
Access Management in Multi-Administration Networks

S. P. Lord, N.H. Pope, and Susan Stepney

GEC-Marconi Research Centre, Chelmsford,UK.

SUMMARY
Consider the problems of linking together networks controlled by different
administrations, and allowing these administrations to maintain autonomy but to use
each others services. Consider also what happens if these administrations have
different policies on how access should be controlled and security maintained.

We present a model for access control which has been developed to cope with
these situations. The model allows administrations to control their own services and
users from an “Authority”. Services rely on their local authority to control access
correctly, and Authorities can exchange information about users and services by the
use of a controlled trust mechanism.

1. Introduction
As the need for communication between computers increases, existing systems are being
incorporated into networks. These machines often provide good internal security relying on
names and passwords for authentication. However, expanding this technique to be used over
a network can lead to problems :

- Users will have to manage a multitude of passwords.
- The allocation of rights to users may require updating data on several machines
- The boundary between machines is very visible, for some types of application (e.g.

Distributed file stores) this is not a desirable feature
These difficulties are compounded in large complex networks. Consider the problems of
linking together networks controlled by different administrations, and allowing these
administrations to maintain autonomy but to use each others services. Consider also what
happens if the different administrations have different policies on how access should be
controlled and security maintained.

These problems are being addressed under project Admiral (described in Pope et al (1)) a
collaborative project supported by the Alvey programme. An “internet” of local networks at
several sites are being interconnected via a high performance wide area network. The project
is investigating management services to allow applications to be supported between computer
systems across the sites. Under this project there is a need to provide controlled interworking
between distributed systems whilst allowing the different partners to implement their own
security policies.

In this paper we present a model for access control which is being used as the basis for
the design of a system for access control for project Admiral.

2. Background
Our experience with the authentication experiment (Girling (2)) in Project Universe (Burren
(3)) has led us to believe that access can be controlled in a distributed manner. The Universe
system allowed the generation of secure representations for users and their access rights
which could be passed around the network. However, the system did not use encryption, and
it was possible to masquerade as an authentication server and steal passwords and
representations.

S. P. Lord, N. H. Pope, and Susan Stepney.
Access Management in multi-administration networks.
IEE 2nd International Conference on Secure Communication Systems, London, 1986

The masquerade problem can be overcome by using the approach suggested by Needham
and Schroeder (4). This provides a means of authenticating users and services to each other,
but does not, in itself, solve the problems of access control.

3. The Model
The model provides a framework for administrators to build Access Control Systems to meet
their differing requirements. It provides mechanisms which allow users and services from
different administrations to communicate with each other while still allowing the
administrators to retain control of their own parts of the network.

A system based on the model would allow users to login to a Distributed Computing
System and to make requests for services in any part of the system without having to provide
any more information about themselves. After this initial login all subsequent authentication
and access control decisions are handled automatically, and remain invisible to the user
unless access is refused.

The model does not concern itself with the organisational aspects of user management,
that is, with the mechanisms used to give access rights to users, or to create new users and
services. However, it does provide a framework whereby this information can be used to
control users and services.

We describe the model by detailing the way it views the structure and operation of the
network, the mechanisms it provides for access control and how these mechanisms may be
used.

The network is divided into Entities which communicate with each other via Requests,
these Requests are controlled by Authorities.

3.1 Entities
An Entity is something involved in the provision or use of a service. It could be a person or a
software module. Entities are the objects controlled and protected by the Access Control
System.

Entities can take on three different roles, these are Client, Server and Principal. When an
Entity initiates a request for a service, either explicitly, or implicitly as a result of a previous
request, it plays the role of Principal. When an Entity responds to a request it plays the role
of Server. A Request is handled by an Entity playing the role of Client which passes it to the
server. Principals are responsible for requests, Clients and Servers are the communicating
parties involved in Requests. This expansion of the standard Client-Server model allows the
Access Control System to base its decisions on Entities other than the Client.

The model treats all communications between Entities as Requests. A Request is initiated
from a Client and goes to a Server. After this initial message the Request may include further
messages in both directions. Access control decisions are made at the time the Request is
initiated, after this, only the security of the Request is maintained.

Servers may respond to a range of Requests. For example, a file-server might respond to
“read”, “write”, “delete”; a time-server to “now”, “reset”. Principals have access rights,
permissions to make certain Requests of Servers. For example, a particular Principal could
have the right to consult a time-server for the current time, but not to reset it.

Entities can enact different roles. For example, a Server might receive a request from a
Principal which requires it to make a request of another Server. It could then either act as a
Principal in its own right, or as a Client for the original Principal.

Software Entities might take on any of the roles. Human Entities will tend only to be
Principals.

Figure 1. Interactions between Entities and Authorities

3.2 Authorities
The model divides the network up into Administrations, these Administrations manage the
network by using Authorities.

Authorities provide the authentication and access control functions for a set of Entities.
They store data about Entities’ access rights, and can cache data obtained from other
Authorities, for consultation during a Session of Requests.

Authorities provide the following functions:
- They allow Servers to check the access rights of Principals.
- They allow Clients to gain access to Servers for Principals.
- They obtain and generate statements about Principals’ access rights for other

Authorities and for Servers.
- They are used to authenticate Principals.

Each Authority is controlled by a single administration; an administration may control more
than one Authority. The administration controls how its Authorities will behave in response
to requests from Clients, Servers, other Authorities and external administrations. This
behaviour forms part of the administration’s security policy.

Each Client and Server has a Local Authority, which it trusts to make appropriate access
control decisions. Local Authorities may use management information from other
Authorities to help it carry out its function (see Fig. 1).

3.3 Trust
Different Authorities can interact with each other in two ways; by passing out management
data on Entities with Requests, or by asking for this management data from other Authorities.
These interactions are governed by the Trust mechanism. Each Authority is treated as an
autonomous unit, and will only communicate with, or accept communication from, other
Authorities which it trusts.

An Authority A Trusts Authority B if :-
a. Authority A accepts data or services provided by Authority B as being trustworthy and,
b. Authority A is able to authenticate Authority B as the source of the information it

receives.

Similarly, B will only provide services and data to Authorities it Trusts.
For two Authorities to interwork, both their managers must set them up to Trust the other,

thus maintaining the autonomy of the different administrations.
Trust could be used for finer grain control than this by specifying certain categories of

data and services for which an Authority is trusted.

3.4 Control Mechanisms
The model provides a number of mechanisms whereby Authorities can control requests. The
different mechanisms provide different types of control, and may be used in isolation, or in
combination to provide the security required.

There are three mechanisms which can be categorised as giving control based upon WHO
- Access Conditions and Rights, WHERE -Talk To and HOW - Quality of Service.

3.4.1 Talk To
Talk To allows access to a Server to be restricted to a set of named Clients. It also allows a
Client to be restricted to using a set of named Servers. The Client’s Local Authority will only
generate messages for Servers on its list, and the Server’s Local Authority will only pass on
requests from acceptable Clients.

For example, a networked printer might be set up so that it would only accept requests to
print files from particular hosts, similarly, a host might be restricted to using a subset of the
available printers.

3.4.2 Access Conditions and Rights
A lot of access control is based on the user, or Principal who originated the Request rather
than the Client making it. The model incorporates this by stipulating Access Conditions on
servers, and giving Access Rights to Principals. In order to gain access to a Server, the
Principal must prove to the Servers Local Authority that he meets the conditions. In fact,
once the Principal has been authenticated to an Authority, the proving is carried out by
Authorities without involving the Principal.

Access conditions can take two forms, access control lists and capabilities. The access
control list details the names of Principals who can, or cannot, use the service. All requests to
such a Server should include proof of the Principal’s identity. Where the access condition is
the possession of a capability, then the Principal’s access rights must include this capability
and this fact must be proved to the Server’s Local Authority.

Access Conditions and Rights are controlled by the various administrators. Access lists
will generally be close to the Server while capabilities can be passed around the network to
allow delegation of management.

3.4.3 Quality of Service
The Quality of Service of a Request determines which security measures will be used to
protect it (e.g. Data Encryption or Message Authentication Codes). Thus, the Quality of
Service required to access a Server can be used to force prospective Clients to use specific
security measures. The actual mapping used is not specified by the model, it will depend on
the requirements of the network being protected.

Principals will authenticate themselves to an Authority at a particular Quality of Service.
This will then represent the highest Quality of Service they can use for the duration of their
connection to the Distributed Computing System. This Quality of Service could be
determined from:

- Preset Tables,
- The method of authentication used for the Principal,
- The location of the Principal and
- The Quality of Service requested by the Principal.

Servers can be set up so that they will only accept requests within a particular band of
qualities of service. Similarly Clients may be restricted to a band of qualities of service. For
a request to succeed, the Principal must be allowed to generate requests within the range of
qualities of service common to the Client and Server.

The Quality of Service mechanism can also be used to divide the network into groups of
Entities. By restricting different sets of Entities to different bands of Qualities of Service the
network can be partitioned into Domains. Communication between the Domains of such a
partitioned network can be controlled by careful choice of the Quality of Service bands used.
This might be used, for example, to create a multilevel secure environment.

(a) X is Principal accessing Z

(b) Y is Principal accessing Z

(c) X and Y are both Principals accessing Z

Figure 2. Multiple Principles

3.5 Multiple Principals
A request made to a Server can have more than one Principal; whether the request is
honoured can depend on the access rights of more than one Entity. When several Principals
are involved in a request, it must be possible to distinguish between them. For example, it
might be necessary to know which Principal was initially responsible for the request, for
accounting purposes.

Consider figure 2, where X has made a request to Y which requires Y to make a further
request to Z. In the second request the Client is Y and the Server is Z, but the Principal could
be X, Y, or X and Y.

If the sequence of requests gets longer, more combinations of Principals become possible.
But in practice, access to a Server will tend to require Statements about one or two Principals
rather than several.

3.6 Operation
This section describes how Entities communicate via Authorities, and how the access control
mechanisms are used.

3.6.1 Associations and Sessions
Before two parties can communicate, there must be an Association between them. An
Association implies that a securer communication route has been set up at a particular Quality
of Service. The existence of an association also implies that the Talk To function has been
satisfied. A single association may be used for many different requests between a Client and
Server, even requests involving different Principals.

As well as Associations between Clients and Servers to carry Requests, there are
Associations between Authorities for the exchange of management data.

A Entity’s Session is the region of the Distributed Computing System from which
requests can be made with that Entity acting as Principal. A Session is started when the
Principal is first authenticated, and continues until the Principal can no longer use the System
(for example, logout for a person, termination for a software module). The Entities contained
in the Session can vary. It expands to include those Entities whose Local Authorities have
been satisfied with the Principal’s access rights. It contracts as cached data is discarded or
removed.

All the Entities within a session will be satisfied with the identity of the Principal, so that
Access Conditions may be checked and Access Rights used.

Setting up and maintenance of Sessions and Associations is carried out by Authorities.

3.6.2 Making a Request
If a Server is a member of a Principal’s Session, the Principal can make a request to the
Server. This request might still be refused, if the Principal does not have the right to make
that particular request, or it is made at an inappropriate quality of service.

Figure 1 shows the communication paths between the Entities and the Authorities
involved in the access control. Some of these paths are used when setting up Sessions and
collecting Access Rights, others are used for the Requests.

The Principal is responsible for the request (a in Fig. 1), this path implies responsibility
rather than data flow; the Client makes the request on the Principal’s behalf (b). The request
goes via the Client’s Local Authority. The Client’s Local Authority holds cached Statements
about the relevant Principal and Server. These were obtained during the setting up of the
Session, both from its own store and, optionally, from other trusted Authorities (c).

The request is passed on (d) to the Server’s Local Authority. The Server’s Local
Authority checks the access right, using its cached Statements. These too were obtained
during the setting up of the Session, both from the Client’s Local Authority’s cache, and,
optionally, from its own store and from other Trusted Authorities (e). If the access conditions
have been fulfilled, the request is passed on to the Server for processing (f). Further
exchange of data may occur (g).

In the model, the setting up of an Association, the adding of a server to a Principal’s
Session, and the making of a request, are treated as logically separate issues. In practice, the
first request to a Server could trigger the other two activities, and all could occur in parallel.

4. The Formal Model and Implementations
Originally the model existed as an informal English description. This was used to develop a
formal version of the model in the Z specification language. Z is described in Sufrin (5), and
a detailed description of the formal model in Stepney and Lord (6).

Writing a version of the model in Z was a useful exercise. It forced us to think about the
problem carefully, and this resulted in several changes in the model, some of them
significant. The concepts of Talk To and Qualities of Service were introduced during the
development of the Z version. Trust, although introduced in the original informal model,
only became fully described in the Z version. Various consequences of the choices made in
the model can be deduced using the Z formalism, and certain desirable properties can be
proved to hold. The model’s structure has improved, making it more understandable.

Once the model had been formally specified the Z was used to produce a Prolog
animation of the model. Because both Z and Prolog are based on predicate logic this was a
straightforward task; in most cases there is one line of Prolog for each line of Z.

The implementation will be built around a package capable of supporting multiple
Authorities. One of these packages will run on each computer, and will support the Local
Authorities for Entities on that computer. Each package will have interfaces to communicate
with Entities, other packages and a management program. This management interface will
itself be a controlled Service allowing the construction of hierarchies of Authorities.

5. Conclusions
We have described what we believe to be a flexible model which can be applied to many
configurations of network. The model allows administrators to control their own part of a
network in a manner of their own choice while still allowing communication with other
administrations.

The model avoids a single control centre by distributing control between cooperating
bodies around the network. This should allow the construction of systems which do not rely
on connectivity to such a central point to function. At the same time Authorities can be
organised into hierarchies if central control is required.

Distribution of control is by means of the Trust mechanism, something we believe to be
an important concept for distributed systems where access control is a requirement.

Auditing is an important part of maintaining the security of a network. Authorities are
well placed to collect audit data. Sessions make it possible to link together requests and
identify a source external to the network for them. Associations can be used to identify
patterns of traffic flow.

Finally, this model is now being implemented, and will be evaluated over a real network.

6. References

1. Pope, N. H., Tolcher, D. J., Wilbur, S. R and Rosner, R. A., 1986, “Project ADMIRAL - Research
into Networks and Distributed Systems". Conference Proceedings “Networks 86”, Online
Publications, Middlesex, England.

2. Girling, C. G., "Authentication in Project Universe", 1982, Proceedings of the 6th ICCC,
"Pathways to the Information Society", 395-400, North Holland.

3. Burren, J. W., (Editor), 1985, "Project Universe - Overview of the Project", Universe Report No.
1, SERC Rutherford and Appleton Laboratory, Didcot, Oxon, England.

4. Needham, R. M., and Schroeder, M. D., 1978, "Using Encryption for Authentication in Large
Networks of Computers", Communications of the ACM, Vol. 21 No. 12, 993-999.

5. Sufrin, B., Morgan, C. Sorensen, I., and Hayes, I., 1984, "The Z Handbook", Programming
Research Group, University of Oxford, Oxford, England.

6. Stepney, S., and Lord, S.P., 1987, "A Formal Model of Access Control", Software Practice and
Experience, Vol 17, No. 9, 575-593.

	Introduction
	Background
	The Model
	Entities
	Authorities
	Trust
	Control Mechanisms
	Talk To
	Access Conditions and Rights
	Quality of Service

	Multiple Principals
	Operation
	Associations and Sessions
	Making a Request

	The Formal Model and Implementations
	Conclusions
	References

