss = addHeader n)

The function readSpec is given a set of names of files to be read and a set of
sections already read from files. It returns the set of sections containing those
already read, those read from the named files, and those read from files named
as ancestors of other sections in this set. A file is read only if the named parent
has not already been found in previous files and is not present anywhere in the
current file; the parent section could be defined later in the current file, in which
case any file with the name of the parent is not read. The sections should all
have different names (otherwise an implementation should report an error); this
specification merges sections that are identical.

readSpec : F Name x F Section — F Section

Vss : I Section e

readSpec (& , ss) = ss
Vns : F Name; ss : F Section e

readSpec (ns, ss) =

wss2 == U{n : ns e ran(filenameToSections n)}
| #5832 = #(sectionToName(| ss3 |)) ®
readSpec ((sectionsToParents sss \
sectionToName(ss) \ ns,
ss U 889)

The function orderSections is given a set of sections and returns those sections
in a sequence ordered so that every section appears before it is referenced as a
parent. The prelude section has to be forced to be first in the sequence, as it
might not be explicitly listed as being a parent. The function is partial because of
the possibility of cycles in the parents relation, about which an implementation
should report errors.

orderSections ==
{ss : F Section; ssq : seq Section |
ran ssp = 8
A sectionToName(head ss2) = 7 prelude”
A (Vss3 :seq Section | ss3 C sso ®
{sectionToName(last ss3)} N
sectionsToParents (ran(front ss3)) =@) e

(s8,8%2)}

The function sortSects specifies the finding and permuting of sections. It takes
the name of a file, and returns the ordered sequence of sections from that file
and the files of ancestral sections.

sortSects ==
An : Name o orderSections (readSpec ({n} U {” prelude” }, @))

Unformalised details Recognition of mark-up directives, perhaps moving
them to the beginnings of their sections, has not been specified above.

The consistency of this specification (that at least one model satisfies it) has
not been formally proven.

When this specification was implemented as part of the CADIZ toolset, several
additional features were needed, as follows.

CADiZ’s input mark-up can contain quiet and reckless directives, which
are intended to disable/enable typesetting and typechecking respectively. These
modes are noted as attributes of each paragraph, so that after permutation
appropriate quiet and reckless directives can be inserted in the output.

The toolset can subsequently typeset sections of the Z specification, in the
order in which their paragraphs appeared in the original mark-up. This is enabled

by the inclusion of filename and line number directives in the output generated
by sortSects.

The typechecking tool can save the results of typechecking a section and its
ancestors in a file, from which a subsequent invocation of the toolset on a larger
Z specification can resume. The names of already typechecked sections are given
as an additional argument to sortSects, which reads all sections as specified here,
but then omits the already typechecked ones from its output.

9 Operator Templates

Once the sections have been permuted into definition before use order, and the
mark-up has been converted to Z characters, there remains one further pass to
be performed before the Z characters can be translated to lexical tokens. This
third pass performs some processing of operator templates.

Operator templates are a kind of Z paragraph. For each operator (prefix, infix,
postfix or bracketting name) defined in a specification, an operator template is
required. This makes explicit the category (relation, function or generic), name,
arity, precedence and associativity of the operator. It also indicates whether each
operand is expected to be a single expression or a list of expressions, for example,
as in the bracketted sequence (A, B, C).

Consider how sequence brackets are introduced in the toolkit. The operator
template for sequence brackets says that it is a function in which (and) are to
be used as names in a unary operator whose operand is a list of expressions.

function ({ ,,))

The definition of sequence brackets is in terms of seq, which results in the ele-
ments of the bracketted sequence being indexed from 1.

(,,)X]==As:seqX @5

An introduction to operator templates was given in [Toyn 1998]. Standard Z
has evolved since then: the precedences of prefix and postfix operators are no
longer explicitly chosen but instead are fixed such that all prefix user-defined
operators have higher precedence than all infix user-defined operators, and all
postfix user-defined operators have higher precedence than all prefix user-defined
operators.*

4 This change avoids some awkward cases such as A infiz3 prefitl B infir2 C
and A infir2 B postfirl infir3 C (where the numbers indicate the desired
precedence). Should these be parsed as (A4 infiz3 (prefirl B)) infiz2 C and
A infir2 ((B postfixl) infiz3d C), or as A infird (prefixl (B infizr2 C)) and
((A infiz2 B) postfizl) infiz3 C, or should both be rejected? Existing Z tools gave
parses that paired up differently. Other languages offering the same facility (Prolog
and Twelf) disagree on which pair of parses is right. Standard Z avoids the prob-
lem by requiring high prefix and postfix precedences. This restricted notation is
analogous to that of Haskell.

The names within an operator, such as (and) in the above example, are
assigned to particular token classes to enable parsing of operator names and
operator applications. The appropriate token classes are determined from the
operator template. There are separate token classes according to whether the
name is the first, middle or last name in an operator, whether operands precede
and follow it, and whether any preceding operand is a list of expressions. In the
example, (is assigned to the token class L (standing for leftmost name), and)
is assigned to the token class SR (standing for rightmost name preceded by a
sequence of expressions).

A name may be used within several different operators, so long as it is as-
signed to the same token class by all of their templates. For example, here is a
specification of sequences indexed from 0.

function ({(® ,,))

(O,)X]==As:seqX eAn:0..#doms—1es(n+1)

This reuse of) is permitted because it is assigned to the same SR token class by
both operator templates. Reuse of) as an infix, as in _) _, would attempt to
associate it with a different token class, and so would not be permitted.

Two problems must be solved before the sequence of Z characters can be
lexed. First, users may defer presenting operator templates until after the corre-
sponding operator has been defined, yet information from an operator’s template
is needed to parse the operator’s definition. Second, the reuse of names within
different operators means that the syntax of operator templates is expressed in
terms of the very token classes that operator templates establish.

The solution to the first problem is to permute operator template paragraphs
to the beginnings of their sections. The solution to the second problem is to
introduce, before an operator template, directives to the lexer to associate its
names with token classes. These transformations can be done on the sequence
of Z characters, hence the third pass. (In other words, there is no need to have
separate implementations of these transformations for each mark-up.)

10 Summary

The processing of mark-up prior to lexing is summarised in Figure 2.

The first pass, section, gathers the mark-up of the specification’s sections
together, permutes them into a definition before use order, and brings mark-up
directives to the starts of their sections.

The second pass, BTEXmark-up, extracts the formal text, tokenises that IXTEX
mark-up, expands \LaTeXcommands according their mark-up directives, and man-
ages the scopes of those mark-up directives.

The third pass, optemp, brings operator templates to the starts of their sec-
tions, and generates lexis directives before them.

The resulting sequence of Z characters is ready to be lexed.

mark-up Z chars

A

section optemp

ATEXmark-up

mark-up Wexpa nd)—>@I rectlve) w

Fig. 2. Processing of mark-up prior to lexing

11 Conclusions

ISO Standard Z has answered the question “What’s in a name?” in the Z con-
text. The answer addresses the internationalisation issue. It establishes a new
representation for a Z specification: its sequence of Z characters. This represen-
tation is intermediate between mark-up and lexical tokens. It simplifies the task
of designing a new mark-up for Z, which can be to sequences of Z characters
rather than directly to lexical tokens.

The liberal scope rules of sections and operator templates require extra pro-
cessing of a 7Z specification prior to lexing. The paper has made explicit an order
in which that processing can be done.

Acknowledgements

We thank the members of the Z standards panel for their influence, Sam Valen-
tine for advising on the use of Z in the sortSects specification, the STIX com-
mittee for arranging the inclusion of Z characters in UCS, and Steve King and
anonymous referees for comments on earlier draft versions of this paper.

References

[Arthan]
R.D. Arthan. The ProofPower web pages.
http://www.lemma-one.com/ProofPower/index/index.html.

[Arthan 1995]
R.D. Arthan. Modularity for Z. http://www.lemma-one.com/zstan_docs/wrk059.ps,
September 1995.

[Ciancarini et al. 1998]
P. Ciancarini, C. Mascolo, and F. Vitali. Visualizing Z notation in HTML docu-
ments. In ZUM’98: The Z Formal Specification Notation, LNCS 1493, pages 81-95.
Springer, 1998.
[German et al. 1994]
D.M. Germén, D. Cowan, and A. Ryman. Comments on the Z Interchange Format
of the Z Base Standard Version 1.0.
ftp://ftp.comlab.ox.ac.uk/pub/Zforum/ZSTAN /papers/z-160.ps.gz, 1994.
[Grieskamp)]
W. Grieskamp. The Zeta web pages. http://uebb.cs.tu-berlin.de/zeta/.
[ISO-ASCII]
ISO/IEC 646:1991. Information Technology—ISO 7-bit Coded Character Set for
Information Interchange (3rd edition).
[ISO-BNF]
ISO/IEC 14977:1996(E). Information Technology—Syntactic Metalanguage—
Eztended BNF.
[ISO-UCS]
ISO/IEC 10646:2000. Information Technology— Universal Multiple-Octet Coded
Character Set (UCS).
[ISO-Z]
ISO/IEC 13568:2001. Information Technology—2Z Formal Specification Notation—
Syntaz, Type System and Semantics: Draft International Standard. To be pub-
lished.
[King 1990]
P. King. Printing Z and Object-Z I¥TEX documents. University of Queensland,
1990.
[Lamport 1994]
L. Lamport. BTEX: A Document Preparation System—~User’s Guide and Reference
Manual, 2nd edition. Addison-Wesley, 1994.
[Saaltink 1997]
M. Saaltink. The Z/EVES system. In ZUM’97: The Z Formal Specification Nota-
tion, LNCS 1212, pages 72-85. Springer, 1997.
[Spivey 1992a]
J.M. Spivey. The fUZZ manual, 2nd edition. Computer Science Consultancy, 1992.
[Spivey 1992b]
J.M. Spivey. The Z Notation: A Reference Manual, 2nd edition. Prentice Hall,
1992.
[Stepney]
S. Stepney. Formaliser Home Page. http://public.logica.com/"formaliser/.
[Toyn]
I. Toyn. CADiZ web pages. http://www-users.cs.york.ac.uk/"ian/cadiz/.
[Toyn et al. 2000]
I. Toyn, S.H. Valentine, and D.A. Duffy. On mutually recursive free types in Z.
In ZB2000: International Conference of B and Z Users, LNCS 1878, pages 59-74.
Springer, 2000.
[Toyn 1998]
I. Toyn. Innovations in the notation of Standard Z. In ZUM’98: The Z Formal
Specification Notation, LNCS 1493, pages 193-213. Springer, September 1998.
[Unicode 2001]
The Unicode Consortium. The Unicode Standard, Version 3.1, May 2001.
http://www.unicode.org/.

